人教版平面向量多选题单元 易错题测试综合卷检测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版平面向量多选题单元 易错题测试综合卷检测试卷
一、平面向量多选题
1.Rt △ABC 中,∠ABC =90°,
AB =BC =1,0PA PB PC PA
PB
PC
+
+
=,以下正确的是
( ) A .∠APB =120° B .∠BPC =120° C .2BP =PC D .AP =2PC
【答案】ABCD 【分析】
根据条件作几何图形,由向量的关系可得P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形,∠APB =∠BPC =∠APC =120°,进而可确定P 为Rt △ABC 的费马点,利用相似可确定BP 、 AP 、 PC 之间的数量关系. 【详解】
在直线PA ,PB ,PC 上分别取点M ,N ,G ,使得|PM |=|PN |=|PG |=1, 以PM ,PN 为邻边作平行四边形PMQN ,则PM PN PQ +=, ∵
0PA PB PC PA
PB
PC
+
+
=,即0PM PN PG ++=,即0PQ PG +=,
∴P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形, ∴∠APB =∠BPC =∠
APC =120°,故A 、B 正确; ∵AB =BC =1,∠ABC =90°, ∴AC =2,∠ACB =60°,
在△ABC 外部分别以BC 、AC 为边作等边△BCE 和等边△ACD ,直线CP 绕C 旋转60°交PD 于P’,
∴120CE CB ECA BCD CA CD =⎧⎪
∠=∠=︒⎨⎪=⎩,即ECA BCD ≅,故EAC BDC ∠=∠, EAC BDC CA CD
PCA P CD ∠=∠⎧⎪
=⎨⎪'∠=∠⎩
,即CPA CP D '≅,故CP CP '=, ∴CPP '为等边三角形,120CP D CPA '∠=∠=︒,则B ,P ,D 三点共线,同理有A ,P ,E 三点共线, ∴△BPC ∽△BCD ,即
1
2
BP BC CP CD ==,即PC =2BP ,故C 正确, 同理:△APC ∽△ACB ,即AP AC
CP BC
==2,即AP =2PC ,故D 正确. 故选:ABCD.
【点睛】
关键点点睛:根据已知条件及向量的数量关系确定P 为Rt △ABC 的费马点,结合相似三角形及费马点的性质判断各项的正误.
2.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知
()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )
A .::7:5:3sinA sin
B sin
C = B .0AB AC ⋅>
C .若6c =,则ABC 的面积是3
D .若8+=b c ,则ABC 的外接圆半径是3
3
【答案】ACD 【分析】
先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到
3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选
项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D. 【详解】
依题意,设4,5,6b c k c a k a b k +=+=+=, 所以 3.5, 2.5, 1.5a k b c k ===,
由正弦定理得:::::7:5:3sinA sinB sinC a b c ==, 故选项A 正确;
222222
cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯=
222222.5 1.5 3.515
028
k k +-==-<,
故选项B 不正确; 若6c =,则4k =, 所以14,10a b ==,
所以222106141
cos 21062
A +-==-⨯⨯,
所以sin A =

故ABC 的面积是:11sin 61022bc A =⨯⨯= 故选项C 正确;
若8+=b c ,则2k =, 所以7,5,3a b c ===,
所以2225371
cos 2532
A +-==-⨯⨯,
所以sin A =
, 则利用正弦定理得:
ABC 的外接圆半径是:12sin a A ⨯=
, 故选项D 正确; 故选:ACD. 【点睛】
关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设
4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本
题的关键.
3.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且
(),OP xOA yOB x y R =+∈,则下列结论正确的为( )
A .当0x =时,[]2,3y ∈
B .当P 是线段CE 的中点时,1
2x =-,52
y =
C .若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段
D .x y -的最大值为1- 【答案】BCD 【分析】
利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP ,求出x ,y 判断出B 对,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则OP ON OM =+,然后可判断出D 正确. 【详解】
当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故A 错 当P 是线段CE 的中点时,1
3()2
OP OE EP OB EB BC =+=+
+ 115
3(2)222
OB OB AB OA OB =+-+=-+,故B 对
x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一
点,故P 的轨迹是线段,故C 对
如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则:
OP ON OM =+;
又OP xOA yOB =+;0x ∴,1y ;
由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;
此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故D 正确 故选:BCD 【点睛】
结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.
4.已知向量(2,1)a =,(cos ,sin )(0)b θθθπ=,则下列命题正确的是( )
A .若a b ⊥,则tan θ=
B .若b 在a 上的投影为12
-
,则向量a 与b 的夹角为23π
C .存在θ,使得||||||a b a b +=+
D .a b 【答案】BCD 【分析】
若a b ⊥,则tan θ=A 错误; 若b 在a 上的投影为12
-,且||1b =,则2π
cos ,3a b 〈〉=,故B 正确;
若b 在a 上的投影为1
2
-
,且||1b =,故当a,b 0<>=,|||||a b a b =+|+,故C 正确;
2cos sin a b θθ+==)θϕ+, a b D 正确.
【详解】
若a b ⊥,则2cos sin 0a b θθ+==,则tan θ=A 错误; 若b 在a 上的投影为12
-
,且||1b =,则1||cos 2b a b 〈〉=-,,2π
cos ,3a b 〈〉=,故B 正确;
若2()2a b a b a b =+2
2
++,222(||||)||||2||||a b a b a b +=++,若|||||a b a b =+|+,则||||cos ||||a b a b a b a b 〈〉=,=,即cos ,1a b 〈〉=,故a,b 0<>=,|||||a b a b =+|+,故C
正确;
2cos sin a b θθ+==)θϕ+,因为0πθ≤≤,π
02ϕ<<,则当π2
θϕ+=时,
a b ,故D 正确,
故选:BCD . 【点睛】
本题主要考查平面向量的数量积的计算和应用,考查数量积的运算律,意在考查学生对这些知识的理解掌握水平.
5.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AF CE G =,
则( )
A .12
AF AD AB =+ B .1
()2
EF AD AB =
+ C .2133
AG AD AB =
- D .3BG GD =
【答案】AB 【分析】
由向量的线性运算,结合其几何应用求得12AF AD AB =+
、1
()2
EF AD AB =+、21
33AG AD AB =
+、2BG GD =,即可判断选项的正误 【详解】 11
22
AF AD DF AD DC AD AB =+=+
=+,即A 正确 11
()()22
EF ED DF AD DC AD AB =+=+=+,即B 正确
连接AC ,知G 是△ADC 的中线交点, 如下图示
由其性质有
||||1
||||2
GF GE AG CG == ∴211121
()333333AG AE AC AD AB BC AD AB =
+=++=+,即C 错误 同理21212
()()33333
BG BF BA BC CF BA AD AB =+=++=-
211()333DG DF DA AB DA =
+=+,即1
()3
GD AD AB =- ∴2BG GD =,即D 错误 故选:AB 【点睛】
本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系
6.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )
A .22
OA OD ⋅=-
B .2OB OH OE +=-
C .AH HO BC BO ⋅=⋅
D .AH 在AB 向量上的投影为2
【答案】AB 【分析】
直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】
图2中的正八边形ABCDEFGH ,其中||1OA =, 对于32
:11cos
42
A OA OD π=⨯⨯=;故正确. 对于:22
B OB OH OA OE +==-,故正确.
对于:||||C AH BC =,||||HO BO =,但对应向量的夹角不相等,所以不成立.故错误. 对于:D AH 在AB 向量上的投影32||cos ||4AH AH π=-,||1AH ≠,故错误. 故选:AB . 【点睛】
本题考查的知识要点:向量的数量积的应用,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.
7.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤
B .若a b c b ⋅=⋅且0b ≠,则a c =
C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向
D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是
5,3⎛⎫-+∞ ⎪⎝⎭
【答案】AC 【分析】
根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】
对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,
对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,
对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即
22||||a b a b -⋅=,cos 1θ=-,
则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得5
3
λ>-
, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时5
3
λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】
本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.
8.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)- B .(6,15)
C .(2,3)-
D .(2,3)
【答案】ABC 【分析】
设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解. 【详解】
第四个顶点为(,)D x y ,
当AD BC =时,(3,7)(3,8)x y --=--,
解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,
解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,
解得2,3x y ==-,此时第四个项点的坐标为(2,3)-. ∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-. 故选:ABC . 【点睛】
本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.
9.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b += B .a b ⊥
C .()
4a b b +⊥
D .1a b ⋅=-
【答案】CD 【分析】
分析知1a =,2=b ,a 与b 的夹角是120︒,进而对四个选项逐个分析,可选出答案. 【详解】
分析知1a =,2=b ,a 与b 的夹角是120︒. 由12cos12010a b ︒⋅=⨯⨯=-≠,故B 错误,D 正确;
由()2
2
221243a b
a a
b b +=+⋅+=-+=,所以3a b +=,故A 错误; 由()()2
144440a b b a b b +⋅=⋅+=⨯-+=,所以()4a b b +⊥,故C 正确.
故选:CD 【点睛】
本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.
10.在ABC 中,()2,3AB =,()1,AC k =,若ABC 是直角三角形,则k 的值可以是( )
A .1-
B .
113
C D 【答案】BCD 【分析】
由题意,若ABC 是直角三角形,分析三个内有都有可能是直角,分别讨论三个角是直角的情况,根据向量垂直的坐标公式,即可求解.
【详解】
若A ∠为直角,则AB AC ⊥即0AC AB ⋅=
230k ∴+=解得23
k =-
若B 为直角,则BC AB ⊥即0BC AB ⋅=
()()2,3,1,AB AC k == ()1,3BC k ∴=--
2390k ∴-+-=解得113
k =
若C ∠为直角,则BC AC ⊥,即0BC AC ⋅=
()()2,3,1,AB AC k == ()1,3BC k ∴=--
()130k k ∴-+-=解得k =
综合可得,k 的值可能为211,33-故选:BCD 【点睛】
本题考查向量垂直的坐标公式,考查分类讨论思想,考察计算能力,属于中等题型.。

相关文档
最新文档