荣昌区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荣昌区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知点是双曲线C :左支上一点,,是双曲线的左、右两个焦点,且
P 22
221(0,0)x y a b a b
-=>>1F 2F ,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率
12PF PF ⊥2PF M N N 2PF 是( )
A.
B.2
D.5
2
【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.2. 命题“∃x ∈R ,使得x 2<1”的否定是( )
A .∀x ∈R ,都有x 2<1
B .∃x ∈R ,使得x 2>1
C .∃x ∈R ,使得x 2≥1
D .∀x ∈R ,都有x ≤﹣1或x ≥1
3. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是(
)
A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④
B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④
C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④
D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④
4. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( )
A .7049
B .7052
C .14098
D .14101
5. 四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在P ABCD -ABCD PA ⊥ABCD 2AB =体积为
同一球面上,则( )24316
π
PA =
A .3
B .
C .
D .7292
【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.
6. 在定义域内既是奇函数又是减函数的是( )
A .y=
B .y=﹣x+
C .y=﹣x|x|
D .y=
7. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( )
A .(0,4)
B .[0,4)
C .(0,5]
D .[0,5]
8. 函数
是(
)
A .最小正周期为2π的奇函数
B .最小正周期为π的奇函数
C .最小正周期为2π的偶函数
D .最小正周期为π的偶函数
9. 在正方体中,是线段的中点,若四面体的外接球体积为,1111ABCD A B C D -M 11AC M ABD -36p 则正方体棱长为( )
A .2
B .3
C .4
D .5
【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.10.sin45°sin105°+sin45°sin15°=( )
A .0
B .
C .
D .111.已知函数f (x )=3cos (2x ﹣),则下列结论正确的是(
)
A .导函数为
B .函数f (x )的图象关于直线对称
C .函数f (x )在区间(﹣
,
)上是增函数
D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移
个单位长度得到
12.已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有(
)
A .2对
B .3对
C .4对
D .5对
二、填空题
13.不等式
的解集为 .
14.已知sin α+cos α=,且
<α<
,则sin α﹣cos α的值为 .
15.已知()f x 为定义在R 上的偶函数,当0x ≥时,()22x f x =-,则不等式()16f x -≤的解集 是 ▲ .
16.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.
17.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是
.
18.三角形中,,则三角形的面积为
.
ABC 2,60AB BC C ==∠=
ABC 三、解答题
19.已知函数
,且.(Ⅰ)求的解析式; (Ⅱ)若对于任意,都有
,求
的最小值;
(Ⅲ)证明:函数
的图象在直线
的下方.
20.已知正项数列{a n }的前n 项的和为S n ,满足4S n =(a n +1)2.(Ⅰ)求数列{a n }通项公式;(Ⅱ)设数列{b n }满足b n =
(n ∈N *),求证:b 1+b 2+…+b n <.
21.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.
(Ⅰ)求函数f (x )的解析式;
(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.
22.已知函数上为增函数,且θ∈(0,π),,m∈R.
(1)求θ的值;
(2)当m=0时,求函数f(x)的单调区间和极值;
(3)若在上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.
23.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△ABD面积的最大值;
(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.
24.已知函数f(x)=x3+ax+2.
(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.
荣昌区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】A.
【解析】
2.【答案】D
【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,
故选:D.
【点评】本题主要考查含有量词的命题的否定,比较基础.
3.【答案】D
【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f(x);
图象②④恒在x轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h(x)和Φ(x),
又图象②过定点(0,1),其对应函数只能是h(x),
那图象④对应Φ(x),图象③对应函数g(x).
故选:D.
【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.
4.【答案】B
【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,
∴,可得a n+1=a n﹣1,
因此数列{a n}是周期为2的周期数列.
a1=3,∴3a2+2=2a2+2×3,解得a2=4,
∴S2015=1007(3+4)+3=7052.
【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.
5. 【答案】B
【解析】连结交于点,取的中点,连结,则,所以底面,则,AC BD E PC O OE OE PA A OE ⊥ABCD O
到四棱锥的所有顶点的距离相等,即球心,均为O 12PC ==
可得
,解得,故选B .34243316ππ=7
2
PA =
6. 【答案】C 【解析】解:A.在定义域内没有单调性,∴该选项错误; B.
时,y=
,x=1时,y=0;
∴该函数在定义域内不是减函数,∴该选项错误;C .y=﹣x|x|的定义域为R ,且﹣(﹣x )|﹣x|=x|x|=﹣(﹣x|x|);∴该函数为奇函数;
;
∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;∴该函数在定义域R 上为减函数,∴该选项正确; D.
;
∵﹣0+1>﹣0﹣1;
∴该函数在定义域R 上不是减函数,∴该选项错误.故选:C .
【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.
7. 【答案】B
【解析】解:设x 1∈{x|f (x )=0}={x|f (f (x ))=0},∴f (x 1)=f (f (x 1))=0,
∴f(0)=0,
即f(0)=m=0,
故m=0;
故f(x)=x2+nx,
f(f(x))=(x2+nx)(x2+nx+n)=0,
当n=0时,成立;
当n≠0时,0,﹣n不是x2+nx+n=0的根,
故△=n2﹣4n<0,
故0<n<4;
综上所述,0≤n+m<4;
故选B.
【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.
8.【答案】B
【解析】解:因为
=
=cos(2x+)=﹣sin2x.
所以函数的周期为:=π.
因为f(﹣x)=﹣sin(﹣2x)=sin2x=﹣f(x),所以函数是奇函数.
故选B.
【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.
9.【答案】C
10.【答案】C
【解析】解:sin45°sin105°+sin45°sin15°
=cos45°cos15°+sin45°sin15°
=cos(45°﹣15°)
=cos30°
=.
故选:C.
【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.
11.【答案】B
【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;
对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,
所以函数f(x)的图象关于直线对称,B正确;
对于C,当x∈(﹣,)时,2x﹣∈(﹣,),
函数f(x)=3cos(2x﹣)不是单调函数,C错误;
对于D,函数y=3co s2x的图象向右平移个单位长度,
得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,
这不是函数f(x)的图象,D错误.
故选:B.
【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.
12.【答案】D
【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,
∴面PDA⊥面ABCD,面PDC⊥面ABCD,
又∵四边形ABCD为矩形
∴BC⊥CD,CD⊥AD
∵PD⊥矩形ABCD所在的平面
∴PD⊥BC,PD⊥CD
∵PD∩AD=D,PD∩CD=D
∴CD⊥面PAD,BC⊥面PDC,AB⊥面PAD,
∵CD⊆面PDC,BC⊆面PBC,AB⊆面PAB,
∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD
综上相互垂直的平面有5对
故答案选D
二、填空题
13.【答案】 (0,1] .
【解析】解:不等式,即
,求得0<x ≤1,
故答案为:(0,1].
【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题.
14.【答案】 .
【解析】解:∵sin α+cos α=,<α<
,
∴sin 2α+2sin αcos α+cos 2α=,
∴2sin αcos α=﹣1=
,且sin α>cos α,∴sin α﹣cos α=
=
=
.故答案为:
.
15.【答案】[]
2,4-考
点:利用函数性质解不等式1111]16.【答案】
【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC 中点为E ,CD 中点为F ,
则截面为即截去一个三棱锥
其体积为:
所以该几何体的体积为:故答案为:17.【答案】 .
【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为
此圆锥的体积为=
故答案为
【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.
18.【答案】【解析】
试题分析:因为中,,,又ABC ∆2,60AB BC C ===︒2
sin A
=
1sin 2A =
,即,所以,∴,,.BC AB <A C <30C =︒90B =︒AB BC ⊥1
2
ABC
S AB BC ∆=⨯⨯=考点:正弦定理,三角形的面积.
【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正
ab 2
b 2
a 弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式
,,,等等.1sin 2ab C 12ah 1()2a b c r ++4abc R
三、解答题
19.【答案】
【解析】【知识点】导数的综合运用利用导数研究函数的单调性
【试题解析】(Ⅰ)对求导,得,
所以,解得,
所以.
(Ⅱ)由,得,
因为,
所以对于任意,都有.
设,则.
令,解得.
当x变化时,与的变化情况如下表:
所以当时,.
因为对于任意,都有成立,
所以.
所以的最小值为.
(Ⅲ)证明:“函数的图象在直线的下方”
等价于“”,
即要证,
所以只要证.
由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.
设,
所以,
令,解得.
由,得,所以在上为增函数.
所以,即.
所以.
故函数的图象在直线的下方.
20.【答案】
【解析】(Ⅰ)解:由4S n=(a n+1)2,
令n=1,得,即a1=1,
又4S n+1=(a n+1+1)2,
∴,整理得:(a n+1+a n)(a n+1﹣a n﹣2)=0.
∵a n>0,∴a n+1﹣a n=2,则{a n}是等差数列,
∴a n=1+2(n﹣1)=2n﹣1;
(Ⅱ)证明:由(Ⅰ)可知,b n==,
则b1+b2+…+b n=
=
=.
21.【答案】
【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),
∴log a4=2,a=2,则g(x)=log2x.…
∵函数y=f(x)的图象与g(X)的图象关于x轴对称,
∴.…
(Ⅱ)∵f(x﹣1)>f(5﹣x),
∴,
即,解得1<x<3,
所以x的取值范围为(1,3)…
【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.
22.【答案】
【解析】解:(1)∵函数上为增函数,
∴g′(x)=﹣+≥0在,mx﹣≤0,﹣2lnx﹣<0,
∴在上不存在一个x0,使得f(x0)>g(x0)成立.
②当m>0时,F′(x)=m+﹣=,
∵x∈,∴2e﹣2x≥0,mx2+m>0,
∴F′(x)>0在恒成立.
故F(x)在上单调递增,
F(x)max=F(e)=me﹣﹣4,
只要me﹣﹣4>0,解得m>.
故m的取值范围是(,+∞)
【点评】本题考查利用导数求闭区间上函数的最值,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
23.【答案】
【解析】解:(Ⅰ)∵,∴a=c,
∴b2=c2
∴椭圆方程为+=1
又点A(1,)在椭圆上,
∴=1,
∴c2=2
∴a=2,b=,
∴椭圆方程为=1 …
(Ⅱ)设直线BD方程为y=x+b,D(x1,y1),B(x2,y2),
与椭圆方程联立,可得4x2+2bx+b2﹣4=0
△=﹣8b2+64>0,∴﹣2<b<2
x1+x2=﹣b,x1x2=
∴|BD|==,
设d为点A到直线y=x+b的距离,∴d=
∴△ABD面积S=≤=
当且仅当b=±2时,△ABD的面积最大,最大值为…
(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k1==2﹣,k2==﹣2
此时k1+k2=0,猜想λ=1时成立.
证明如下:k1+k2=+=2+m=2﹣2=0
当λ=1,k1+k2=0,故当且仅当λ=1时满足条件…
【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.
24.【答案】
【解析】(Ⅰ)证明:f(x)的导数f′(x)=x2+a,
即有f(1)=a+,f′(1)=1+a,
则切线方程为y﹣(a+)=(1+a)(x﹣1),
令x=0,得y=为定值;
(Ⅱ)解:由xe x+m[f′(x)﹣a]≥m2x对x≥0时恒成立,
得xe x+mx2﹣m2x≥0对x≥0时恒成立,
即e x+mx﹣m2≥0对x≥0时恒成立,
则(e x+mx﹣m2)min≥0,
记g(x)=e x+mx﹣m2,
g′(x)=e x+m,由x≥0,e x≥1,
若m≥﹣1,g′(x)≥0,g(x)在[0,+∞)上为增函数,
∴,
则有﹣1≤m≤1,
若m<﹣1,则当x∈(0,ln(﹣m))时,g′(x)<0,g(x)为减函数,
则当x∈(ln(﹣m),+∞)时,g′(x)>0,g(x)为增函数,
∴,
∴1﹣ln(﹣m)+m≥0,
令﹣m=t,则t+lnt﹣1≤0(t>1),
φ(t)=t+lnt﹣1,显然是增函数,
由t>1,φ(t)>φ(1)=0,则t>1即m<﹣1,不合题意.
综上,实数m的取值范围是﹣1≤m≤1.
【点评】本题为导数与不等式的综合,主要考查导数的应用,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想.。