北京四中九年级上册数学图形的位似—知识讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的位似--知识讲解
【学习目标】
1、了解位似多边形的概念,知道位似变换是特殊的相似变换,能利用位似的方法,将
一个图形放大或缩小;
2、能在同一坐标系中,感受图形放缩前后点的坐标的变化.
【要点梳理】
要点一、位似多边形
1.位似多边形定义:
如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.
要点诠释:
位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.
2.位似图形的性质:
(1)位似图形的对应点相交于同一点,此点就是位似中心;
(2) 位似图形的对应点到位似中心的距离之比等于相似比;
(3)位似图形中不经过位似中心的对应线段平行.
3.平移、轴对称、旋转和位似四种变换的异同:
图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤
第一步:在原图上找若干个关键点,并任取一点作为位似中心;
第二步:作位似中心与各关键点连线;
第三步:在连线上取关键点的对应点,使之满足放缩比例;
第四步:顺次连接各对应点.
要点诠释:
位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.
要点二、坐标系中的位似图形
在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.
要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k或-k.
【典型例题】
类型一、位似多边形
1.下列每组的两个图形不是位似图形的是().
A. B. C. D.
【思路点拨】根据位似图形的概念对各选项逐一判断,即可得出答案.
【答案】D
【解析】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.
据此可得A、B、C三个图形中的两个图形都是位似图形;
而D的对应顶点的连线不能相交于一点,故不是位似图形.
故选D.
【总结升华】位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.
举一反三
【变式】在小孔成像问题中,根据如图4所示,若O到AB的距离是18cm,O 到CD的距离是6cm,则像CD的长是物AB长的().
A. 3倍
B.21
C.3
1 D.不知AB 的长度,无法判断 【答案】C 2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.
【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比 为1.5.
画法是:
1.在平面上任取一点O.
2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.
3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.
4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.
这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE
=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.
【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.
举一反三
【变式】在已知三角形内求作内接正方形.
【答案与解析】
作法:
(1)在AB 上任取一点G ′,作G ′D ′⊥BC;
(2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′;
(3)连接BF ′,延长交AC 于F ;
(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD ;
A 1
B 1
C 1
D 1
E 1 A B D
E
∴四边形DEFG 即为所求.
类型二、坐标系中的位似图形
3.(2014巴中)如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A (﹣2,
4),B (﹣2,1),C (﹣5,2).
(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1.
(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A 2,B 2,C 2,请画出△A 2B 2C 2.
(3)求△A 1B 1C 1与△A 2B 2C 2的面积比,即111222
A B C A B C S S ∆∆
=: (不写解答过程,直接写出结果).
【思路点拨】
(1)根据关于x 轴对称点的性质得出对应点位置进而得出答案;
(2)根据将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘以﹣2,得出各点坐标,进而得出答案;
(3)利用位似图形的性质得出位似比,进而得出答案.
【答案与解析】
解:(1)如图所示:△A 1B 1C 1即为所求;
(2)如图所示:△A 2B 2C 2即为所求;
(3)∵将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A 2,B 2,C 2, ∴△A 1B 1C 1与△A 2B 2C 2的相似比为:1:2,
∴111222
A B C A B C S S ∆∆=:1:4. 故答案为:1:4. G F F'B C G'
【总结升华】此题主要考查了位似变换以及轴对对称变换,得出对应点位置是解题关键.
4. 如图,矩形OABC 的顶点坐标分别为O (0,0),A (6,0),B (6,4),C (0,4).画出以点O 为位似中心,矩形OABC 的位似图形OA ′ B ′ C ′ ,使它的面积等于矩形OABC 面积的4
1,并分别写出A ′、B ′、C ′三点的坐标.
【答案与解析】
因为矩形OA ′B ′C ′与矩形OABC 是位似图形,面积比为1:4,所以它
们的位似比为1:2. 连接OB ,
(1)分别取线段OA 、OB 、OC 的中点A ′、B ′、C ′,连接O A ′、A ′B ′、B ′C ′、 C ′O ,矩形OA ′B ′C ′就是所求的图形.
A ′,
B ′,
C ′三点的坐标分别为A ′(3,0),B ′(3,2),C ′(0,2).
(2)分别在线段OA ,OB ,OC 的反向延长线上截取O A ″、O B ″、O C ″,使OA ″=21OA ,OB ″=21OB ,O C ″=2
1OC ,连接 A ″B ″、B ″C ″,则矩形O A ″B ″C ″为所求. A ″、B ″、C ″三点的坐标分别为A ″(-3,0),B ″(-3,-2),C ″(0,-2).
【总结升华】平面直角坐标系内画位似图形,若没有明确指出只画一个,一定要把两种情况都画在坐标系内,并写出两种坐标.
举一反三:
【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?
【答案】
解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.。

相关文档
最新文档