苏教版数学高一-1.1素材 〖几何学〗发展分支简介

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那个时代被誉为“数学王子”的高斯也发现第五公设不能证明,并且研究了非欧几何。但是高斯害怕这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向自己的朋友表示了自己的看法,也不敢站出来公开支持罗巴切夫斯基、鲍耶他们的新理论。
非欧几何分类
按几何特性(曲率),现存非欧几何的类型可以概括如下:
1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现。这就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾。
人们既然承认欧几里是没有矛盾的,所以也就自然承认非欧几何没有矛盾了。直到这时,长期无人问津的非欧几何才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也就由此得到学术界的高度评价和一致赞美,他本人则被人们赞誉为“几何学中的哥白尼”。
鲍耶和高斯的贡献
几乎在罗巴切夫斯基创立非欧几何学的同时,匈牙利数学家鲍耶·雅诺什也发现了第五公设不可证明和非欧几何学的存在。鲍耶在研究非欧几何学的过程中也遭到了家庭、社会的冷漠对待。他的父亲——数学家鲍耶·法尔卡什认为研究第五公设是耗费精力劳而无功的蠢事,劝他放弃这种研究。但鲍耶·雅诺什坚持为发展新的几何学而辛勤工作。终于在1832年,在他的父亲的一本着作里,以附录的形式发表了研究结果。
欧式几何:
同一直线的垂线和斜线相交。
垂直于同一直线的两条直线或向平行。
存在相似的多边形。
过不在同一直线上的三点可以做且仅能做一个圆。
罗式几何:
同一直线的垂线和斜线不一定相交。
垂直于同一直线的两条直线,当两端延长的时候,离散到无穷。
不存在相似的多边形。
过不在同一直线上的三点,不一定能做一个圆。
从上面所列举得罗式几何的一些命题可以看到,这些命题和我们所习惯的直观形象有矛盾。所以罗式几何中的一些几何事实没有象欧式几何那样容易被接受。但是,数学家们经过研究,提出可以用我们习惯的欧式几何中的事实作一个直观“模型”来解释罗式几何是正确的。
〖几何学〗发展分支简介
几何学是研究空间关系的数学分支,有时简称为几何。几何是近代数学的两大领域之一,另外一个是研究数量关系的领域。现代概念上的几何其抽象程度和一般化程度大幅提高,并与分析、抽象代数和拓扑学紧密结合,很多分支几乎无法认出是从早期的几何学传承而来。
〖几何简史〗
几何学有悠久的历史。最古老的欧氏几何基于一组公设和定义,人们在公设的基础上运用基本的逻辑推理构做出一系列的命题。可以说,《几何原本》是公理化系统的第一个范例,对西方数学思想的发展影响深远。
中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。
〖名称的来历〗
几何这个词最早来自于希腊语“γεωμετρία”,由“γέα”(土地)和“μετρεĭν”(测量)两个词合成而来,指土地的测量,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。
经典定理
塞瓦定理
海伦公式
九点圆
勾股定理
2.立体几何
数学上,立体几何是三维欧几里德空间的几何的传统名称。实践上这大致上就是我们生活的空间。一般作为平面几何的后续课程。其研究对象是立体(简称体)——占据一定三维空间,具有体积的物体。
立体测绘(Stereometry)处理不同形体的体积的测量问题。
简史
毕达哥拉斯学派就处理过球和正多面体,但是棱锥、棱柱、圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
黎曼几何
微分几何中,黎曼几何研究拥有黎曼度量的平滑流形。即是流形切空间上二次方程式的选择。这特别关心角度,弧线长度及体积。从每一小片加起来得出整体的数量。
在19世纪,般赫·黎曼(BernhardRiemann)把这个概念推展开来。好似两个非欧德几何的特别例子(球体几何和双曲线几何)。
欧几里德还提出了五个“一般概念”,也可以作为公理。当然,之后他还使用量的其他性质。
与同一事物相等的事物相等。
相等的事物加上相等的事物仍然相等。
相等的事物减去相等的事物仍然相等。
一个事物与另一事物重合,则它们相等。
整体大于局部。
现代方法
如今,欧几里德几何的构造通常不是通过公理化方法,而是通过解析几何。通过这种方法,可以像证明定理一样证明欧几里德(或非欧几里德)几何中的公理。这一方法没有公理方法那么漂亮,但绝对简练。
〖分支学科〗
1.平面几何
平面几何即欧几里德几何。
欧几里德几何指按照欧几里德的《几何原本》构造的几何学。
欧几里德几何有时就指平面上的几何,即平面几何。本文主要描述平面几何。三维空间的欧几里德几何通常叫做立体几何。高维的情形请参看欧几里德空间。
数学上,欧几里德几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。
一千年后,笛卡儿在《方法论》的附录《几何》中,将坐标引入几何,带来革命性进步。从此几何问题能以代数的形式来表达。实际上,几何问题的代数化在中国数学史上是显着的方法。笛卡儿的创造,是否有东方数学的影响在里面,由于东西方数学交流史研究的欠缺,尚不得而知。欧几里得几何学的第五公设,由于并不自明,引起了历代数学家的关注。最终,由罗巴切夫斯基和黎曼建立起两种非欧几何。
从另一方面讲,欧几里德几何的五条公理并不完备。例如,该几何中的有定理:任意线段都是三角形的一部分。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。
1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——形学,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一次的使用出现。
罗巴切夫斯基几何
十九世纪二十年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧式平行公理相矛盾的命题,用它来代替第五公设,然后与欧式几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。此即数学中的反证法。但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:
基本课题
面和线的重合
两面角和立体角
方块、长方体、平行六面体
棱锥
棱柱
正多面体
圆锥、圆柱

二次曲面:回转椭球、椭球、抛物面、双曲面
其它课题
较高级的研究有
三维的射影几何
用增加一个维度的方法的笛沙格定理的证明
更多的多面体
3.非欧几何
非欧几里德几何,简称非欧几何,是几个几何形式系统的统称。欧几里德几何和非欧几何的差别在于第五公设(见下)。
罗式几何学的公理系统和欧式几何学不同的地方仅仅是把欧式一对分散直线在其唯一公垂线两侧无限远离几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。
我们知道,罗式几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗式几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,再罗式几何中都不成立,他们都相应地含有新的意义。下面举几个例子加以说明:
坚持第五公设,引出欧几里德几何。
以“可以引无数条平行线”为新公设,引出罗氏几何(或称双曲几何)。
以“一条平行线也不能引”为新公设,引出黎曼几何(或称椭圆几何)。
这三种几何学,都是常曲率空间中的几何学,分别对应曲率为0、负常数和正常数的情况。
如果完全去掉第五公设,就得到更加一般化的绝对几何。这种几何不仅可以囊括前面提到的三种几何,而且允许空间的不同位置有不同的曲率。黎曼几何是描述任意维数任意弯曲的绝对几何空间的一种微分解析几何学。
公理描述
欧几里德几何的传统描述是一个公理系统,通过有限的公理来证明所有的“真命题”。
欧几里德几何的五条公理是:
任意两个点可以通过一条直线连接。
任意线段能无限延伸成一条直线。
给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。
所有直角都全等。
若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。
第一,第五公设不能被证明。
第二,在新的公理体系中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论。这个理论像欧式几何一样是完善的、严密的几何学。
这种几何学被称为罗巴切夫斯基几何,简称罗氏几何。这是第一个被提出的非欧几何学。从罗氏几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。
几何原本第五公设
古希腊数学家欧几里得的《几何原本》提出了五条公设。第五条公设说:过线外一点可以并只能引一条已知直线的平行线。
长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?
一般来讲,非欧几何有广义、狭义、通常意义三个不同含义:
广义的非欧几何:泛指一切和欧几里德几何不同的几何学;
狭义的非欧几何:只是指罗式几何;
通常意义的非欧几何:指罗式几何和黎曼几何二者。
罗氏几何
双曲几何又名罗氏几何(罗巴切夫斯基几何),是非欧几里德几何的一种特例,专门研究当平面变成鞍马型之后,平面几何倒底还有几多可以适用,以及会有甚么特别的现象产生。在双曲几何的环境里,平面的曲率是负数。
几何最早的有记录的开端可以追溯到古埃及,古印度,和古巴比伦,其年代大约始于公元前3000年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。在它们中,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。
几何学的现代化则归功于克莱因、希尔伯特等人。克莱因在普吕克的影响下,应用群论的观点将几何变换视为特定不变量约束下的变换群。而希尔比特为几何奠定了真正的科学的公理化基础。应该指出几何学的公理化,影响是极其深远的,它对整个数学的严密化具有极其重要的先导作用。它对数理逻辑学家的启发也是相当深刻的。
〖古代几何学〗
当时并未给出所依根据后世多认为一方面几何可能是拉丁化的希腊语geo的音译另一方面由于几何原本中也有利用几何方式来阐述数论的内容也可能是magnitude多少的意译所以一般认为几何是geometria1607年出版的几何原本中关于几何的译法在当时并未通行同时代也存在着另一种译名形学如狄考文邹立文刘永锡编译的形学备旨在当时也有一定的影响
第五条公理称为平行公理,可以导出下述命题:
通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。
平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里德几何,说明平行公理是不能被证明的。(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何。)
相关文档
最新文档