最新人教版八年级下册数学《期末检测题》及答案
最新人教版数学八年级下学期《期末检测卷》有答案解析
C.菱形的对角线互相垂直D.矩形的对角线互相垂直
【答案】D
【解析】
【分析】
根据几种四边形的性质进行判断即可.
【详解】解:矩形对角线一定相等,但不一定相互垂直,选D说法错误.
其它三个选项说法均正确.
故选:D.
【点睛】本题考查了平行四边形以及三种特殊平行四边形的性质,掌握这几种四边形的性质是解题的键.
27.如图1,在正方形A B C D中,P是对角线B D上的一点,点E在A D的延长线上,且PA=PE,PE交C D于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形A B C D改为菱形A B C D,其他条件不变,当∠A B C=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
【答案】13或
【解析】
【分析】
分情况讨论当 的木棒为直角边时以及当 的木棒为斜边时,利用勾股定理解答即可.
【详解】解:当 的木棒为直角边时,第三根木棒的长度为 ;
当 的木棒为斜边时,第三根木棒的长度为 ;
A. B. C. D.
【答案】C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为A×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
详解】2.3μm=2.3×0.000001m=2.3×10-6m,
故选:C.
【点睛】本题考查用科学记数法表示较小的数,一般形式为A×10-n,其中1≤|A|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
22.在一次函数 中,随 的 增大而增大,则 ________.
新人教版八年级数学下册期末考试题及答案【完整】
新人教版八年级数学下册期末考试题及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.使x2-有意义的x的取值范围是________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b >kx+6的解集是_________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、A7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、x2≥4、x>3.5、46、20三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、3.3、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.4、略.5、(1)2;(2)60︒;(3)见详解6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
新人教版八年级数学下册期末测试卷及答案【完整版】
新人教版八年级数学下册期末测试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.如图,a,b,c在数轴上的位置如图所示,化简22()a a c c b-++-的结果是()A.2c﹣b B.﹣b C.b D.﹣2a﹣b6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3x 2-x 的取值范围是________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。
新人教版八年级数学下册期末试卷【含答案】
新人教版八年级数学下册期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个等腰三角形的底边长为10cm,腰长为12cm,则该三角形的周长为()A. 20cmB. 32cmC. 34cmD. 44cm2. 下列各数中,无理数是()A. √9B. √16C. √3D. √13. 已知一组数据:2, 3, 5, 7, 11, x,其中x为未知数,若这组数据的平均数为6,则x的值为()A. 4B. 6C. 8D. 104. 下列函数中,哪一个函数是增函数?()A. y = -2x + 3B. y = 3x 2C. y = x^2D. y = -x^25. 若平行四边形的对角线互相垂直,则该平行四边形是()A. 矩形B. 菱形C. 正方形D. 无法确定二、判断题(每题1分,共5分)1. 任何两个等边三角形都是全等的。
()2. 两个负数相乘的结果是正数。
()3. 在直角坐标系中,两点之间的距离公式是d = √((x2 x1)^2 + (y2 y1)^2)。
()4. 任何两个奇数之和都是偶数。
()5. 对角线相等的平行四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 若一个正方形的边长为a,则该正方形的面积为______。
2. 两个互质的正整数的最小公倍数是它们的______。
3. 若一组数据的方差为4,则这组数据的平均数为______。
4. 一次函数y = kx + b的图像是一条______。
5. 若一个三角形的两边长分别为3cm和4cm,且这两边的夹角为90度,则这个三角形的第三边长为______。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 什么是函数的单调性?如何判断一个函数的单调性?3. 请解释平行线的性质。
4. 什么是等差数列?等差数列的通项公式是什么?5. 请简述概率的意义。
五、应用题(每题2分,共10分)1. 已知一个正方形的边长为10cm,求该正方形的对角线长。
【人教版】数学八年级下册《期末检测试题》附答案
A. B. C. D.
【答案】D
【解析】
【分析】
根据正方形的判定,画出正方形即可解决问题;
【详解】解:如图所示:一共有11个正方形.故选D.
【点睛】本题考查正方形的判定和性质,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
22.小慧根据学习函数的经验,对函数 的图像与性质进行了探究.下面是小慧的探究过程,请补充完整:
(1)函数 的自变量 的取值范围是;
(2)列表,找出 与 的几组对应值.
-1
0
1
2
3
1
0
1
2
其中, ;
(3)在平面直角坐标系xOy中,描出上表中以各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,解决下列问题.
2020-2021学年第二学期期末测试
人教版数学八年级试题
学校________班级________姓名________成绩________
一、选择题
1.下列格式中,属于最简二次根式的是()
A. B. C. D.
2.下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是()
A. B.
C. D.
16.如图,过点A(2,0)的两条直线 , 分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB= .
(1)求点B 坐标;
(2)若△ABC的面积为4,求 的解析式.
17.如图,矩形ABCD中,点E为边CD上的一点,将矩形ABCD沿BE翻折,点A,D分别落在 处, 与 相交于点P,请用无刻度的直尺分别按下列要求画图(保留画图痕迹)
人教版八年级下学期期末考试数学试卷及答案解析(共六套)
人教版八年级下学期期末考试数学试卷(一)一、选择题1、下列二次根式中,是最简二次根式的是()A、B、C、D、2、平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A、120°B、60°C、30°D、15°3、甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示A、甲B、乙C、丙D、丁4、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A、y1<y2B、y1=y2D、无法确定5、如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A、16B、24C、4D、86、下列命题中,正确的是()A、有一组邻边相等的四边形是菱形B、对角线互相平分且垂直的四边形是矩形C、两组邻角相等的四边形是平行四边形D、对角线互相垂直且相等的平行四边形是正方形7、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A、22.5°B、60°C、67.5°D、75°8、关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A、k≤1C、k=1D、k≥19、已知正比例函数y=kx的图象与反比例函数y= 的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A、x1=﹣1,x2=1B、x1=﹣1,x2=2C、x1=﹣2,x2=1D、x1=﹣2,x2=210、中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1, S2, S3,若S 1+S2+S3=18,则正方形EFGH的面积为()A、9B、6C、5D、二、填空题11、关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为________.12、如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为________.13、某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是________.14、将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=________15、反比例函数y= 在第一象限的图象如图,请写出一个满足条件的k值,k=________16、如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为________.17、如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为________ m.18、如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB 的长为________,线段BC的长为________.三、解答题19、计算:(1)﹣+(+1)(﹣1)(2)× ÷ .20、解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题21、如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.22、为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生________人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23、已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24、如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25、在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y= 的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y= 的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y= (x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y= (x>0)交于点Q,与x轴交于点H,若QH= OP,求k的值.五、填空题26、如图,在数轴上点A表示的实数是________.27、我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t的反比例函数,其函数关系式可以写为:v= (s为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:________;并写出这两个变量之间的函数解析式:________.六、解答题28、已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1, x2(用含m的代数式表示);①求方程的两个实数根x1, x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29、四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)答案解析部分一、选择题1、【答案】A【考点】最简二次根式【解析】【解答】解:A、为最简二次根式,符合题意;B、=2 ,不合题意;C、= ,不合题意;D、=2,不合题意,故选A【分析】利用最简二次根式的定义判断即可.2、【答案】B【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故选B.【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A 可求出∠A的度数,进而可求出∠C的度数.3、【答案】D【考点】方差【解析】【解答】解:∵0.60>0.56>0.50>0.45,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.4、【答案】C【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,∴1•y1=1,2•y2=1,解得:y1=1,y2= ,∵1>,∴y1>y2.故选C.【分析】根据反比例函数图象上点的坐标特征结合点A、B的横坐标,求出y1、y2的值,二者进行比较即可得出结论.5、【答案】C【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴BO=OD= AC=2,AO=OC= BD=3,AC⊥BD,∴AB= = ,∴菱形的周长为4 .故选:C.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.6、【答案】D【考点】命题与定理【解析】【解答】解:A、有一组邻边相等的平行四边形是菱形,故本选项错误;B、对角线互相平分且垂直的四边形是菱形,故本选项错误;C、两组对角相等的四边形是平行四边形,故本选项错误;D、对角线互相垂直且相等的平行四边形是正方形,故本选项正确.故选D.【分析】分别根据菱形、矩形、正方形及平行四边形的判定定理对各选项进行逐一分析即可.7、【答案】C【考点】正方形的性质【解析】【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠D BC=45°,∵BE=CD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,故选C.【分析】由正方形的性质得到BC=CD,∠DBC=45°,证出BE=BC,根据三角形的内角和定理求出∠BEC=∠BCE=67.5°即可.8、【答案】A【考点】根的判别式【解析】【解答】解:∵a=1,b=﹣2,c=k,而方程有两个实数根,∴△=b2﹣4ac=4﹣4k≥0,∴k≤1;故选A.【分析】根据所给的方程找出a,b,c的值,再根据关于x的一元二次方程x2﹣2x+k=0有两个实数根,得出△=b2﹣4ac≥0,从而求出k的取值范围.9、【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】解:∵正比例函数图象关于原点对称,反比例函数图象关于原点对称,∴两函数的交点A、B关于原点对称,∵点A的坐标为(﹣2,1),∴点B的坐标为(2,﹣1).∴关于x的方程=kx的两个实数根分别为﹣2、2.故选D.【分析】根据正、反比例函数图象的对称性可得出点A、B关于原点对称,由点A的坐标即可得出点B的坐标,结合A、B点的横坐标即可得出结论.10、【答案】B【考点】勾股定理的证明【解析】【解答】解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1, S2, S3,S 1+S2+S3=18,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=18,故3x+12y=18,x+4y=6,所以S2=x+4y=6,即正方形EFGH的面积为6.故选:B.【分析】据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1, S2, S3,得出答案即可.二、<b >填空题</b>11、【答案】8【考点】一元二次方程的解【解析】【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有一个根为2,∴22﹣6×2+m=0,解得,m=8,故答案为:8.【分析】根据关于x的一元二次方程x2﹣6x+m=0有一个根为2,可以求得m的值.12、【答案】5【考点】直角三角形斜边上的中线,三角形中位线定理【解析】【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD= AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF= ×10=5cm.故答案为:5.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.13、【答案】23【考点】折线统计图【解析】【解答】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即=23,故答案为:23.【分析】根据中位数的定义求解即可.14、【答案】5【考点】解一元二次方程-配方法【解析】【解答】解:方程x2+4x+1=0,移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3,∴a=2,b=3,则a+b=5,故答案为:5【分析】方程配方得到结果,确定出a与b的值,即可求出a+b的值.15、【答案】3【考点】反比例函数的性质【解析】【解答】解:∵反比例函数y= 的图象在第一象限,∴k>0,∴k=3,故答案为:3.【分析】根据反比例函数y= 的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得答案.16、【答案】【考点】勾股定理,矩形的性质,翻折变换(折叠问题)【解析】【解答】解:由折叠得,∠CBD=∠EBD,由AD∥BC得,∠CBD=∠EDB,∴∠EBD=∠EDB,∴DE=BE,设DE=BE=x,则AE=4﹣x,在直角三角形ABE中,AE2+AB2=BE2,即(4﹣x)2+32=x2,解得x= ,∴DE的长为.故答案为:【分析】先根据等角对等边,得出DE=BE,再设DE=BE=x,在直角三角形ABE中,根据勾股定理列出关于x的方程,求得x的值即可.17、【答案】500【考点】勾股定理的应用【解析】【解答】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC= =500m,∴CE=AC﹣AE=200m,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故答案是:500.【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.18、【答案】2;2【考点】勾股定理【解析】【解答】解:如图1中,作BE⊥AC于E.由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE中,∵∠AEB=90°,∴BE= = = ,在Rt△BEC中,BC= = =2 .故答案分别为2,2 .【分析】如图1中,作BE⊥AC于E,由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE,Rt△BEC中利用勾股定理即可解决问题.三、<b >解答题</b>19、【答案】(1)解:原式=3 ﹣2 +3﹣1= +2(2)解:原式=2 × ×=8【考点】二次根式的混合运算【解析】【分析】(1)先化简二次根式、根据平方差公式去括号,再合并同类二次根式可得;(2)先化简,再计算乘除法可得.20、【答案】(1)解:x2﹣6x+5=0,(x﹣5)(x﹣1)=0,x﹣5=0,x﹣1=0,x 1=5,x2=1(2)解:2x2﹣3x﹣1=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17,x= ,x 1= ,x2=【考点】解一元二次方程-公式法,解一元二次方程-因式分解法【解析】【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.四、<b >解答题</b>21、【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵ND=BF,∴AD﹣ND=BC﹣BF,即AN=CF,在△AEN和△CMF中,∴△AEN≌△CMF(SAS)(2)证明:如图:由(1)△AEN≌△CMF,故EN=FM,同理可得:△EBF≌△MDN,∴EF=MN,∵EN=FM,EF=MN,∴四边形EFMN是平行四边形,∵EM⊥FN,∴四边形EFMN是菱形.【考点】全等三角形的判定与性质,平行四边形的性质,菱形的判定【解析】【分析】(1)直接利用平行四边形的性质得出AN=CF,再利用全等三角形的判定方法得出答案;(2)直接利用全等三角形的判定与性质得出EN=FM,EF=MN,再结合菱形的判定方法得出答案.22、【答案】(1)25(2)解:男生得7分的人数为:45﹣25﹣1﹣2﹣3﹣5﹣3=6,故补全的统计图如右图所示(3)解:男生得平均分是:=7.9(分),女生的众数是:8,故答案为:7.9,8(4)解:女生队表现更突出一些,理由:从众数看,女生好于男生(5)解:由题意可得,女生需增加的人数为:45×60%﹣(20×40%+6)﹣(25×36%)=4(人),即女生优秀人数再增加4人才能完成康老师提出的目标【考点】统计表,扇形统计图,条形统计图,方差【解析】【解答】解:(1)∵在这次测试中,该班女生得10分的人数为4人,∴这个班共有女生:4÷16%=25(人),故答案为:25;【分析】(1)根据扇形统计图可以得到这个班的女生人数;(2)根据本班有45人和(1)中求得得女生人数可以得到男生人数,从而可以得到得7分的男生人数,进而将统计图补充完整;(3)根据表格中的数据可以求得男生得平均成绩和女生的众数;(4)答案不唯一,只要从某一方面能说明理由即可;(5)根据题意可以求得女生优秀人数再增加多少人才能完成康老师提出的目标.23、【答案】解:∵∠B=90°,AB=BC=2,∴AC= =2 ,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.【考点】勾股定理,勾股定理的逆定理【解析】【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.24、【答案】(1)解:如图所示:(2)证明:∵点E,F分别为OA,OB的中点,∴EF∥AB,EF= AB,同理:NM∥CD,MN= DC,∵四边形ABCD是矩形,∴AB∥DC,AB=DC,AC=BD,∴EF∥NM,EF=MN,∴四边形EFMN是平行四边形,∵点E,F,M,N分别为OA,OB,OC,OD的中点,∴EO= AO,MO= CO,在矩形ABCD中,AO=CO= AC,BO=DO= BD,∴EM=EO+MO= AC,同理可证FN= BD,∴EM=FN,∴四边形EFMN是矩形(3)解:∵DM⊥AC于点M,由(2)MO= CO,∴DO=CD,在矩形ABCD中,AO=CO= AC,BO=DO= BD,AC=BD,∴AO=BO=CO=DO,∴△COD是等边三角形,∴∠ODC=60°,∵MN∥DC,∴∠FNM=∠ODC=60°,在矩形EFMN中,∠FMN=90°.∴∠NFM=90°﹣∠FNM=30°,∵NO=3,∴FN=2NO=6,FM=3 ,MN=3,∵点F,M分别为OB,OC的中点,∴BC=2FM=6 ,∴矩形的面积为BC•CD=36【考点】矩形的判定与性质【解析】【分析】(1)根据题目要求画出图形即可;(2)根据三角形中位线定理可得EF∥AB,EF= AB,NM∥CD,MN= DC,再由矩形的性质可得AB∥DC,AB=DC,AC=BD,进而可得四边形EFMN是矩形;(3)根据条件可得DM垂直平分OC,进而可得DO=CO,然后证明△COD是等边三角形,进而得出BC,CD的长,进而得出答案.25、【答案】(1)解:∵反比例函数y= 的图象经过点B(4,3),∴=3,∴m=12,∴反比例函数解析式为y=(2)解:∵四边形OABC是矩形,点B(4,3),∴A(0,3),C(4,0),∵一次函数y=ax﹣1的图象与y轴交于点D,∴点D(0,﹣1),AD=4,设点E(xE , yE),∵△ADE的面积=6,∴•AD•|xE|=6,∴xE=±3,∵点E在反比例函数y= 图象上,∴E(3,4),或(﹣3,﹣4),当E(3,4)在一次函数y=ax﹣1上时,4=3a﹣1,∴a= ,∴一次函数解析式为y= x﹣1,当点(﹣3,﹣4)在一次函数y=ax﹣1上时,﹣4=﹣3a﹣1,∴a=1,∴一次函数解析式为y=x﹣1,综上所述一次函数解析式为y=x﹣1或y= x﹣1(3)解:由(2)可知,直线OE解析式为y= x,设点P(xP , yP),取OP中点M,则OM= OP,∴M(xP ,xP),∴Q(xP + ,xP),∴H(,0),∵点P、Q在反比例函数y= 图象上,∴xP • xP=(xP+ )xP,∴xP= ,∴P(,),∴k= .【考点】反比例函数与一次函数的交点问题,矩形的性质,坐标与图形变化-平移【解析】【分析】(1)利用待定系数法即可解决.(2)设点E(xE , yE),由△ADE的面积=6,得•AD•|xE |=6,列出方程即可解决.(3)设点P(xP,y P ),取OP中点M,则OM= OP,则M(xP,xP),Q(xP+ ,xP),列出方程求出xP即可解决问题.五、<b >填空题</b>26、【答案】【考点】实数与数轴【解析】【解答】解:OB= = ,∵OB=OA,∴点A表示的实数是,故答案为:.【分析】首先利用勾股定理计算出BO的长,然后再根据AO=BO可得答案.27、【答案】矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S 为常数,且S≠0)【考点】反比例函数的应用【解析】【解答】解:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数,这两个变量之间的函数解析式为:a= (S为常数,且S≠0).故答案为:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S为常数,且S≠0).【分析】根据矩形的面积公式S=ab,即可得知:当面积S固定时,矩形的长a 是矩形的宽b的反比例函数,由此即可得出结论.六、<b >解答题</b>28、【答案】(1)证明:∵mx2﹣3(m﹣1)x+2m﹣3=0(m>3)是关于x的一元二次方程,∴△=[(﹣3(m﹣1)]2﹣4m(2m﹣3)=m2﹣6m+9=(m﹣3)2,∵m>3,∴(m﹣3)2>0,即△>0,∴方程总有两个不相等的实数根(2)①由求根公式得x= ,∴x=1,或x= ,∵m>3,∴>3,当x1<x2,∴x1=1,x2=2﹣;当x1>x2,这种情况不存在;∴x1=1,x2=2﹣;②∵mx1<8﹣4x2,∴m<8﹣4(2﹣),解得:3<m<2 .【考点】根的判别式,根与系数的关系【解析】【分析】(1)由于m>3,此方程为关于x的一元二次方程,再计算出判别式△=(m﹣3)2,然后根据判别式的意义即可得到结论;(2)②由求根公式得到x=1,或x= ,即可得到结论;②根据mx1<8﹣4x2,即可得到结果.29、【答案】(1)解:①补全图形如图1所示,②结论:AP=BN,AP⊥BN.理由:延长NB交AP于H,交OP于K.∵四边形ABCD是正方形,∴OA=OB,AO⊥BO,∴∠1+∠2=90°,∵四边形OPMN是正方形,∴OP=ON,∠PON=90°,∴∠2+∠3=90°,∴∠1=∠3,在△APO和△BNO中,,∴△APO≌△BNO,∴AP=BN,∴∠4=∠5,在△OKN中,∠5+∠6=90°,∵∠7=∠6,∴∠4+∠7=90°,∴∠PHK=90°,∴AP⊥BN.(2)解:解题思路如下:a.首先证明△APO≌△BNO,AP=BN,∠OPA=ONB.b.作OT⊥AB于T,MS⊥BC于S,由题意可知AT=TB=1,c.由∠APO=30°,可得PT= ,BN=AP= +1,可得∠POT=∠MNS=60°.d.由∠POT=∠MNS=60°,OP=MN,可证,△OTP≌△NSM,∴PT=MS= ,∴CN=BN﹣BC= ﹣1,∴SC=SN﹣CN=2﹣,在RT△MSC中,CM2=MS2+SC2,∴MC的长可求.【考点】正方形的性质【解析】【分析】(1)①根据题意作出图形即可.②结论:AP=BN,AP⊥BN,只要证明△APO≌△BNO即可.(2)在RT△CMS中,求出SM,SC即可解决问题.人教版八年级下学期期末考试数学试卷(二)一、选择题1、计算的结果是()A、1B、﹣1C、±1D、﹣22、下列二次根式中,能与合并的是()A、B、C、D、3、下列说法正确的是()A、已知a、b、c是三角形的三边长,则a2+b2=c2B、在直角三角形中,两边的平方和等于第三边的平方C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c24、已知四边形ABCD是平行四边形,下列结论中不正确的是()A、当∠ABC=90°时,它是矩形B、当AC=BD时,它是正方形C、当AB=BC时,它是菱形D、当AC⊥BD时,它是菱形5、矩形的面积是48cm2,一边与一条对角线的比是4:5,则该矩形的对角线长是()A、6cmB、8cmC、10cmD、24cm6、一个长方形的面积是10cm2,其长是acm,宽是bcm,下列判断错误的是()A、10是常量B、10是变量C、b是变量D、a是变量7、一次函数y=﹣x+1的图象不经过的象限是()A、第一象限B、第二象限C、第三象限D、第四象限8、某同学使用计算器求15个数的平均数时,错将其中一个数据15输入为45,那么由此求得的平均数与实际平均数的差是()A、2B、3C、﹣2D、﹣3二、填空题9、计算:• =________.10、若一个三角形三边的长度之比为3:4:5,且周长为60cm,则它的面积是________ cm2.11、如图,菱形ABCD中,∠A=60°,BD=3,则菱形ABCD的周长是________.12、若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1________y2(选择“>”、“<”、=”填空).13、中学生田径运动会上,参加男子跳高的15名运动员的成绩如表:14、一组数据的方差s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组数据的平均数是________.三、解答题15、计算:(+ )(﹣1)16、如图,台风过后,一所学校的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部12米处,已知旗杆原长24米,求旗杆在离底部多少米的位置断裂?17、已知:在平面直角坐标系xOy中,一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB.(1)直接写出点A、点B的坐标;(2)在所给平面直角坐标系内画一次函数的图象.18、如果三角形的三边长a,b,c满足+|12﹣b|+(a﹣13)2=0,你能确定这个三角形的形状吗?请说明理由.19、小丽上午9:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小丽离家的距离y(米)和所经过的时间x(分)之间的函数关系图象如图所示.请根据图象回答下列问题:(1)小丽去超市途中的速度是________米/分;在超市逗留了________分;(2)求小丽从超市返回家中所需要的时间?20、已知:如图,在▱ABCD中,E、F是对角线BD上的两点,且BE=DF,求证:四边形AECF是平行四边形.四、解答题21、某校八年级(1)班组织了一次朗读比赛,A队10人的比赛成绩(10分制)分别是:10、8、7、9、8、10、10、9、10、9.(1)计算A队的平均成绩和方差;(2)已知B队成绩的方差是1.4,问哪一队成绩较为整齐?22、已知:y= + + ,求﹣的值.23、已知:如图1,图2,在平面直角坐标系xOy中,A(0,4),B(0,2),点C在x轴的正半轴上,点D为OC的中点.(1)求证:BD∥AC;(2)如果OE⊥AC于点E,OE=2时,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.答案解析部分一、选择题1、【答案】A【考点】二次根式的性质与化简【解析】【解答】解:原式= =|﹣1|=1.故选A.【分析】直接把二次根式进行化简即可.2、【答案】D【考点】同类二次根式【解析】【解答】解:=3 ,A、=2 ,不能合并;B、=4 ,不能合并;C、与不能合并;D、=4 ,能合并,故选D【分析】原式各项化为最简二次根式,利用同类二次根式定义判断即可.3、【答案】C【考点】勾股定理【解析】【解答】解:A、若该三角形不是直接三角形,则等式a2+b2=c2不成立,故本选项错误;B、在直角三角形中,两直角边的平方和等于斜边的平方,故本选项错误;C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2,故本选项正确;D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则c2+a2=b2,故本选项错误;故选:C.【分析】根据勾股定理进行判断即可.4、【答案】B【考点】平行四边形的性质,菱形的判定,矩形的判定,正方形的判定【解析】【解答】解:A、当∠ABC=90°时,它是矩形,说法正确;B、当AC=BD时,它是正方形,说法错误;C、当AB=BC时,它是菱形,说法正确;D、当AC⊥BD时,它是菱形,说法正确;故选:B.【分析】根据有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形进行分析即可.5、【答案】C【考点】矩形的性质【解析】【解答】解:如图:设AB=4x,则AC=5x,由勾股定理得:BC=3x,矩形的面积=AB×BC=4x×3x=48,解得:x=:±2(舍去负值),∴x=2.∴矩形的对角线长是5×2=10(cm).故选:C.【分析】设AB=4x,则AC=5x,由勾股定理可知BC=3x,由勾股定理求出BC=3x,根据面积得出方程,即可得出对角线的长.6、【答案】B【考点】常量与变量【解析】【解答】解:由题意得:10=ab,则10是常量,a和b是变量;故选B.【分析】根据长方形面积公式得:10=ab,10不发生变化是常量,a、b发生变化是变量.7、【答案】C【考点】一次函数的图象【解析】【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象经过的象限,进而可得出结论.8、【答案】A【考点】算术平均数【解析】【解答】解:求15个数的平均数时,错将其中一个数据15输入为45,即使总和增加了30;那么由此求出的这组数据的平均数与实际平均数的差是30÷15=2.故选:A.【分析】利用平均数的定义可得.将其中一个数据15输入为45,也就是数据的和多了30,其平均数就少了30除以15.二、<b >填空题</b>9、【答案】4x【考点】二次根式的乘除法【解析】【解答】解:原式==4x .故答案为:4x .【分析】先进行二次根式的乘法计算,再进行二次根式的化简求解即可.10、【答案】150【考点】勾股定理的逆定理【解析】【解答】解:∵一个三角形三边的长度之比为3:4:5,且周长为60cm,∴三角形三边为15cm,20cm,25cm,且三角形为直角三角形,∴三角形的面积为:×15cm×20cm=150cm2,故答案为:150.【分析】根据已知求出三角形的三边长,根据定勾股理的逆定理得出三角形是直角三角形,根据面积公式求出即可.11、【答案】12【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AD=AB=BC=CD,∵∠A=60°,∴△ABD是等边三角形,即AD=AB=BD=3,∴菱形ABCD的周长为:3×4=12.故答案为:12.【分析】由四边形ABCD是菱形,可得AD=AB=BC=CD,又由∠A=60°,则可证得△ABD是等边三角形,继而求得答案.12、【答案】>【考点】一次函数的图象【解析】【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.13、【答案】1.70m【考点】中位数、众数【解析】【解答】解:由表可知,跳高成绩为1.70m的运动员人数最多,故这些运动员跳高成绩的众数为:1.70m.故答案为:1.70m.【分析】根据众数的概念找出该组数据中出现次数最多的数据即可.14、【答案】3【考点】算术平均数,方差【解析】【解答】解:∵S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],为平均数,∴s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组数据的平均数是3;故答案为:3.【分析】由方差的公式:S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],可得平均数为,从而得出答案.三、<b >解答题</b>15、【答案】解:(+ )(﹣1)== .【考点】二次根式的混合运算【解析】【分析】根据多项式乘以多项式进行计算即可解答本题.16、【答案】解:由题意得:BC=12米,设AC=x米,则AB=(24﹣x)米,x2+122=(24﹣x)2,解得:x=9,答:旗杆在离底部9米的位置断裂.【考点】勾股定理的应用【解析】【分析】首先设AC=x米,则AB=(24﹣x)米,根据勾股定理可得方程x2+122=(24﹣x)2,再解方程即可.17、【答案】(1)解:点A的坐标为(0,2),点B的坐标为(1,0)(2)解:过点A(0,2)、B(1,0)作如图所示的直线,则该直线为y=kx+2的图象.【考点】一次函数的图象【解析】【分析】(1)根据一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB,直接写出点A、B的坐标即可;(2)过点A(0,2)、B(1,0),作图即可.18、【答案】解:这个三角形的形是直角三角形,。
人教版八年级下学期期末考试数学试卷及答案(共四套)
人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。
12B。
8C。
$\frac{2}{3}$D。
$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。
5,12,13B。
1,2,5C。
1,3,2D。
4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。
$(x+2)^2=3$B。
$(x+2)^2=5$C。
$(x-2)^2=3$D。
$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。
矩形B。
菱形C。
正方形D。
无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。
$y=-x$B。
$y=x+1$C。
$y=-2x+1$D。
$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。
|。
8分。
|。
9分。
|。
10分。
|甲(频数)|。
4.|。
2.|。
3.|乙(频数)|。
3.|。
2.|。
5.|A。
$s_1^2>s_2^2$B。
$s_1^2=s_2^2$C。
$s_1^2<s_2^2$D。
无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。
1,0B。
-1,1C。
1,-1D。
无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。
()2. 任何两个无理数相加都是无理数。
()3. 两条平行线的斜率相等。
()4. 一次函数的图像是一条直线。
()5. 任意两个等腰三角形的面积相等。
()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。
2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。
3. 若x^2 5x + 6 = 0,则x的值为_______或_______。
4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。
5. 平行四边形的对边_______且_______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是正比例函数?请举例说明。
人教版八年级下学期期末考试数学试卷及答案(共四套)
人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是 A .12 B .8 C .23D . 2.0 2.以下列各组数为边长,不能构成直角三角形的是A .5,12,13B .1,2,5C .1,3,2D .4,5,6 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 4.如图,两把完全一样的直尺叠放在一起,重合的部分 构成一个四边形,这个四边形一定是A .矩形B .菱形C .正方形D .无法判断5.下列函数的图象不经过...第一象限,且y 随x 的增大而减小的是 A .y x =- B .1y x =+ C .21y x =-+ D .1y x =-6.下表是两名运动员10次比赛的成绩,21s ,22s 分别表示甲、乙两名运动员测试成绩的方差,则有8分9分 10分 甲(频数) 4 2 4 乙(频数) 343A .2212s s >B .2212s s =C .2212s s <D .无法确定7.若a ,b ,c 满足0,0,a b c a b c ++=⎧⎨-+=⎩则关于x 的方程20(0)ax bx c a ++=≠的解是A .1,0B .-1,0C .1,-1D .无实数根8.如图,在ABC △中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,第10题图NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM =x ,BMD ∆和CNE ∆的面积之和为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题9.函数1y x =-x 的取值范围是 . 10.如图,在平面直角坐标系xOy 中,点A (0,2),B (4,0), 点N 为线段AB 的中点,则点N 的坐标为 . 11.如图,在数轴上点A 表示的实数是 .12.如图,在平面直角坐标系xOy 中,直线1l ,2l 分别是函数11y k x b =+和22y k x b =+的图象,则可以估计关于x 的不等式1122k x b k x b +>+的解集为 .第11题图 第12题图 第13题图13.如图,点A ,B ,E 在同一条直线上,正方形ABCD ,BEFG 的边长分别为3,4,H 为线段DF 的中点,则BH = .14.命题“全等三角形的对应角相等”的逆命题是 .这个逆命题是 (填“真”或“假”)命题.ED CA15.若函数2 2 (2),2 (2)x x y x x ⎧+≤=⎨>⎩的函数值y =8,则自变量x 的值为 .16.阅读下面材料:小明想探究函数21y x =-的性质,他借助计算器求出了y 与x 的几组对应值,并在平面直角坐标系中画出了函数图象:x … -3 -2 -1 1 2 3 … y…2.831.731.732.83…小聪看了一眼就说:“你画的图象肯定是错误的.”请回答:小聪判断的理由是 . 请写出函数21y x =-的一条性质: .三、解答题17.已知51a =+,求代数式227a a -+的值.18.解一元二次方程:23220x x +-=.19.如图,在□ABCD 中,AC ,BD 相交于点O ,点E 在AB 上,点F 在CD 上,EF 经过点O .求证:四边形BEDF 是平行四边形.20.如图,在平面直角坐标系xOy 中,直线l 的表达式为26y x =-,点A ,B 的坐标分别为(1,0),(0,2),直线AB 与直线l 相交于点P . (1)求直线AB 的表达式; (2)求点P 的坐标;(3)若直线l 上存在一点C ,使得△APC 的面积是△APO 的面积的2倍,直接写出点C 的坐标.21.关于x 的一元二次方程0)1(222=-+-m mx x 有两个不相等的实数根. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.22.如图,在□ABCD 中,∠ABC ,∠BCD 的平分线分别交AD 于点E ,F ,BE ,CF 相交于点G . (1)求证:BE ⊥CF ;(2)若AB =a ,CF =b ,写出求BE 的长的思路.23.甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在同一次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.甲校 93 82 76 77 76 89 89 89 83 87 88 89 84 92 8789 79 54 88 92 90 87 68 76 94 84 76 69 83 92乙校 84 63 90 89 71 92 87 92 85 61 79 91 84 92 9273 76 92 84 57 87 89 88 94 83 85 80 94 72 90(1)请根据乙校的数据补全条形统计图;(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格;(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,请为他们各写出一条可以使用的理由;甲校:.乙校:.(4)综合来看,可以推断出校学生的数学学业水平更好一些,理由为.24.如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.(1)依题意补全图1;(2)猜想AG和DH的数量关系并证明;(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.25.在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-2,0),B(0,2),C(-2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k 的取值范围.参考答案及评分标准一、选择题(本题共24分,每小题3分)二、填空题(本题共24分,每小题3分)三、解答题(本题共52分,17-22题每小题5分,23-24题每小题7分,25题8分)17.解:227a a -+2(1)6a =-+. ……………………………………………3分当1a =时,原式11=. ……………………………………………5分18.解:3a =,2b =,2c =-.224243(2)28b ac -=-⨯⨯-=.………………………………………3分∴212233b x a --±-===⨯. ……………………4分∴原方程的解为113x -+=,213x --=. ………5分19.证明:∵在□ABCD 中,AC ,BD 相交于点O , ∴DC ∥AB ,OD =OB .………………………………………2分∴∠FDO =∠EBO ,∠DFO =∠BEO . ∴△ODF ≌△OBE . ………………………………3分∴OF =OE .………………………………………………4分∴四边形BEDF 是平行四边形. ……………………5分20.解:(1)设直线AB 的表达式为y =kx +b .由点A ,B 的坐标分别为(1,0),(0,2),可知0,2.k b b +=⎧⎨=⎩解得2,2.k b =-⎧⎨=⎩所以直线AB 的表达式为y =-2x +2. …………………2分(2)由题意,得22,2 6.y x y x =-+⎧⎨=-⎩解得2,2.x y =⎧⎨=-⎩所以点P 的坐标为(2,-2). …………………3分(3)(3,0),(1,-4). ……………………………5分21.解:(1)由题意,得22(2)4(1)0m m ∆=--->. 解得12m >. ……………………………3分(2)答案不唯一.如: 取m =1,此时方程为220x x -=.解得 120,2x x ==. ……………………………5分22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD .…………………………………1分∴∠ABC +∠BCD =180°.∵BE ,CF 分别是∠ABC ,∠BCD 的平分线, ∴∠EBC =12∠ABC ,∠FCB =12∠BCD . ………………2分∴∠EBC +∠FCB =90°. ∴∠BGC =90°. 即BE ⊥CF .…………………………………3分(2)求解思路如下:a .如图,作EH ∥AB 交BC 于点H ,连接AH 交BE 于点P .b .由BE 平分∠ABC ,可证AB =AE ,进而可证四边形ABHE 是菱形,可知AH ,BE 互相垂直平分;c .由BE ⊥CF ,可证AH ∥CF ,进而可证四边形AHCF 是平行四边形,可求AP =2b; d .在Rt △ABP 中,由勾股定理可求BP ,进而可求BE 的长. …5分23.解:(1)补全条形统计图,如下图.……………2分(2)86;92. ………………4分 (3)答案不唯一,理由需包含数据提供的信息. ……6分 (4)答案不唯一,理由需支撑推断结论……………………7分 24.(1)补全的图形,如图所示.………………………………1分 (2)AG =DH .………………………2分证明:∵四边形ABCD 是菱形,∴AD CD CB ==,AB ∥DC ,ADC ABC ∠=∠.…………………3分 ∵点F 为点B 关于CE 的对称点, ∴CE 垂直平分BF .∴CB CF =,CBF CFB ∠=∠.…………………………………4分 ∴CD CF =. 又∵FH CG =, ∴DG CH =.∵180ABC CBF ∠+∠=︒,180DCF CFB ∠+∠=︒, ∴ADC DCF ∠=∠.∴△ADG ≌△DCH . ………………………5分 ∴AG DH =. (3)不存在.……………6分理由如下:由(2)可知,∠DAG =∠CDH ,∠G =∠GAB , ∴∠DPA =∠PDG +∠G =∠DAG +∠GAB =70°>60°.…………7分∴△ADP 不可能是等边三角形. 25.(1)①A ,B ;……………………………2分②当PM +PN =4时,可知点P 在直线l 1:2y x =+,直线l 2:2y x =-上. 所以直线l 的近距点为在这两条平行线上和在这两条平行线间的所有点. 如图1,EF 在OA 上方,当点E 在直线l 1上时,n 的值最大,为22-+. ……3分如图2,EF 在OA 下方,当点F 在直线l 2上时,n 的值最小,为2-. …4分当0n =时,EF 与AO 重合,矩形不存在.综上所述,n 的取值范围是222n -≤≤-+,且0n ≠.…………6分 (2)1212k --≤≤-.……………8分人教版八年级下学期期末考试数学试卷(二)说明:1.考试用时100分钟,满分为120分;图1图22.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B C .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cm B .220cm C .240cm D .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是. 12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分).17.计算:20---++.(2)(51)3(36)18.已知,如图在ΔABC中,AB=BC=AC=2cm,AD是边BC上的高.求AD的长.19.如图,□ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.四、解答题(二)(本大题3小题,每小题7分,共21分).20.一次函数y=2x-4的图像与x轴的交点为A,与y轴的交点为B.(1)A,B两点的坐标分别为A(,),B(,);(2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序; (2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?五、解答题(三)(本大题3小题,每小题9分,共27分).23.观察下列各式:312311=+;413412=+;514513=+;…… 请你猜想: (1=,=; (2)计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来.12kmCAB5km24.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:BF=DF;(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.①求证:四边形BFDG是菱形;②若AB=3,AD=4,求FG的长.25.已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A 点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.人教版八年级下学期期末考试数学试卷(三)总分:120分考试时间:100分钟一、选择题(每题3分,共10题,30分)1. x的取值范围是A.3x2≥ B.3x2> C.2x3≥ D.2x3>2.下列二次根式中,最简二次根式是3.公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元4.在本学期数学期中考中,某小组8名同学的成绩如下: 90、103、105、105、105、115、140、140,则这组数据的众数为( ). A .105 B .90 C .140 D .50 5.下列几组数中,不能作为直角三角形三边长度的是A .1.5,2,2.5B . 3,4,5,C .5,12,13D .20,30,406.已知一组数据123n x x x x ,,,…,的方差是7,那么数据12x x -5,-5,3x 5-,…, n x 5-的方差为A.2 B.5 C.7 D.97. 如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<B.x<3C.x>D.x>38.名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:175设两队队员身高的平均数依次为x甲,x乙,身高的方差依次为2S甲,2S乙,则下列关系中完全正确的是A.x x=甲乙,22S S>乙甲B.x x=甲乙,22S S<乙甲C.x x>甲乙,22S S>乙甲D.x x<甲乙,22S S<乙甲9. 如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE 垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是A.2 B.2.2C.2.4 D.2.510、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30 从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与时间t(时)的函数图象如图所示.根据图象得到下列结论,其中错误..的是A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二.填空(每题3分,共15分)11.如图,Rt △ABC 中,∠BAC=90°,D ,E ,F 分别为AB ,BC ,AC 的中点,已知DF=3,则AE= .12.若点1(1,)A y 和点2(2,)B y 都在一次函数2+-=x y 的图象上,则y 1 y 2(选择“>”、“<”、“=”填空)13.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为________ 14. 如图,菱形ABCD 周长为16,∠ADC =120°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是15.如图,在矩形ABCD,AB=3,BC=4,E 是BC 边上一点,连接AE ,把∠B 沿AE 折 叠,使B 点落在B ’处,当△CEB ’为直角三角形时,BE 的长为____________。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
人教版八年级下册数学期末考试试题含答案
人教版八年级下册数学期末考试试卷一、单选题1合并的二次根式是()AB C D2.下列各式中,运算正确的是()A =﹣2B C 4D .2=3.下列函数中,正比例函数是()A .y =4xB .y =4x C .y =x+4D .y =x 24.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数,中位数分别为()考试分数(分)2016128人数241853A .24,18B .20,16C .20,12D .24,55.如图,四边形ABCD 是菱形,DH ⊥AB 于点H ,若AC=8cm ,BD=6cm ,则DH=()A .B .C .245cm D .485cm 6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A .①②B .②③C .①③D .②④7.如图,在平面直角坐标系xOy 中,A (0,2),B (0,6),动点C 在直线y=x 上.若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数是A .2B .3C .4D .58.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米。
其中正确的结论有()A .1个B .2个C .3个D .4个9.E 为正方形ABCD 内一点,且EBC 是等边三角形,求AEB 的度数是()A .55B .60C .65D .7510.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.自行车发生故障时离家距离为1000米B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.修车时间为15分钟二、填空题11()25x-=x-5,则x的取值范围是__________.12.小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如表所示,平均数中位数众数方差小张7.27.57 1.2小李7.17.58 5.4通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是_____.13.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是_____分.14.如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.15.如图,在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么CD的长是___________16.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为_______.17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图的方式放置,A1,A2,A3…和点C1,C2,C3…分别在直线y=x+2和x轴上,则点C2020的横坐标是__________.18.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx<﹣x+3的解集是_____.三、解答题19.计算:(1-;(2)+2+20.某校全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生人,并将条形图补充完整:(2)捐款金额的众数是元,中位数是元;(3)若该校共有2000名学生参加捐款,根据样本平均数估计该校大约可捐款多少元?21.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD ,OE 与AB 交于点F .(1)求证:四边形AEBO 为矩形;(2)若OE =10,AC =16,求菱形ABCD 的面积.22.如图,正方形ABCD 的对角线交于点O ,点E 、F 分别在AB 、BC 上(AE <BE ),且∠EOF =90°,OE 、DA 的延长线交于点M ,OF 、AB 的延长线交于点N ,连接MN .(1)求证:OM =ON ;(2)若正方形ABCD 的边长为6,OE =EM ,求MN 的长.23.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y (单位:千克)与上市时间x (单位:天)的函数关系如图1所示,樱桃价格z (单位:元/千克)与上市时间x (单位:天)的函数关系式如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y 与上市时间x 的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?24.如图,在矩形纸片ABCD 中,3,9AB AD ==,将其折叠,使点D 与点B 重合,折痕为EF .(1)求证:BE BF =;(2)求BE 的长.25.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由.26.如图,△ABC 为等腰直角三角形,∠ACB =90°,D ,E 分别是AC 、AB 的中点,P 为直线DE 上的一点,PQ ⊥PC 交直线AB 于Q .(1)如图1,当P 在ED 延长线上时,求证:EC+EQ ;(2)当P在射线DE上时,请直接写出EC,EQ,EP三条线段之间的数量关系.参考答案1.D【详解】解:A不是同类二次根式,不能合并,故A不合题意;B不是同类二次根式,不能合并,故B不合题意;CC不合题意;D2D符合题意;故选:D2.C【详解】解:A=2,故原题计算错误;B=C4,故原题计算正确;D、2和故选:C 【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式的性质及加减法运算法则是解题关键.3.B 【解析】【分析】根据正比例函数定义对各选项进行逐一分析即可.【详解】A 、4y x=是反比例函数,故本选项错误;B 、4xy =是正比例函数,故本选项正确;C 、y=x+4是一次函数,故本选项错误;D 、y=x 2是二次函数,故本选项错误.故选B .【点睛】考查的是正比例函数的定义,熟知一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数是解答此题的关键.4.B 【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16.故选:B .【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.5.C【解析】【分析】根据菱形性质在Rt△ABO中利用勾股定理求出AB=5,再根据菱形的面积可得AB×DH=12×6×8=24,即可求DH长.【详解】由已知可得菱形的面积为12×6×8=24.∵四边形ABCD是菱形,∴∠AOB=90°,AO=4cm,BO=3cm.∴AB=5cm.所以AB×DH=24,即5DH=24,解得DH=245 cm.故选C.【点睛】主要考查了菱形的性质,解决菱形的面积问题一般运用“对角线乘积的一半”和“底×高”这两个公式.6.B【解析】【详解】A、∵四边形ABCD是平行四边形,∴当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当③AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,∴当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选B.7.B【解析】【详解】解:如图,AB的垂直平分线与直线y=x相交于点C1,∵A(0,2),B(0,6),∴AB=6-2=4,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3,∵OB=6,∴点B到直线y=x的距离为6×2∵3,∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,AB的垂直平分线与直线的交点有一个所以,点C的个数是1+2=3.故选B.8.A【解析】【详解】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键. 9.D【解析】【分析】由E为正方形ABCD内一点,且△EBC是等边三角形,易证得△ABE是等腰三角形,且AB=BE,易求得∠ABE=∠ABC-∠EBC=30°,继而求得答案.【详解】解:∵E为正方形ABCD内一点,且△EBC是等边三角形,∴∠ABC=90°,∠EBC=60°,AB=CB=EB,∴∠ABE=∠ABC-∠EBC=30°,∴∠EAB=∠AEB=1802ABE︒-∠=75°.故答案为:75°.【点睛】此题考查了正方形的性质以及等边三角形的性质.此题难度不大,注意掌握数形结合思想的应用.10.D【解析】【分析】观察图象,明确每一段小明行驶的路程、时间,作出判断.【详解】A、自行车发生故障时离家距离为1000米,正确;B、学校离家的距离为2000米,正确;C、到达学校时共用时间20分钟,正确;-=分钟,可知D错误.D、由图可知,修车时间为15105故选:D.【点睛】此题考查了学生从图象中获取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.x≥5【解析】【分析】=- ,由此性质求得答案即可.(0)a a【详解】x=-,解:5∴5-x≤0∴x≥5.故答案为:x≥5.【点睛】在化简中的应用,熟练运用==-(0),(0)a a a a有关的性质是解题的关键.12.小李【解析】【分析】根据方差的意义知,波动越大,成绩越不稳定.观察表格可得,小李的方差大,说明小李的成绩波动大,不稳定,【详解】观察表格可得,小李的方差大,意味着小李的成绩波动大,不稳定【点睛】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定13.88【解析】【详解】解:∵笔试按60%、面试按40%计算,∴总成绩是:90×60%+85×40%=88(分),故答案为:88.14.1cm【解析】【分析】根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解决问题.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5(cm),∵DE⊥AB,DE=3(cm),在Rt△ADE中=,∴BE=AB−AE=5−4=1(cm),故答案为1cm.【点睛】本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.15.6.5【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=AB.90°,根据线段垂直平分线的性质得到DC=BD=12【详解】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB 2=132=169,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∵AC ∥DE ,∴∠DEB =90°,又∵E 是BC 的中点,∴直线DE 是线段BC 的垂直平分线,∴DC =BD =12AB =6.5,故答案是:6.5.【点睛】本题考查的是三角形中位线定理,掌握线段垂直平分线的判定和性质,三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.2或【解析】【分析】本题根据题意分三种情况进行分类求解,结合三角函数,等边三角形的性质即可解题.【详解】解:当∠APB=90°时(如图1),∵AO=BO ,∴PO=BO ,∵∠AOC=60°,∴∠BOP=60°,∴△BOP 为等边三角形,∵AB=BC=4,∴sin 604AP AB ︒==⨯当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴tan303OBBP︒===,在直角三角形ABP中,AP==,如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为或2.【点睛】考点:勾股定理.17.22021-2【解析】【分析】根据直线解析式先求出A1(0,2),OC1=OA1=2,得出C1的横坐标是2=21,再求出C2的横坐标是6=21+22,C3的纵坐标是14=21+22+23,得出规律,即可得出结果【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1(0,2),OC1=OA1=2∴C1(2,0),其中2=21∴A2(2,4),OC2=2+4=6∴C2(6,0),其中6=21+22∴A3(6,8),OC3=6+8=14∴C3(14,0),其中14=21+22+23…∴点C n的坐标是(21+22+23+…+2n,0)∴C n的坐标是(2n+1-2,0)∴点C n的横坐标是2n+1-2,故当n=2020时,点C2020的横坐标是22021-2,故答案为22021-2【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出C1、C2、C3的坐标得出规律是解决问题的关键.18.x<1【解析】【分析】写出直线y=kx在直线y=﹣x+3下方所对应的自变量的范围即可.【详解】观察图象即可得不等式kx<-x+3的解集是x<1.【点睛】本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.19.(1)(2)5+.【解析】【分析】(1)根据二次根式的性质进行化简,然后计算即可;(2)根据完全平方公式,二次根式的性质进行化简,然后计算即可.【详解】解:(1)原式=-6×3+==(2)原式=3++=5++=5+.【点睛】本题考查了二次根式的混合运算,二次根式的化简,完全平方公式,掌握运算法则是解题关键.20.(1)50,见解析;(2)10,12.5;(3)根据样本平均数估计该校大约可捐款26200元.【解析】【分析】(1)由捐款15元的人数及其所占百分比可得总人数,再减去其它捐款数的人数求出捐款10元的人数,从而补全图形;(2)根据众数和中位数的概念求解可得;(3)先求出这50个人捐款的平均数,再乘以总人数即可得.【详解】(1)本次抽查的学生总人数为14÷28%=50(人)则捐款10元的人数为50﹣(9+14+7+4)=16(人)补全图形如下:(2)捐款的众数为10元,中位数为10152=12.5(元)故答案为10、12.5;(3)951610141572042550⨯+⨯+⨯+⨯+⨯=13.1(元)则根据样本平均数估计该校大约可捐款2000×13.1=26200(元).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(1)见解析;(2)96【解析】【分析】(1)根据菱形的性质结合已知条件即可得证;(2)由(1)所得结合菱形的性质计算出AC 、BD 的长度,再计算面积即可.【详解】解:(1)证明:∵//BE AC ,//AE BD ,∴四边形AEBO 为平行四边形,又∵四边形ABCD 为菱形,∴BD AC ⊥,∴90AOB ∠=︒,∴平行四边形AEBO 为矩形;(2)∵四边形AEBO 为矩形,∴AB =OE =10,又∵四边形ABCD 为菱形,∴AO =12AC =8,∴90AOB ∠=︒,∴6BO =,∴BD =2BO =12,∴菱形ABCD 的面积=12121696⨯⨯=.【点睛】本题考查了矩形的判定,菱形的性质,勾股定理;掌握好相关的基础知识是解决本题的关键.22.(1)见解析;(2)MN=【解析】【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为6且E为OM的中点知OH=HA=3、HM=6,再根据勾股定理得OM=,由勾股定理即可求出MN的长.【详解】(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为6,∴OH=HA=3,∵E为OM的中点,∴HM=6,则=,∴==【点睛】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.23.解:(1)日销售量的最大值为120千克.(2)()()y 10x 0x 12{y 15x 300 12x 20=≤≤=-+<≤(3)第10天的销售金额多.【解析】【详解】试题分析:(1)观察图象,即可求得日销售量的最大值;(2)分别从0≤x≤12时与12<x≤20去分析,利用待定系数法即可求得小明家樱桃的日销售量y 与上市时间x 的函数解析式;(3)第10天和第12天在第5天和第15天之间,当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=kx+b ,由点(5,32),(15,12)在z=kx+b 的图象上,利用待定系数法即可求得樱桃价格与上市时间的函数解析式,继而求得10天与第12天的销售金额.试题解析:(1)由图象得:120千克,(2)当0≤x≤12时,设日销售量与上市的时间的函数解析式为y=k 1x ,∵直线y=k 1x 过点(12,120),∴k 1=10,∴函数解析式为y=10x ,当12<x≤20,设日销售量与上市时间的函数解析式为y=k 2x+b ,∵点(12,120),(20,0)在y=k 2x+b 的图象上,∴2212k b=120{20k b=0++,解得:2k 15{b 300=-=∴函数解析式为y=-15x+300,∴小明家樱桃的日销售量y 与上市时间x 的函数解析式为:;(3)∵第10天和第12天在第5天和第15天之间,∴当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=mx+n ,∵点(5,32),(15,12)在z=mx+n 的图象上,∴532{1512 m nm n+=+=,解得:2 {42mn=-=,∴函数解析式为z=-2x+42,当x=10时,y=10×10=100,z=-2×10+42=22,销售金额为:100×22=2200(元),当x=12时,y=120,z=-2×12+42=18,销售金额为:120×18=2160(元),∵2200>2160,∴第10天的销售金额多.考点:一次函数的应用.24.(1)见解析;(2)BE=5.【解析】【分析】(1)根据翻折变换的性质可知∠BEF=∠DEF,BE=DE,而四边形ABCDE是矩形,那么AD//BC,于是∠DEF=∠BFE,则有∠BEF=∠BFE,可得BF=BE;(2)设AE=x,那么BE=9-x,在Rt△BAE中,利用勾股定理可求AE,进而可求BE=5.【详解】(1)∵四边形ABCD是矩形∴AD//BC,∴∠DEF=∠EFB由折叠可知∠BEF=∠DEF∴∠BEF=∠EFB.∴BE=BF.(2)在矩形ABCD中,∠A=90°,由折叠知BE=ED,设AE=x,那么DE=BE=9-x,在Rt△BAE中,AB2+AE2=BE2,即32+x2=(9-x)2,解得x=4,即AE=4,∴BE=9-4=5.【点睛】本题考查了翻折变换、勾股定理、矩形的性质.解题的关键是注意翻折前后的对应线段和对应角分别相等.25.(1)见解析;(2)四边形BECD是菱形,理由见解析.【解析】【分析】(1)利用平行四边形对边平行可解答.(2)利用证明菱形的条件即可解答.【详解】证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥A B,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形.【点睛】本题考查平行四边形的综合运用,掌握证明平行四边形和菱形的条件是解题关键. 26.(1)见详解;(2)EP+CE【解析】【分析】(1)过P点作PG⊥AE于点G,PH⊥CE于H,先证明△PGE≌△PHE,再证明△PCH≌△PQG,可得CH=GQ,可得EC+EQ=EH+CH+EG-QG=2EG,即可得证;(2)作PG⊥DE交AB于G,连接CP,由(1)可知∠CEB=90°,∠AED=∠CED=45°,得出∠CEP=135°,证明△ECP≌△GQP,可得GQ=EC,可推出EP+CE,即得出答案.【详解】证明:(1)过P点作PG⊥AE于点G,PH⊥CE于H,∵∠ACB=90°,AC=BC,E为AB中点,∴AE=CE,∠AEC=90°,∵D为AC中点,∴∠DEA=∠DEC=45°,∵PG⊥GE,PH⊥CE,∴∠PGE=∠PHE=90°,又∵PE=PE,∴△PGE≌△PHE(AAS),∴PG=PH,EG=EH,又∵∠GPE=180°-∠PGE-∠PEG=45°=∠PEG,∴PG=GE,∴EG,又∵∠CPQ=∠CEQ=90°,∠CPQ+∠QEC+∠PQE+∠PCE=360°,∴∠PCH十∠PQE=180°,又∵∠PQE+∠PQG=180°,∴∠PCH=∠PQE,∴△PCH≌△PQG(AAS),∴CH=GQ,∴EC+EQ=EH+CH+EG-QG=2EG,又∵,∴EP;(2)作PG⊥DE交AB于G,,连接CP,由(1)可知∠CEB=90°,∠AED=∠CED=45°,∴∠CEP=180°-∠CED=135°,又∵∠PEG=∠AED=45°,∠EPG=90°,∴∠PEG=∠PGE=45°,∴EP=PE,,∴∠PGQ=180°-∠PGE=135°,∴∠PEC=∠PGQ=135°,∵∠CEO=∠OPQ=90°,∠EOC=∠POQ,∴∠ECP=∠PQG,在△ECP和△GQP中==PEC PGQECP GQP EP PG⎧⎪⎨⎪=⎩∠∠∠∠,∴△ECP≌△GQP(AAS),∴GQ=EC,∴.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,灵活运用知识点是解题关键.。
新人教版八年级数学下册期末考试及答案【完整版】
新人教版八年级数学下册期末考试及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.4的平方根是 .4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程组:4311 213x yx y-=⎧⎨+=⎩2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、B5、A6、C7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、±2.4、(-4,2)或(-4,3)5、46、40°三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、1 23、(1)12,32-;(2)略.4、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、CD的长为3cm.6、(1)2元;(2)至少购进玫瑰200枝.。
最新人教版八年级下册数学《期末考试卷》(含答案解析)
最新人教版八年级下册数学《期末考试卷》(含答案解析)人教版八年级下册期末考试数学试卷一、选择题1.若a 是最简二次根式,则a 的值可能是() A. -2B. 2C.32D. 82. 下列四组线段中,可以构成直角三角形的是() A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,2, 33.下列计算正确的是() A.235+= B. 2332-= C. (2)2=2D.39=34.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为() A. 4,5B. 5,4C. 4,4D. 5,55.能判定四边形ABCD 是平行四边形的是() A. AD //BC ,AB =CD B. ∠A =∠B ,∠C =∠D C. ∠A =∠C ,∠B =∠DD. AB =AD ,CB =CD6.已知()()122,,4,A y B y -是一次函数3y x =-+的图象上的两个点,则12,y y 的大小关系是() A. 12y y >C. 12y y =D. 不能确定7.如图,在正方形ABCD 的边BC 的延长线上取一点E ,使CE=AC 连接AE 交CD 于点F ,则∠AFC 等于()A .112.5°B. 120°C. 135°D. 145°8.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A. 5.5B. 5C. 6D. 6.59.如图在平面直角坐标系xOy 中若菱形ABCD 的顶点,A B 的坐标分别为(6,0),(4,0)-,点D 在y 轴上,则点C 的坐标是()A .(6,8)B. (10,8)C. (10,6)D. (4,6)10.如图①,正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作,PQ BD PQ ∥与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,APQ V 的面积为()A. 24cmC. 262cmD. 242cm二、填空题11.26x -x 的取值范围是_______12.下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数x (秒) 51 50 51 50 方差2S (秒2) 3.53.514.515.5根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________. 13.将直线y =2x 向下平移2个单位,所得直线的函数表达式是_____.14.如图,ABC ?的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为点Q ,ACB ∠的平分线垂直于AD ,垂足为点P ,若10BC =,则PQ 的长为______.15.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .三、解答题16.计算:(1)()()1883131-++-(2)3231233÷17.如图,平行四边形ABCD 中,点E F 、分别在AB CD 、上,且,BE DF EF =与AC 相交于点P ,求证:PA PC =.18.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,85(2)使平行四边形有一锐角为45°,且面积为4.19.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.20.A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中12l l ,表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题:(1)表示乙离开A 地的距离与时间关系的图像是________(填12l l 或);甲的速度是__________km/h ;乙的速度是________km/h .(2)甲出发后多少时间两人恰好相距5km ?21.将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1)试判断四边形DHBG 为何种特殊的四边形,并说明理由;(2)若AB =8,AD =4,求四边形DHBG 的面积.22.为迎接:“国家卫生城市”复检,某市环卫局准备购买A ,B 两种型号的垃圾箱,通过市场调研得知:购买3个A 型垃圾箱和2个B 型垃圾箱共需540元,购买2个A 型垃圾箱比购买3个B 型垃圾箱少用160元.(1)求每个A 型垃圾箱和B 型垃圾箱各多少元?(2)该市现需要购买A ,B 两种型号的垃圾箱共30个,其中买A 型垃圾箱不超过16个.①求购买垃圾箱的总花费w (元)与A 型垃圾箱x (个)之间的函数关系式;②当买A 型垃圾箱多少个时总费用最少,最少费用是多少? 23.如图,在平面直角坐标系中,直线l1:162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线l2:1 2y x=交于点A .(1)求出点A 的坐标(2)若D 是线段OA 上的点,且△COD 的面积为12,求直线CD 的解析式(3)在(2)的条件下,设P 是射线CD 上的点,在平面内是否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点P 的坐标;若不存在,请说明理由.答案与解析一、选择题1.a的值可能是()A. -2B. 2C. 32D. 8【答案】B【解析】【分析】直接利用最简二次根式的定义分析得出答案.∴a≥0,且a故选项中-2,32,8都不合题意,∴a的值可能是2.故选B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2. 下列四组线段中,可以构成直角三角形的是()A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,3 【答案】B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、222133+=≠,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.3.下列计算正确的是()A. =2-= C. )2=2 D. 3 【答案】C利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.【详解】解:A3∴选项A不正确;B、=∴选项B不正确;C、)2=2,∴选项C正确;D3,∴选项D不正确.故选C.【点睛】本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.4.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A. 4,5B. 5,4C. 4,4D. 5,5【答案】A【解析】【分析】根据众数及中位数定义,结合所给数据即可作出判断.【详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A.【点睛】本题考查(1)、众数;(2)、中位数.5.能判定四边形ABCD是平行四边形的是()A. AD//BC,AB=CDB. ∠A=∠B,∠C=∠DC. ∠A=∠C,∠B=∠DD. AB=AD,CB=CD【答案】C根据平行四边形的判定定理依次确定即可.【详解】A. AD//BC ,AB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;B. ∠A=∠B ,∠C=∠D ,不能判定四边形ABCD 是平行四边形,故不符合题意;C. ∠A=∠C ,∠B=∠D ,能判定四边形ABCD 是平行四边形,故符合题意; D. AB=AD ,CB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;故选:C.【点睛】此题考查平行四边形的判定定理,熟记定理内容即可正确解答.6.已知()()122,,4,A y B y -是一次函数3y x =-+的图象上的两个点,则12,y y 的大小关系是() A. 12y y > B. 12y y <C. 12y y =D. 不能确定【答案】A 【解析】【分析】由函数解析式3y x =-+可知0k <,则y 随x 的增大而减小,比较x 的大小即可确定y 的大小.【详解】3y x =-+中0k <,∴y 随x 的增大而减少,∵24-<,∴12y y >;故选:A .【点睛】本题考查了一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.7.如图,在正方形ABCD 的边BC 的延长线上取一点E ,使CE=AC 连接AE 交CD 于点F ,则∠AFC 等于()A. 112.5°B. 120°C. 135°D. 145°【答案】A 【解析】根据正方形的性质及已知条件可求得∠E 的度数,从而根据外角的性质可求得∠AFC 的度数.【详解】∵四边形ABCD 是正方形,CE=CA ,∴∠ACE=45°+90°=135°,∠E=22.5°,∴∠AFC=90°+22.5°=112.5°. 故答案为A.【点睛】本题考查正方形的性质,解题的关键是掌握正方形的性质.8.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A. 5.5B. 5C. 6D. 6.5【答案】A 【解析】【分析】连接BD 交AC 于E ,由矩形的性质得出∠B=90°,AE=12AC ,由勾股定理求出AC ,得出OE ,即可得出结果.【详解】连接BD 交AC 于E ,如图所示:∵四边形ABCD 是矩形,∴∠B=90°,AE=12AC ,∴222251213AB BC +=+=,∴AE=6.5,∵点A 表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E 表示的数是5.5,即对角线AC 、BD 的交点表示的数是5.5;故选A .【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.9.如图在平面直角坐标系xOy 中若菱形ABCD 的顶点,A B 的坐标分别为(6,0),(4,0)-,点D 在y 轴上,则点C 的坐标是()A. (6,8)B. (10,8)C. (10,6)D. (4,6)【答案】B 【解析】【分析】首先根据菱形的性质求出AB 的长度,再利用勾股定理求出DO 的长度,进而得到点C 的坐标.【详解】∵菱形ABCD 的顶点A 、B 的坐标分别为(-6,0)、(4,0),点D 在y 轴上,∴AB=AO+OB=6+4=10,∴AD=AB=CD=10,∴22221068DO AD AO -=-=,∴点C 的坐标是:(10,8).故选:B .【点睛】本题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO 的长度. 10.如图①,正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作,PQ BD PQ ∥与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,APQ V 的面积为()A. 24cmB. 26cmC. 262cmD. 242cm【答案】B 【解析】【分析】由图②知,运动2秒时,42y PQ ==,距离最长,再根据运动速度乘以时间求得路程,可得点P 的位置,根据线段的和差,可得CP 的长,最后由APQ ABP ADQ CPQ ABCD S S S S S =---V V V V 正方形即可求得答案.【详解】由图②知,运动2秒时,42y =,y 的值最大,此时,点P 与点B 重合,则42PQ BD ==,∵四边形ABCD 为正方形,则222AB AD BD +=,∴4AB AD ==,由题可得:点P 运动3秒时,则P 点运动了32?=6cm ,此时,点P 在BC 上,如图:∴862CP =-=cm ,∴点P 为BC 的中点,∵PQ ∥BD ,∴点Q 为DC 的中点,∴APQ ABP ADQ CPQ ABCD S S S S S =---V V V V 正方形21114424222222=-??-??-??6=.故选:B.【点睛】本题考查了动点问题的函数图象以及平行线的性质、正方形的性质、三角形中位线定理,由图②知,运动2秒时,y=二、填空题11.x的取值范围是_______【答案】3x…【解析】【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【详解】解:Q有意义,260x∴-…,解得:3x….故答案为3x….【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.12.下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________.【答案】队员2【解析】【分析】根据方差的意义结合平均数可作出判断.【详解】因为队员1和2的方差最小,队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.故答案为:队员2.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.将直线y =2x 向下平移2个单位,所得直线的函数表达式是_____.【答案】y =2x ﹣2.【解析】【详解】解:根据一次函数的平移,上加下减,可知一次函数的表达式为y =2x-2.14.如图,ABC ?的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为点Q ,ACB ∠的平分线垂直于AD ,垂足为点P ,若10BC =,则PQ 的长为______.【答案】3 【解析】【分析】首先判断△BAE 、△CAD 是等腰三角形,从而得出BA=BE ,CA=CD ,由△ABC 的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ .【详解】由题知BQ 为AE 的垂直平分线,AB BE ∴=,由题意知CP 为AD 的垂直平分线,AC CD ∴=. 26ABC C ?=Q ,且10BC =,16AB AC ∴+=.16AB AC BE CD ∴+=+=.16BD DE DE CE ∴+++=.6DE ∴=.又点P ,Q 分别为AD ,AE 的中点,116322PQ DE ∴==?=.【点睛】本题考查等腰三角形判定与性质,解题关键在于利用中位线定理求出PQ.15.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .【答案】3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,则EB=EB′,AB=AB ′=3,可计算出CB′=2,设BE=x ,则EB′=x ,CE=4-x ,然后在Rt △CEB′中运用勾股定理可计算出x .②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,在Rt △ABC 中,AB=3,BC=4,∴2243 ,∵∠B 沿AE 折叠,使点B 落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x ,则EB′=x ,CE=4-x ,在Rt △CEB′中,∵EB′2+CB′2=CE 2,∴x 2+22=(4-x )2,解得3x 2=,∴BE=32;②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为32或3.故答案为:32或3.三、解答题16.计算:(1)11+(2÷【答案】(12+;(2)【解析】【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】解:)1131-=2÷3==82【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.17.如图,平行四边形ABCD 中,点E F 、分别在AB CD 、上,且,BE DF EF =与AC 相交于点P ,求证:PA PC =.【答案】见解析【解析】【分析】连接AF ,CE ,由四边形ABCD 是平行四边形,可得AB ∥CD ,AB=CD ,又由BE=DF ,证得AE=CF ,即可证得四边形AECF 是平行四边形,从而证得结论.【详解】连接AF ,CE ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∵BE=DF ,∴AB-BE=CD-DF ,∴AE=CF ,∴四边形AECF 是平行四边形,∴PA=PC .【点睛】本题考查了平行四边形的性质与判定.注意准确作出辅助线,证得四边形AECF 是平行四边形是解此题的关键.18.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,8,5;(2)使平行四边形有一锐角为45°,且面积为4.【答案】(1)详见解析;(2)详见解析【解析】【分析】(1)本题中8实际上是长为2宽为2的正方形的对角线长,5实际上是长为2宽为1的矩形的对角线的长,据此可找出所求的三角形;(2)可先找出一个直角边为2的等腰直角三角形,然后据此画出平行四边形.【详解】(1)△ABC所求;(2)四边形ABCD为所求.【点睛】关键是确定三角形的边长,然后根据边长画出所求的三角形.19.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.【答案】(1)40;(2)30,50;(3)50500元【解析】【分析】(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.【详解】解:(1)样本容量是:6+12+10+8+4=40,(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50; (3)2063012501080810046121084+?+?+?+?++++×1000=50500(元),答:该校本学期计划购买课外书的总花费是50500元. 故答案为(1)40;(2)30,50;(3)50500元.【点睛】本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中12l l ,表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题:(1)表示乙离开A 地的距离与时间关系的图像是________(填12l l 或);甲的速度是__________km/h ;乙的速度是________km/h .(2)甲出发后多少时间两人恰好相距5km ?【答案】(1)2l ; 30; 20;(2)甲出发后1.3h 或者1.5h 时,甲乙相距5km .【解析】【详解】解:(1)乙离开A 地的距离越来越远,图像是2l ;甲的速度60÷2=30;乙的速度60÷(3.5-0.5)=20;(2)由图可求出13060y x =-+,22010y x =- 由125y y -=得1.3x h =;由215y y -=得 1.5x h = 答:甲出发后1.3h 或者1.5h 时,甲乙相距5km .考点:一次函数的应用21.将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1)试判断四边形DHBG 为何种特殊的四边形,并说明理由;(2)若AB =8,AD =4,求四边形DHBG 的面积.【答案】(1)四边形DHBG 是菱形,理由见解析;(2)20.【解析】【分析】(1)由四边形ABCD 、FBED 是完全相同的矩形,可得出△DAB ≌△DEB (SAS ),进而可得出∠ABD=∠EBD ,根据矩形的性质可得AB ∥CD 、DF ∥BE ,即四边形DHBG 是平行四边形,再根据平行线的性质结合∠ABD=∠EBD ,即可得出∠HDB=∠HBD ,由等角对等边可得出DH=BH ,由此即可证出?DHBG 是菱形;(2)设DH=BH=x ,则AH=8-x ,在Rt △ADH 中,利用勾股定理即可得出关于x 的一元一次方程,解之即可得出x 的值,再根据菱形的面积公式即可求出菱形DHBG 的面积.【详解】解:()1四边形DHBG 是菱形.理由如下:。
新人教版八年级数学下册期末测试卷含答案
新人教版八年级数学下册期末测试卷含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、D6、C7、C8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、(3,7)或(3,-3)3、如果两个角互为对顶角,那么这两个角相等4、x>3.5、96、20三、解答题(本大题共6小题,共72分)1、x=32、11a ,1.3、(1)1;(2)m>2;(3)-2<2m-3n<184、略(2)∠EBC=25°5、(1)略;(2)112.5°.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
新人教版八年级数学下册期末测试卷及答案【全面】
新人教版八年级数学下册期末测试卷及答案【全面】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .13 2.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°10.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.33B.6 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.若23(1)0-++=,则m-n的值为________.m n4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、D5、B6、A7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、52、13、44、8.5、1 (21,2) n n--6、7三、解答题(本大题共6小题,共72分)1、4x=2.3、(1)1;(2)m>2;(3)-2<2m-3n<184、略(2)∠EBC=25°5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
人教版八年级下册数学期末检测试卷(含答案)
人教版八年级下册数学期末检测试卷(满分:120分;限时:100分钟)一:选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是( )A.9B.7C.20D.31 2. 菱形具有而矩形不一定具有的特征是( )A. 对角相等B. 对角线互相平分C. 一组对边平行,另一组对边相等D. 对角线互相垂直3. 甲、乙、丙、丁四人进行射击测试,每人射击10次,平均成绩均为9.2环,方差如下表所示则在这四位选手中,成绩最稳定的是( ) A. 甲B. 乙C. 丙D. 丁4. 有两棵树,一棵高10米,另一棵高4米,两树相距8米。
一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行( )A. 8米B. 10米C. 12米D. 14米5. 下列各式计算正确的是( )A. 3333=+B.4348=÷C.532=⨯D.24±=6. 已知直线y =2x +k 与x 轴的交点为(﹣2,0),则关于x 的不等式2x +k <0的解集是( )A. x >﹣2B. x ≥﹣2C. x <﹣2D. x ≤﹣27. 足球甲级联赛5月29日上午在市民体育健身广场开幕,童童从家出发前往广场观看比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至广场观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利回家。
若x 表示童童从家出发后所用的时间,y 表示童童离家的距离,下图中能反映y 与x 的函数关系的大致图象是( )A.B.C.D.8. 如右图,菱形ABCD 的两条对角线相交于O ,若AC =6,BD =4,则菱形ABCD 的周长是( )A. 24B. 16C.134D.1329. 已知直线y =kx +k ,那么该直线一定经过的点在( )A. x 轴的正半轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上10. 如右图,在□ABCD 中,∠DBC =45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE 、BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①BD =2BE ;②∠A =∠BHE ;③AB =BH ;④△BCF ≌△DCE 。
新人教版八年级(下)数学期末试卷及答案
新人教版八年级(下)数学期末试卷及答案八年级下期末考试数学试题一、选择题(本小题共12小题,每小题3分,共36分)1、如果分式 $\frac{1}{x-1}$ 有意义,那么 x 的取值范围是A、$x>1$B、$x<1$C、$x\neq1$D、$x=1$2、已知反比例数 $y=\frac{k}{x}$ 的图象过点(2,4),则下面也在反比例函数图象上的点是A、(2,-4)B、(4,-2)C、(-1,8)D、(16,1)3、一直角三角形两边分别为3和5,则第三边为A、4B、$\frac{3}{4}$或$\frac{4}{3}$C、4或$\frac{4}{3}$ D、24、用两个全等的等边三角形,可以拼成下列哪种图形A、矩形B、菱形C、正方形D、等腰梯形5、菱形的面积为2,其对角线分别为 x、y,则 y 与 x 的图象大致为无法确定,需补充题意)6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考A、众数B、平均数C、加权平均数D、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成60夹角,测得 AB 长60cm,则荷花处水深 OA 为A、120cmB、60$\sqrt{3}$cmC、60cmD、20$\sqrt{3}$cm8、如图,□ABCD的对角线 AC、BD 相交于 O,EF 过点O 与 AD、BC 分别相交于 E、F,若 AB=4,BC=5,OE=1.5,则四边形 EFCD 的周长为A、16B、14C、12D、109、如图,把菱形 ABCD 沿 AH 折叠,使 B 点落在 BC 上的 E 点处,若∠B=70,则∠EDC 的大小为A、10B、15C、20D、3010、下列命题正确的是A、同一边上两个角相等的梯形是等腰梯形;B、一组对边平行,一组对边相等的四边形是平行四边形;C、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
(2021年整理)新人教版八年级数学下册期末测试题及答案(5套)
(完整)新人教版八年级数学下册期末测试题及答案(5套)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)新人教版八年级数学下册期末测试题及答案(5套))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)新人教版八年级数学下册期末测试题及答案(5套)的全部内容。
八年级数学下册期末试题1一、选择题(每空 2 分,共14 分)1、若为实数,且,则的值为()A.1 B .C.2 D.2、有一个三角形两边长为 4 和 5,要使三角形为直角三角形,则第三边长为()A、3 B 、C、3 或D、3 或3、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A.7,24,25 B .,, C.3,4,5D .4, ,4、如下图,在中,分别是边的中点,已知,则的长为()A.3 B .4 C.5 D.65、已知点(—2 ,y1),( -1 ,y2),( 1,y3)都在直线y=-3x+b 上,则y1,y2,y3的值的大小关系是()A.y1〉y2〉y3 B .y1<y2<y3 C.y3〉y1>y2D.y3〈y1<y26、一次函数与的图像如下图,则下列结论:①k〈0;②〉0;③当<3 时,中,正确的个数是()A .0 B .1 C .2D.37、某班第一小组7 名同学的毕业升学体育测试成绩(满分30 分) 依次为: 25,23,25,23,27,30,25 ,这组数据的中位数和众数分别是()A.23,25 B.23,23 C.25,23 D.25,25二、填空题(每空 2 分,共 20 分)2000 000 = . 8、函数中,自变 x 的取值范, 是_________9 、计算:(+1)(﹣1)10、若的三边a、b、c 满足0,则△ ABC的面积为 ____.11、请写出定理:“等腰三角形的两个底角相等"的逆定理:.12、如图,在□ABCD中,对角线AC,BD相交于O,AC+BD=16,BC=6,则△ AOD的周长为 _________ 。
【人教版】数学八年级下学期《期末检测题》附答案
2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷共25题.全卷满分120分.考试用时120分钟.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.282.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,183.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.67.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<28.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,1349.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.12.若代数式有意义,则x的取值范围是13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.28【答案】D【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=,能与合并,a的值可以是,本选项不符合题意;B、==2,能与合并,a的值可以是8,本选项不符合题意;C、==3,能与合并,a的值可以是18,本选项不符合题意;D、==2,不能与合并,a的值不可以是28,本选项符合题意;故选:D.【知识点】最简二次根式、同类二次根式、二次根式有意义的条件2.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,18【答案】B【分析】利用勾股数定义进行分析即可.【解答】解:A、0.3,0.4,0.5不是正整数,不是勾股数,故此选项不合题意;B、62+82=102,都是正整数,是勾股数,故此选项符合题意;C、,,不是正整数,不是勾股数,故此选项不合题意;D、102+152≠182,不是勾股数,故此选项不合题意;故选:B.【知识点】勾股数3.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【答案】A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【解答】解:a=2019×2021﹣2019×2020=(2020﹣1)(2020+1)﹣(2020﹣1)×2020=20202﹣1﹣20202+2020=2019;∵20222﹣4×2021=(2021+1)2﹣4×2021=20212+2×2021+1﹣4×2021=20212﹣2×2021+1=(2021﹣1)2=20202,∴b=2020;∵>,∴c>b>a.故选:A.【知识点】实数大小比较、二次根式的乘除法、二次根式的性质与化简4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【答案】D【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选:D.【知识点】勾股定理的应用5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定【答案】C【分析】根据正方形的对角线平分一组对角可得∠ADB=45°,再根据菱形的四条边都相等可得BD=DF,根据等边对等角可得∠DBF=∠DFB,然后根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可得解.【解答】解:在正方形ABCD中,∠ADB=∠ADC=×90°=45°,在菱形BDFE中,BD=DF,所以,∠DBF=∠AFB,在△BDF中,∠ADB=∠DBF+∠AFB=2∠AFB=45°,解得∠AFB=22.5°.故选:C.【知识点】正方形的性质、菱形的性质6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.6【答案】C【分析】在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.【解答】解:∵四边形ABCD是菱形,周长为20,∴AD=20,在DC上截取DG=FD=AD﹣AF=5﹣3=2,连接EG,EG与BD交于点P′,连接P′F,此时P′E+P′F的值最小,最小值=EG的长,∵AE=DG=2,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=5.故选:C.【知识点】菱形的性质、轴对称-最短路线问题7.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<2【答案】C【分析】根据图象和B的坐标得出即可.【解答】解:∵直线y=kx+b和y轴的交点是B(0,2),∴不等式kx+b>2的解集是x>0,故选:C.【知识点】一次函数的性质、一次函数与一元一次不等式8.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,134【答案】B【分析】先将这组数据重新排列,再根据众数和中位数的概念求解即可.【解答】解:将这组数据重新排列为115,118,126,126,134,138,143,157,所以这组数据的众数为126,中位数为=130,故选:B.【知识点】中位数、众数9.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【解答】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车原来的速度为:15÷30=0.5km/min,后来的速度为:0.5×=(km/min),当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④错误,故选:C.【知识点】一次函数的应用10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18【答案】A【分析】由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,再通过解直角三角形,求出△CBD高,进而求解.【解答】解:由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,过点B作BH⊥DC于点H,设CH=x,则DH=8﹣x,则BH2=BC2﹣CH2=BD2﹣DH2,即:BH2=42﹣(8﹣x)2=62﹣x2,解得:BH=,则a=y=S△ABP=DC×HB=×8×=3,故选:A.【知识点】动点问题的函数图象二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.【答案】39【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39.故答案为39.【知识点】中位数12.若代数式有意义,则x的取值范围是【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【解答】解:若代数式有意义,必有解得﹣3≤x<且x≠﹣2.【知识点】二次根式有意义的条件13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.【答案】6【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥BC于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故答案为:6.【知识点】平行线之间的距离、角平分线的性质14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.【答案】【第1空】4.8【第2空】5或2.2【分析】(1)当PC⊥AB时,PC的值最小,利用面积法求解即可;(2)过C作CQ⊥BC于Q,同(1)得CQ=4.8,由勾股定理求出AQ=3.6,PQ=1.4,当P在线段BQ上时,AP=AQ+PQ=5;当P在线段AQ上时,AP=AQ﹣PQ=2.2.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,由垂线段最短得:当PC⊥AB时,PC的值最小,此时,△ABC的面积=•AB•PC=•AC•BC,∴AB•PC=AC•BC,∴PC===4.8,故答案为:4.8;(2)过C作CQ⊥BC于Q,如图所示:同(1)得:CQ=4.8,由勾股定理得:AQ===3.6,PQ===1.4,当P在线段BQ上时,AP=AQ+PQ=3.6+1.4=5;当P在线段AQ上时,AP=AQ﹣PQ=3.6﹣1.4=2.2;综上所述,AP的长为5或2.2,故答案为:5或2.2.【知识点】勾股定理、垂线段最短15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.【分析】根据一次函数图象过定点A(2,3),即可得到OA=为最大距离.【解答】解:一次函数y=(x﹣2)k+3中,令x=2,则y=3,∴一次函数图象过定点A(2,3),∴OA=为最大距离.故答案为:.【知识点】一次函数的性质、一次函数的图象16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.【答案】(4,160)【分析】根据点C与点D的坐标即可得出乙货车的速度,进而得出乙货车从B地到A地所用时间,据此即可得出点E的坐标.【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).【知识点】一次函数的应用17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.【分析】根据直线y=x+4先确定OA和OB的长,证明四边形PHOC是矩形,得PH=OC=BC=2,再证明四边形PBCH是平行四边形,则BP=CH,在BP+PH+HQ中,PH=2是定值,所以只要CH+HQ 的值最小就可以,当C、H、Q在同一直线上时,CH+HQ的值最小,利用平行四边形的性质求出即可.【解答】解:如图,连接CH,∵直线y=x+4分别交x轴,y轴于A,B两点,∴OB=4,OA=3,∵C是OB的中点,∴BC=OC=2,∵∠PHO=∠COH=∠DCO=90°,∴四边形PHOC是矩形,∴PH=OC=BC=2,∵PH∥BC,∴四边形PBCH是平行四边形,∴BP=CH,∴BP+PH+HQ=CH+HQ+2,要使CH+HQ的值最小,只须C、H、Q三点共线即可,∵点Q是点B关于点A的对称点,∴Q(﹣6,﹣4),又∵点C(0,2),根据勾股定理可得CQ==6,此时,BP+PH+HQ=CH+HQ+PH=CQ+2=6+2,即BP+PH+HQ的最小值为6+2;故答案为:6+2.【知识点】一次函数综合题三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.【分析】根据根式的乘法和完全平方公式化成最简二次根式,再合并即可.【解答】解:×﹣(+1)2=﹣[()2+2+1]=﹣3﹣2﹣1=2﹣3﹣2﹣1=﹣4.【知识点】二次根式的混合运算19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.【分析】(1)根据平方差公式、二次根式的乘法法则计算;(2)根据二次根式的加法法则求出a+b,根据完全平方公式把原式变形,把a+b、ab的值代入计算即可.【解答】解:(1)ab=(+2)(﹣2)=()2﹣22=5﹣4=1;(2)∵a=+2,b=﹣2,∴a+b=(+2)+(﹣2)=2,∴a2+b2﹣ab=a2+2ab+b2﹣3ab=(a+b)2﹣3ab=(2)2﹣3×1=17.【知识点】二次根式的化简求值、分母有理化20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.【分析】(1)直接把已知x,y的值代入解方程组得出答案;(2)利用(1)中所求把x的值代入求出答案.【解答】解:(1)∵函数y=kx+,当x=1时,y=7;当x=2时,y=8,∴,解得:,故y与x之间的函数关系式为:y=3x+;(2)当x=4时,y=3×4+=13.【知识点】函数值21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【分析】连结BD,取BD的中点H,连结HE,HF,根据三角形的中位线的性质得到FH∥BM,FH=AB,EH∥CN,EH=CD,根据平行线的性质得到∠BME=∠HFE,∠CNE=∠HEF,根据等腰三角形的性质得到∠HFE=∠HEF,等量代换即可得到结论.【解答】证明:连结BD,取BD的中点H,连结HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=AB,EH∥CN,EH=CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.【知识点】三角形中位线定理22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?【答案】【第1空】1.5【第2空】1.5【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,再用总人数减去学生劳动“0.5小时”、“1小时”、“2小时”的人数,得出学生劳动“1.5小时”的人数,从而补全条形图;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5,1.5;(3)1200×=216,答:估算该校学生参加义务劳动2小时的有216人.【知识点】中位数、全面调查与抽样调查、众数、条形统计图、用样本估计总体23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.【分析】(1)直接根据两点间的距离公式可求出AD及AB的长即可;(2)连接BD,根据勾股定理的逆定理进行判断即可;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,根据三角形的面积公式求出BE的长即可.【解答】解:(1)∵A(0,4),B(2,0),C(5,1),D(2,5).∴AD==;AB===2.故答案为:,2;(2)∠BAD是直角.理由:连接BD,∵B(2,0),D(2,5),∴BD=5﹣0=5.∵由(1)知AD=,AB=2,∴AD2=5,AB2=20,BD2=25,∴AD2+AB2=BD2,∴∠BAD是直角;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,∵C(5,1),D(2,5),∴CD==5,∵B(2,0),D(2,5).∴BD⊥x轴,BG=5﹣2=3,CG=1,∴S△BCD=S梯形DBGC﹣S△BCG,即×5BE=(1+5)×3﹣×1×3,解得BE=3.答:点B到直线CD的距离为3.【知识点】勾股定理、勾股定理的逆定理、坐标与图形性质24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.【分析】(1)先证明四边形BDCE是平行四边形,得出CE=BD,证出BD=CD,由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BDCE是菱形;(2)连接DE,由菱形的性质得出BC⊥DE,BD=BE,OB=OC,由线段垂直平分线的性质得出BE=DE,证出BE=DE=BD,由等边三角形和菱形的性质得出∠EBC=∠EBD=30°,求出OE=EB=3,由勾股定理求出OB,即可得出结果.【解答】(1)证明:∵CE∥AB,BE∥CD,∴四边形BDCE是平行四边形,∴CE=BD,∵CE=AD,∴BD=AD,又∵∠ACB=90°,∴CD=AB=BD,∴四边形BDCE是菱形;(2)解:连接DE,如图所示:由(1)得:四边形BDCE是菱形,∴BC⊥DE,BD=BE,OB=OC,∵EF⊥BD,点F是BD的中点,∴BE=DE,∴BE=DE=BD,∴∠DBE=60°,∠EBC=∠EBD=30°,∴OE=EB=3,∴OB===3,∴BC=2OB=6.【知识点】菱形的判定25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.【分析】(1)由勾股定理求出BO即可;(2)由待定系数法求出直线BF的解析式即可;(3)分情况讨论:①当OM、OE都为菱形的边时,OM=OE=4,得出M的坐标为(4,0)或(﹣4,0);②当OM为菱形的对角线,OE为边时,同②得(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,由勾股定理求出OM即可.【解答】解:(1)∵四边形ABCO是矩形,点B的坐标是(﹣8,﹣6),∴∠OAB=∠OCB=90°,OA=BC=8,AB=CO=6,∴BO===10;(2)由折叠的性质得:BE=AB=6,DE=DA,∠DEB=∠DAB=90°,∴∠DEO=90°,OE=BO﹣BE=10﹣6=4.设OD=a,则DA=DE=8﹣a,在Rt△EOD中,DE2+OE2=OD2,即(8﹣a)2+42=a2,解得:a=5,∴D(﹣5,0),设直线BF的解析式为y=kx+b,把B(﹣8,﹣6),D(﹣5,0)代入得:,解得:,∴直线BF的解析式为y=2x+10;(3)存在,理由如下:①当OM、OE都为菱形的边时,OM=OE=4,∴M的坐标为(4,0)或(﹣4,0);②当OE为菱形的边,OM为菱形的对角线时,如图1所示:设直线OB解析式为:y=kx,由点B(﹣8,﹣6)在图象上可知:﹣6=﹣8k,∴k=,则直线OB解析式为y=x,设点E(x,x),在Rt△EOG中,OG2+GE2=OE2,即:x2+(x)2=16,解得:x=±,∵点E在第三象限,∴x=﹣,∴点M(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,作EP⊥OA于P,如图2所示:由②得:E(﹣,﹣),则OP=,EP=,在Rt△PEM中,由勾股定理得:(﹣OM)2+()2=EM2,∵OM=EM,∴(﹣OM)2+()2=OM2,解得:OM=,∴点M的坐标为(﹣,0);综上所述,在x轴上存在点M,使得M、N、E、O为顶点的四边形是菱形,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0).【知识点】一次函数综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年度第二学期期末测试人教版八年级数学试题一、选择题(本大题共 14 小题,共 42 分)1. 为了解我市参加中考的15 000名学生的视力情况,抽查了1 000名学生的视力进行统计分析,下面四个判断正确的是( )A. 15000名学生是总体B. 1000名学生的视力是总体的一个样本C. 每名学生是总体的一个个体D. 以上调查是普查2.若点P (a ,b )在第二象限内,则a ,b 的取值范围是( )A. a <0,b >0B. a >0,b >0C. a >0,b <0D. a <0,b <0 3.函数3y x =-中自变量x 的取值范围是( ) A. 3x < B. 3x ≤ C. 3x > D. 3x ≥4.将一个n 边形变成(n +1)边形,内角和将( )A. 减少180°B. 增加90°C. 增加180°D. 增加360°5.设正比例函数y=mx 的图象经过点A(m ,4),且y 的值随x 的增大而增大,则m=( )A. 2B. -2C. 4D. -46.一次函数y =kx -(2-b)的图像如图所示,则k 和b 的取值范围是( )A. k>0,b>2B. k>0,b<2C. k<0,b>2D. k<0,b<27.在数学活动课上,老师让同学们判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟订方案,其中正确的是( )A. 测量对角线是否互相平分B. 测量两组对边是否分别相等C. 测量一组对角是否为直角D. 测量两组对边是否相等,再测量对角线是否相等8.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )A. B.C. D.9.如图,已知菱形ABCD的周长是24米,∠BAC=30°,则对角线BD的长等于()A. 63米B. 33米C. 6米D. 3米10.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A. 16B. 19C. 22D. 2511.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB 沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. 3)B. 3)C. 3)D. 3)12.在平面直角坐标系中,一矩形上各点的纵坐标不变,横坐标变为原来的12,则该矩形发生的变化为( )A. 向左平移了12个单位长度 B. 向下平移了12个单位长度C. 横向压缩为原来的一半D. 纵向压缩为原来的一半13.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是()A. 打六折B. 打七折C. 打八折D. 打九折14. 小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A. ①②B. ②③C. ①③D. ②④二、填空题(本大题共6 小题,共18 分)15.当m=________时,函数y=-(m-2)2m3x-+(m-4)是关于x的一次函数.16.如图,在△ABC中,AB=5,BC=7,EF是△ABC的中位线,则EF的长度范围是________.17.一次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是__________.18.如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.19.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为_________.20.如图,已知菱形OABC 的顶点O(0,0),B(2,2),则菱形的对角线交点D 的坐标为____;若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,点D 的坐标为_____.三、解答题(本大题共 6 小题,共 60 分)21.如图,左右两幅图案关于y 轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴角左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标;(2)从对称的角度来考虑,说一说你是怎样得到的;(3)直接写出右图案中的嘴角左右端点关于原点的对称点的坐标.22.为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别身高(cm ) Ax<150 B 150≤x <155C 155≤x<160D 160≤x<165E x≥165根据图表中提供的信息,回答下列问题:(1)在样本中,男生身高的中位数落在________组(填组别序号),女生身高在B组的人数有________人;(2)在样本中,身高在150≤x<155之间的人数共有________人,身高人数最多的在________组(填组别序号);(3)已知该校共有男生500人、女生480人,请估计身高在155≤x<165之间的学生有多少人23.已知y是x的一次函数,当x=1时,y=1;当x=-2时,y=-14.(1)求这个一次函数的关系式;(2)在如图所示的平面直角坐标系中作出函数的图像;(3)由图像观察,当0≤x≤2时,函数y的取值范围.24.顺次连接四边形各边中点所得的四边形叫中点四边形.回答下列问题:(1)只要原四边形两条对角线______,就能使中点四边形是菱形;(2)只要原四边形的两条对角线______,就能使中点四边形是矩形;(3)请你设计一个中点四边形为正方形,但原四边形又不是正方形的四边形,把它画出来.25.王华同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在平行四边形ABCD中,,求证:平行四边形ABCD是.(1)在方框中填空,以补全已知和求证;(2)按王晓的想法写出证明过程;证明:26.如图,直线y1=2x-2的图像与y轴交于点A,直线y2=-2x+6的图像与y轴交于点B,两者相交于点C.(1)方程组2226x yx y-=⎧⎨+=⎩的解是______;(2)当y1>0与y2>0同时成立时,x的取值范围为_____;(3)求△ABC的面积;(4)在直线y1=2x-2的图像上存在异于点C的另一点P,使得△ABC与△ABP的面积相等,请求出点P的坐标.答案与解析一、选择题(本大题共 14 小题,共 42 分)1. 为了解我市参加中考的15 000名学生的视力情况,抽查了1 000名学生的视力进行统计分析,下面四个判断正确的是( )A. 15000名学生是总体B. 1000名学生的视力是总体的一个样本C. 每名学生是总体的一个个体D. 以上调查是普查【答案】B【解析】【详解】总体是参加中考的15 000名学生的视力情况,故A 错误;1000名学生的视力是总体的一个样本,故B 正确;每名学生的视力情况是总体的一个样本,故C 错误;以上调查应该是抽查,故D 错误;故选B .2.若点P (a ,b )在第二象限内,则a ,b 的取值范围是( )A. a <0,b >0B. a >0,b >0C. a >0,b <0D. a <0,b <0 【答案】A【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数.【详解】解:因为点P (a ,b )在第二象限,所以a <0,b >0,故选A .【点睛】本题考查了平面直角坐标系中各象限点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.函数y =中自变量x 的取值范围是( ) A. 3x <B. 3x ≤C. 3x >D. 3x ≥【答案】B【解析】试题分析:根据二次根式的意义,被开方数是非负数.所以3﹣x≥0,解得x≤3.故选B.考点:函数自变量的取值范围.4.将一个n边形变成(n+1)边形,内角和将( )A. 减少180°B. 增加90°C. 增加180°D. 增加360°【答案】C【解析】【分析】利用多边形的内角和公式即可求出答案.【详解】解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选C.5.设正比例函数y=mx的图象经过点A(m,4),且y的值随x的增大而增大,则m=()A. 2B. -2C. 4D. -4【答案】A【解析】【分析】直接根据正比例函数的性质和待定系数法求解即可.【详解】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而增大,所以m=2,故选:A.【点睛】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.也考查了一次函数图象上点的坐标特征.6.一次函数y=kx-(2-b)的图像如图所示,则k和b的取值范围是()A. k>0,b>2B. k>0,b<2C. k<0,b>2D. k<0,b<2 【答案】B 【解析】【分析】根据一次函数的图象经过一、三、四象限列出b的不等式,求出b及k的取值范围即可.【详解】∵一次函数y=kx-(2-b)的图象经过一、三、四象限,∴k>0,-(2-b)<0,解得b<2.故选B.【点睛】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.7.在数学活动课上,老师让同学们判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟订方案,其中正确的是( )A. 测量对角线是否互相平分B. 测量两组对边是否分别相等C. 测量一组对角是否为直角D. 测量两组对边是否相等,再测量对角线是否相等【答案】D【解析】【分析】根据矩形和平行四边形的判定推出即可得答案.【详解】A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;C、根据一组对角是否为直角不能得出四边形的形状,故本选项错误;D、根据对边相等可得出四边形是平行四边形,根据对角线相等的平行四边形是矩形可得出此时四边形是矩形,故本选项正确;故选D.【点睛】本题考查的是矩形的判定定理,矩形的判定定理有①有三个角是直角的四边形是矩形;②对角线互相平分且相等的四边形是矩形;③有一个角是直角的平行四边形是矩形.牢记这些定理是解题关键.8.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )A. B.C. D.【答案】D【解析】【详解】注水需要60÷10=6分钟,注水2分钟后停止注水1分钟,共经历6+1=7分钟,排除A、B;再根据停1分钟,再注水4分钟,排除C.故选D.9.如图,已知菱形ABCD的周长是24米,∠BAC=30°,则对角线BD的长等于()A. 3B. 3米C. 6米D. 3米【答案】C【解析】【分析】由菱形ABCD的周长是24米,∠BAC=30°,易求得AB=6米,△ABD是等边三角形,继而求得答案.【详解】解:∵菱形ABCD的周长是24米,∠BAC=30°,∴AB=AD=24÷4=6(米),∠DAB=2∠BAC=60°,∴△ABD是等边三角形,∴BD=AB=6米.故选C.【点睛】此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.10.如图,将矩形纸片ABCD 沿其对角线AC 折叠,使点B 落到点B′的位置,AB′与CD 交于点E ,若AB=8,AD=3,则图中阴影部分的周长为()A. 16B. 19C. 22D. 25【答案】C【解析】【分析】 首先由四边形ABCD 为矩形及折叠的特性,得到B′C=BC=AD ,∠B′=∠B=∠D=90°,∠B′EC=∠DEA ,得到△AED ≌△CEB′,得出EA=EC ,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC ,即矩形的周长解答即可.【详解】解:∵四边形ABCD 为矩形,∴B′C=BC=AD ,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA ,△AED 和△CEB′中,'''BE C DEA B DB C AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AED ≌△CEB′(AAS);∴EA=EC ,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC ,=AD+DE+EC+EA+EB′+B′C ,=AD+DC+AB′+B′C ,=3+8+8+3,=22,故选:C .【点睛】本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.11.如图,在平面直角坐标系中,正三角形OAB 的顶点B 的坐标为(2,0),点A 在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. 3)B. 3)C. 3)D. 3)【答案】D【解析】【分析】根据等边三角形的性质和平移的性质即可得到结论.【详解】解:∵△OAB是等边三角形,∵B的坐标为(2,0),∴A(13),∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,∴A′的坐标(43,故选:D.【点睛】本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.12.在平面直角坐标系中,一矩形上各点的纵坐标不变,横坐标变为原来的12,则该矩形发生的变化为( )A. 向左平移了12个单位长度 B. 向下平移了12个单位长度C. 横向压缩为原来的一半D. 纵向压缩为原来的一半【答案】C【解析】∵平面直角坐标系中,一个正方形上的各点的坐标中,纵坐标保持不变,∴该正方形在纵向上没有变化.又∵平面直角坐标系中,一个正方形上的各点的坐标中,横坐标变为原来的12,∴此正方形横向缩短为原来的12,即正方形横向缩短为原来的一半. 故选C. 13.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是( )A. 打六折B. 打七折C. 打八折D. 打九折【答案】C【解析】【分析】 设超过200元的部分可以享受的优惠是打n 折,根据:实际付款金额=500+(商品原价-500)×10折扣,列出y 关于x 的函数关系式,由图象将x=1000、y=900代入求解可得.【详解】设超过500元的部分可以享受的优惠是打n 折,根据题意,得:y=500+(x-500)•10n , 由图象可知,当x=1000时,y=900,即:900=500+(1000-500)×10n , 解得:n=8,∴超过500元的部分可以享受的优惠是打8折,故选C.【点睛】本题主要考查一次函数实际应用,理解题意根据相等关系列出实际付款金额y 与商品原价x 间的函数关系式是解题的关键.14. 小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A. ①②B. ②③C. ①③D. ②④【答案】B【解析】 【详解】A 、∵四边形ABCD 是平行四边形,当①AB=BC 时,平行四边形ABCD 是菱形,当②∠ABC=90°时,菱形ABCD 是正方形,故此选项正确,不合题意;B 、∵四边形ABCD 是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD 是矩形,当AC=BD 时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C 、∵四边形ABCD 是平行四边形,当①AB=BC 时,平行四边形ABCD 是菱形,当③AC=BD 时,菱形ABCD 是正方形,故此选项正确,不合题意;D 、∵四边形ABCD 是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意.故选C .二、填空题(本大题共 6 小题,共 18 分)15.当m =________时,函数y =-(m -2)2m 3x -+(m -4)是关于x 的一次函数.【答案】-2【解析】【详解】∵函数y =-(m -2)23x m -+(m -4)是一次函数,∴()23120m m ⎧-=⎪⎨--≠⎪⎩, ∴m =-2.故答案为-216.如图,在△ABC 中,AB =5,BC =7,EF 是△ABC 的中位线,则EF 的长度范围是________.【答案】1<EF<6【解析】【详解】∵在△ABC中,AB=5,BC=7,∴7-5<AC<7+5,即2<AC<12.又∵EF是△ABC的中位线,∴EF=12AC∴1<EF<6.17.一次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是__________.【答案】(0,-1)【解析】【分析】由图象经过点M,故将M(-1,-2)代入即可得出k的值.【详解】解:∵一次函数y=k(x-1)的图象经过点M(-1,-2),则有k(-1-1)=-2,解得k=1,所以函数解析式为y=x-1,令x=0代入得y=-1,故其图象与y轴的交点是(0,-1).故答案为(0,-1).【点睛】本题考查待定系数法求函数解析式,难度不大,直接代入即可.18.如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.【答案】(2,5)【解析】【详解】∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度,∵图形可知点A的坐标为(-2,6),∴则平移后的点A1坐标为(2,5).19.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为_________.【答案】15【解析】【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】解:∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,∴阴影部分的面积=12S菱形ABCD=12×(12×10×6)=15.故答案为15.【点睛】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.20.如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为____;若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为_____.【答案】(1). (1,1)(2). (-1,-1).【解析】【分析】根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点旋转后的坐标.【详解】∵菱形OABC的顶点O(0,0),B(2,2),得∴D点坐标为(1,1).∵每秒旋转45°,∴第60秒旋转45°×60=2700°,2700°÷360°=7.5周,即OD旋转了7周半,∴菱形的对角线交点D的坐标为(-1,-1),故答案为(1,1);(-1,-1)【点睛】本题考查了旋转的性质及菱形的性质,利用旋转的性质得出OD旋转的周数是解题关键.三、解答题(本大题共6 小题,共60 分)21.如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴角左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标;(2)从对称的角度来考虑,说一说你是怎样得到的;(3)直接写出右图案中的嘴角左右端点关于原点的对称点的坐标.【答案】(1)左眼睛坐标为(-4,3),右眼睛坐标为(-2,3),嘴角的左端点坐标为(-4,1),右端点坐标为(-2,1);(2)见解析;(3) (-2,-1),(-4,-1).【解析】【分析】(1)根据图形的位置关系可知:将右图案向左平移6个单位长度得到左图案等.(2)根据题意可知,这两个图是关于y轴对称的,所以根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”可知左图案的左右眼睛的坐标和嘴角左右端点的坐标;(3)根据“两点关于原点对称,横坐标互为相反数,纵坐标互为相反数”求解即可.【详解】(1)左图案中的左眼睛坐标为(-4,3),右眼睛坐标为(-2,3),嘴角的左端点坐标为(-4,1),右端点坐标为(-2,1).(2)关于y轴对称的两个图形横坐标互为相反数,纵坐标不变..(3) (-2,-1),(-4,-1).【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.22.为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别身高(cm)A x<150B 150≤x<155C 155≤x<160D 160≤x<165E x≥165根据图表中提供的信息,回答下列问题:(1)在样本中,男生身高的中位数落在________组(填组别序号),女生身高在B组的人数有________人;(2)在样本中,身高在150≤x<155之间的人数共有________人,身高人数最多的在________组(填组别序号);(3)已知该校共有男生500人、女生480人,请估计身高在155≤x<165之间学生有多少人【答案】(1)D;12;(2)16;C;(3)身高在155≤x<165之间的学生约有541人.【解析】【分析】从频数分布直方图可得到男生的总人数,则中位数是第20、21个人身高的平均数,女生与男生人数相同,由此可得到题(1)的答案;结合上步所得以及各组的人数可求出身高在150≤x<155的总人数和身高最多的组别,从而解决(2);对于(3),可根据两幅统计图得到男女生身高在155≤x<165之间的学生的百分率,从而使问题得以解决.【详解】解:(1)因为在样本中,共有男生2+4+8+12+14=40(人),所以中位数是第20、21个人身高的平均数,而2+4+12=18人,所以男生身高的中位数位于D组,女生身高在B组的人数有40×(1-30%-20%-15%-5%)=12(人).(2)在样本中,身高在150≤x<155之间的人数共有4+12=16(人),身高人数最多的在C组;(3)500×121440?+480×(30%+15%)=541(人),故估计身高在155≤x<165之间的学生约有541人.【点睛】本题主要考查从统计图表中获取信息,中等难度,解题的关键是要读懂统计图.23.已知y是x的一次函数,当x=1时,y=1;当x=-2时,y=-14.(1)求这个一次函数的关系式;(2)在如图所示的平面直角坐标系中作出函数的图像;(3)由图像观察,当0≤x≤2时,函数y的取值范围.【答案】(1)y=5x-4;(2)详见解析;(3)-4≤y≤6.【解析】【分析】(1)设函数解析式y=kx+b,将题中的两个条件代入即可得出解析式;(2)根据题意可确定函数上的两个点(1,1)、(-2,-14),运用两点法即可确定函数图象.(3)根据图象可知,当0≤x≤2时,y的取值范围是-4≤x≤6.【详解】解:(1)设函数的关系式为y=kx+b,则由题意,得1,214.kx bk b+=⎧⎨-+=-⎩解得54kb=⎧⎨=-⎩,∴一次函数的关系式为y=5x-4;(2)所作图形如图.(3)∵0≤x≤2,∴y的取值范围是:-4≤y≤6.故答案为(1)y=5x-4;(2)图形见解析;(3)-4≤y≤6.【点睛】本题考查待定系数法求函数解析式及一次函数图象上点的坐标特征,难度不大,注意掌握一次函数的性质.24.顺次连接四边形各边中点所得的四边形叫中点四边形.回答下列问题:(1)只要原四边形的两条对角线______,就能使中点四边形是菱形;(2)只要原四边形的两条对角线______,就能使中点四边形是矩形;(3)请你设计一个中点四边形为正方形,但原四边形又不是正方形的四边形,把它画出来.【答案】(1)相等;(2)垂直;(3)见解析【解析】【分析】(1)根据菱形的判定定理即可得到结论;(2)根据矩形的判定定理即可得到结论;(3)根据三角形的中位线平行于第三边并等于第三边的一半,先判断出AC=BD,又正方形的四个角都是直角,可以得到正方形的邻边互相垂直,然后证出AC与BD垂直,即可得到四边形ABCD满足的条件.【详解】解:(1)顺次连接对角线相等的四边形的四边中点得到的是菱形;(2)顺次连接对角线垂直的四边形的四边中点得到的是矩形;(3)如图,已知点E、F、G、H分别为四边形ABCD的边AB、BC、CD、DA的中点,AC=BD且AC⊥BD,则四边形EFGH为正方形,∵E、F分别是四边形ABCD的边AB、BC的中点,∴EF∥AC,EF=12 AC,同理,EH∥BD,EH=12BD,GF=12BD,GH=12AC,∵AC=BD,∴EF=EH=GH=GF,∴平行四边形ABCD是菱形.∵AC⊥BD,∴EF⊥EH,∴四边形EFGH是正方形,故顺次连接对角线相等且垂直的四边形的四边中点得到的四边形是正方形,故答案为:相等,垂直.【点睛】本题考查了中点四边形的判定,以及三角形的中位线定理和矩形的性质,正确证明四边形EFMN 是平行四边形是关键.25.王华同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在平行四边形ABCD中,,求证:平行四边形ABCD是.(1)在方框中填空,以补全已知和求证;(2)按王晓的想法写出证明过程;证明:【答案】(1)AC=BD,矩形;(2)证明详见解析.【解析】【分析】(1)根据对角线相等的平行四边形是矩形,可得答案;(2)根据全等三角形的判定与性质,可得∠ADC与∠BCD的关系,根据平行四边形的邻角互补,可得∠ADC 的度数,根据矩形的判定,可得答案.【详解】(1)解:在平行四边形ABCD中,AC=BD,求证:平行四边形ABCD是矩形;(2)证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=BC.在△ADC和△BCD中,∵AC=BD,AD=BC,CD=DC,∴△ADC≌△BCD.∴∠ADC=∠BCD.又∵AD∥CB,∴∠ADC+∠BCD=180°.∴∠ADC=∠BCD=90°.∴平行四边形ABCD是矩形.【点睛】本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BCD是解题关键.26.如图,直线y1=2x-2的图像与y轴交于点A,直线y2=-2x+6的图像与y轴交于点B,两者相交于点C.(1)方程组2226x yx y-=⎧⎨+=⎩的解是______;(2)当y1>0与y2>0同时成立时,x的取值范围为_____;(3)求△ABC的面积;(4)在直线y1=2x-2图像上存在异于点C的另一点P,使得△ABC与△ABP的面积相等,请求出点P的坐标.【答案】(1)22xy=⎧⎨=⎩;(2) 1<x<3;(3)8;(4) P(-2,-6)【解析】【分析】(1)根据图像可知,两条直线的交点即为方程组的解;(2)找出两条直线的图像在x轴上方的公共部分的x的取值范围即可;(3)令x=0,求出y1与y2的值,即可得A、B两点的坐标,进而可得AB的长度,根据C点坐标为(2,2),可得△ABC的高,即可求出面积;(4)令P(x0,2x0-2),根据三角形面积公式可得x0=±2,由点P异于点C可得x0=-2,代入y1=2x-2即可的P点坐标.【详解】(1)由图像可知直线y1=2x-2的图像与直线y2=-2x+6的交点坐标为(2,2)∴方程组2226x yx y-=⎧⎨+=⎩的解集为22xy=⎧⎨=⎩,(2)根据图像可知:当y1>0与y2>0同时成立时,x的取值范围为1<x<3.(3)∵令x=0,则y1=-2,y2=6,∴A(0,-2),B(0,6).∴AB=8.∴S△ABC=12×8×2=8.(4)令P(x0,2x0-2),则S△ABP=12×8×|x0|=8,∴x0=±2.∵点P异于点C,∴x0=-2,2x0-2=-6.∴P(-2,-6).【点睛】此题考查了一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,三角形面积,以及两一次函数的交点,熟练掌握一次函数图像的特征是解题关键.。