参考版--常用金属材料显微组织观察-

合集下载

(完整)合金钢、铸铁、有色金属的显微组织观察与分析

(完整)合金钢、铸铁、有色金属的显微组织观察与分析

合金钢、铸铁、有色金属的显微组织观察与分析实验目的实验说明实验内容及方法指导实验报告要求思考题一:实验目的(1)观察各种常用合金钢、有色金属和铸铁的显微组织.(2)分析这些金属材料的组织和性能的关系及应用。

二:实验说明1.几种常用合金钢的显微组织一般合金结构钢、低合金工具钢都是低合金钢。

即合金元素总量小于5%的钢,由于加入了合金元素,使相图发生了一些变动,但其平衡状态的显微组织与碳钢没有质的区别。

热处理后的显微组织仍然可借助C曲线来分析,除了Co元素之外,合金元素都使C曲线右移,所以低合金钢用较低的冷却速度即可获得马氏体组织。

例如,除作滚动轴承外,还广泛用作切削工具、冷冲模具、冷轧辊及柴油机喷嘴的GCrl5钢,经过球化退火、840~C油淬和低温回火,得到的组织为隐针或细针回火马氏体和细颗粒状均匀分布的碳化物以及少量残余奥氏体.高速钢是一种常用的高合金工具钢.如W18Cr4V高速钢,因为含有大量合金元素,使Fe-Fe3C相图中点E 大大向左移动,所以它虽然只含有w(C)=0.7%~0.8%碳,但已经含有莱氏体组织。

在高速钢的铸态组织中可看到鱼骨状共晶碳化物,如图1所示。

这些粗大的碳化物,不能用热处理方法去除,只能用锻造的方法将其打碎.锻造退火后高速钢的显微组织是由索氏体和分布均匀的碳化物组成(图2)。

大颗粒碳化物是打碎了的共晶碳化物。

高速钢淬火加热时,有一部分碳化物未溶解,淬火后得到的组织是马氏体、碳化物和残余奥氏体(图3)。

碳化物呈颗粒状,马氏体和残余奥氏体都是过饱和的固溶体,腐蚀后都呈白色,无法分辨,但可看到明显的奥氏体晶界。

为了消除残余奥氏体,需要进行三次回火,回火后的显微组织为暗灰色回火马氏体、白亮小颗粒状碳化物和少量残余奥氏体,如图4所示。

图1 W18Cr4V钢铸态组织图2 W18Cr4V钢锻后退火组织图3 W18Cr4V钢的淬火组织图4 W18CNV钢的淬火回火组织2.铸铁的显微组织依铸铁在结晶过程中石墨化程度不同,可分为白口铸铁、灰口铸铁、麻口铸铁.白口铸铁具有莱氏体组织而没有石墨,碳几乎全部以碳化物形式(Fe3C)存在;灰口铸铁没有莱氏体,而有石墨,即碳部分或全部以自由碳、石墨的形式存在。

常用金属材料的显微组织观察

常用金属材料的显微组织观察

锡基轴承合金以元素Sn为基础,加入少量锑和铜组成的合金(WSb =11%, WCu =6%),是一种软基体硬质点类型的轴承合金。 显微组织中暗黑色的为软基体α相,是Sb在Sn中的固溶体;白色块状为硬质 点β'相,是以SbSn为基的有序固溶体;组织中亮白色针状及星形就是Cu3Sn 或Cu6Sn5化合物η '相,也其硬质点作用。

铸铁
铸铁
根据成分和冷 却速度不同
铁素体+石墨
铁素体+珠光体+石墨
铸铁
根据石墨的形 态、大小和分 布情况不同
灰口铸铁 可锻铸铁 球墨铸铁
珠光体+石墨
灰口铸铁HT 灰口铸铁
G F
显微组织:珠光体+铁素体+片状石墨 力学性能差 解决方法:变质处理
P
可锻铸铁
G
F
显微组织:铁素体+团絮状石墨 团絮状石墨大大减轻了石墨对基体金属的割裂作用, 因而强度高,有一定的韧性、塑性。
α
孪晶
H90
α
β’
H 62 WZn在39%~45%的黄铜具有(α和β‘)两相组织,称为双相黄铜。 双相黄铜H62的显微组织中,α相呈亮白色,β'相为黑色,是以CuZn化 合物为基的有序固溶体,在456~468℃由β转变而成性能硬而脆。
α相
β’相
H62
•轴承合金 轴承合金
β '相 η '相 α相
调质
材料名称
40Cr W18Cr4V 1Cr18Ni9Ti 灰口铁 可锻铸铁 球墨铸铁 ZL102 单相黄铜 双相黄铜
锡基轴承合金
浸蚀剂
4% 硝酸酒精溶液 4% 硝酸酒精溶液 王水溶液 4% 硝酸酒精溶液 4% 硝酸酒精溶液 4% 硝酸酒精溶液 0.5%HF 溶液 3%FeCl3 +10%HCl 3%FeCl3 +10%HCl 4% 硝酸酒精溶液

实验 合金钢、铸铁、有色金属的显微组织观察

实验 合金钢、铸铁、有色金属的显微组织观察
(1) 领取各种类型合金材料的金相试样,在 显微镜下进行观察,并分析其组织形态特 征。
(2) 观察各类成分的合金要结合相图和热处 理条件来分析应该具有的组织,着重区别 各自的组织形态特点。
(3) 认识组织特征之后,再画出所观察试样 的显微组织图。画组织图时应抓住组织形 态的特点,画出典型区域的组织。
实验四 合金钢、铸铁、有色 金属的显微组织观察
一、实验目的
(1) 观察各种常用合金钢、有色金属和铸铁 的显微组织。
(2) 分析这些金属材料的组织和性能的关系 及应用。
二、实验原理
1.几种常用合金钢的显微组织
图4.1 W18Cr4V钢的铸态组织
图4.2 W18Cr4V钢锻后退火组织
图4.3 W18Cr4V钢的淬火组织
图4.4 微组织
图4.5 F基体口铸铁
图4.6 P+F基体球墨铸铁 图4.7 P基体可锻铸铁
3.几种常用有色金属的显微组织
图4.8 未变质处理的硅铝明合金组织 图4.9 经变质处理后硅铝明合金组织
图4.10 单相黄铜的组织特征
图4.11 双相黄铜
三、实验内容及方法指导
四、实验报告要求
(1) 写出实验目的。 (2) 分析讨论各类合金钢组织的特点,并与
相应碳钢组织作比较,同时把组织特点与 性能和用途联系起来。 (3) 分析讨论各类铸铁组织的特点,并同钢 的组织作对比,指出铸铁的性能和用途的 特点。

实验二 有色金属的显微组织观察与分析

实验二 有色金属的显微组织观察与分析

实验一有色合金显微组织观察与分析一、实验目的1. 观察常见的铝合金、铜合金、镁合金及轴承合金等有色金属试样的显微组织特征。

2. 了解有色金属中合金元素对其组织和性能的影响。

二、实验说明(一)铝合金1.铸造铝合金:应用最广泛的铸造铝合金为含有大量硅的铝合金,即所谓硅铝合金。

典型的硅铝合金牌号为ZL102,含硅11~13%,在共晶成分附近,因而具有优良的铸造性能——流动性好,铸件致密,不容易产生铸造裂纹。

铸造后几乎全部得到共晶组织即粗大灰色针状的共晶硅分布在白亮色的α-Al固溶体基体上,这种粗大的针状硅晶体严重降低合金的塑性,因此通常在浇铸时向合金溶液中加入2~3%的变质剂,进行变质处理,合金共晶点向右移,原来的合金变成亚共晶,其组织为枝晶状初生α固溶体(白亮色)+细的(α+Si)共晶体(黑色),如图1-1所示,从而提高合金强度和塑性。

(a)未经变质处理(b)变质处理图1-1 铸造铝合金(ZL102)的显微组织500X2.形变铝合金:硬铝是Al-Cu-Mg系合金,是重要的形变铝合金,具有强烈的时效强化作用,经时效处理后具有很高的硬度、强度,故而称Al-Cu-Mg系合金为硬铝合金。

在Al-Cu-Mg系中,形成了CuAl2(θ相)、CuMgAl2(S相),这两个相在加热时均能溶入合金的固溶体内,并在随后的时效热处理过程中通过形成“富集区”、“过渡相”而使合金达到强化。

如图1-2所示。

(a)铸态(b)时效板材图1-2 硬铝(ZL12)的显微组织 100X(二)铜合金1. 普通黄铜普通黄金是Cu-Zn合金,其含锌量均在45%以下,根据Cu-Zn合金状态图,含锌量在32%以下的黄铜(如H80、H70)为α相固溶体的单相组织;而含锌量在32~45%之间的黄铜(H62、H59)则为(α+β)两相组织。

(1)α单相黄铜:含锌在36%以下的黄铜属单相α固溶体,典型牌号有H70。

铸态组织为α固溶体呈树枝状,经变形和再结晶退火,其组织为多边形晶粒,有退火孪晶。

金属材料显微组织图谱

金属材料显微组织图谱

金属材料显微组织图谱(共42个图谱)图谱01、不锈钢中的位错线:图谱02、铁碳合金的室温平衡组织(0.01%C ):(纯铁的室温平衡组织)铁素体 w ww .b zf x w .c om铁素体+珠光体图谱04、铁碳合金的室温平衡组织(0.77%C ):(T8钢的室温平衡组织)珠光体w ww .b zf xw .c om珠光体+二次渗碳体图谱06、球状珠光体:(T12钢的球化退火组织)球状珠光体w ww .b zf xw .c om图谱07、灰口铸铁的组织(一):(灰口铸铁的显微组织)铁素体+片状石墨 铁素体+珠光体+片状石墨 珠光体+片状石墨图谱08、灰口铸铁的组织(二):铁素体和团絮状石墨w ww .b zf xw .c om图谱09、灰口铸铁的组织(三):铁素体和球状石墨图谱10、陶瓷在室温下的组织:w ww .b zf xw .c om图谱11、W18Cr4V钢离子氮碳共渗+离子渗硫复合处理渗层组织:图谱12、共晶合金组织的形态:w ww .b zf xw .c om图谱13、亚共晶合金组织的形态:图谱14、过共晶合金组织的形态:w ww .b z f xw .c om图谱15、共析钢的室温组织:图谱16、共晶白口铸铁室温平衡组织:图谱17、亚共晶白口铸铁室温平衡组织:w ww .b zf xw .c om图谱18、过共晶白口铸铁室温平衡组织:图谱19、珠光体型组织:图1 珠光体 放大3800倍图2 索氏体 放大8000倍w w w .b z f xw .c om图3 屈氏体 放大8000倍图谱20、上贝氏体形态:图1 光学显微照片 放大500倍图2 电子显微照片 放大5000倍w ww .b zf xw .c om图谱21、下贝氏体形态:图1 光学显微照片 放大500倍图2 电子显微照片 放大12000倍图谱22、低碳马氏体的组织形态:w ww .b zf xw .c om图谱23、高碳马氏体的组织形态:图谱24、铸锭结构:(1) 细晶区; (2)柱状晶区; (3)等轴晶区w ww .b z f xw .c om图谱25、回火索氏体:图谱26、低碳钢渗碳缓冷后的显微组织:图谱27、38CrMoAl 钢氮化层的显微组织:w ww .b zf x w .c om图谱28、球墨铸铁的显微组织:图谱29、蠕墨铸铁的显微组织:图谱30、可锻铸铁的显微组织:w ww .b z f xw .c om图谱31、ZL102合金的铸态组织(一):未变质处理图谱32、ZL102合金的铸态组织(二):变质处理后w ww .b zf xw .c om图谱33、铜锌合金的显微组织(一):单相黄铜图谱34、铜锌合金的显微组织(二):双相黄铜w ww .b zf xw .c om图谱35、Ti-6Al-4V 合金时效处理后的显微组织:图谱36、GCr15钢淬火、回火后的显微组织:w w w .b zf x w .c om图谱37、ZChSnSb11-6轴承合金的显微组织:图谱38、高速钢淬火、回火后的组织:()w ww .b z f xw .c om图谱39、钨纤维铜基复合材料中的裂纹在铜中扩展受阻:图谱40、碳纤维环氧树脂复合材料断裂时纤维断口电子扫描照片:图谱41、韧性断裂断口:(韧窝)w ww .b zf xw .c om图谱42、脆性断裂断口:(河流花样)(全文完)w ww .b zf xw .c om。

常用金属材料的显微组织

常用金属材料的显微组织

03
钢铁材料的显微组织
钢的显微组织分类
铁素体
一种具有体心立方晶格 的相,在钢中通常作为
基体相。
奥氏体
一种具有面心立方晶格 的相,在钢的熔炼过程
中通常形成。
渗碳体
一种具有复杂晶格结构 的相,在钢中作为强化
相。
珠光体
由铁素体和渗碳体组成 的层状相,具有较好的
塑性和韧性。
钢材的显微组织特点
钢材的显微组织结构取决于其制造工艺,如熔炼、 轧制、热处理等。
马氏体
形状记忆合金中的马氏体是 一种有序的晶体结构,能够 通过加热或冷却实现形状的 变化。
奥氏体
形状记忆合金中的奥氏体是 一种无序的晶体结构,能够 通过加热或冷却实现形状的 恢复。
孪晶
形状记忆合金中的孪晶是一 种特殊的晶体结构,能够通 过温度变化实现形状的变化 和恢复。
06
金属材料显微组织的观察与分析方法
高温合金中的碳化物是一种硬质点,能够 提高材料的耐磨性和抗腐蚀性能。
精密合金的显微组织
特点 精密合金是一种具有优异物理、 化学和机械性能的金属材料,其 显微组织通常包括单相、双相、 多相等结构。
多相 精密合金中的多相组织由多种晶 体结构组成,如奥氏体、铁素体 和碳化物,能够提供优异的机械 性能和耐腐蚀性能。
铝及铝合金
纯铝具有轻巧和良好的导电性, 但强度较低。铝合金通过添加镁、 锰等元素来提高其强度和耐腐蚀
性。
钛及钛合金
钛是一种轻巧、高强度的金属, 具有良好的耐腐蚀性和生物相容 性。钛合金通过添加铝、钼等元 素来进一步提高其强度和耐腐蚀
性。
特殊金属材料
不锈钢
功能金属材料
不锈钢是一种具有高度耐腐蚀性和良 好机械性能的合金钢。常见的类型包 括奥氏体、马氏体和双相不锈钢。

实验三 常见钢铁材料的显微组织观察

实验三 常见钢铁材料的显微组织观察

6
图 3-14 铁素体+珠光体
图 3-15 珠光体+网状分布的铁素体
18CrNiMo 具有较高强度、韧性和淬透性,适宜制作具有一定强韧性的汽车变速箱齿轮
以及轴类,原材料组织铁素体以及珠光体,呈枝晶状分布,如图 3-17 所示;因该钢具有良
好的淬透件,淬火后已经完全渗透,基体全为低碳马氏体,如图 3-18 所示。
高速钢淬火组织:淬火加热温度一般为 1260~1280℃,高温加热的目的是使较多的碳
化物溶解于奥氏体中,淬火后马氏体中合金元素含量高,回火后钢的硬度高且耐磨性好。淬
火采用油冷或空冷,其显微组织为马氏体+未溶碳化物+残余奥氏体。马氏体呈隐针状,其
针形很难显示出来,但可看出明显的奥氏晶界及分布于晶粒内的未溶碳化物,淬火后的硬度
B.针状马氏体是含碳量较高的钢淬火后得到的组织。在光学显微镜下,它呈竹叶状或 针状,针与针之间成一定的角度。最先形成的马氏体较粗大,往往横穿整个奥氏体晶粒,将 奥氏体晶粒加以分割,使以后形成的马氏体针的大小受到限制。因此,针状马氏体的大小不 一。同时有些马氏体有一条中脊线,并在马氏体周围有残留奥氏体。针状马氏体的硬度高而 韧性差。
B.下贝氏体是在片状铁素体内部沉淀有碳化物的两相混合物组织。它比淬火马氏体易 受浸蚀,在显微镜下呈黑色针状(见图 3-6)。在电镜下可以见到,在片状铁素体基体中分 布有很细的碳化物片,它们大致与铁素体片的长轴成 55~60°的角度。
C.粒状贝氏体是最近十几年才被确认的组织。在低、中碳合金钢中,特别是连续冷却 时(如正火、热轧空冷或焊接热影响区)往往容易出现,在等温冷却时也可能形成。它的形
约为 HRC61~62,见图 3-26 所示。
高速钢淬火后需经三次回火,其组织为回火马氏体、少量残余奥氏体,大块白色颗粒

常用金属材料显微组织观察实验报告

常用金属材料显微组织观察实验报告

常用金属材料显微组织观察实验报告- 图文常用金属材料的显微组织观察一、实验目的1.观察各种常用合金钢,有色金属和铸铁的显微组织。

2.分析这些金属材料的组织和性能的关系及应用。

二、金属材料的显微组织观察及分析1.几种常用合金钢的显微组织合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为低合金钢;合金元素为5~10%的称为中合金钢;合金元素大于10%的称为高合金钢。

1)一般合金结构钢、合金工具钢都是低合金钢。

由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。

低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素都使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。

40Cr钢经调质处理后的显微组织是回火索氏体。

GCrl5钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织。

图1、16Mn-淬火-x400马氏体16Mn钢属于碳锰钢,碳的含量在0.16%左右。

16Mn钢的合金含量较少,焊接性良好,焊前一般不必预热。

加入合金元素锰,使C曲线右移,在淬火处理后,组织为马氏体组织。

但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。

图2、16Mn-正火-x400铁素体索氏体16Mn属于低碳钢,碳含量<0.16%,正火后组织为F+S。

在400倍显微镜下,索氏体基本上不可分辨。

16Mn钢是目前我国应用最广的低合金钢。

广泛应用于各种板材、钢管。

图3、65Mn-等温淬火-400下贝氏体65Mn,锰提高淬透性,但Mn含量过大会导致过热现象。

特性:经热处理后的综合力学性能优于碳钢,65Mn 钢板强度、硬度、弹性和淬透性均比65号钢高。

但有过热敏感性和回火脆性。

常用金属材料的显微组织观察

常用金属材料的显微组织观察

常用金属材料的显微组织观察一、实验目的观察几种常用合金钢、铸铁和有色金属的显微组织;了解这些金属材料的成分、组织和性能的特点。

二、仪器与材料仪器: XJP-2A( 单目 ) 金相显微镜; XJP-3C( 双目 ) 金相显微镜;材料: 10 种常用金属材料表 1 常用金属材料的金相试样三、实验原理及教学内容1 合金钢在合金钢中,由于合金元素对相图及相变过程的影响,其显微组织比碳钢复杂得多,组成相除了合金铁素体、合金奥氏体、合金渗碳体外,还可能出现金属间化合物,其组织形态随钢种的不同而呈现出不同的特征。

根据其用途可分为:合金结构钢、合金工具钢、特殊性能钢。

• 40Cr 调质钢(合金结构钢)合金调质钢是指调质处理后的合金结构钢,调质处理后具有高强度与良好的塑性及韧性。

40表示含碳量0.4%,Cr是加入的合金元素,起着增加淬透性,使调质后的回火索氏体组织得到强化。

回火索氏体以前我们学过,是由等轴状F和粒状渗碳体构成。

40Cr调质处理(淬火后高温回火) W18Cr4V退火• W18Cr4V 高速钢(合金工具钢)高速钢是一种高合金工具钢,具有高硬度、高耐磨性和高热硬性,还具有一定的强度、韧性和塑性。

加入合金元素W提高热硬性;Cr可以提高钢的淬透性;加入合金元素V可显著提高钢的耐磨性和热硬性。

a. 铸态组织显微组织分为三个部分:晶界附近为骨骼状莱氏体共晶碳化物Fe4W2C及WC,严重地分割了基体,使钢受载时极易脆裂;晶粒外层为奥氏体分解产物—马氏体及残余奥氏体,因为它不易被浸蚀而呈亮色,常称为“白色组织”;晶粒的心部是δ共析体,为极细的共析组织,易受浸蚀而呈黑色,通常称为“黑色组织”。

b. 锻造和退火后的组织为了改善碳化物的不均匀性,生产上采用反复锻造的方法将共晶碳化物击碎使其分布均匀。

为了去除锻造内应力,清除不平衡组织,降低了硬度,改善切削加工性能,为淬火提供良好的原始组织,必须对高速钢进行退火处理。

经过860~880℃退火后,高速钢 W18Cr4V 的退火组织为较粗大的共晶碳化物颗粒及稍细的二次碳化物,分布在索氏体基体上。

金属材料的显微组织观察

金属材料的显微组织观察

观结构和性能,为优化材料性能提供依据。
02
工艺质量控制
通过对生产过程中的金属材料进行显微组织观察,可以及时发现工艺
问题并采取措施,确保产品质量稳定。
03
失效分析
当金属材料出现失效时,通过显微组织观察可以分析失效原因,例如
检测材料中的裂纹、孔洞和晶界腐蚀等缺陷。
02
金相学的基本原理
金相学的基本概念
重要性
了解金属材料的微观结构和组成对优化材料性能、提高工艺 质量和控制产品质量具有重要意义。通过对显微组织的观察 ,可以揭示材料的内部结构和缺陷,为改进工艺和研发新材 料提供依据。
显微组织观察的方法
金相磨片制备
将金属材料切割成薄片,并进行研磨、抛光和蚀刻等处理,以获得清晰的微观结构图像。
光学显微镜观察
03
金属材料的显微组织
金属材料的晶体结构
单晶结构
金属材料在原子尺度上由规则排列的原子 组成。这些原子按照一定的晶格结构排列 ,形成所谓的单晶结构。单晶结构决定了 金属材料的许多物理和机械性能。
VS
多晶结构
在大多数金属材料中,晶粒无规则地排列 在一起,形成多晶结构。这种结构会导致 材料性能的各向异性,因为不同晶粒的取 向和大小都会影响其性能。
04
金属材料显微组织的观察方法
光学显微镜观察法
适用范围
适用于观察金属材料的显微组织,如钢铁、铝合 金、铜合金等。
工作原理
利用光学原理,通过透镜将金属试样的显微组织 放大,并投影在视野中,以便观察和分析。
主要特点
操作简单,成本较低,适用于一般实验室和生产 现场。
扫描电子显微镜观察法
适用范围
适用于观察金属材料的表面微观形貌和显微组织,如钢铁、铝合 金、铜合金等。

常用金属材料的显微组织

常用金属材料的显微组织

铝及铝合金的显微组织
纯铝的显微组织
纯铝的显微组织由等轴晶粒组成,晶 界清晰,晶粒大小不均匀。
铝合金的显微组织
铝合金的显微组织由固溶体、金属化 合物和机械混合物组成,不同合金元 素对铝合金的显微组织有不同的影响 。
钛及钛合金的显微组织
纯钛的显微组织
纯钛的显微组织由等轴晶粒组成,晶界清晰,晶粒大小不均匀。
05 金属材料的热处理工艺与 显微组织的关系
退火与显微组织的关系
退火是一种金属热处理工艺,通 过加热至一定温度并保温一段时 间后缓慢冷却,使金属内部组织
结构发生变化。
退火过程中,金属内部的晶体结 构逐渐变得均匀,减少晶体缺陷 和内应力,提高金属的塑性和韧
性。
退火后的显微组织通常表现为晶 粒粗大、组织致密,不同金属材
钛合金的显微组织
钛合金的显微组织由固溶体、金属化合物和机械混合物组成,不同合金元素对钛合金的显微组织有不同的影响。
03 金属材料的相与组织转变
固态相变
相变类型
相变过程
固态相变是指金属材料在固态下发生 的相变,包括调幅分解、马氏体相变 等。
固态相变过程通常包括形核、长大和 粗化等阶段,这些阶段对金属材料的 性能和加工工艺具有重要影响。
详细描述
珠光体具有较好的塑性和韧性,同时 具有较高的强度和硬度。珠光体的形 态和分布对钢的性能有重要影响。在 显微镜下观察,珠光体的层片状结构 清晰可见。
02 有色金属材料的显微组织
铜及铜合金的显微组织
纯铜的显微组织
纯铜的显微组织由晶界和晶粒组 成,晶界清晰,晶粒大小不均匀 。
铜合金的显微组织
铜合金的显微组织由固溶体、金 属化合物和机械混合物组成,不 同合金元素对铜合金的显微组织 有不同的影响。

(完整)参考版--常用金属材料显微组织观察-

(完整)参考版--常用金属材料显微组织观察-
图2、16凶门-正火-x400
铁素体
铁素体
索氏体体
16Mn属于低碳钢,碳含量<0。16%,正火后组织为F+S.在400倍显微镜下,索氏体基本上不可分辨。
16Mn钢是目前我国应用最广的低合金钢.广泛应用于各种板材、钢管。
图3、65Mn-等温淬火-400
65Mn,锰提高淬透性,但Mn含量过大会导致过热现象。
特性:经热处理后的综合力学性能优于碳钢,65Mn钢板强度、硬度、弹性和淬透性均比65号钢高.但有过热敏感性和回火脆性。
应用:用作小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制作弹簧环、气门簧、离合器簧片、刹车弹簧及冷拔钢丝冷卷螺旋弹簧.
图4、等温淬火-30年凶门51—x400
嚏陵氏氏体
30CrMnSi是高强度调质结构钢。组织形貌,保持马氏体位向的回火索氏体,并出现极少量的铁素.体
高速钢的铸造状态下与亚共晶白口铸铁的组织相似。其中莱氏体由合金碳化物和马氏体或屈氏体组成.莱氏体沿晶界呈宽网状分布,莱氏体中的碳化物粗大,有骨架状,不能靠热处理消除,必须进行锻造打碎。锻造退火后高速钢的显微组织是由索氏体和碳化物所组成的。
图11、高速钢-淬火x400
马氏体及残余奥
氏体
残余奥氏体
点状碳化物
(完整)参考版一常用金属材料显微组织观察-
特性:具有很高的强度和韧性,淬透性较高,冷变形塑性中等,切削加工性能良好。有回火脆性倾向,横向的冲击韧性差。焊接性能较好,但厚度大于3rmi时,应先预热到150℃,焊后需热处理.一般调质后使用。
用途:多用于制造高负荷、高速的各种重要零件,如齿轮、轴、离合器、链轮、砂轮轴、轴套、螺栓、螺母等,也用于制造耐磨、工作温度不高的零件,变载荷的焊接构件,如高压鼓风机的叶片、阀板以及非腐蚀性管道管子

实验常用金属材料组织观察及分析

实验常用金属材料组织观察及分析

试验五、常用金属材料组织观看及分析一、试验目的:1、观看及争论常用的几种合金材料的显微组织的特征。

2、了解及把握它们铸造、加工、热处理状态下组织及性能之间的关系。

二、试验说明:这里主要介绍铸铁、合金钢、铜合金、铝合金及轴承合金,它们的应用也较广泛有必要进展深度的了解。

三、试验内容:〔一〕铸铁1、白口铸铁:白口铸铁的碳以结合态〔渗碳体的形式〕存在,断口呈银白色。

其组织特征是没有石墨而有莱氏体组织。

依据含碳量可将白口铸铁分为亚共晶、共晶、过共晶白口铸铁。

(1)亚共晶白口铸铁:含碳量大于 2.06,小于 4.30%的白口铸铁称为亚共晶白口铸铁,其显微组织含有由初生树枝状的奥氏体转变成的珠光体、共晶莱氏体及二次渗碳体。

再显微镜下看到的暗黑色树枝状的为珠光体,白底上分布细小暗黑色的散粒状的为莱氏体,而二次渗碳体则与莱氏体中的渗碳体相互混杂,而难于区分。

(2)、共晶白口铸铁:含碳量等于4.30%的白口铸铁称为共晶白口铸铁,其显微组织为100%的莱氏体,它是渗碳体与珠光体的机械混合物,其中黑色细点状或短条状是珠光体,而白色的基体为渗碳体。

(3)、过晶白口铸铁:含碳量大于 4.30%的白口铸铁称为过共晶白口铸铁,其显微组织由一次渗碳体和莱氏体组成。

其中粗大的白亮条状为一次渗碳体,白底上分布细小暗黑色的散粒状的为莱氏体。

2、灰口铸铁:灰口铸铁中的碳以游离状态〔石墨〕存在,断口呈灰色。

其组织由金属基体和无方向分布的片状石墨组成。

金属基体可以是铁素体、珠光体及珠光体加铁素体的混合基体三种。

石墨在未经浸蚀的试样即可观看到,而基体则需用2—4%的硝酸酒精浸蚀才能识别。

3、麻口铸铁:铸铁在结晶过程,由于受到冷却条件的影响,使其具有灰口铸铁和白口铸铁的组织特征,其组织中具有石墨又有莱氏体。

4、球墨铸铁:球墨铸铁中的碳同样以游离状态存在,但石墨呈球状分布,组织是由金属基体和球状石墨组成。

金属基体同样是铁素体、珠光体及铁素体加珠光体的混合基体三种。

金属材料的显微组织观察

金属材料的显微组织观察
显微组织定义
显微组织决定了金属材料的物理、化学和机械性能,如硬度、韧性、耐腐蚀性、疲劳强度等,因此对金属材料显微组织的观察和表征至关重要。
显微组织的重要性
显微组织的定义和重要性
金相显微镜观察
扫描电子显微镜观察
X射线衍射分析
金属材料显微组织的观察方法
固溶体是金属材料中溶质原子溶入溶剂晶体中形成的均匀固相,具有简单的晶体结构。固溶体显微组织的特征是成分均匀,结构简单。
金属材料的显微组织观察不仅仅是为了学术研究,还应该服务于实际应用。未来需要加强应用研究,探索如何利用显微组织观察来改善金属材料的性能和服役行为。
参考文献
06
学术期刊
收集相关领域的学术期刊文章,如《金属学报》、《材料科学进展》等,以便获取最新的研究进展和学术前沿。
ቤተ መጻሕፍቲ ባይዱ
参考文献的收集与整理
行业标准
收集相关领域的国内外行业标准,如GB/T 13298-2015《金属显微组织检验方法》,以确保实验结果的准确性和可比性。
固溶体显微组织
金属间化合物显微组织
复合材料显微组织
金属材料显微组织的观察实验准备
02
样品选择
选择具有典型显微组织的金属材料样品,如钢铁、铝合金等。
样品制备
将样品进行研磨、抛光、蚀刻等步骤,以暴露出其显微组织结构。
实验样品的选择和制备
设备选择
选用金相显微镜、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等设备进行观察。
中文文献
外文文献
参考文献的引用格式与规范
参考文献的撰写示例
《金属学报》2021年第47卷第5期,P123~P128,(引用日期为2021年5月15日)
中文文献示例

参考版--常用金属材料显微组织观察-_图文.

参考版--常用金属材料显微组织观察-_图文.

常用金属材料的显微组织观察一、实验目的1.观察各种常用合金钢,有色金属和铸铁的显微组织。

2.分析这些金属材料的组织和性能的关系及应用。

二、金属材料的显微组织观察及分析1.几种常用合金钢的显微组织合金钢依合金元素含量的不同,可分为三种:合金元素总量小于 5%的称为低合金钢;合金元素为 5~10%的称为中合金钢;合金元素大于 10%的称为高合金钢。

1一般合金结构钢、合金工具钢都是低合金钢。

由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。

低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同, 差别只是在于合金元素都使 C 曲线右移 (除 Co 外 ,即以较低的冷却速度可获得马氏体组织。

40Cr 钢经调质处理后的显微组织是回火索氏体。

GCrl5钢 (轴承钢 840℃油淬低温回火试样的显微组织,与 T12钢 780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织。

图 1、 16Mn-淬火 -x40016Mn 钢属于碳锰钢,碳的含量在 0.16%左右。

16Mn 钢的合金含量较少,焊接性良好,焊前一般不必预热。

加入合金元素锰,使 C 曲线右移,在淬火处理后,组织为马氏体组织。

但由于 16Mn 钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。

1图 2、 16Mn-正火 -x40016Mn 属于低碳钢,碳含量 <0.16%,正火后组织为 F+S。

在 400倍显微镜下, 索氏体基本上不可分辨。

16Mn 钢是目前我国应用最广的低合金钢。

广泛应用于各种板材、钢管。

图 3、 65Mn-等温淬火 -40065Mn ,锰提高淬透性,但 Mn 含量过大会导致过热现象。

特性:经热处理后的综合力学性能优于碳钢, 65Mn 钢板强度、硬度、弹性和淬透性均比 65号钢高。

金属材料的显微组织观察

金属材料的显微组织观察

金属材料的显微组织观察xx年xx月xx日CATALOGUE目录•显微组织观察的基本概念•金相学的基本原理•金属材料的显微组织•金属材料显微组织的观察方法•金属材料显微组织的分析技术•金属材料显微组织观察的实践应用01显微组织观察的基本概念显微组织观察是指通过光学显微镜、扫描电子显微镜等设备,观察金属材料的微观组织形貌、结构、相组成等特征的过程。

定义显微组织观察是金属材料研究和质量控制中的重要手段,通过对微观组织的观察和分析,可以揭示材料的力学性能、耐腐蚀性能、加工性能等性质的内在机制,指导材料设计和优化。

重要性定义与重要性显微组织观察的方法利用光学显微镜的透射、反射和偏振等原理,观察金属材料的微观组织形貌、晶粒大小、相组成等。

光学显微镜观察扫描电子显微镜观察能谱分析电子探针分析利用扫描电子显微镜的高分辨率和高倍率特点,观察金属材料的表面形貌、晶界结构、相分布等。

结合扫描电子显微镜,通过能谱仪对金属材料微区进行元素分析,确定材料的化学成分和相组成。

利用电子探针的聚焦电子束对金属材料微区进行成分和结构分析,揭示材料的原子结构和化学键信息。

显微组织观察的应用通过显微组织观察,对金属材料进行分类、鉴别和牌号识别,为材料应用提供基础数据。

材料鉴定与分类对金属材料的失效进行分析,揭示失效原因和机理,提出改进措施,提高材料性能和可靠性。

失效分析通过对制备工艺与显微组织的关系研究,优化工艺条件,控制材料质量,提高生产效率。

工艺优化与控制通过显微组织观察,研究新型金属材料的微观结构与性能关系,指导新材料的设计和研发。

新材料研发02金相学的基本原理1金相学的基本概念23金相学是研究金属和合金的化学组成、显微组织、制备工艺与性能之间关系的科学。

金相学定义金属是元素或单质,而合金是由两种或两种以上的金属或非金属元素组成的混合物。

金属与合金的差异显微组织是指借助显微镜观察到的金属和合金的内部结构,包括晶粒大小、形态,相的分布,以及缺陷等。

金属材料和显微组织观察

金属材料和显微组织观察

有色金属:铝合金
有色金属:铝合金
属二元铝-硅合金,又名硅铝明,含Si%=10~13%。
共晶硅
α固溶体
初晶硅 基体α相
(α+Si)共晶体
未变质处理
已变质处理
图14-1 ZL102合金为未变质的显微组织
图14-2 ZL102合金为变质的显微组织
Al-Si合金变质前后的铸态组织
有色金属:铜合金
相图下部自左至右分别有αβγδεη 六个单相区,这六个相都是固相, 其中α向η相是固溶体,βγδε都是 金属化合物。液相和固相,固相 和固相之间是两相区,合金在这 些区域是两相共存。液相区的下 界限相当于不同成分合金的凝固 点,或者熔点,可以看出,液相 区的下界限从左到右逐渐降低, 也就是说,合金的含锌量越多, 合金的凝固点越低。此外,液相 区下面存在着几个液相和固相共 存的区域,也就是说,合金的凝 固不是恒温进行,结晶过程是在 一个温度范围内进行的,固—液 两相共存区域的垂直距离越大, 合金结晶的温度范围越大,这种 合金在结晶石的流动性就差一些。
40Cr 850 ℃
合金结构钢和滚动轴承钢热处理组织
淬 火
合金结构钢和滚动轴承钢热处理组织
GCr15 850℃淬火
组织 M+K
B下 A’
M
高速钢热处理组织
高速钢是一种常用的高合金工具钢,例如W18Cr4V。因为它 含有大量合金元素,使铁碳相图中的E点大大左移,虽然只含 有0.7%~0.8%的碳,仍可获得莱氏体组织,所以又称为莱氏体 钢。
而3Cr13和4Cr13钢,由于含碳量高一些,耐蚀性就相对差 一些,通过淬火+低温回火(200~300℃),得到回火马氏体, 具有较高的强度和硬度(HRC达50),因此常作为工具钢使 用,制造医疗器械、刃具、热油泵轴等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用金属材料的显微组织观察一、实验目的1.观察各种常用合金钢,有色金属和铸铁的显微组织。

2.分析这些金属材料的组织和性能的关系及应用。

二、金属材料的显微组织观察及分析1.几种常用合金钢的显微组织合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为低合金钢;合金元素为5~10%的称为中合金钢;合金元素大于10%的称为高合金钢。

1)一般合金结构钢、合金工具钢都是低合金钢。

由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。

低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素都使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。

40Cr钢经调质处理后的显微组织是回火索氏体。

GCrl5钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织。

图1、16Mn-淬火-x400马氏体16Mn钢属于碳锰钢,碳的含量在0.16%左右。

16Mn钢的合金含量较少,焊接性良好,焊前一般不必预热。

加入合金元素锰,使C曲线右移,在淬火处理后,组织为马氏体组织。

但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。

图2、16Mn-正火-x400铁素体索氏体16Mn 属于低碳钢,碳含量<0.16%,正火后组织为F+S 。

在400倍显微镜下,索氏体基本上不可分辨。

16Mn 钢是目前我国应用最广的低合金钢。

广泛应用于各种板材、钢管。

图3、65Mn-等温淬火-400下贝氏体65Mn ,锰提高淬透性,但Mn 含量过大会导致过热现象。

特性:经热处理后的综合力学性能优于碳钢,65Mn 钢板强度、硬度、弹性和淬透性均比65号钢高。

但有过热敏感性和回火脆性。

铁素体索氏体 下贝氏体应用:用作小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制作弹簧环、气门簧、离合器簧片、刹车弹簧及冷拔钢丝冷卷螺旋弹簧。

图4、等温淬火-30CrMnSi-x400回火索氏体30CrMnSi 是高强度调质结构钢。

组织形貌,保持马氏体位向的回火索氏体,并出现极少量的铁素体。

特性:具有很高的强度和韧性,淬透性较高,冷变形塑性中等,切削加工性能良好。

有回火脆性倾向,横向的冲击韧性差。

焊接性能较好,但厚度大于3mm时,应先预热到150℃,焊后需热处理。

一般调质后使用。

用途:多用于制造高负荷、高速的各种重要零件,如齿轮、轴、离合器、链轮、砂轮轴、轴套、螺栓、螺母等,也用于制造耐磨、工作温度不高的零件,变载荷的焊接构件,如高压鼓风机的叶片、阀板以及非腐蚀性管道管子图5、GCr15-x400隐晶马氏体点状碳化物回火索氏体隐晶马氏体点状碳化物GCr15是滚动轴承钢,是一种常用的高铬轴承钢,具有高的淬透性,热处理后可获得高而均匀的硬度。

GCr15经淬火回火处理后,组织为马氏体+残余奥氏体+碳化物。

特性:综合性能良好.球化退火后有良好的切削加工性能.淬火和回火后硬度高而且均匀,耐磨性能和接触疲。

劳强度高,热加工性能好。

含有较多的合金元素,价格比较便宜。

但是白点敏感性强,焊接性能较差。

用途:用于制作各种轴承套圈和滚动体。

例如:制作内燃机、电动机车、通用机械,以及高速旋转的个高载荷机械传动轴承的钢球、滚子和套圈。

除做滚珠、轴承套圈等外,有时也用来制造工具,如冲模、量具。

图6、Cr15-上贝+M-x400上贝氏体马氏体性能:冷变形塑形高,焊接性良好,在退火状态下可切削性甚好应用:这种钢主要用来制造工作速度较高而断面不大(≤30mm),但心部要求较高强度及韧性而表面耐磨的渗碳零件,如齿轮、凸轮、滑阀、活塞、衬套、曲柄销、活塞销、活塞环、联轴节、轴、轴承圈等。

此外,这种钢也可以用作低碳马氏体淬火钢,用来制造对变形要求不严、但要求强度、韧性的零件。

图7、铸态-2GMn13-x400奥氏体碳化物上贝氏体 马氏体 奥氏体 碳化物高锰钢(high manganese steel)是指含锰量在10%以上的合金钢。

性能:高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。

碳化物数量多时,常在晶界上呈网状出现。

因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。

用途:高锰钢是专为重工业提供使用的一种防磨钢材,应用领域包括采石、采矿、挖掘、煤炭工业、铸造和钢铁行业等。

图8、水韧处理-2GMn13-x400奥氏体碳化物水韧处理:碳化物数量多时,常在晶界上呈网状出现。

因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。

通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。

热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。

用途:水韧处理后,碳化物减少,高锰钢是专为重工业提供使用的一种防磨钢材, 应用领域包括采石、采矿、挖掘、煤炭工业、铸造和钢铁行业等。

奥氏体 碳化物2)高速钢是一种常用的高合金工具钢,高速钢的铸造状态下与亚共晶白口铸铁的组织相似。

其中莱氏体由合金碳化物和马氏体或屈氏体组成。

莱氏体沿晶界呈宽网状分布,莱氏体中的碳化物粗大,有骨架状,不能靠热处理消除,必须进行锻造打碎。

锻造退火后高速钢的显微组织是由索氏体和碳化物所组成的。

高速钢优良的热硬性及高的耐磨性,只有经淬火及回火后才能获得。

它的淬火温度较高,为1270~1280℃,以使奥氏体充分合金化,保证最终有高的热硬性。

淬火时可在油中或空气中冷却。

淬火组织为马氏体、碳化物和残余奥氏休。

由于淬火组织中存在有较大量(25~30%)的残余奥氏体,一般都进行三次约560℃的回火。

经淬火和三次回火后,高速钢的组织为回火马氏体、碳化物和少量残余奥氏体(2~3%)(图4)。

图9、铸态-W18Cr4V-x400莱氏体莱氏体W18Cr4V。

因为它含有大量合金元素,使铁碳相图中的E点大大向左移,以致它虽然只含有0.7~0.8%的碳,但也已经含有莱氏体组织,所以称为莱氏体钢。

成分特点:(1)高碳:含碳量高,以获得高碳马氏体,与碳化物形成元素等形成碳化物,细化晶粒,增大耐磨性。

(2)W:主要用于提高钢的热硬性。

(3)Cr:可以提高钢的淬透性和耐磨性。

(4)V:细化奥氏体晶粒;可以提高耐磨性、热硬性。

W18Cr4V的铸态组织包括呈骨骼状的、碳化物片状与马氏体或屈氏体相间排列的莱氏体,以及黑色组织(δ偏析)和白色组织(马氏体和残余奥氏体)。

高速钢的铸态组织和化学成分尤其不均匀,而且热处理也不能改变,因而必须进行压力加工,将粗大的共晶碳化物打碎,并使其均匀分布,然后再用以制造各种刃具及模具。

图10、高速钢-铸态x400莱氏体高速钢的铸造状态下与亚共晶白口铸铁的组织相似。

其中莱氏体由合金碳化物和马氏体或屈氏体组成。

莱氏体沿晶界呈宽网状分布,莱氏体中的碳化物粗大,有骨架状,不能靠热处理消除,必须进行锻造打碎。

锻造退火后高速钢的显微组织是由索氏体和碳化物所组成的。

图11、高速钢-淬火x400马氏体及 残余奥氏体物莱氏体 点状碳化物 马氏体及残余奥氏体高速钢优良的热硬性及高的耐磨性,只有经淬火及回火后才能获得。

它的淬火温度较高,为1270~1280℃,以使奥氏体充分合金化,保证最终有高的热硬性。

淬火时可在油中或空气中冷却。

淬火组织为马氏体、碳化物和残余奥氏休。

图12、高速钢-淬火回火-x400回火马氏体点状碳化物由于淬火组织中存在有较大量(25~30%)的残余奥氏体,一般都进行三次约560℃的回火。

经淬火和三次回火后,高速钢的组织为回火索氏体、碳化物和少量残余奥氏体(2~3%)。

有时为了方便,节约成本,可通过正火处理。

图13、高速钢-退火x400索氏体及粒状碳化物退火后,组合更加均匀。

退火的目的是消除应力,降低硬度,使显微组织均匀,便于淬火。

退火温度一索氏体及粒状碳化物回火马氏体点状碳化物般为860~880℃。

高速钢性:具有高硬度、高耐磨性和高耐热性。

高速钢用途:用于制造各种切削工具。

如车刀、钻头、滚刀、机用锯条及要求高的模具等。

3)不锈钢是在大气、海水及其它浸蚀性介质条件下能稳定工作的钢种,大都属于高合金钢,例如应用很广的1Crl8Ni9即18-8钢。

它的碳含量较低,因为碳不利于防锈;高的铬含量是保证耐蚀性的主要因素;镍除了进一步提高耐蚀能力以外,主要是为了获得奥氏体组织。

这种钢在室温下的平衡组织是奥氏体十铁素体+(Cr ,Fe)23C 6。

为了提高耐蚀性以及其它性能,必须进行固溶处理。

为此加热到1050~1150℃,使碳化物等全部溶解,然后水冷,即可在室温下获得单一的奥氏体组织。

但是1Crl8Ni9在室温下的单相奥氏体状态是过饱和的,不稳定的,当钢使用时温度到达400~800℃的范围或者从较高温度,例如固溶处理温度下冷却较慢时,(Cr ,Fe)23C 6会从奥氏体晶界上析出,造成晶间腐蚀,使钢的强度大大降低。

目前,防止这种晶间腐蚀的途经有两条:一是尽量降低碳含量,但有限度;二是加入与碳的亲和力很强的元素Ti ,Nb 等。

因此出现了1Crl8Ni9Ti 、0Crl8Ni9Ti 等及更复杂的牌号的奥氏体镍铬不锈钢。

图14、(固)-不锈钢-x100孪晶奥氏体不锈钢常按组织状态分为:马氏体钢、铁素体钢、奥氏体钢、铁素体--奥氏体双向不锈钢。

固溶处理(solution treatment ):指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。

性能 :表面美观以及使用可能性多样化耐腐蚀性能好,比普通钢长久耐用耐腐蚀性好强度高,因而薄板使用的可能性大耐高温氧化及强度高,因此能够抗火灾常温加工,即容易塑性加工因为不必表面处理,所以简便、维护简单清洁,光洁度孪晶奥氏体高焊接性能好。

用途:广泛。

提高不锈钢性能通常采取的措施:(1)获得单相均匀的金属组织,避免产生原电池作用;(2)加入合金元素提高金属基体的电极电位;(3)加入合金元素在金属表面形成致密保护膜 ;(4)防止晶间腐蚀的产生2.几种常用有色金属的显微组织1)铝合金 应用十分广泛的铝合金主要分变形铝合金和铸造铝合金两类。

依照热处理效果又可分为能热处理强化的铝合金及不能热处理强化的铝合金。

铝硅合金是应用最广泛的一种铸造铝合金,典型的牌号为ZLl02,含硅11~13%,从Al-Si 合金相图可知,其成分在共晶点附近,因而具有优良的铸造性能,即流动性能好,产生铸造裂纹的倾向小。

但铸造后得到的组织是粗大针状的硅晶体和α固溶体所组成的共晶体及少量呈多面体状的初生硅晶体。

相关文档
最新文档