高考数学压轴专题人教版备战高考《函数与导数》经典测试题及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新】数学《函数与导数》期末复习知识要点
一、选择题
1.若曲线43y x x ax =-+(0x >)存在斜率小于1的切线,则a 的取值范围为( )
A .3,
2⎛⎫-∞ ⎪⎝⎭
B .1,
2⎛⎫-∞ ⎪⎝⎭
C .5,
4⎛⎫-∞ ⎪⎝⎭
D .1,
4⎛⎫-∞ ⎪⎝⎭
【答案】C 【解析】 【分析】
对函数进行求导,将问题转化为不等式有解问题,再构造函数利用导数研究函数的最值,即可得答案; 【详解】
由题意可得3
2
431y x x a '=-+<在()0,x ∈+∞上有解,
设()3243f x x x a =-+(0x >),()()2
126621f x x x x x '=-=-,
令()0f x '<,得102x <<
;令()0f x '>,得12
x >, ∴()f x 在1
(0,)2单调递减,在1(,)2+∞单调递增,
∴()min 11124f x f a ⎛⎫
==-< ⎪⎝⎭
,解得:54a <.
故选:C. 【点睛】
本题考查导数的几何意义、不等式有解问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.
2.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]- C .(0,1)(1,)⋃+∞ D .(1,)-+∞
【答案】C 【解析】 【分析】
首先根据复数的几何意义得到z 的轨迹方程2x
y t =-,再根据指数函数的图象,得到关于
t 的不等式,求解.
【详解】
由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,
2a
x a
y b t
=⎧⎨==-⎩ ,即2x y t =- ,
因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,
即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】
本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.
3.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足
()()
3f x f x x
'->,则关于x 的不等式3
1(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭
的解集为( )
A .()3,6
B .()0,3
C .()0,6
D .()6,+∞
【答案】A 【解析】 【分析】
根据条件,构造函数3
()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】
解:Q 3
(1)(3)(3)03
x f x f ---<,
3(3)(3)27x f x f ∴---(3)0<, 3(3)(3)27x f x f ∴--<(3),
Q 定义在(0,)+∞的函数()f x ,
3x ∴<,
令3
()()g x x f x =,
∴不等式3(3)(3)27x f x f --<(3),
即为(3)g x g -<(3),
323()(())3()()g x x f x x f x x f x '='=+',
Q
()()
3f x f x x
'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,
32()3()0x f x x f x ∴+>,
()0g x ∴'>, ()g x ∴单调递增,
又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q ,
36x ∴<<.
故选:A . 【点睛】
本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.
4.三个数0.20.4
0.44,3,log 0.5的大小顺序是 ( ) A .0.40.2
0.43<4log 0.5<
B .0.40.2
0.43<log 0.5<4
C .0.4
0.20.4log 0.534<<
D .0.2
0.40.4log 0.54
3<<
【答案】D 【解析】
由题意得,12
0.2
0.4
5
5
0.4
0log
0.514
43
3<<<==== D.
5.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2 B .﹣1
C .2
D .4
【答案】C 【解析】 【分析】
根据对称性即可求出答案. 【详解】
解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2, 故选:C . 【点睛】
本题主要考查函数的对称性的应用,属于中档题.
6.已知函数f (x )=(k +4k )lnx +2
4x x
-,k ∈[4,+∞),曲线y =f (x )上总存在两
点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为 A .(
8
5
,+∞) B .(
16
5
,+∞) C .[
8
5
,+∞) D .[
16
5
,+∞)
【答案】B 【解析】 【分析】
利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2 的取值范围. 【详解】 由题得f′(x )=4k k x +
﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()2
4x k x k x ⎛
⎫-- ⎪⎝
⎭,(x >0,k >0)
由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),
即21144k k x x +
-﹣1=2
4
k k x +
﹣22
4x ﹣1,
化简得4(x 1+x 2)=(k+4
k
)x 1x 2, 而x 1x 2<2
12(
)2
x x +, 4(x 1+x 2)<(k+
4
k )21
2()2
x x +, 即x 1+x 2>
16
4k k
+
对k ∈[4,+∞)恒成立, 令g (k )=k+
4k
, 则g′(k )=1﹣
24k =()()222k k k
+->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴
16
4k k
+≤16
5
, ∴x 1+x 2>
165
, 故x 1+x 2的取值范围为(16
5
,+∞). 故答案为B 【点睛】
本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题
的关键,属于中档题.
7.函数22cos x x
y x x
--=-的图像大致为( ).
A .
B .
C .
D .
【答案】A 【解析】 【分析】 本题采用排除法:
由552
2f f ππ⎛⎫
⎛⎫-=- ⎪ ⎪⎝⎭
⎝⎭
排除选项D ; 根据特殊值502
f π⎛⎫
>
⎪⎝⎭
排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】
对于选项D:由题意可得, 令函数()
f x = 22cos x x
y x x
--=-,
则5522
52252
2
f ππππ-
-⎛⎫-= ⎪⎝⎭
,552
2
52252
2
f ππππ--⎛⎫=
⎪⎝⎭
;
即5522
f f ππ
⎛⎫⎛⎫
-
=- ⎪
⎪⎝⎭⎝⎭
.故选项D 排除;
对于选项C:因为
55
22 5
22
5
2
2
f
ππ
π
π
-
-
⎛⎫
=>
⎪
⎝⎭
,故选项C排除;
对于选项B:当0
x>,且x无限接近于0时,cos
x x
-接近于10
-<,220
x x
-
->,此时()0
f x<.故选项B排除;
故选项:A
【点睛】
本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.
8.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为()时,其容积最大.
A.
3
4
B.
2
3
C.
1
3
D.
1
2
【答案】B
【解析】
【分析】
设正六棱柱容器的底面边长为x,则正六棱柱容器的高为)
3
1
2
x
-,则可得正六棱柱容器的容积为()())()
32
339
21
224
V x x x x x x x
=+⋅⋅-=-+,再利用导函数求得最值,即可求解.
【详解】
设正六棱柱容器的底面边长为x,)
3
1x
-,
所以正六棱柱容器的容积为()())()
32
339
21
4
V x x x x x x x
=+-=-+,
所以()2
279
42
V x x x
'=-+,则在2
0,
3
⎛⎫
⎪
⎝⎭
上,()0
V x'>;在
2
,1
3
⎛⎫
⎪
⎝⎭
上,()0
V x'<,
所以()
V x在
2
0,
3
⎛⎫
⎪
⎝⎭
上单调递增,在
2
,1
3
⎛⎫
⎪
⎝⎭
上单调递减,
所以当
2
3
x=时,()
V x取得最大值,
故选:B 【点睛】
本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.
9.函数()x
e f x x
=的图象大致为( )
A .
B .
C .
D .
【答案】B 【解析】
函数()x
e f x x
=的定义域为(,0)(0,)-∞+∞U ,排除选项A ;
当0x >时,()0f x >,且()2
(1)'x
x e f x x -=
,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;
当0x <时,函数()0x
e f x x
=<,排除选项D ,选项B 正确.选B .
点睛:函数图象的识别可从以下方面入手:
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.
10.已知函数()210
0ax x f x lnx x ⎧+≤=⎨⎩
,,>,,下列关于函数()()0f f x m +=的零点个数的判
断,正确的是( )
A .当a =0,m ∈R 时,有且只有1个
B .当a >0,m ≤﹣1时,都有3个
C .当a <0,m <﹣1时,都有4个
D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】
分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】
令()t f x =,则()0f t m +=,
当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;
当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;
当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .
【点睛】
本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.
11.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线
10mx ny +-=上,其中·0m n >,则
41
m n
+的最小值为() A .16 B .24
C .50
D .25
【答案】D 【解析】 【分析】
由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】
令x ﹣3=1,解得x =4,y =1,
则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴
41m n +=(41m n +)(4m+n )=16+14n 4m m n
++
=17+8=25,当且仅当m =n 15=时取等号,
故则
41
m n +的最小值为25, 故选D . 【点睛】
本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.
12.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )
A .()()()0.3
1.1
3
0. 2
0.54f f log f << B .()()()0.3
1.1
3
0. 240.5f f f log <<
C .()()()1.1
0.3
3
40.20.5f f f log << D .()()()0.3
1.1
3
0.50.24f log f f << 【答案】A 【解析】 【分析】
由已知可得()f x 的图象关于直线1x =对称.因为0.3
1.130.2
1log 0.5141-<-<-,又
()f x 在[1,)+∞上单调递增,即可得解.
【详解】
解:依题意可得,()f x 的图象关于直线1x =对称.
因为()()()0.3
1.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,
则0.3
1.130.2
1log 0.5141-<-<-,
又()f x 在[1,)+∞上单调递增, 所以(
)()()0.3
1.1
3
0.20.54f f log f <<.
故选:A. 【点睛】
本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.
13.在平面直角坐标系中,若P ,Q 满足条件:(1)P ,Q 都在函数f (x )的图象上;(2)P ,Q 两点关于直线y=x 对称,则称点对{P ,Q}是函数f(x)的一对“可交换点对”.({P ,Q}与{Q,P}看作同一“可交换点”.试问函数2232(0)(){log (0)
x x x f x x x ++≤=>的“可交换点对有( )
A .0对
B .1对
C .2对
D .3对
【答案】C 【解析】
试题分析:设p (x ,y )是满足条件的“可交换点”,则对应的关于直线y=x 的对称点Q 是(y ,x ),所以232x x ++=2x ,由于函数y=232x x ++和y=2x 的图象由两个交点,因此满足条件的“可交换点对”有两个,故选C. 考点:函数的性质
14.已知函数()0,1
ln ,1x f x x x <⎧=⎨≥⎩
,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实
数k 的取值范围是( ) A .(],1-∞ B .[)1,+∞
C .[)0,1
D .(]1,0-
【答案】A 【解析】 【分析】
先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数
()0,1
ln ,1
x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可.
【详解】
当1x ≥时,()''
1ln ,()(1)1f x x f x f x
=⇒=⇒=,所以函数()f x 在(1,0)处的切线方
程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k .
在同一直角坐标系内画出函数()0,1ln ,1
x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:
利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤.
故选:A
【点睛】
本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.
15.函数()||()a f x x a R x
=-∈的图象不可能是( ) A . B .
C .
D .
【答案】C
【解析】
【分析】
变成分段函数后分段求导,通过对a 分类讨论,得到函数的单调性,根据单调性结合四个选项可得答案.
【详解】
,0(),0a x x x f x a x x x ⎧->⎪⎪=⎨⎪--<⎪⎩,∴221,0()1,0a x x f x a x x ⎧+>⎪⎪=⎨⎪-+<⎩
'⎪. (1)当0a =时,,0(),0x x f x x x >⎧=⎨-<⎩
,图象为A; (2)当0a >时,210a x
+>,∴()f x 在(0,)+∞上单调递增, 令210a x
-+=
得x =
∴当x <,210a x
-+<,
当0x <<时,210a x
-+>, ∴()f x
在(,-∞上单调递减,
在(上单调递增,图象为D;
(3)当0a <时,210a x -+
<,∴()f x 在(,0)-∞上单调递减, 令210a x
+=
得x =
∴当x >时,210a x
+>,
当0x <<,210a x
+<, ∴()f x
在上单调递减,
在)+∞上单调递增,图象为B;
故选:C.
【点睛】
本题考查了分段函数的图像的识别,考查了分类讨论思想,考查了利用导数研究函数的单调性,属于中档题.
16.已知函数()()2f x x +∈R 为奇函数,且函数()y f x =的图象关于直线1x =对称,当[]0,1x ∈时,()2020x f x =
,则()2020f =( ) A .2020
B .12020
C .11010
D .0
【答案】D
【解析】
【分析】
根据题意,由函数()f x 的对称性可得()()42f x f x +=-+,即()()2f x f x +=-,进而可得()()4f x f x +=,即函数()f x 是周期为4的周期函数,据此可得
()()20200f f =,由函数的解析式计算可得答案.
【详解】
解:根据题意,函数()2f x +为奇函数,即函数()f x 的图象关于点()2,0对称,则有()()4f x f x -=-+,
函数()y f x =的图象关于直线1x =对称,则()()2f x f x -=+,
变形可得:()()42f x f x +=-+,即()()2f x f x +=-,
则有()()4f x f x +=,即函数()f x 是周期为4的周期函数,
()()()20200505400f f f ∴=+⨯==;
故选:D .
【点睛】
本题考查函数的奇偶性、对称性、周期性的综合应用,难度一般.一般地,若一个奇函数有对称轴(或一个偶函数有对称中心),可分析出函数具有周期性.
17.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( ) A .(22,)+∞ B .(,22)-∞ C .(,3)-∞ D .27(,)5-∞ 【答案】D
【解析】
【分析】
把220x ax -+>在区间[]1,5上有解,转化为存在一个[]
1,5x ∈使得22x 2ax x a x
+>⇒+
>,解出()f x 的最大值. 【详解】 220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得
22x 2ax x a x +>⇒+
>,设()2f x x x =+,即是()f x 的最大值a >,()f x 的最大值275
=,当5x =时取得,故选D 【点睛】
18.已知函数
在区间上有最小值,则函数在区间上一定( )
A .有最小值
B .有最大值
C .是减函数
D .是增函数 【答案】D
【解析】
【分析】 由二次函数在区间上有最小值得知其对称轴
,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.
【详解】 由于二次函数在区间上有最小值,可知其对称轴
, . 当时,由于函数和函数在上都为增函数, 此时,函数在
上为增函数; 当时,在上为增函数; 当时,由双勾函数的单调性知,函数在上单调递增, ,所以,函数在上为增函数. 综上所述:函数在区间上为增函数,故选D. 【点睛】 本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.
19.已知函数()2f x x x =+,且()1231ln log 223a f b f c f -⎛
⎫⎛⎫=== ⎪ ⎪⎝⎭⎝
⎭,,,则a b c ,,的大小关系为( ) A .a c b << B .b c a <<
C .c a b <<
D .b a c << 【答案】A
【解析】
【分析】
由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴
对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数
()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.
【详解】
由题意,函数()2f x x x =+,满足()()22
()f x x x x x f x -=-+-=+=, 所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,
又当0x ≥时,()2
f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,
又由31ln 22<=,113222log log 1<=-,1122
-=, 根据对称性,可得11323(ln )(2)(log )2
f f f -<<,即a c b <<,故选A . 【点睛】
本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.
20.设123log 2,ln 2,5a b c -===则
A .a b c <<
B .b c a <<
C .c a b <<
D .c b a << 【答案】C
【解析】
【分析】
由ln 2ln 2
ln 3
a b =<=及311log ,22a c >==<=可比较大小. 【详解】 ∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =
<=,即a b <.
又
3311log 2log ,22a c =>=
=<=.∴a c >.综上可知:c a b << 故选C.
【点睛】
本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.。