2020-2021中考数学培优专题复习二次函数练习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学培优专题复习二次函数练习题及答案
一、二次函数
1.如图所示,抛物线2y ax bx c =++的顶点为()2,4M --,与x 轴交于A 、B 两点,且()6,0A -,与y 轴交于点C .
()1求抛物线的函数解析式;
()2求ABC V 的面积;
()3能否在抛物线第三象限的图象上找到一点P ,使APC V 的面积最大?若能,请求出点P 的坐标;若不能,请说明理由.
【答案】()1 2134y x x =
+-;()212;()27334APC x S =-V 当时,有最大值,点P 的坐标是153,4P ⎛⎫--
⎪⎝⎭
. 【解析】
【分析】 (1)设顶点式并代入已知点()6,0A -即可;
(2)令y=0,求出A 、B 和C 点坐标,运用三角形面积公式计算即可;
(3)假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F ,线段PF 的长度即为两函数值之差,将APC V 的面积计算拆分为APF CPF S S +V V 即可.
【详解】
()1设此函数的解析式为2()y a x h k =++,
∵函数图象顶点为()2,4M --,
∴2(2)4y a x =+-,
又∵函数图象经过点()6,0A -,
∴20(62)4a =-+- 解得14
a =, ∴此函数的解析式为21(2)44y x =
+-,即2134y x x =+-;
()2∵点C 是函数2134y x x =
+-的图象与y 轴的交点, ∴点C 的坐标是()0,3-,
又当0y =时,有21304
y x x =+-=, 解得16x =-,22x =,
∴点B 的坐标是()2,0,
则11831222
ABC S AB OC =⋅=⨯⨯=V ; ()3假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F .
设(),0E x ,则21,34P x x x ⎛
⎫+- ⎪⎝⎭
,
设直线AC 的解析式为y kx b =+, ∵直线AC 过点()6,0A -,()0,3C -,
∴603k b b -+=⎧⎨-=⎩, 解得123k b ⎧=-⎪⎨⎪=-⎩,
∴直线AC 的解析式为132y x =-
-, ∴点F 的坐标为1,32F x x ⎛⎫-
- ⎪⎝⎭, 则221113332442PF x x x x x ⎛⎫=---+-=-- ⎪⎝⎭
, ∴1122
APC APF CPF S S S PF AE PF OE =+=⋅+⋅V V V 2221113393276(3)22424244
PF OA x x x x x ⎛⎫=⋅=--⨯=--=-++ ⎪⎝⎭, ∴当3x =-时,APC S V 有最大值274
,
此时点P 的坐标是153,4P ⎛⎫--
⎪⎝⎭
. 【点睛】 本题第3问中将所求三角形拆分为两个小三角形进行求解,从而将面积最大的问题转化为PF 最大进行理解.
2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.
(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?
(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?
【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.
【解析】
【分析】
(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.
(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.
【详解】
解:(1)根据题意得,(60﹣x )×10+100=3×100,
解得:x =40,
60﹣40=20元,
答:这一星期中每件童装降价20元;
(2)设利润为w ,
根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000
=﹣10(x ﹣50)2+4000,
答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.
【点睛】
本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.
3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .
(1)求二次函数的表达式;
(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.
【答案】(1)二次函数的解析式为233642y x x =-
-+;(2)当23x =-时,ADE ∆的面积取得最大值
503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】
分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;
(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;
(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.
详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩
, 解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩
, 所以二次函数的解析式为:y =233642
x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x -
-, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,
设D (m ,233642m m -
-+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384
m m --+, ∴S △ADE =S △ADF +S △EDF =
12×DF ×AG +12DF ×EH =12×DF ×AG +12
×DF ×EH =12
×4×DF =2×(2384
m m --+) =23250233m -++
(), ∴当m =23-时,△ADE 的面积取得最大值为503
. (3)y =233642x x -
-+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()
AE 16425+=,分三种情况讨论: 当PA =PE 29n +212n ++()
n =1,此时P (﹣1,1); 当PA =AE 29n +16425+=n =11,此时点P 坐标为(﹣1,11);
当PE =AE 212n ++()16425+=n =﹣219P 坐标为:(﹣1,﹣219).
综上所述:P 点的坐标为:(﹣1,1),(﹣1,111,﹣219). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.
4.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C (0,3).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;
(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是线段EF上一动点,M(m,0)是x 轴一个动点,若∠MNC=90°,请求出m的取值范围.
【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(1,2)或(2,1)或(3﹣
2,23)
5
5 4
m
-≤≤
【解析】
【分析】
(1)利用待定系数法即可求得此抛物线的解析式;
(2)由待定系数法即可求得直线BC的解析式,再设P(t,3﹣t),即可得D(t,﹣t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;
(3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n﹣3
2
)2﹣
5
4
,然后根
据n的取值得到最小值.
【详解】
解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,A(﹣1,0),C(0,3),
∴
10
3
b c
c
--+=
⎧
⎨
=
⎩
,解得b=2,c=3.
故该抛物线解析式为:y=﹣x2+2x+3.(2)令﹣x2+2x+3=0,
解得x1=﹣1,x2=3,
即B(3,0),
设直线BC的解析式为y=kx+b′,
则
3
30
b
k b
'
'
=
⎧
⎨
+=
⎩
,
解得:k=-1,b’=3
故直线BC 的解析式为y =﹣x +3;
∴设P (t ,3﹣t ),
∴D (t ,﹣t 2+2t +3),
∴PD =(﹣t 2+2t +3)﹣(3﹣t )=﹣t 2+3t ,
∵OB =OC =3,
∴△BOC 是等腰直角三角形,
∴∠OCB =45°,
当CD =PC 时,则∠CPD =∠CDP ,
∵PD ∥y 轴,
∴∠CPD =∠OCB =45°,
∴∠CDP =45°,
∴∠PCD =90°,
∴直线CD 的解析式为y =x +3,
解2323y x y x x =+⎧⎨=-++⎩得03x y =⎧⎨=⎩或14x y =⎧⎨=⎩
∴D (1,4),
此时P (1,2);
当CD =PD 时,则∠DCP =∠CPD =45°,
∴∠CDP =90°,
∴CD ∥x 轴,
∴D 点的纵坐标为3,
代入y =﹣x 2+2x +3得,3=﹣x 2+2x +3,
解得x =0或x =2,
此时P (2,1);
当PC =PD 时,∵PC t , ∴
=﹣t 2+3t ,
解得t =0或t =3,
此时P (3);
综上,当△CDP 为等腰三角形时,点P 的坐标为(1,2)或(2,1)或(3) (3)如图2,由(1)y =﹣x 2+2x +3=﹣(x ﹣1)2+4,
∴E (1,4),
设N (1,n ),则0≤n ≤4,
取CM 的中点Q (
2m ,32
), ∵∠MNC =90°, ∴NQ =
12
CM , ∴4NQ 2=CM 2,
∵NQ 2=(1﹣2m )2+(n ﹣32)2, ∴4[(1﹣2m )2+(n ﹣32
)2]=m 2+9, 整理得,m =(n ﹣
32)2﹣54, ∵0≤n ≤4,
当n =32时,m 最小值=﹣54
,n =4时,m =5, 综上,m 的取值范围为:﹣
54≤m ≤5.
【点睛】
此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.
5.如图,菱形ABCD 的边长为20cm ,∠ABC =120°,对角线AC ,BD 相交于点O ,动点P 从点A 出发,以4cm /s 的速度,沿A →B 的路线向点B 运动;过点P 作PQ ∥BD ,与AC 相交于点Q ,设运动时间为t 秒,0<t <5.
(1)设四边形PQCB 的面积为S ,求S 与t 的关系式;
(2)若点Q 关于O 的对称点为M ,过点P 且垂直于AB 的直线l 交菱形ABCD 的边AD (或CD )于点N ,当t 为何值时,点P 、M 、N 在一直线上?
(3)直线PN 与AC 相交于H 点,连接PM ,NM ,是否存在某一时刻t ,使得直线PN 平分四边形APMN 的面积?若存在,求出t 的值;若不存在,请说明理由.
【答案】(1) S=﹣231003t +0<t <5); (2)
307;(3)见解析. 【解析】
【分析】
(1)如图1,根据S=S △ABC -S △APQ ,代入可得S 与t 的关系式;
(2)设PM=x ,则AM=2x ,可得3,计算x 的值,根据直角三角形30度角的性质可得3
AM=AO+OM ,列方程可得t 的值; (3)存在,通过画图可知:N 在CD 上时,直线PN 平分四边形APMN 的面积,根据面积相等可得MG=AP ,由AM=AO+OM ,列式可得t 的值.
【详解】
解:(1)如图1,∵四边形ABCD 是菱形,
∴∠ABD=∠DBC=
12∠ABC=60°,AC ⊥BD , ∴∠OAB=30°,
∵AB=20,
∴OB=10,3
由题意得:AP=4t ,
∴PQ=2t ,3,
∴S=S △ABC ﹣S △APQ , =
11··22AC OB PQ AQ -, =111020322322
t t ⨯⨯⨯⨯ , =﹣323(0<t <5);
(2)如图2,在Rt △APM 中,AP=4t ,
∵点Q 关于O 的对称点为M ,
∴OM=OQ ,
设PM=x ,则AM=2x ,
∴AP=3x=4t , ∴x=3
, ∴AM=2PM=
3, ∵AM=AO+OM ,
∴3
=103+103﹣23t , t=307
; 答:当t 为
307
秒时,点P 、M 、N 在一直线上; (3)存在,
如图3,∵直线PN 平分四边形APMN 的面积, ∴S △APN =S △PMN ,
过M 作MG ⊥PN 于G , ∴
11··22
PN AP PN MG , ∴MG=AP ,
易得△APH ≌△MGH , ∴3
, ∵AM=AO+OM ,
同理可知:3﹣3, 3
333t , t=3011
. 答:当t 为3011秒时,使得直线PN 平分四边形APMN 的面积.
【点睛】
考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.
6.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线
y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣
2);(3)E点坐标为(,)时,△CBE的面积最大.
【解析】
试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
∴B(3,0),C(0,3),
把B、C坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=x2﹣4x+3;
(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线对称轴为x=2,P(2,﹣1),
设M(2,t),且C(0,3),
∴MC=,MP=|t+1|,PC=,
∵△CPM为等腰三角形,
∴有MC=MP、MC=PC和MP=PC三种情况,
①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣
1+2)或(2,﹣1﹣2);
综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,
设E(x,x2﹣4x+3),则F(x,﹣x+3),
∵0<x<3,
∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),
即当E点坐标为(,)时,△CBE的面积最大.
考点:二次函数综合题.
7.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为
A,且与y轴交于点C(0,5)。
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为
S2,且S1=6S2,求点P的坐标。
【答案】(1)
(2)
(3)P的坐标为(-1,12)或(6,5)或(2,-3)或(3,-4)
【解析】
【分析】
(1)由B(5,0),C(0,5),应用待定系数法即可求直线BC与抛物线的解析式。
(2)构造MN关于点M横坐标的函数关系式,应用二次函数最值原理求解。
(3)根据S1=6S2求得BC与PQ的距离h,从而求得PQ由BC平移的距离,根据平移的性质求得PQ的解析式,与抛物线联立,即可求得点P的坐标。
【详解】
解:(1)设直线BC的解析式为,
将B(5,0),C(0,5)代入,得,得。
∴直线BC的解析式为。
将B(5,0),C(0,5)代入,得,得。
∴抛物线的解析式。
(2)∵点M是抛物线在x轴下方图象上的动点,∴设M。
∵点N是直线BC上与点M横坐标相同的点,∴N。
∵当点M在抛物线在x轴下方时,N的纵坐标总大于M的纵坐标。
∴。
∴MN的最大值是。
(3)当MN取得最大值时,N。
∵的对称轴是,B(5,0),∴A(1,0)。
∴AB=4。
∴。
由勾股定理可得,。
设BC与PQ的距离为h,则由S1=6S2得:,即。
如图,过点B作平行四边形CBPQ的高BH,过点H作x轴的垂线交点E ,则
BH=,EH是直线BC沿y轴方向平移的距离。
易得,△BEH是等腰直角三角形,
∴EH=。
∴直线BC沿y轴方向平移6个单位得PQ的解析式:
或。
当时,与联立,得
,解得或。
此时,点P的坐标为(-1,12)或(6,5)。
当时,与联立,得
,解得或。
此时,点P的坐标为(2,-3)或(3,-4)。
综上所述,点P的坐标为(-1,12)或(6,5)或(2,-3)或(3,-4)。
8.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B.抛物线过A、B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.
(1)如图1,设抛物线顶点为M,且M的坐标是(1
2
,
9
2
),对称轴交AB于点N.
①求抛物线的解析式;
②是否存在点P,使四边形MNPD为菱形?并说明理由;
(2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.
【答案】(1)①y=﹣2x2+2x+4;;②不存在点P,使四边形MNPD为菱形;;(2)存在,点D的坐标是(1,4).
【解析】
【分析】
(1)①由一次函数图象上点的坐标特征求得点B的坐标,设抛物线解析式为y=
a
2
19
22
x
⎛⎫
-+
⎪
⎝⎭
,把点B的坐标代入求得a的值即可;
②不存在点P,使四边形MNPD为菱形.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),根据题意知PD∥MN,所以当PD=MN时,四边形MNPD为平行四边形,
根据该等量关系列出方程﹣2m2+4m=3
2
,通过解方程求得m的值,易得点N、P的坐
标,然后推知PN=MN是否成立即可;
(2)设点D的坐标是(n,﹣2n2+2n+4),P(n,﹣2n+4).根据S四边形BOAD=S△BOA+S△ABD =4+S△ABD,则当S△ABD取最大值时,S四边形BOAD最大.根据三角形的面积公式得到函数
S△ABD=﹣2(n﹣1)2+2.由二次函数的性质求得最值.
【详解】
解:①如图1,
∵顶点M的坐标是
19
,
22
⎛⎫ ⎪⎝⎭
,
∴设抛物线解析式为y=
2
19
22
a x
⎛⎫
-+
⎪
⎝⎭
(a≠0).
∵直线y=﹣2x+4交y轴于点B,∴点B的坐标是(0,4).
又∵点B在该抛物线上,
∴
2
19
22
a
⎛⎫
-+
⎪
⎝⎭
=4,
解得a=﹣2.
故该抛物线的解析式为:y=
2
19
2
22
x
⎛⎫
--+
⎪
⎝⎭
=﹣2x2+2x+4;
②不存在.理由如下:
∵抛物线y=
2
19
2
22
x
⎛⎫
--+
⎪
⎝⎭
的对称轴是直线x=
1
2
,且该直线与直线AB交于点N,
∴点N的坐标是
1
,3
2
⎛⎫ ⎪⎝⎭
.
∴93
3
22
MN=-=.
设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.
∵PD∥MN.
当PD=MN时,四边形MNPD是平行四边形,即﹣2m2+4m=3
2
.
解得 m1=1
2
(舍去),m2=
3
2
.
此时P(3
2
,1).
∵PN
∴PN≠MN,
∴平行四边形MNPD不是菱形.
∴不存在点P,使四边形MNPD为菱形;(2)存在,理由如下:
设点D的坐标是(n,﹣2n2+2n+4),∵点P在线段AB上且直线PD⊥x轴,∴P(n,﹣2n+4).
由图可知S四边形BOAD=S△BOA+S△ABD.其中S△BOA=1
2
OB•OA=
1
2
×4×2=4.
则当S△ABD取最大值时,S四边形BOAD最大.
S△ABD=1
2
(y D﹣y P)(x A﹣x B)
=y D﹣y P
=﹣2n2+2n+4﹣(﹣2n+4)=﹣2n2+4n
=﹣2(n﹣1)2+2.
当n =1时,S △ABD 取得最大值2,S 四边形BOAD 有最大值. 此时点D 的坐标是(1,4).
【点睛】
主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
9.如图,对称轴为直线x 1=-的抛物线()2
y ax bx c a 0=++≠与x 轴相交于A 、B 两
点,其中A 点的坐标为(-3,0).
(1)求点B 的坐标;
(2)已知a 1=,C 为抛物线与y 轴的交点.
①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;
②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 【答案】(1)点B 的坐标为(1,0). (2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94
. 【解析】 【分析】
(1)由抛物线的对称性直接得点B 的坐标.
(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.
②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】
解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).
(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),
∴2a 1
b
12a 9a 3b c 0
=⎧⎪⎪
-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.
∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13
S 1322
∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13
S 3p p 22
∆=
⨯⨯=.
∵POC BOC S 4S ∆∆=,∴
3
p 62
=,解得p 4=±. 当p 4=时2
p 2p 321+-=;当p 4=-时,2
p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).
②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:
3k b 0
b 3-+=⎧⎨
=-⎩
,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.
∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3). 又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).
∴()
2
2239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝
⎭.
∵a 10<=-,-3
302
<<- ∴线段QD 长度的最大值为
94
.
10.在平面直角坐标系xOy 中(如图).已知抛物线y=﹣12
x 2
+bx+c 经过点A (﹣1,0)和点B (0,
5
2
),顶点为C ,点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处. (1)求这条抛物线的表达式; (2)求线段CD 的长;
(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.
【答案】(1)抛物线解析式为y=﹣12x 2+2x+5
2
;(2)线段CD 的长为2;(3)M 点的坐标为(0,72)或(0,﹣7
2
). 【解析】
【分析】(1)利用待定系数法求抛物线解析式;
(2)利用配方法得到y=﹣
12(x ﹣2)2+9
2
,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x=2,如图,设CD=t ,则D (2,9
2
﹣t ),根据旋转性质得∠PDC=90°,DP=DC=t ,则P (2+t ,92﹣t ),然后把P (2+t ,92﹣t )代入y=﹣12x 2+2x+5
2
得到关于t
的方程,从而解方程可得到CD 的长;
(3)P 点坐标为(4,
92),D 点坐标为(2,5
2
),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M (0,m ),当m >0时,利用梯形面积公式得到12•(m+5
2
+2)•2=8当m <0时,利用梯形面积公式得到12•(﹣m+5
2
+2)•2=8,然后分别解方程求出m 即可得到对应的M 点坐标.
【详解】(1)把A (﹣1,0)和点B (0,
52)代入y=﹣1
2
x 2+bx+c 得 1
0252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩
,解得252b c =⎧⎪
⎨=⎪⎩,
∴抛物线解析式为y=﹣12x 2+2x+5
2
; (2)∵y=﹣12(x ﹣2)2+9
2
,
∴C (2,
9
2
),抛物线的对称轴为直线x=2, 如图,设CD=t ,则D (2,
9
2
﹣t ), ∵线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处, ∴∠PDC=90°,DP=DC=t ,
∴P (2+t ,
9
2﹣t ), 把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得﹣12(2+t )2+2(2+t )+52=9
2
﹣t ,
整理得t 2﹣2t=0,解得t 1=0(舍去),t 2=2, ∴线段CD 的长为2;
(3)P 点坐标为(4,92),D 点坐标为(2,5
2
),
∵抛物线平移,使其顶点C(2,9
2
)移到原点O的位置,
∴抛物线向左平移2个单位,向下平移9
2
个单位,
而P点(4,9
2
)向左平移2个单位,向下平移
9
2
个单位得到点E,
∴E点坐标为(2,﹣2),设M(0,m),
当m>0时,1
2
•(m+
5
2
+2)•2=8,解得m=
7
2
,此时M点坐标为(0,
7
2
);
当m<0时,1
2
•(﹣m+
5
2
+2)•2=8,解得m=﹣
7
2
,此时M点坐标为(0,﹣
7
2
);
综上所述,M点的坐标为(0,7
2
)或(0,﹣
7
2
).
【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.
11.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x (元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
【答案】(1)y10000x80000
=-+(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元
【解析】解:(1)由题意,可设y=kx+b,
把(5,30000),(6,20000)代入得:
5k b30000
6k b20000
+=
⎧
⎨
+=
⎩
,解得:
k10000
b80000
=-
⎧
⎨
=
⎩。
∴y与x之间的关系式为:y10000x80000
=-+。
(2)设利润为W,则
()()()()2
2
W x410000x8000010000x12x3210000x640000 =--+=--+=--+,∴当x=6时,W取得最大值,最大值为40000元。
答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元。
(1)利用待定系数法求得y与x之间的一次函数关系式。
(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值。
12.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线
y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣
2);(3)E点坐标为(,)时,△CBE的面积最大.
【解析】
试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
∴B(3,0),C(0,3),
把B、C坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=x2﹣4x+3;
(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线对称轴为x=2,P(2,﹣1),
设M(2,t),且C(0,3),
∴MC=,MP=|t+1|,PC=,
∵△CPM为等腰三角形,
∴有MC=MP、MC=PC和MP=PC三种情况,
①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣
1+2)或(2,﹣1﹣2);
综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,
设E(x,x2﹣4x+3),则F(x,﹣x+3),
∵0<x<3,
∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
∴S△CBE=S△EFC+S△EFB=E F•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),
即当E点坐标为(,)时,△CBE的面积最大.
考点:二次函数综合题.
13.已知抛物线C1:y=ax2﹣4ax﹣5(a>0).
(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;
(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;
②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的
值.
【答案】(1)(﹣1,0)或(5,0)(2)①(0,﹣5),(4,﹣5)②y=﹣ax2+4ax﹣5(3)a=或
【解析】
试题分析:(1)将a=1代入解析式,即可求得抛物线与x轴交点;
(2)①化简抛物线解析式,即可求得两个点定点的横坐标,即可解题;
②根据抛物线翻折理论即可解题;
(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题
试题解析:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,
∴对称轴为y=2;
∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;
∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);
(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,
整理得:y=ax(x﹣4)﹣5;
∵当ax(x﹣4)=0时,y恒定为﹣5;
∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);
②这两个点连线为y=﹣5;
将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;
∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,
(3)抛物线C2的顶点到x轴的距离为2,
则x=2时,y=2或者﹣2;
当y=2时,2=﹣4a+8a﹣5,解得,a=;
当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;
∴a=或;
考点:1、抛物线与x轴的交点;2、二次函数图象与几何变换
14.如图,△ABC 的顶点坐标分别为A (﹣6,0),B (4,0),C (0,8),把△ABC 沿直线BC 翻折,点A 的对应点为D ,抛物线y=ax 2﹣10ax+c 经过点C ,顶点M 在直线BC 上.
(1)证明四边形ABCD 是菱形,并求点D 的坐标;
(2)求抛物线的对称轴和函数表达式;
(3)在抛物线上是否存在点P ,使得△PBD 与△PCD 的面积相等?若存在,直接写出点P 的坐标;若不存在,请说明理由.
【答案】(1)详见解析
(2)22y x 4x 85
=
-+ (3)详见解析
【解析】
【分析】 (1)根据勾股定理,翻折的性质可得AB=BD=CD=AC ,根据菱形的判定和性质可得点D 的坐标.
(2)根据对称轴公式可得抛物线的对称轴,设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,根据待定系数法可求M 的坐标,再根据待定系数法求出抛物线的函数表达式. (3)分点P 在CD 的上面下方和点P 在CD 的上方两种情况,根据等底等高的三角形面积相等可求点P 的坐标:
设P 22x,x 4x 85⎛
⎫-+ ⎪⎝⎭
, 当点P 在CD 的上面下方,根据菱形的性质,知点P 是AD 与抛物线22y x 4x 85=
-+的交点,由A,D 的坐标可由待定系数法求出AD 的函数表达式:1y x 32=
+,二者联立可得P 1(529,48
);
当点P 在CD 的上面上方,易知点P 是∠D 的外角平分线与抛物线22y x 4x 85
=-+的交点,此时,∠D 的外角平分线与直线AD 垂直,由相似可知∠D 的外角平分线PD 的斜率等于-2,可设其为y 2x m =-+,将D (10,8)代入可得PD 的函数表达式:y 2x 28=-+,与抛物线22y x 4x 85
=
-+联立可得P 2(﹣5,38). 【详解】
(1)证明:∵A (﹣6,0),B (4,0),C (0,8),
∴AB=6+4=10
,AC 10==.∴AB=AC .
由翻折可得,AB=BD ,AC=CD .∴AB=BD=CD=AC .∴四边形ABCD 是菱形.
∴CD ∥AB .
∵C (0,8),∴点D 的坐标是(10,8). (2)∵y=ax 2﹣10ax+c ,∴对称轴为直线10a x 52a
-=-
=. 设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b , ∴4k b 0b 8+=⎧⎨=⎩,解得k 2b 8=-⎧⎨=⎩
. ∴直线BC 的解析式为y=﹣2x+8.
∵点M 在直线y=﹣2x+8上,∴n=﹣2×5+8=﹣2.
∴M (5,,-2).
又∵抛物线y=ax 2﹣10ax+c 经过点C 和M ,
∴25a 50a c 2c 8-+=-⎧⎨=⎩,解得2a 5c 8
⎧=⎪⎨⎪=⎩. ∴抛物线的函数表达式为22y x 4x 85
=-+. (3)存在.点P 的坐标为P 1(
529,48),P 2(﹣5,38)
15.空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长为100米.
(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD 的长;
(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.
【答案】(1)利用旧墙AD 的长为10米.(2)见解析.
【解析】
【分析】
(1)按题意设出AD ,表示AB 构成方程;
(2)根据旧墙长度a 和AD 长度表示矩形菜园长和宽,注意分类讨论s 与菜园边长之间的数量关系.
【详解】
(1)设AD=x 米,则AB=1002x -米 依题意得,(100)2
x x -=450 解得x 1=10,x 2=90
∵a=20,且x≤a
∴x=90舍去
∴利用旧墙AD 的长为10米.
(2)设AD=x 米,矩形ABCD 的面积为S 平方米
①如果按图一方案围成矩形菜园,依题意
得:
S=
2(100)1(50)125022
x x x ---+=,0<x <a ∵0<a <50
∴x <a <50时,S 随x 的增大而增大 当x=a 时,S 最大=50a-12
a 2
②如按图2方案围成矩形菜园,依题意得
S=22(1002)[(25)](25)244x a x a a x =+---+++,a≤x <50+2
a
当a <25+4a <50时,即0<a <1003
时, 则x=25+4a 时,S 最大=(25+4a )2=2
1000020016
a a ++, 当25+4a ≤a ,即1003
≤a <50时,S 随x 的增大而减小 ∴x=a 时,S 最大=
(1002)2a a a +-=21502a a -, 综合①②,当0<a <1003时,21000020016a a ++-(21502a a -)=2
(3100)16
a ->0 2
1000020016
a a ++>21502a a -,此时,按图2方案围成矩形菜园面积最大,最大面积为2
1000020016
a a ++平方米 当1003
≤a <50时,两种方案围成的矩形菜园面积最大值相等. ∴当0<a <
1003时,围成长和宽均为(25+4a )米的矩形菜园面积最大,最大面积为2
1000020016
a a ++平方米; 当
1003
≤a <50时,围成长为a 米,宽为(50-2a )米的矩形菜园面积最大,最大面积为(21502
a a -)平方米. 【点睛】 本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.。