人教版物理高一下册 圆周运动(篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第六章 圆周运动易错题培优(难)
1.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )
A .滑块对轨道的压力为2
v mg m R
+
B .受到的摩擦力为2
v m R
μ
C .受到的摩擦力为μmg
D .受到的合力方向斜向左上方
【答案】AD 【解析】 【分析】 【详解】
A .根据牛顿第二定律
2
N v F mg m R
-=
根据牛顿第三定律可知对轨道的压力大小
2
N
N v F F mg m R
'==+ A 正确;
BC .物块受到的摩擦力
2
N ()v f F mg m R
μμ==+
BC 错误;
D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。
故选AD 。
2.如图所示,一个竖直放置半径为R 的光滑圆管,圆管内径很小,有一小球在圆管内做圆周运动,下列叙述中正确的是( )
A .小球在最高点时速度v gR
B.小球在最高点时速度v由零逐渐增大,圆管壁对小球的弹力先逐渐减小,后逐渐增大C.当小球在水平直径上方运动时,小球对圆管内壁一定有压力
D.当小球在水平直径下方运动时,小球对圆管外壁一定有压力
【答案】BD
【解析】
【分析】
【详解】
A.小球恰好通过最高点时,小球在最高点的速度为零,选项A错误;
<,轨道对小球的作用力方向向上,有
B.在最高点时,若v gR
2
v
-=
mg N m
R
可知速度越大,管壁对球的作用力越小;
>,轨道对小球的作用力方向向下,有
若v gR
2
v
+=
N mg m
R
可知速度越大,管壁对球的弹力越大。
选项B正确;
C.当小球在水平直径上方运动,恰好通过最高点时,小球对圆管内外壁均无作用力,选项C错误;
D.当小球在水平直径下方运动时,小球受竖直向下的重力,要有指向圆心的向心力,则小球对圆管外壁一定有压力作用,选项D正确。
故选BD。
3.如图所示,两个啮合的齿轮,其中小齿轮半径为10cm,大齿轮半径为20cm,大齿轮中C点离圆心O2的距离为10cm,A、B两点分别为两个齿轮边缘上的点,则A、B、C三点的()
A.线速度之比是1:1:2
B.角速度之比是1:2:2
C.向心加速度之比是4:2:1
D.转动周期之比是1:2:2
【答案】CD
【解析】
【分析】
【详解】
A .同缘传动时,边缘点的线速度相等
v A =v B ①
同轴转动时,各点的角速度相等
ωB =ωC ②
根据
v =ωr ③
由②③联立代入数据,可得
B C 2v v =④
由①④联立可得
v A :v B :v C =2:2:1
A 错误;
B .由①③联立代入数据,可得
A B :2:1ωω=⑤
再由②⑤联立可得
A B C ::2:1:1ωωω=⑥
B 错误; D .由于
2T π
ω
=
⑦
由⑥⑦联立可得
A B C ::1:2:2T T T =
D 正确; C .根据
2a r ω= ⑧
由⑥⑧联立代入数据得
A B C ::4:2:1a a a =
C 正确。
故选C
D 。
4.如图所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则( )
A .球A 的周期一定大于球
B 的周期 B .球A 的角速度一定大于球B 的角速度
C .球A 的线速度一定大于球B 的线速度
D .球A 对筒壁的压力一定大于球B 对筒壁的压力 【答案】AC 【解析】 【分析】 【详解】
ABC .对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,如图:
根据牛顿第二定律,有
2
2tan v F mg m mr r
θω===
解得
tan v gr θ=
tan g r
θ
ω=
A 的半径大,则A 的线速度大,角速度小
根据2T
π
ω=
知A 球的周期大,选项AC 正确,B 错误; D .因为支持力
cos mg N θ
=
知球A 对筒壁的压力一定等于球B 对筒壁的压力,选项D 错误。
故选AC 。
5.如图所示,质量相等的A 、B 两个小球悬于同一悬点O ,且在O 点下方垂直距离h =1m 处的同一水平面内做匀速圆周运动,悬线长L 1=3m ,L 2=2m ,则A 、B 两小球( )
A .周期之比T 1:T 2=2:3
B .角速度之比ω1:ω2=1:1
C .线速度之比v 1:v 283
D .向心加速度之比a 1:a 2=8:3
【答案】BC
【解析】 【分析】 【详解】
AB .小球做圆周运动所需要的向心力由重力mg 和悬线拉力F 的合力提供,设悬线与竖直方向的夹角为θ。
对任意一球受力分析,由牛顿第二定律有: 在竖直方向有
F cosθ-mg =0…①
在水平方向有
2
24sin sin F m L T
πθθ= …②
由①②得
2T = 分析题意可知,连接两小球的悬线的悬点距两小球运动平面的距离为h =L cosθ,相等,所以周期相等
T 1:T 2=1:1
角速度
2T
πω=
则角速度之比
ω1:ω2=1:1
故A 错误,B 正确; C .根据合力提供向心力得
2
tan tan v mg m
h θθ
= 解得
tan v =
根据几何关系可知
1tan h
θ==
2tan h
θ=
=故线速度之比
12v v =:故C 正确;
D .向心加速度a=vω,则向心加速度之比等于线速度之比为
12a a =:
故D 错误。
故选BC 。
6.荡秋千是大家喜爱的一项体育活动。
某秋千的简化模型如图所示,长度均为L 的两根细绳下端拴一质量为m 的小球,上端拴在水平横杆上,小球静止时,细绳与竖直方向的夹角均为θ。
保持两绳处于伸直状态,将小球拉高H 后由静止释放,已知重力加速度为g ,忽略空气阻力及摩擦,以下判断正确的是( )
A .小球释放瞬间处于平衡状态
B .小球释放瞬间,每根细绳的拉力大小均为
2cos 2cos L H
mg L θθ
-
C .小球摆到最低点时,每根细绳的拉力大小均为2cos θ
mg
D .小球摆到最低点时,每根细绳的拉力大小均为2cos 2cos mgH mg
L θθ
+
【答案】BD 【解析】 【分析】 【详解】
AB .设每根绳的拉力大小为T ,小球释放瞬间,受力分析如图1,所受合力不为0 由于速度为0,则有
2cos cos 0T mg θα-=
如图2,由几何关系,有
cos cos cos L H
L θαθ
-=
联立得
2
cos 2cos L H
T mg L θθ
-=
A 错误,
B 正确;
CD .小球摆到最低点时,图1中的0α=,此时速度满足
2112
mgH mv =
由牛顿第二定律得
2
12cos v T mg m R
θ'-=
其中cos R L θ= 联立解得
2
2cos 2cos mgH mg
T L θθ
'=
+ C 错误,D 正确。
故选BD 。
7.如图所示,两个水平放置的轮盘靠摩擦力传动,其中O 、O ′分别为两轮盘的轴心,已知两个轮盘的半径比r 甲∶r 乙=3∶1,且在正常工作时两轮盘不打滑。
两个同种材料制成的完全相同的滑块A 、B 放置在轮盘上,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O 、O ′的间距R A =2R B ,两滑块的质量之比为m A ∶m B =9∶2.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是( )
A .滑块A 和
B 在与轮盘相对静止时,线速度之比v A ∶v B =2∶3 B .滑块A 和B 在与轮盘相对静止时,向心加速度的比值a A ∶a B =2∶9
C .转速增加后滑块B 先发生滑动
D .转速增加后两滑块一起发生滑动 【答案】ABC 【解析】
【详解】
A .假设轮盘乙的半径为r ,因r 甲∶r 乙=3∶1,所以轮盘甲的半径为3r 。
由题意可知两轮盘边缘的线速度v 大小相等,由v =ωr 可得
:3:1ωω=甲乙
滑块A 和B 在与轮盘相对静止时,线速度之比
::2:3A B v v R R ωω==A B 甲乙
选项A 正确;
B .滑块A 和B 在与轮盘相对静止时,根据2a R ω=得A 、B 的向心加速度之比为
22:29A B A B a a R R ωω==甲乙::
选项B 正确;
CD .根据题意可得物块的最大静摩擦力分别为
A A f m g μ=
B B f m g μ=
最大静摩擦力之比为
A B A B f f m m =::
转动中所受的静摩擦力之比为
4.5A B A A B B A B f f m a m a m m ''==:::
综上分析可得滑块B 先达到最大静摩擦力,先开始滑动,选项C 正确,D 错误。
故选ABC 。
8.一小球质量为m ,用长为L 的悬绳(不可伸长,质量不计)固定于O 点,在O 点正下方
2
L
处钉有一颗钉子.如图所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则( )
A .小球的角速度突然增大
B .小球的线速度突然减小到零
C .小球的向心加速度突然增大
D .小球的向心加速度不变 【答案】AC 【解析】
【详解】
由于悬线与钉子接触时小球在水平方向上不受力,故小球的线速度不能发生突变,由于做圆周运动的半径变为原来的一半,由v =ωr 知,角速度变为原来的两倍,A 正确,B 错误;由a =
2T
π
知,小球的向心加速度变为原来的两倍,C 正确,D 错误.
9.如图所示,半径分别为R 和2R 的甲、乙两薄圆盘固定在同一转轴上,距地面的高度分别为2h 和h ,两物块a 、b 分别置于圆盘边缘,a 、b 与圆盘间的动摩擦因数μ相等,转轴从静止开始缓慢加速转动,观察发现,a 离开圆盘甲后,未与圆盘乙发生碰撞,重力加速度为g ,最大静摩擦力等于滑动摩擦力,则( )
A .动摩擦因数μ一定大于
32R h
B .离开圆盘前,a 所受的摩擦力方向一定指向转轴
C .离开圆盘后,a 运动的水平位移大于b 运动的水平位移
D .若52R
h
μ=
,落地后a 、b 1114【答案】ABD 【解析】 【详解】
A .由题意可知,两物块随圆盘转动的角速度相同,当最大静摩擦力提供物体向心力时,此时的角速度为物体随圆盘做圆周运动的最大角速度,为临界角速度,根据牛顿第二定律得
2b b b 2m g m R μω=
解得b 物体滑离圆盘乙的临界角速度为
b 2g
R μω=
同理可得,a 物块的临界角速度为
a g
R
μω=
由几何知识知,物体a 滑离圆盘时,其位移的最小值为
22min (2)3x R R R =-=
由题意知,其未与圆盘乙相碰,根据平抛运动规律可知
a a min x R t R x ωω=⋅=>= 解得
32R h
μ>
所以A 正确;
B .离开圆盘前,a 随圆盘一起做匀速圆周运动,由静摩擦力来提供向心力,所以a 所受的摩擦力方向一定指向转轴,B 正确;
C .由于
b a ωω<
所以一定是b 物块先离开圆盘,离开圆盘后,物块做平抛运动,对b 物体的水平位移为
b b b 2x v t R ω===同理可得,a 物体的水平位移为
a a a a x v t R t R ωω''==⋅==故离开圆盘后a 的水平位移等于
b 的水平位移,所以C 错误; D .当
52R h
μ=
时 a 的落地点距转轴的距离为
1x ==
同理,b 的落地点距转轴的距离为
2x ==
故
12x x = 所以D 正确。
故选ABD 。
10.无级变速是指在变速范围内任意连续地变换速度,其性能优于传统的挡位变速器,很多高档汽车都应用了“无级变速”.图所示为一种“滚轮-平盘无级变速器”的示意图,它由固定在主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动,如果认为滚轮不会打滑,那么主动轴的转速n 1、从动轴的转速n 2、滚轮半径r 以及滚轮中心距离主动轴轴线的距离x 之间的关系是 ( ).
A .n 2=n 1
x r
B .n 1=n 2x r
C .n 2=n 12
2x r
D .n 2=n 1
x r
【答案】A 【解析】
由滚轮不会打滑可知,主动轴上的平盘与可随从动轴转动的圆柱形滚轮在接触点处的线速度相同,即v 1=v 2,由此可得x·2πn 1=r·2πn 2,所以n 2=n 1
x
r
,选项A 正确.
11.如图所示,长为r 的细杆一端固定一个质量为 m 的小球,使之绕另一光滑端点 O 在竖直面内做圆周运动,小球运动到最高点时的速度 v 4
gr , 则下列说法不正确的 是( )
A .小球在最高点时对细杆的压力是
3mg
4
B .小球在最高点时对细杆的拉力是
mg
2
C gr ,小球对细杆的弹力是零
D .若小球运动到最高点速度为gr ,小球对细杆的拉力是 3mg 【答案】B 【解析】 【分析】 【详解】
AB .在最高点,根据牛顿第二定律得
2
v mg F m r
-=
解得
34
F mg =
根据牛顿第三定律知,小球在最高点对细杆的压力为3
4
F mg =,选项A 正确,B 错误; C .在最高点,若细杆弹力为零,根据牛顿第二定律得
2
v mg m r
=
解得
v
选项C 正确;
D .若在最高点速度为
2
v F mg m r
+=
解得
3F mg =
选项D 正确。
本题选不正确的,故选B 。
12.上海磁悬浮线路需要转弯的地方有三处,其中设计的最大转弯处半径达到8000米,用肉眼看几乎是一条直线,而转弯处最小半径也达到1300米。
一个质量50kg 的乘客坐在以360km/h 不变速率驶过半径2500米弯道的车厢内,下列说法不正确的是( ) A .弯道半径设计特别长可以使乘客在转弯时更舒适 B .弯道半径设计特别长可以减小转弯时列车的倾斜程度 C .乘客受到来自车厢的力大小约为539N D .乘客受到来自车厢的力大小约为200N 【答案】D 【解析】 【分析】 【详解】 A .根据
2v a R
=
在速度一定的情况下,转弯半径越大,需要的向心加速度越小,乘客在转弯时感觉越平稳、舒适,A 正确;
B .为了使列车行驶安全,在转弯时一般内轨比外轨低,让支持力的水平分力提供列车做圆
周运动的向心力,转弯半径越大,需要的向心力越小,列车的倾斜程度越小,B 正确; CD .根据
2
v F m R
=
代入数据可得,转弯时的向心力大约为200N ,而车箱给人的合力
22=()539N F mg F +=合
C 正确,
D 错误。
故不正确的应选D 。
13.在粗糙水平桌面上,长为l=0.2m 的细绳一端系一质量为m=2kg 的小球,手握住细绳另一端O 点在水平面上做匀速圆周运动,小球也随手的运动做匀速圆周运动。
细绳始终与桌面保持水平,O 点做圆周运动的半径为r=0.15m ,小球与桌面的动摩擦因数为=0.6μ,
210m/s g =。
当细绳与O 点做圆周运动的轨迹相切时,则下列说法正确的是( )
A .小球做圆周运动的向心力大小为6N
B .O 点做圆周运动的角速度为42rad/s
C .小球做圆周运动的线速度为22m/s
D .小球做圆周运动的轨道半径为18
m 【答案】B 【解析】 【分析】 【详解】
AD .小球做圆周运动的半径如图
根据几何关系有
220.25m R r l =+=
则有
tan r l
θ=
解得
37θ︒=
正交分解
sin T mg θμ=
cos T F θ=向
两式相比解得
0.6210
N 16N 3tan 374
F mg
μ︒
⨯⨯=
=
=向 故AD 错误;
B .小球和O 点转动的角速度相同,根据
2F m R ω=向
可知
16rad/s 42rad/s 20.25
m F R ω===⨯向
故B 正确;
C .小球做圆周运动的线速度
420.25m/s 2m/s v R ω==⨯=
故C 错误。
故选B 。
14.如图是德国物理学家史特恩设计的最早测定气体分子速率的示意图.M 、N 是两个共轴圆筒的横截面,外筒N 的半径为R ,内筒的半径比R 小得多,可忽略不计.筒的两端封闭,两筒之间抽成真空,两筒以相同角速度ω绕其中心轴线匀速转动.M 筒开有与转轴平行的狭缝S ,且不断沿半径方向向外射出速率分别为v 1和v 2的分子,分子到达N 筒后被吸附,如果R 、v 1、v 2保持不变,ω取某合适值,则以下结论中正确的是( )
A .当
122R R n V V π
ω
-≠时(n 为正整数),分子落在不同的狭条上 B .当122R R n V V πω
+=时(n 为正整数),分子落在同一个狭条上 C .只要时间足够长,N 筒上到处都落有分子 D .分子不可能落在N 筒上某两处且与S 平行的狭条上
【答案】A 【解析】
微粒从M 到
N 运动时间R t v
= ,对应N 筒转过角度R t v ωθω== ,即如果以v 1射出时,转过
角度:11R t v ωθω== ,如果以v 2射出时,转过角度:22
R
t v ωθω== ,只要θ1、θ2不是相
差2π的整数倍,即当
122 R R n v v π
ω
-≠ 时(n 为正整数),分子落在不同的两处与S 平行的狭条上,故A 正确,D 错误;若相差2π的
整数倍,则落在一处,即当122 R R n v v π
ω
-= 时(n 为正整数),分子落在同一个狭条上.故B 错误;若微粒运动时间为N 筒转动周期的整数倍,微粒只能到达N 筒上固定的位置,因此,故C 错误.故选A 点睛:
解答此题一定明确微粒运动的时间与N 筒转动的时间相等,在此基础上分别以v 1、v 2射出时来讨论微粒落到N 筒上的可能位置.
15.质量为 m 的小球由轻绳 a 和 b 分别系于一轻质细杆的 A 点和 B 点,如图所示,绳 a 与水平方向成θ角,绳 b 在水平方向且长为 l ,当轻杆绕轴 AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周 运动,则下列说法正确的是( )
A .a 绳的张力可能为零
B .a 绳的张力随角速度的增大而增大
C .若 b 绳突然被剪断,则 a 绳的弹力一定发生变化
D .当角速度tan g
l ωθ
>,b 绳将出现弹力 【答案】D 【解析】 【分析】 【详解】
A 、小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 错;
B 、根据竖直方向上平衡得,F a sinθ=mg ,解得sin a mg
F θ
=
,可知a 绳的拉力不变,故B 错
误.
D 、当b 绳拉力为零时,有:2mgcot m l θω= ,解得ω=
,可知当角速度
ω>
,b 绳将出现弹力,故D 对; C 、由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故C 错误 故选D 【点睛】
小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变.。