阳高县第二中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阳高县第二中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α;
其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④ D .①③
2. 设变量x ,y
满足,则2x+3y 的最大值为( )
A .20
B .35
C .45
D .55
3. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且c=2a ,则cosB=( ) A

B

C

D

4. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )
A .p q ∧
B .()()p q ⌝∧⌝
C .()p q ∧⌝
D .()p q ⌝∧ 5. 三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56 C .0.56<60.5<log 0.56 D .0.56<log 0.56<60.5
6. 如图,在△ABC 中,AB=6,
AC=4,A=45°,O 为△ABC 的外心,

•等于( )
A .﹣2
B .﹣1
C .1
D .2
7. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( ) A

B

C

D

8. 已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围( )
A .[1,+∞)
B .[0.2}
C .[1,2]
D .(﹣∞,2]
9. 下列函数中,为奇函数的是( )
A .y=x+1
B .y=x 2
C .y=2x
D .y=x|x|
10.已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B .
C .
D .
11.已知平面向量a 、b 满足||||1==a b ,(2)⊥-a a b ,则||+=a b ( ) A .0 B .2 C .2 D .3
12.若函数21,1,()ln ,1,
x x f x x x ⎧-≤=⎨>⎩则函数1
()2y f x x =+的零点个数为( )
A .1
B .2
C .3
D .4
二、填空题
13.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 . 14.下列四个命题:
①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面 其中正确命题的序号是 .
15.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________. 16.若
的展开式中含有常数项,则n 的最小值等于 .
17.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.
①若AC=BD ,则四边形EFGH 是 ;
②若AC ⊥BD ,则四边形EFGH 是 .
18.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2min{)(2x x x f -=的取值范围是
三、解答题
19.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)
(1)请估计红星路小区年龄在[15,75)的市民对“禁放烟花、炮竹”的赞成率和被调查者的年龄平均值; (2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.
20.圆锥底面半径为1cm ,高为2cm ,其中有一个内接正方体,求这个内接正方体的棱长.
21.(本题满分15分)
已知抛物线C 的方程为2
2(0)y px p =>,点(1,2)R 在抛物线C 上.
(1)求抛物线C 的方程;
(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于
M ,N 两点,求MN 最小时直线AB 的方程.
【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.
22.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣) (1)当x ∈[2,4]时,求该函数的值域;
(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.
23.已知{}{}
22
,1,3,3,31,1A a a B a a a =+-=--+,若{}3A
B =-,求实数的值.
24.求曲线y=x 3的过(1,1)的切线方程.
阳高县第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】B
【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:
在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;
在②中:若α∥β,β∥γ,则α∥γ,
∵m⊥α,∴由直线垂直于平面的性质定理得m⊥γ,故②正确;
在③中:若m⊥α,n⊥α,则由直线与平面垂直的性质定理得m∥n,故③正确;
在④中:若α⊥β,m⊥β,则m∥α或m⊂α,故④错误.
故选:B.
2.【答案】D
【解析】解:满足约束条件的平面区域如下图所示:
令z=2x+3y可得y=,则为直线2x+3y﹣z=0在y轴上的截距,截距越大,z越大
作直线l:2x+3y=0
把直线向上平移可得过点D时2x+3y最大,
由可得x=5,y=15,此时z=55
故选D
【点评】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,找出目标函数的最优解点的坐标是解答本题的关键.
3.【答案】B
【解析】解:△ABC中,a、b、c成等比数列,则b2=ac,
由c=2a,则b=a,
=,
故选B.
【点评】本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.
4.【答案】D
【解析】
考点:命题的真假.
5.【答案】A
【解析】解:∵60.5>60=1,
0<0.56<0.50=1,
log0.56<log0.51=0.
∴log0.56<0.56<60.5.
故选:A
【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题.
6.【答案】A
【解析】解:结合向量数量积的几何意义及点O在线段AB,AC上的射影为相应线段的中点,
可得,,则•==16﹣18=
﹣2;
故选A.
【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题
7.【答案】C
【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,
故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,
则易知A
H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,
1
AO1=3,由A1O1•A1A=h•AO1,可得A1H=,
故选:C.
【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.8.【答案】C
【解析】解:f(x)=x2﹣2x+3=(x﹣1)2+2,对称轴为x=1.
所以当x=1时,函数的最小值为2.
当x=0时,f(0)=3.
由f(x)=3得x2﹣2x+3=3,即x2﹣2x=0,解得x=0或x=2.
∴要使函数f(x)=x2﹣2x+3在[0,a]上有最大值3,最小值2,则1≤a≤2.
故选C.
【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次函数的基本方法.
9.【答案】D
【解析】解:由于y=x+1为非奇非偶函数,故排除A;
由于y=x2为偶函数,故排除B;
由于y=2x为非奇非偶函数,故排除C;
由于y=x|x|是奇函数,满足条件,
故选:D.
【点评】本题主要考查函数的奇偶性的判断,属于基础题.
10.【答案】A
【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段,
上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:
故选A.
【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.
11.【答案】D
【解析】∵(2)⊥-a a b ,∴(2)0⋅-=a a b , ∴21122
⋅=
=a b a ,
∴||+=
=a b
==
12.【答案】D 【



考点:函数的零点.
【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.
二、填空题
13.【答案】 12 .
【解析】解:设两者都喜欢的人数为x 人,则只喜爱篮球的有(15﹣x )人,只喜爱乒乓球的有(10﹣x )人, 由此可得(15﹣x )+(10﹣x )+x+8=30,解得x=3, 所以15﹣x=12, 即所求人数为12人,
故答案为:12.
14.【答案】 ③ .
【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;
②经过空间不共线三点有且只有一个平面,故错误;
③过两平行直线有且只有一个平面,正确;
④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,
故正确命题的序号是③,
故答案为:③
15.【答案】120
【解析】
考点:解三角形.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据
A B C=,根据正弦定理,可设3,5,7
sin:sin:sin3:5:7
===,即可利用余弦定理求解最大角的余弦,
a b
熟记正弦、余弦定理的公式是解答的关键.
16.【答案】5
【解析】解:由题意的展开式的项为T r+1=C n r(x6)n﹣r()r=C n r=C n r
令=0,得n=,当r=4时,n 取到最小值5
故答案为:5.
【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n的表达式,推测出它的值.
17.【答案】
菱形;
矩形.
【解析】解:如图所示:①∵EF∥AC,GH∥AC且EF=AC,GH=AC
∴四边形EFGH是平行四边形
又∵AC=BD
∴EF=FG
∴四边形EFGH是菱形.
②由①知四边形EFGH是平行四边形
又∵AC⊥BD,
∴EF⊥FG
∴四边形EFGH是矩形.
故答案为:菱形,矩形
【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.
18.【答案】(],1-∞ 【解析】
试题分析:函数(){}
2
min 2,f x x x =-的图象如下图:
观察上图可知:()f x 的取值范围是(],1-∞。

考点:函数图象的应用。

三、解答题
19.【答案】
【解析】(1)解:赞成率为

被调查者的平均年龄为20×0.12+30×0.2+40×0.24+50×0.24+60×0.1+70×0.1=43 (2)解:由题意知ξ的可能取值为0,1,2,3,




∴ξ的分布列为: 0 1 2
3
∴. 【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.
20.【答案】2cm . 【解析】
试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可.
试题解析:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF
,正方体对角面11CDD
C ,如图所示.
设正方体棱长为,则1CC x =,11C D
=,
作SO EF ⊥于O
,则SO
=1OE =, ∵1
ECC EOS ∆∆,∴11CC EC SO EO =121x -=, ∴x =cm . 考点:简单组合体的结构特征.
21.【答案】(1)2
4y x =;(2)20x y +-=.
【解析】(1)∵点(1,2)R 在抛物线C 上,22212p p =⨯⇒=,…………2分 即抛物线C 的方程为2
4y x =;…………5分
22.【答案】
【解析】解:(1)f(x)=(log2x﹣2)(log4x﹣)
=(log2x)2﹣log2x+1,2≤x≤4
令t=log2x,则y=t2﹣t+1=(t﹣)2﹣,
∵2≤x≤4,
∴1≤t≤2.
当t=时,y min=﹣,当t=1,或t=2时,y max=0.
∴函数的值域是[﹣,0].
(2)令t=log2x,得t2﹣t+1>mt对于2≤t≤4恒成立.
∴m<t+﹣对于t∈[2,4]恒成立,
设g(t)=t+﹣,t∈[2,4],
∴g(t)=t+﹣=(t+)﹣,
∵g(t)=t+﹣在[2,4]上为增函数,
∴当t=2时,g(t)min=g(2)=0,
∴m<0.
23.【答案】
2
3 a=-.
【解析】
考点:集合的运算.
24.【答案】
【解析】解:y=x3的导数y′=3x2,
①若(1,1)为切点,k=3•12=3,
∴切线l:y﹣1=3(x﹣1)即3x﹣y﹣2=0;
②若(1,1)不是切点,
设切点P(m,m3),k=3m2=,
即2m2﹣m﹣1=0,则m=1(舍)或﹣
∴切线l:y﹣1=(x﹣1)即3x﹣4y+1=0.
故切线方程为:3x﹣y﹣2=0或3x﹣4y+1=0.
【点评】本题主要考查导数的几何意义、利用导数研究曲线上某点处的切线方程等基础知识,注意在某点处和过某点的切线,考查运算求解能力.属于中档题和易错题.。

相关文档
最新文档