(完整版)力-电电磁感应计算题——含答案.docx
(完整版)电磁感应综合练习题(基本题型,含答案)
电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。
如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。
(完整版)电磁感应综合练习题(基本题型,含答案)
电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。
如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。
电磁感应计算题及解答讲解
电磁感应计算题及解答讲解⼀、选择题1、如图所⽰,空间存在两个磁场,磁感应强度⼤⼩均为B,⽅向相反且垂直纸⾯,MN、PQ为其边界,OO’为其对称轴。
⼀导线折成变长为的正⽅形闭合回路abcd,回路在纸⾯内以恒定速度v o向右运动,当运动到关于OO’对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势⼤⼩为C.回路中感应电流的⽅向为顺时针⽅向D.回路中ab边与cd边所受安培⼒⽅向相同2、如图8,在O点下⽅有⼀个具有理想边界的磁场,铜环在A点由静⽌释放向右摆⾄最⾼点B,不考虑空⽓阻⼒,则下列说法正确的是()A.A、B两点在同⼀⽔平线B.A点⾼于B点C.A点低于B点D.铜环将做等幅摆动⼆、计算题3、如图所⽰,两根质量均为m=2kg的⾦属棒垂直地放在光滑的⽔平导轨上,左右两部分导轨间距之⽐为1∶2,导轨间有⼤⼩相等但左右两部分⽅向相反的匀强磁场,CD棒电阻为AB棒电阻的两倍,不计导轨电阻,今⽤250N的⽔平⼒F向右拉CD棒,在CD棒运动0.5m的过程中,两棒上产⽣的焦⽿热共为45J,此时CD棒速率为8m/s,⽴即撤去拉⼒F,设导轨⾜够长且两棒始终在不同磁场中运动,求:(1)撤去拉⼒F瞬间AB棒速度v A;(2)两棒最终匀速运动的速度v A′和v C′。
4、如图所⽰,光滑矩形斜⾯ABCD的倾⾓为,在其上放置⼀矩形⾦属线框,的边长,的边长,线框的质量,电阻,线框通过细线绕过定滑轮与重物相连,细线与斜⾯平⾏且靠近。
重物质量,离地⾯的⾼度为。
斜⾯上区域是有界匀强磁场,⽅向垂直于斜⾯向上,已知AB到的距离为,到的距离为,到CD的距离为,取。
现让线框从静⽌开始运动(开始时刻与AB边重合),发现线框匀速穿过匀强磁场区域,求:(1)区域内匀强磁场的磁感应强度B(2)线框在通过磁场区域过程中产⽣的焦⽿热Q(3)通过计算分析画出线框从开始运动到边与CD边重合过程中线框的图象5、如图所⽰,半径为r的圆形导线框内有⼀匀强磁场,磁场⽅向垂直于导线框所在平⾯,导线框的左端通过导线接⼀对⽔平放置的平⾏的⾦属板,两极间的距离为d,板长为L。
电磁感应计算题训练及答案
电磁感应大题训练1.如图所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L .一个质量为m 、边长也为L 的正方形线框(设电阻为R )以速度υ进入磁场时,恰好做匀速直线运动,若当ab 边到达'gg 与'ff 中间位置时,线框又恰好做匀速运动,则(1)当ab 边刚越过'ff 时,线框加速度的值为多少?(2)求线框从开始进入磁场到ab 边到达'gg 和'ff 中点的过程中产生的热量是多少?2.如图a所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔O、O′,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动.其速度图象如图b所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O处连续不断以垂直于C板方向飘入质量为m=3.2×10-21kg、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,1B 、2B 方向如图所示(粒子重力及其相互作用不计).求(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并飞出磁场边界MN?(2)粒子从边界MN射出来的位置之间最大的距离为多少?3.如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量m=0.1㎏的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面.当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程中导体棒产生热量Q=2J.电动机工作时,电压表、电流表的读数分别为7V和1A,电动机的内阻r=1Ω.不计一切摩擦,g取10m/s2.求:(1)导体棒所达到的稳定速度是多少?(2)导体棒从静止到达稳定速度的时间是多少?.4.图中a1b1c1d1和a2b2c2d2为在同一竖直面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。
(完整版)电磁感应中的各种题型(习题,答案)
电磁感应中的各种题型一.电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等1.“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。
[例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。
已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。
(1)求作用于每条金属细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。
2.“双杆”同向运动,但一杆加速另一杆减速:当两杆分别沿相同方向运动时,相当于两个电池反向串联。
[例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。
设两导体棒均可沿导轨无摩擦地滑行。
开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。
若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。
(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?3. “双杆”中两杆都做同方向上的加速运动。
:“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
[例3](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离l=0.20m。
电磁感应典型题目(含答案)
电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。
(完整版)力-电电磁感应计算题精选——含答案,推荐文档
1、如图(a)两相距L=0.5m的平行金属导轨固定于水平面上,导轨左端与阻值R=2Ω的电阻连接,导轨间虚线右侧存在垂直导轨平面的匀强磁场,质量m=0.2kg的金属杆垂直于导轨上,与导轨接触良好,导轨与金属杆的电阻可忽略,杆在水平向右的恒定拉力作用下由静止开始运动,并始终与导轨垂直,其v-t图像如图(b)所示,在15s时撤去拉力,同时使磁场随时间变化,从而保持杆中电流为0,求:(1)金属杆所受拉力的大小为F;(2)0-15s匀强磁场的磁感应强度大小为;(3)15-20s内磁感应强度随时间的变化规律。
2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.3、如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30角,上端连接阻值R=1.5Ω的电阻;质量为m=0.2kg、阻值r=0.5Ω的金属棒ab放在两导轨上,距离导轨最上端为L2=4m,棒与导轨垂直并保持良好接触。
整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示。
为保持ab棒静止,在棒上施加了一平行于导轨平面的外力F, g=10m/s2求:(1)当t=2s时,外力F1的大小;(2)当t=3s前的瞬间,外力F2的大小和方向;(3)请在图丙中画出前4s外力F随时间变化的图像(规定F方向沿斜面向上为正);4、如图33-11甲所示,一足够长阻值不计的光滑平行金属导轨MN、PQ之间的距离L=1.0 m,NQ两端连接阻值R=1.0 Ω的电阻,磁感应强度为B的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=30°.一质量m=0.20 kg、阻值r=0.50 Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量M=0.60 kg的重物P 相连.细线与金属导轨平行.金属棒沿导轨向上滑行的速度v与时间t之间的关系如图33-11乙所示,已知金属棒在0~0.3 s内通过的电量是0.3~0.6 s内通过电量的,g=10 m/s2,求:甲乙图33-11(1)0~0.3 s内棒通过的位移;(2)金属棒在0~0.6 s内产生的热量.5、如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d =0.5 m ,电阻不计,左端通过导线与阻值R =2 W 的电阻连接,右端通过导线与阻值R L =4 W 的小灯泡L 连接.在CDEF 矩形区域内有竖直向上的匀强磁场,CE 长l =2 m ,有一阻值r =2 W 的金属棒PQ 放置在靠近磁场边界CD 处.CDEF 区域内磁场的磁感应强度B 随时间变化如图22乙所示.在t =0至t =4s 内,金属棒PQ 保持静止,在t =4s 时使金属棒PQ 以某一速度进入磁场区域并保持匀速运动.已知从t =0开始到金属棒运动到磁场边界EF 处的整个过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流.(2)金属棒PQ 在磁场区域中运动的速度大小.参考答案一、计算题1、(1)0.24N ;(2)0.4T ;(3)(2)在10—15s时间段杆在磁场中做匀速运动,因此有以F=0.24N,μmg=0.16N代入解得B0=0.4T(3)由题意可知在15—20s时间段通过回路的磁通量不变,设杆在15—20s内运动距离为d,15s后运动的距离为x B(t)L(d+x)=B0Ld其中d=20mx=4(t-15)-0.4(t-15)2由此可得2、考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化..专题:电磁感应——功能问题.分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.3、【知识点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律;法拉第电磁感应定律;电磁感应中的能量转化.J2 L2 L3【答案解析】(1)0;(2)0.5N,方向沿斜面向下;(3)如图所示.解析:(1)当t=2s时,回路中产生的感应电动势为:E=,B2=1T,应电流为:I=;根据楞次定律判断可知,ab所受的安培力沿轨道向上;ab棒保持静止,受力平衡,设外力沿轨道向上,则由平衡条件有:mgsin30°-B2IL1-F1=0可解得:F1=mgsin30°-B2IL1=0.2×10×sin30°-1×1×1=0(2)当t=3s前的瞬间,由图可知,B3=1.5T,设此时外力沿轨道向上,则根据平衡条件得:F2+B3IL1-mg sin30°=0则得:F2=mg sin30°-B3IL1=0.2×10×sin30°-1.5×1×1=-0.5N,负号说明外力沿斜面向下.(3)规定F方向沿斜面向上为正,在0-3s内,根据平衡条件有:mgsin30°-BIL1-F=0而B=0.5t(T)则得:F=mgsin30°-BIL1=0.2×10×sin30°-0.5T×1×1=1-0.5T(N)当t=0时刻,F=1N.在3-4s内,B不变,没有感应电流产生,ab不受安培力,则由平衡条件得:F=mgsin30°=0.2×10×sin30°N=1N画出前4s外力F随时间变化的图象如图所示.【思路点拨】(1)由图知,0-3s时间内,B均匀增大,回路中产生恒定的感应电动势和感应电流,根据法拉第电磁感应定律和欧姆定律求出感应电流,由平衡条件求解t=2s时,外力F1的大小.(2)与上题用同样的方法求出外力F2的大小和方向.(3)由B-t图象得到B与t的关系式,根据平衡条件得到外力F与t的关系式,再作出图象.解决本题的关键掌握法拉第电磁感应定律、平衡条件、安培力公式和能量守恒定律等等电磁学和力学规律,得到解析式,再画图象是常用的思路,要多做相关的训练.4、解析:(1)金属棒在0.3~0.6 s内通过的电量是q1=I1t1=金属棒在0~0.3 s内通过的电量q2==由题知q1=q2,代入解得x2=0.3 m.(2)金属棒在0~0.6 s内通过的总位移为x=x1+x2=vt1+x2,代入解得x=0.75 m根据能量守恒定律Mgx-mgx sinθ-Q=(M+m)v2代入解得Q=2.85 J由于金属棒与电阻R串联,电流相等,根据焦耳定律Q=I2Rt,得到它们产生的热量与电阻成正比,所以金属棒在0~0.6 s内产生的热量Q r=Q=1.9 J.答案:(1)0.3 m (2)1.9 J5、【解析】(1)在t=0至t=4s内,金属棒PQ保持静止,磁场变化导致电路中产生感应电动势.电路为r与R并联,再与R L 串联,电路的总电阻=5Ω①此时感应电动势=0.5×2×0.5V=0.5V ②通过小灯泡的电流为:=0.1A ③(2)当棒在磁场区域中运动时,由导体棒切割磁感线产生电动势,电路为R与R L并联,再与r串联,此时电路的总电阻=2+Ω=Ω④由于灯泡中电流不变,所以灯泡的电流I L=0.1A,则流过棒的电流为=0.3A ⑤电动势⑥解得棒PQ在磁场区域中v=1m/s。
新编《电磁感应》精选练习题(含答案)
新编《电磁感应》精选练习题(含答案)1、选择题:1.正确答案为(D)。
2.正确答案为(D)。
3.正确答案为(B)。
4.正确答案为(B)。
5.正确答案为(A)。
6.正确答案为(D)。
7.正确答案为(A)。
2、文章改写:本文是一篇电磁感应单元测试题。
在选择题部分,需要根据题目要求选择正确答案。
其中包括关于线圈中磁通量变化、自感现象、金属棒的旋转、匀强磁场中的固定金属框架和导体棒等问题。
在每个问题中,需要根据问题描述和图示来判断正确答案。
对于第一题,正确答案是(D),即线圈中磁通量变化越快,线圈中产生的感应电动势越大。
第二题的正确答案是(D),即对于同一线圈,当电流变化较快时,线圈中的自感电动势电较大。
第三题的正确答案是(B),即金属棒内电场强度等于零。
第四题的正确答案是(B),即在导体棒ef还未脱离框架前,电路中的磁通量保持不变。
第五题的正确答案是(A),即刚一闭合S2,A灯就立即亮,而B灯则延迟一段时间才亮。
第六题的正确答案是(D),即无法判断线圈中的感应电流方向,也无法判断线圈所受磁场力的方向。
最后一题的正确答案是(A),即在拉出正方形多匝线圈的过程中,拉力做功的功率与线圈匝数成正比。
本文需要读者根据问题描述和图示来判断正确答案。
在文章改写时,需要修正问题描述和图示的格式错误,同时删除明显有问题的段落,并进行小幅度的改写。
和L2同时达到最亮,断开时同时灭D.接通时L1和L2都不亮,断开时也都不灭8、在斜面上,金属棒沿着导轨匀速上滑,且上升一定高度。
根据能量守恒定律,作用于金属棒上的各力的合力所做的功等于mgh与电阻R上发出的焦耳热之和。
其中,作用于金属棒上的合力包括恒力F和安培力的合力。
9、一电子以初速度v沿金属板平行方向飞入XXX极板间,若突然发现电子向M板偏转,则可能是电键S由闭合到断开瞬间。
10、磁带录音机既可用作录音,也可用作放音。
其主要的部件为可匀速行进的磁带和绕有线圈的磁头。
不论是录音或放音过程,磁带或磁隙软铁会存在磁化现象。
《大学物理》练习题及详细解答-—电磁感应.docx
法拉第电磁感应定律10-1如图10-1所示,一半径a=0.10m,电阻7?=1.OX1O 3Q 的圆形导体回路置于均匀磁场中,磁场方向与回路面积的法向之间的夹角为TT /3,若磁场变化的规律为3(f ) = (3" +8/ + 5)X 10-4T求:(1) f=2s 时回路的感应电动势和感应电流;(2)最初2s 内通过回路截面的电量。
解:(1) <t>^B S^BScosO图 10-1a —3 ? x 10 -5t = 2s, & =—3.2x107, I =_=------ =—2x10—2 AR -负号表示与方向与确定五的回路方向相反(2) / = ;(0 -Q )=;留(0)-8(2)]• S• cos 。
= 28x1" 1*0.1 - =4.4xl0-2 CR R 1x10 x210-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。
大回路中有电流/,小的回路在大 dx的回路上面距离X 处,X»R,即/在小线圈所围面积上产生的磁场可视为是均匀的。
若—=v 等速 dt 率变化,(1)试确定穿过小回路的磁通量e 和X 之间的关系;(2)当x=NR (N 为一正数),求小回 路内的感应电动势大小;(3)若v>0,确定小回路中感应电流方向。
解:(1)大回路电流/在轴线上x 处的磁感应强度大小B = cl" 2、3 2 '方向竖直向上。
2(舟+》2产x»R 时,® = B ・S = BS = B •兀尸=“祁:"2疽 2x3(2)=1. ju JR-TIP 2x 4 — , x = NR 时, dt 2dt (3)由楞次定律可知,小线圈中感应电流方向与/相同。
动生电动势10-3 一半径为R 的半圆形导线置于磁感应强度为W 的均匀磁场中,该导线以 速度v沿水平方向向右平动,如图10-3所不,分别采用(1)法拉第电磁 感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电 势高?解:(1)假想半圆导线在宽为2R 的U 型导轨上滑动,设顺时针方向为回路方向,在x 处O…, = (2Rx+-兀R2 )B , s = 一^^ = -2RB — = -2RBv2 dt dt由于静止U 型导轨上电动势为零,所以半圈导线上电动势为 8 = -2RBv 负号表示电动势方向为逆时针,即上端电势高。
(word完整版)高中物理电磁感应习题及答案解析(2021年整理)
(word完整版)高中物理电磁感应习题及答案解析(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中物理电磁感应习题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中物理电磁感应习题及答案解析(word版可编辑修改)的全部内容。
1.图12—2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L 的线圈外,其他部分与甲图都相同,导体AB 以相同的加速度向右做匀加速直线运动。
若位移相同,则( )A .甲图中外力做功多B .两图中外力做功相同C .乙图中外力做功多D .无法判断2.图12-1,平行导轨间距为d ,一端跨接一电阻为R ,匀强磁场磁感强度为B ,方向与导轨所在平面垂直。
一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。
当金属棒沿垂直于棒的方向以速度v 滑行时,通过电阻R 的电流强度是( )A .Bdv RB .sin Bdv RθC .cos Bdv Rθ D .sin Bdv R θ3.图12-3,在光滑水平面上的直线MN 左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。
将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v 向右完全拉出匀强磁场。
已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是( )A .所用拉力大小之比为2:1B .通过导线某一横截面的电荷量之比是1:1C .拉力做功之比是1:4D .线框中产生的电热之比为1:24. 图12—5,条形磁铁用细线悬挂在O 点。
(完整版)电磁感应练习题及答案
《电磁感应》练习题高二级_______班姓名______________ _______________号1.B 2. A 3. A4.B 5. BCD6.CD7. D8. C一.选择题1.下面说法正确的是()A.自感电动势总是阻碍电路中原来电流增加B.自感电动势总是阻碍电路中原来电流变化. C.电路中的电流越大,自感电动势越大D.电路中的电流变化量越大,自感电动势越大2. 如图所示,一个矩形线圈与通有相同大小电流的平行直导线在同一平面,而且处在两导线的中央,则( A )A.两电流方向相同时,穿过线圈的磁通量为零B.两电流方向相反时,穿过线圈的磁通量为零C.两电流同向和反向时,穿过线圈的磁通量大小相等D.因两电流产生的磁场不均匀,因此不能判断穿过线圈的磁通量是否为零3. 一矩形线圈在匀强磁场中向右做加速运动如图所示, 设磁场足够大, 下面说法正确的是( A )A. 线圈中无感应电流, 有感应电动势B .线圈中有感应电流, 也有感应电动势C. 线圈中无感应电流, 无感应电动势D. 无法判断4.如图所示,AB为固定的通电直导线,闭合导线框P与AB在同一平面内。
当P远离AB做匀速运动时,它受到AB的作用力为( B )A.零B.引力,且逐步变小C.引力,且大小不变D.斥力,且逐步变小5. 长0.1m的直导线在B=1T的匀强磁场中,以10m/s的速度运动,导线中产生的感应电动势:( )A.一定是1V B.可能是0.5V C.可能为零D.最大值为1V6.如图所示,在一根软铁棒上绕有一个线圈,a、b是线圈的两端,a、b分别与平行导轨M、N相连,有匀强磁场与导轨面垂直,一根导体棒横放在两导轨上,要使a点的电势均比b点的电势高,则导体棒在两根平行的导轨上应该(BCD )A.向左加速滑动B.向左减速滑动C.向右加速滑动D.向右减速滑动7.关于感应电动势,下列说法正确的是()A.穿过闭合电路的磁感强度越大,感应电动势就越大B.穿过闭合电路的磁通量越大,感应电动势就越大C.穿过闭合电路的磁通量的变化量越大,其感应电动势就越大D.穿过闭合电路的磁通量变化的越快,其感应电动势就越大4题5题8.恒定的匀强磁场中有一圆形的闭合导体线圈,线圈平面垂直于磁场方向,要使线圈中能产生感应电流,线圈在磁场中应做 ( ) A .线圈沿自身所在的平面做匀速运动 B .线圈沿自身所在的平面做匀加速运动 C .线圈绕任意一条直径转动 D .线圈沿磁场方向平动9.将一磁铁缓慢或迅速地插到闭和线圈中的同一位置,两次发生变化的物理量不同的是( )A 、磁通量的变化量B 、磁通量的变化率C 、感应电流的电流强度D 、消耗的机械功率10.如图所示,一长直导线在纸面内,导线一侧有一矩形线圈,且线圈一边M 与通电导线平行,要使线圈中产生感应电流,下列方法可行的是( ) A 、保持M 边与导线平行线圈向左移动 B 、保持M 边与导线平行线圈向右移动C 、线圈不动,导线中电流减弱D 、线圈不动,导线中电流增强E 、线圈绕M 边转动 F11. 如图所示,将一线圈放在一匀强磁场中,线圈平面平行于磁感线,则线圈中有感应电流产生的是( )A 、当线圈做平行于磁感线的运动B 、当线圈做垂直于磁感线的平行运动C 、当线圈绕M 边转动D 、当线圈绕N 边转动12.如图所示,虚线所围的区域内有一匀强磁场,闭和线圈从静止开始运动,此时如果使磁场对线圈下边的磁场力方向向下,那么线圈应( ) A 、向右平动 B 、向左平动 C 、以M 边为轴转动D 、以上都不对13.竖直放置的金属框架处于水平的匀强磁场中,如图所示,一长直金属棒AB 可沿框自由运动,当AB 由静止开始下滑一段时间后合上S ,则AB 将做( )A 、 匀速运动B 、加速运动C 、减速运动D 、无法判定14.如图所示,边长为h 的矩形线框从初始位置由静止开始下落,进入一水平的匀强磁场,且磁场方向与线框平面垂直。
(完整版)电磁感应习题带答案
电磁感应一、选择题(本题共10小题,每小题4分,在每小题给出的四个选项中,有多项符合题目要求的,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(2016届郑州联考)在电磁学发展过程中,许多科学家做出了贡献.下列说法正确的是()A.安培发现了电流磁效应;法拉第发现了电磁感应现象B.麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在C.库仑提出了电场线;密立根通过油滴实验测定了元电荷的数值D.感应电流遵从楞次定律所描述的方向,这是能量守恒定律的必然结果解析:奥斯特发现了电流磁效应,法拉第发现了电磁感应现象,A选项错误;麦克斯韦预言了电磁波,赫兹用实验证实了电磁波的存在,B选项错误;法拉第提出了电场线,C选项错误;楞次定律是能量守恒定律在电磁感应现象中的具体体现,D选项正确.答案:D2.(2016届浦东新区一模)如图所示,一根条形磁铁自左向右穿过一个闭合线圈,则流过灵敏电流计的感应电流方向是()A.先向左,再向右 B.先向右,再向左C.始终向右 D.始终向左解析:条形磁铁从左向右进入螺线管的过程中,闭合线圈向左的磁通量增加,根据楞次定律可知,感应电流的磁场向右,根据安培定则可知,感应电流从右向左通过电流计.磁铁从左向右离开螺线管的过程中,闭合线圈向左的磁通量减少,根据楞次定律可知,感应电流的磁场向左,根据安培定则可知,感应电流从左向右通过电流计,A选项正确.答案:A3.(2016届温州十校联考)等腰直角三角形OPQ区域内存在匀强磁场.另有一等腰直角三角形导线框ABC以恒定的速度沿如图所示方向穿过磁场.关于线框中的感应电流,以下说法中正确的是()A.开始进入磁场时感应电流沿顺时针方向B.开始进入磁场时感应电流一定最大C.开始穿出磁场时感应电流一定最大D.开始穿出磁场时感应电流一定最小解析:导线框开始进入磁场时,根据楞次定律可知,闭合回路向下的磁通量增加,感应电流方向沿逆时针方向,A选项错误;根据导体切割磁感线可知,E=BLv,导线框刚进入磁场时有效切割长度最大,产生的感应电动势最大,感应电流最大,B选项正确;由于不知道两个三角形边长关系,故无法判断开始穿出磁场时有效切割长度的变化情况,C、D选项错误.答案:B4.(2016届南京模拟)有7个完全相同的金属框,表面涂有绝缘层.如图所示,A是一个框,B是两个框并列捆在一起,C是两个框上下叠放捆在一起,D是两个框前后叠放捆在一起.将他们同时从同一高度由静止释放,穿过水平向里的匀强磁场,最后落到水平地面.关于金属框的运动,以下说法正确的是()A.D最先落地 B.C最后落地C.A、B、D同时落地 D.B最后落地解析:设每一个金属框的质量为m,边长为L,电阻值为R,刚刚进入磁场时的速度为v,A图中,感应电动势为E=BLv,感应电流为I=,安培力为F=BIL=,根据牛顿第二定律得,aA==g-;同理,B图中,安培力为2F=,aB==g-;C图中,安培力为是F=,aC==g-; D图中,安培力为2F=,aD==g-;A、B、D三个金属框在进入磁场的过程中的加速度相等,运动的情况是完全相同的,同时落地,C选项正确.答案:C5.(多选)(2016届广东省阳江市高三期中)矩形线圈abcd,长ab=20 cm 宽bc=10 cm,匝数n=200匝,线圈回路总电阻R=5 Ω,整个线圈平面内均有垂直于线圈平面的匀强磁场穿过.若匀强磁场的磁感应强度B随时间t的变化规律如图所示,则()A.线圈回路中感应电动势随时间均匀变化B.线圈回路中产生的感应电流为0.4 AC.当t=0.3 s时,线圈的ab边所受的安培力大小为0.016 ND.在1 min内线圈回路产生的焦耳热为48 J解析:根据法拉第电磁感应定律可知,E=n=n·S=2 V,感应电动势恒定不变,A选项错误;根据欧姆定律得,I==0.4 A,B选项正确;分析图象可知,t=0.3 s时,磁感应强度B=0.2 T,安培力为F=nBIL=3.2 N,C选项错误;1 min内线圈回路产生的焦耳热为Q=I2Rt=48 J,D选项正确.答案:BD6.(多选)(2016届赣南州三校联考)如图所示,竖直光滑导轨上端接入一定值电阻R,C1和C2是半径都为a的两圆形磁场区域,其区域内的磁场方向都垂直于导轨平面向外,区域C1中磁场的磁感强度随时间按B1=b+kt(k>0)变化,C2中磁场的磁感强度恒为B2,一质量为m、电阻为r、长度为L的金属杆AB穿过区域C2的圆心C2垂直地跨放在两导轨上,且与导轨接触良好,并恰能保持静止.则()A.通过金属杆的电流大小为B.通过金属杆的电流方向为从B到AC.定值电阻的阻值为R=-rD.整个电路中产生的热功率P=解析:金属杆处于平衡状态,mg=B2I·2a,解得I=,A选项错误;安培力竖直向上,根据左手定则可知,电流方向从B到A,B选项正确;根据法拉第电磁感应定律得,E==·πa2=kπa2,根据闭合电路欧姆定律得,R=-r,C选项正确;整个电路中产生的热功率P=IE=,D选项正确.答案:BCD7.(2016届河北“五个一联盟”质检 )如图,闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合.若取磁铁中心O为坐标原点,建立竖直向下为正方向的x轴,则下图中最能正确反映环中感应电流i随环心位置坐标x变化的关系图象是()解析:闭合铜环穿过磁铁的过程中,环中磁通量变化不均匀,产生的感应电流不是线性变化,A选项错误;铜环在下落过程中,下落到磁铁顶端的速度小于底端的速度,故铜环下落到磁铁顶端产生的感应电流小于底端的感应电流,C选项错误;根据楞次定律可知,圆环靠近磁体的过程中向上的磁通量最大,而离开磁体的过程中向上的磁通量减小,磁通量的变化相反,感应电流的方向相反,D选项错误,B选项正确.答案:B8.(多选)(2016届长宁区一模)如图所示,有五根完全相同的金属杆,其中四根连在一起构成正方形闭合框架,固定在绝缘水平桌面上,另一根金属杆ab搁在其上且始终接触良好.匀强磁场垂直穿过桌面,不计ab杆与框架的摩擦,当ab杆在外力F作用下匀速沿框架从最左端向最右端运动过程中()A.外力F先减小后增大B.桌面对框架的水平作用力保持不变C.ab杆的发热功率先减小后增大D.正方形框架的发热功率总是小于ab杆的发热功率解析:ab杆匀速切割磁感线,产生恒定的感应电动势,闭合框架的左右部分并联,当ab杆运动到中央位置时,外电阻最大,根据欧姆定律可知,此时感应电流最小,故感应电流先减小再增大,外力和安培力平衡,故外力先减小再增大,A选项正确;电流流过框架,框架受到安培力作用,水平作用力和安培力平衡,安培力先减小再增大,故水平作用力先减小再增大,B选项错误;ab杆的发热功率Pr=I2r,先减小后增大,C选项正确;当ab在框架的中央时,内、外电阻相等,正方形框架的发热功率等于ab杆的发热功率,D选项错误.答案:AC9.(2016届河北联考)如图所示,在平面直角坐标系的第一象限分布着非匀强磁场,磁场方向垂直纸面向里,沿y轴方向磁场分布是不变的,沿x轴方向磁感应强度与x满足关系B=kx,其中k是一恒定的正数,正方形线框ADCB边长为a,A处有一极小开口AE,由粗细均匀的同种规格导线制成,整个线框放在磁场中,且AD边与y轴平行,AD边与y轴距离为a,线框AE两点与一电源相连,稳定时流入线框的电流为I,关于线框受到的安培力情况,下列说法正确的是()A.整个线框受到的合力方向与BD连线垂直B.整个线框沿y轴方向所受合力为0C.整个线框在x轴方向所受合力为ka2I,沿x轴正向D.整个线框在x轴方向所受合力为ka2I,沿x轴正向解析:分析题意可知,AD边所在位置的磁感应强度B1=ka,AD边受到的安培力大小为FAD=B1IL=ka2I,根据左手定则知,方向沿x轴负方向;BC边所在位置的磁感应强度B2=2ka,BC边受到的安培力大小为FBC=B2IL=2ka2I,根据左手定则知,方向沿x轴正方向;沿y轴方向磁场分布是不变的,故AB和CD边受到的安培力等大反向,相互抵消,整个线框受到的合力为FBC-FAD=ka2I,方向沿x轴正方向,B选项正确.答案:B10.(2016届本溪市二模)如图所示,灯泡A、B与固定电阻的阻值均为R,L是带铁芯的理想线圈,电源的内阻不计.开关S1、S2均闭合且电路达到稳定.已知电路中的各种元件均在安全范围之内.下列判断中正确的是()A.灯泡A中有电流通过,方向为a→bB.将S1断开的瞬间,灯泡A、B同时熄灭C.将S1断开的瞬间,通过灯泡A的电流最大值要比原来通过灯泡B的电流大D.将S2断开,电路达到稳定,灯泡A、B的亮度相同解析:理想线圈的电阻为零,电路稳定后,灯泡A被短路,没有电流流过,A选项错误;将S1断开的瞬间,线圈L发生自感现象,相当于电源,电流流过灯泡A,灯泡B被短路,B选项错误;根据自感现象的规律可知,流过L的电流是流过灯泡B与电阻R上电流之和,故通过灯泡A的电流最大值要比原来通过灯泡B的电流大,C选项正确;将S2断开,电路达到稳定,灯泡A的亮度低于灯泡B的亮度,D选项错误.答案:C第Ⅱ卷(非选择题,共60分)二、实验题(本题共1小题,共8分)11.(8分)(2016届新级模拟)某实验小组设计了如图(a)的实验电路,通过调节电源可在原线圈中产生变化的电流,用磁传感器可记录原线圈中产生的磁场B的变化情况,用电压传感器可记录副线圈中感应电动势E的变化情况,二者的变化情况可同时显示在计算机显示屏上.某次实验中得到的B-t、E-t图象如图(b)所示.(1)试观察比较这两组图象,可得出的定性结论是(请写出两个结论):________________________________________________________________________;________________________________________________________________________.(2)该实验小组利用两组图象求出六组磁感应强度变化率和对应的感应电动势E的数据,并建立坐标系,描出的六个点如图(c)所示.请在图(c)中绘出E-的图线.(3)在该实验中,若使用的副线圈的匝数为100匝,则由图线可求得该副线圈的横截面积为________cm2.(保留3位有效数字)解析:(1)分析图(b)可知,当磁感应强度B恒定时,感应电动势E为零,而磁感应强度B均匀变化,产生恒定的感应电动势E,并且磁感应强度B的变化率越大,产生的感应电动势E 越大.(2)连线如图所示:(3)根据法拉第电磁感应定律得,E=n=n·S,当线圈面积S和匝数n一定时,电动势与磁场的变化率成正比,E∝.分析图象可知,E-图象的斜率大小表示匝数n与线圈横截面积S的乘积,S=2.77(2.75~2.82)cm2.答案:(1)当磁感应强度B恒定时,感应电动势E为零,而磁感应强度B均匀变化,产生恒定的感应电动势E;磁感应强度B的变化率越大,产生的感应电动势E越大(2)见解析(3)2.77(2.75~2.82)三、计算题(本题共4小题,共52分)12.(12分)(2016届广东模拟)如图甲所示,半径为r、匝数为n的线圈,其两极分别与固定水平放置的平行金属板A、B连接,线圈处在匀强磁场中,磁场方向垂直线圈平面,磁感应强度随时间变化规律如图乙所示.在t=0时刻,将一质量为m、带电荷量为+q、重力不计的粒子从平行金属板中心位置由静止释放,发现在第一个周期内粒子未与金属板相撞.求:(1)平行金属板间的距离d应满足的条件;(2)在满足(1)的前提下,在T时间内粒子的最大动能为多大?解析:(1)前半个周期内,根据法拉第电磁感应定律得感应电动势U=n=n·πr2,金属板A、B 间产生匀强电场,场强E=,粒子在电场力作用下,加速运动;后半个周期内,感应电动势反向,粒子减速运动,在第一个周期内粒子未与金属板相撞,则≥2×·2 解得d≥ .(2)当平行板间距刚好等于d,且粒子运动时间为时,粒子的速度达到最大,则动能也最大,根据动能定理得,q=Ekm-0,解得,Ekm=.答案:(1)d≥ (2)13.(14分)(2016届开封高三联考)如图1,abcd为质量M的导轨,放在光滑绝缘的水平面上,另有一根质量为m的金属棒PQ平行bc放在水平导轨上,PQ棒左边靠着绝缘固定的竖直立柱e、f,导轨处于匀强磁场中,磁场以OO′为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度均为B.导轨bc段长l,其电阻为r,金属棒电阻为R,其余电阻均可不计,金属棒与导轨间的动摩擦因数μ.若在导轨上作用一个方向向左、大小恒为F的水平拉力,设导轨足够长,PQ棒始终与导轨接触.试求:(1)导轨运动的最大加速度amax;(2)流过导轨的最大感应电流Imax;(3)在如图2中定性画出回路中感应电流I随时间t变化的图象,并写出分析过程.解析:(1)导轨刚开始运动时,加速度最大,根据牛顿第二定律得,F-μmg=Mamax,解得amax=.(2)随着导轨速度增加,bc边切割磁感线,感应电流增大,当加速度为零时,速度最大,感应电流最大,F-BImaxl-μ(mg-BImaxl)=0,联立解得Imax=.(3)画出图象如下:从刚拉动开始计时,t=0时,v=0,I=0;t=t1时,a=0,v最大,I=Im;0~t1之间,导轨做加速度减小的加速运动,a=0时,v保持不变,I保持不变.答案:(1)(2)(3)见解析。
电磁感应习题答案及解法201014
电磁感应习题及答案一、 选择题1.如图1所示,两根无限长平行直导线载有大小相等、方向相反的电流I ,并都以dtdI的变化率增长,一圆形金属线圈位于导线平面内,则()A 线圈中无感应电流 ()B 线圈中感应电流为顺时针方向()C 线圈中感应电流为逆时针方向 ()D 线圈中感应电流方向不确定[ B ]解: 由楞次定律,可判断出感应电流方向为顺时针。
2.如图2所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?()A 载流螺线管向线圈靠近 ()B 载流螺线管离开线圈()C 载流螺线管中电流减小 ()D 抽出载流螺线管中的铁心[ A]解:由楞次定律,可判断出必须增加线圈中的电流或将线圈想右移动。
3.一边长为l 的正方形线框,置于均匀磁场中,线框绕OO ’轴以匀角速度ω旋转(如图3所示)。
设0t =时,线框平面处于纸面内,则任一时刻感应电动势的大小为()A t B l ωcos 22 ()B B l 2ω ()C t B l ωωcos 212 ()D t B l ωωcos 2()E t B l ωωsin 2[ D ]解:t B l ωφsin 2= t B l dtd ωωφεcos 2=-=Oω图1 图2 图34.如图所示,导体棒AB 在均匀磁场B中绕通过C 点的垂直于棒长且磁场沿磁场方向的轴OO ’转动(角速度与B同方向),BC 的长度为棒长的41,则()A A 点比B 点电势高 ()B A 与B 点电势相等 ()C A 点比B 点电势低 ()D 稳恒电流从A 点流向B 点[A]()04144321214342224342434434〉=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛====•⨯=⎰⎰⎰----L LL L LL L L BL L L B Bl Bldl vBdl l d B v ωωωωε5.如图5所示,长度为l 的直导线CD 在均匀磁场B 中以速度υ移动,直导线CD 中的电动势为()A υBl ()B θυsin Bl ()C θυ cos Bl ()D 0[D]解: ()02cos sin ==•⨯=πθεvBL L B v6.如图6所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线,外磁场垂直水平面向下,当外力使ab 向右平移时,cd()A 不动 ()B 转动 ()C 向左移动 ()D 向右移动[D]7.对于单匝线圈取自感系数的定义为I L φ=.当线圈的几何形状、大小及周围磁介质分布不变,切无铁磁性质时,若线圈中的电流强度变大,则线圈的自感系数L()A 变大,与电流成正比关系 ()B 变大,但与电流不成反比关系 ()C 变小,与电流成反比关系 ()D 不变 [D]8.如图7所示,一导体棒ab 在均匀磁场中沿金属导轨向左作匀加速运动,磁场方向垂直导轨所在平面,若导轨电阻忽略不计,并设铜心磁导率为常数,则达到稳定后在电容器的C 极板上会()A 带有一定量的正电荷 ()B 带有一定量的负电荷 ()C 带有越来越多的正电荷 ()D 带有越来越多的负电荷[A]9.在圆柱形空间内有一磁感应强度为B 的匀强磁场,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图( a)两相距L=0.5m的平行金属导轨固定于水平面上,导轨左端与阻值R=2Ω的电阻连接,导轨间虚线右侧存在垂直导轨平面的匀强磁场,质量 m=0.2kg的金属杆垂直于导轨上,与导轨接触良好,导轨与金属杆的电阻可忽略,杆在水平向右的恒定拉力作用下由静止开始运动,并始终与导轨垂直,其v- t 图像如图(b)所示,在15s 时撤去拉力,同时使磁场随时间变化,从而保持杆中电流为0,求:( 1)金属杆所受拉力的大小为F;( 2)0-15s 匀强磁场的磁感应强度大小为;( 3)15-20s 内磁感应强度随时间的变化规律。
2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m ,长为 2d, d=0.5m,上半段 d 导轨光滑,下半段 d 导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg 的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1 Ω,其他部分的电阻均不计,重力加速度取g=10m/s 2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R 上的电量 q;(3)整个运动过程中,电阻R 产生的焦耳热 Q.3、如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30角,上端连接阻值= 1. 5Ω的电阻;质量为= 0. 2kg 、阻值r= 0. 5Ω的金属棒 ab 放在两导轨上,距离导轨最上端为L2= 4m,棒与导轨垂直并保持良好接触。
整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示。
为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F,g=10m/s 2 求:(1)当t= 2s 时,外力F1的大小;(2)当t= 3s 前的瞬间,外力F2的大小和方向;( 3)请在图丙中画出前4s 外力F随时间变化的图像(规定F方向沿斜面向上为正);4、如图 33 - 11 甲所示,一足够长阻值不计的光滑平行金属导轨MN、 PQ之间的距离 L=1.0m,NQ两端连接阻值R =1.0 Ω的电阻,磁感应强度为 B 的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=30°.一质量= 0.20 kg 、阻值r = 0.50Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量= 0.60 kg的重物Pm M相连.细线与金属导轨平行.金属棒沿导轨向上滑行的速度v 与时间 t 之间的关系如图33-11乙所示,已知金属棒在 0~ 0.3 s内通过的电量是0.3 ~ 0.6 s内通过电量的,g=10 m/s2,求:甲乙图 33- 11(1)0 ~ 0.3 s内棒通过的位移;(2) 金属棒在0~ 0.6 s内产生的热量.5、如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距的电阻连接,右端通过导线与阻值R L= 4 W的小灯泡 L 连接.在d= 0.5 m,电阻不计,左端通过导线与阻值CDEF矩形区域内有竖直向上的匀强磁场,R=2WCE长l =2m,有一阻值r=2 W的金属棒PQ放置在靠近磁场边界CD处. CDEF区域内磁场的磁感应强度B 随时间变化如图22 乙所示.在 t =0至 t =4s内,金属棒 PQ保持静止,在 t =4s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.知从 t =0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化,求:已(1)通过小灯泡的电流.(2)金属棒PQ在磁场区域中运动的速度大小.参考答案一、计算题1、( 1) 0.24N ;( 2) 0.4 T;( 3)( 2)在 10 — 15s 时间段杆在磁场中做匀速运动,因此有以 F=0.24N,μmg=0.16N代入解得 B0=0.4 T( 3)由题意可知在15— 20s 时间段通过回路的磁通量不变,设杆在15— 20s 内运动距离为d,15s后运动的距离为x B( t ) L( d+x)= B0Ld其中 d=20mx=4( t -15)-0.4(t -15)2由此可得2、考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化..专题:电磁感应——功能问题.分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.( 3)导体棒在滑动时摩擦生热为Q f =2μ mgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:( 1)导体棒在粗糙轨道上受力平衡:由 mgsin θ =μ mgcos θ +BIL得: I=0.5A由 BLv=I (R+r)代入数据得: v=2m/s( 2)进入粗糙导轨前,导体棒中的平均电动势为:==导体棒中的平均电流为:==所以,通过导体棒的电量为:q=△ t==0.125C(3)由能量守恒定律得: 2mgdsin θ =Q电 +μ mgdcos θ +mv2得回路中产生的焦耳热为:Q电 =0.35J所以,电阻R 上产生的焦耳热为:Q=Q 电=0.2625J答:( 1)导体棒到达轨道底端时的速度大小是2m/s ;( 2)导体棒进入粗糙轨道前,通过电阻R 上的电量q 是 0.35C ;(3)整个运动过程中,电阻R 产生的焦耳热 Q 是 0.2625J .点评:运用平衡条件列方程,关键要正确推导本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,出安培力与速度的关系式,分析出能量是怎样转化的.3、【知识点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律;法拉第电磁感应定律;电磁感应中的能量转化. J2 L2 L3【答案解析】( 1)0;( 2) 0.5N ,方向沿斜面向下;( 3)如图所示.解析:( 1)当 t=2s 时,回路中产生的感应电动势为:E=,B2=1T,应电流为:I=;根据楞次定律判断可知,ab 所受的安培力沿轨道向上;ab 棒保持静止,受力平衡,设外力沿轨道向上,则由平衡条件有:mgsin30 ° -B 2IL 1-F 1=0可解得: F1 =mgsin30 ° -B 2IL 1 =0.2 × 10× sin30 °-1 × 1× 1=0( 2)当 t=3s 前的瞬间,由图可知,B3 =1.5T ,设此时外力沿轨道向上,则根据平衡条件得:F2+B3 IL 1-mg sin30 ° =0则得: F2=mg sin30 ° -B 3IL 1=0.2 × 10 × sin30 ° -1.5 × 1× 1=-0.5N ,负号说明外力沿斜面向下.( 3)规定 F 方向沿斜面向上为正,在0-3s 内,根据平衡条件有:mgsin30 ° -BIL 1-F=0 而 B=0.5t ( T)则得: F=mgsin30 ° -BIL 1=0.2 × 10× sin30 ° -0.5T × 1× 1=1-0.5T ( N)当 t=0 时刻, F=1N.在 3-4s 内, B 不变,没有感应电流产生,ab 不受安培力,则由平衡条件得:F=mgsin30 ° =0.2×10 × sin30 ° N=1N画出前4s 外力 F 随时间变化的图象如图所示.【思路点拨】(1)由图知, 0-3s 时间内, B 均匀增大,回路中产生恒定的感应电动势和感应电流,根据法拉第电磁感应定律和欧姆定律求出感应电流,由平衡条件求解t=2s 时,外力F1的大小.( 2)与上题用同样的方法求出外力F2的大小和方向.(3)由 B-t图象得到 B 与 t 的关系式,根据平衡条件得到外力 F 与 t 的关系式,再作出图象.解决本题的关键掌握法拉第电磁感应定律、平衡条件、安培力公式和能量守恒定律等等电磁学和力学规律,得到解析式,再画图象是常用的思路,要多做相关的训练.4、解析: (1) 金属棒在0.3 ~ 0.6 s内通过的电量是q1=I 1t 1=金属棒在0~ 0.3 s内通过的电量q2==由题知 1 =q 2,代入解得x2=0.3 m.q(2)金属棒在 0~ 0.6 s 内通过的总位移为x=x1+x2=vt1+x2,代入解得x= 0.75 m 根据能量守恒定律Mgx- mgx sinθ- Q=( M+m) v2代入解得Q=2.85 J由于金属棒与电阻R串联,电流相等,根据焦耳定律Q= I 2Rt,得到它们产生的热量与电阻成正比,所以金属棒在0~0.6 s内产生的热量Q r=Q=1.9 J.答案: (1)0.3 m(2)1.9 J5、【解析】( 1)在t= 0 至t= 4s 内,金属棒保持静止,磁场变化导致电路中产生感应电动势.电路为r与R并联,再与RL 串联,电路的总电阻=5Ω①此时感应电动势=0.5 ×2× 0.5V=0.5V②通过小灯泡的电流为:= 0.1A③( 2)当棒在磁场区域中运动时,由导体棒切割磁感线产生电动势,电路为R 与 R L并联,再与r 串联,此时电路的总电阻=2+Ω=Ω④由于灯泡中电流不变,所以灯泡的电流I L=0.1A,则流过棒的电流为= 0.3A⑤电动势⑥解得棒 PQ在磁场区域中v=1m/s。