延寿县第一中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延寿县第一中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.α是第四象限角,,则sinα=()
A.B.C.D.
2.在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.若sinC+sin(B﹣A)=sin2A,则△ABC的形状为()
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰三角形或直角三角形
3.已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于()
A.8 B.1 C.5 D.﹣1
4.若复数z=2﹣i (i为虚数单位),则=()
A.4+2i B.20+10i C.4﹣2i D.
5.已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且∠F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()
A.2 B. C. D.4
6.设函数f(x)的定义域为A,若存在非零实数l使得对于任意x∈I(I⊆A),有x+l∈A,且f(x+l)≥f(x),则称f(x)为I上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为()
A.0<a<1 B.﹣≤a≤C.﹣1≤a≤1 D.﹣2≤a≤2
7.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥3},图中阴影部分所表示的集合为
()
A.{1} B.{1,2} C.{1,2,3} D.{0,1,2}
8. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .
B .20
C .21
D .31
9. 函数f (x )=e ln|x|+的大致图象为( )
A .
B .
C .
D .
10.设为虚数单位,则( )
A .
B .
C .
D .
11.定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣
>0的解集为( ) A .(2,+∞)
B .(0,2)
C .(0,4)
D .(4,+∞)
12.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )
A .
B .
C .
D .
二、填空题
13.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 14.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}2
2sin
cos []1x x +=的实数解为6π-;
③若3n n a ⎡⎤
=⎢⎥⎣⎦
(n N *∈),则数列{}n a 的前3n 项之和为2
3
1
22n n -;
④当0100x ≤≤时,函数{}22
()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13
x
g x x x =⋅-
-的 零点个数为n ,则100m n +=.
其中的真命题有_____________.(写出所有真命题的编号)
【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
15.直线ax+
by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐
标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .
16.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;
②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2; ⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.
17.若函数f (x )=3sinx ﹣4cosx ,则f ′()= .
18.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.
【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.
三、解答题
19.(本小题满分12分)
数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .
20.已知A (﹣3,0),B (3,0),C (x 0,y 0)是圆M 上的三个不同的点. (1)若x 0=﹣4,y 0=1,求圆M 的方程;
(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.
21.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为
;
(1)求f(x)的对称轴方程和单调递增区间;
(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.
22.设,证明:
(Ⅰ)当x>1时,f(x)<(x﹣1);
(Ⅱ)当1<x<3时,.
23.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.
(I)求证:平面BCE⊥平面A1ABB1;
(II)求证:EF∥平面B1BCC1;
(III)求四棱锥B﹣A1ACC1的体积.
24.如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:AD⊥BC
(Ⅱ)若AB=4,BC=2,且二面角A﹣BD﹣C所成角θ的正切值是2,试求该几何体ABCDE的体积.
延寿县第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:∵α是第四象限角,
∴sinα=,
故选B.
【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.
2.【答案】D
【解析】解:∵sinC+sin(B﹣A)=sin2A,
∴sin(A+B)+sin(B﹣A)=sin2A,
∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,
∴2cosAsinB=sin2A=2sinAcosA,
∴2cosA(sinA﹣sinB)=0,
∴cosA=0,或sinA=sinB,
∴A=,或a=b,
∴△ABC为等腰三角形或直角三角形
故选:D.
【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.
3.【答案】B
【解析】解:∵函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,
∴a=2×0+1=1.
故选:B.
4.【答案】A
【解析】解:∵z=2﹣i,
∴====,
∴=10•=4+2i,
故选:A.
【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.
5.【答案】C
【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,
由椭圆和双曲线的定义可知,
设|MF1|=r1,|MF2|=r2,|F1F2|=2c,
椭圆和双曲线的离心率分别为e1,e2
∵∠F1MF2=,
∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①
在椭圆中,①化简为即4c2=4a2﹣3r1r2,
即=﹣1,②
在双曲线中,①化简为即4c2=4a12+r1r2,
即=1﹣,③
联立②③得,+=4,
由柯西不等式得(1+)(+)≥(1×+×)2,
即(+)2≤×4=,
即+≤,
当且仅当e
=,e2=时取等号.即取得最大值且为.
1
故选C.
【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.6.【答案】B
【解析】解:定义域为R的函数f(x)是奇函数,
当x≥0时,
f(x)=|x﹣a2|﹣a2=图象如图,
∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),
1大于等于区间长度3a2﹣(﹣a2),
∴1≥3a2﹣(﹣a2),
∴﹣≤a≤
故选B
【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.
7.【答案】B
【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.
由韦恩图可知阴影部分表示的集合为(C U B)∩A,
又A={1,2,3,4,5},B={x∈R|x≥3},
∵C U B={x|x<3},
∴(C U B)∩A={1,2}.
则图中阴影部分表示的集合是:{1,2}.
故选B.
【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.
8.【答案】C
【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,
∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1
=2(4+3+2+1)+1=21.
故选:C.
【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.
9.【答案】C
【解析】解:∵f(x)=e ln|x|+
∴f(﹣x)=e ln|x|﹣
f(﹣x)与f(x)即不恒等,也不恒反,
故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,
可排除A,D,
当x→0+时,y→+∞,故排除B
故选:C.
10.【答案】C
【解析】【知识点】复数乘除和乘方
【试题解析】
故答案为:C
11.【答案】B
【解析】解:定义在(0,+∞)上的函数f(x)满足:<0.
∵f(2)=4,则2f(2)=8,
f(x)﹣>0化简得,
当x<2时,
⇒成立.
故得x<2,
∵定义在(0,+∞)上.
∴不等式f(x)﹣>0的解集为(0,2).
故选B.
【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.
12.【答案】C
【解析】解:因为x 1<x 2<x 3<x 4<x 5<﹣1,题目中数据共有六个,排序后为x 1<x 3<x 5<1<﹣x 4<﹣x 2,
故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,
故这组数据的中位数是(x 5+1).
故选:C .
【点评】注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
二、填空题
13.【答案】2300 【解析】111]
试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪
⎪⎨⎧≥+≥+≥≥140
20y 10x 506y 5x 0y 0
x ,求目标函数300y 200x Z +=的
最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300
.
1111]
考点:简单线性规划.
【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设
甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 14.【答案】①③
【解析】对于①,由高斯函数的定义,显然1[]x x x -<≤,①是真命题;对于②,由{}2
2sin
cos []1x x +=得,
{}22sin 1cos []x x =-,即{}22sin sin []x x =.当12x << 时,011x <-<,0sin(1)sin1x <-<,此时
{}22sin sin []x x =化为22sin (1)sin 1x -=,方程无解;当23x ≤< 时,021x ≤-<,0sin(2)sin1x ≤-<,此时{}2
2sin
sin []x x =化为sin(2)sin 2x -=,所以22x -=或22x π-+=,即4x =或x π=,所以原方
程无解.故②是假命题;对于③,∵3n n a ⎡⎤
=⎢⎥⎣⎦(n N *∈),∴1103a ⎡⎤==⎢⎥⎣⎦,2203a ⎡⎤==⎢⎥⎣⎦,3313a ⎡⎤
==⎢⎥⎣⎦
,4413a ⎡⎤==⎢⎥⎣⎦,…,31311[]133n n a n n --⎡⎤==-=-⎢⎥⎣⎦,33[]3n n a n n ⎡⎤
===⎢⎥⎣⎦
,所以数列{}n a 的前3n 项之和为3[12(1)]n n +++-+=231
22
n n -,故③是真命题;对于④,由
15.【答案】.
【解析】解:∵△AOB是直角三角形(O是坐标原点),
∴圆心到直线ax+by=1的距离d=,
即d==,
整理得a2+2b2=2,
则点P(a,b)与点Q(1,0)之间距离d==≥,
∴点P(a,b)与点(1,0)之间距离的最小值为.
故答案为:.
【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.
16.【答案】②③④
【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;
对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),
可以认为是圆(x﹣1)2+(y﹣2)2=1的切线系,故②正确;
对于③:存在定圆C,使得任意l∈L,都有直线l与圆C相交,
如圆C:(x﹣1)2+(y﹣2)2=100,故③正确;
对于④:任意l1∈L,必存在唯一l2∈L,使得l1∥l2,作图知④正确;
对于⑤:任意意l1∈L,必存在两条l2∈L,使得l1⊥l2,画图知⑤错误.
故答案为:②③④.
【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.
17.【答案】4.
【解析】解:∵f′(x)=3cosx+4sinx,
∴f′()=3cos+4sin=4.
故答案为:4.
【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.
18.【答案】
15
(,)
43
-
三、解答题
19.【答案】(1)1
22
n
n
b+
=-;(2)22
2(4)
n
n
S n n
+
=-++.
【解析】
试题分析:(1)已知递推公式
1
22
n n
b b
+
=+,求通项公式,一般把它进行变形构造出一个等比数列,由等比
数列的通项公式可得
n
b,变形形式为
1
2()
n n
b x b x
+
+=+;(2)由(1)可知
1
22(2)
n
n n n
a a
b n
-
-==-≥,
这是数列{}
n
a的后项与前项的差,要求通项公式可用累加法,即由
112
()()
n n n n n
a a a a a
---
=-+-+ 211
()
a a a
+-+求得.
试题解析:(1)
11
2222(2)
n n n n
b b b b
++
=+⇒+=+,∵1
2
2
2
n
n
b
b
+
+
=
+
,
又
121
224
b a a
+=-+=,
∴231
2(21)
(2222)222222
21
n
n n
n
a n n n
+
-
=++++-+=-+=-
-
.
∴224(12)(22)
2(4)122
n n n n n S n n +-+=
-=-++-. 考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式. 20.【答案】
【解析】解:(1)设圆的方程为x 2+y 2
+Dx+Ey+F=0
圆的方程为x 2+y 2
﹣8y ﹣9=0…
(2)直线CD 与圆M 相切O 、D 分别是AB 、BR 的中点 则OD ∥AR ,∴∠CAB=∠DOB ,∠ACO=∠COD , 又∠CAO=∠ACO ,∴∠DOB=∠COD 又OC=OB ,所以△BOD ≌△COD ∴∠OCD=∠OBD=90°
即OC ⊥CD ,则直线CD 与圆M 相切. … (其他方法亦可)
21.【答案】
【解析】解:(1)函数f (x )=cos (ωx+)的图象的两对称轴之间的距离为
=
,
∴ω=2,f (x )=cos (2x+).
令2x+
=k π,求得x=
﹣
,可得对称轴方程为 x=
﹣
,k ∈Z .
令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,
可得函数的增区间为,k∈Z.
(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.
当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.
∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};
f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.
22.【答案】
【解析】证明:(Ⅰ)(证法一):
记g(x)=lnx+﹣1﹣(x﹣1),则当x>1时,g′(x)=+﹣<0,
又g(1)=0,有g(x)<0,即f(x)<(x﹣1);…4′
(证法二)由均值不等式,当x>1时,2<x+1,故<+.①
令k(x)=lnx﹣x+1,则k(1)=0,k′(x)=﹣1<0,故k(x)<0,即lnx<x﹣1②
由①②得当x>1时,f(x)<(x﹣1);
(Ⅱ)记h(x)=f(x)﹣,由(Ⅰ)得,
h′(x)=+﹣
=﹣
<﹣
=,
令g(x)=(x+5)3﹣216x,则当1<x<3时,g′(x)=3(x+5)2﹣216<0,
∴g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,
∴h′(x)<0,…10′
因此,h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,
于是,当1<x<3时,f(x)<…12′
23.【答案】
【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,
所以,BB1⊥BC.
又因为AB⊥BC且AB∩BB1=B,
所以,BC⊥平面A1ABB1.
因为BC⊂平面BCE,
所以,平面BCE⊥平面A1ABB1.
(II)证明:取BC的中点D,连接C1D,FD.
因为E,F分别是A1C1,AB的中点,
所以,FD∥AC且.
因为AC∥A1C1且AC=A1C1,
所以,FD∥EC1且FD=EC1.
所以,四边形FDC1E是平行四边形.
所以,EF∥C1D.
又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,
所以,EF∥平面B1BCC1.
(III)解:因为,AB⊥BC
所以,.
过点B作BG⊥AC于点G,则.
因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1
所以,平面A1ACC1⊥底面ABC.
所以,BG⊥平面A1ACC1.
所以,四棱锥B﹣A1ACC1的体积.
【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.
24.【答案】
【解析】(Ⅰ)证明:∵AB是圆O的直径,
∴AC⊥BC,
又∵DC⊥平面ABC
∴DC⊥BC,
又AC∩CD=C,
∴BC⊥平面ACD,
又AD⊂平面ACD,
∴AD⊥BC.
(Ⅱ)解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示.
则C(0,0,0),B(2,0,0),,D(0,0,a).
由(Ⅰ)可得,AC⊥平面BCD,
∴平面BCD的一个法向量是=,
设=(x,y,z)为平面ABD的一个法向量,
由条件得,=,=(﹣2,0,a).
∴即,
不妨令x=1,则y=,z=,
∴=.
又二面角A﹣BD﹣C所成角θ的正切值是2,
∴.
∴=cosθ=,
∴==,解得a=2.
∴V ABCDE=V E﹣ADC+V E﹣ABC
=+
=+
=
=8.
∴该几何体ABCDE的体积是8.
【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.。