安徽桐城白马中学中考数学模拟试卷及答案(二)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B C
白马中学2009中考数学模拟试卷(二)
注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟 一、选择题(本题共10 小题,每小题4 分,满分40分) 1. 1.-12
的绝对值是
( ) A .-2
B .-12
C .12
D .2
2.下列运算正确的是 ( ) A .a 3÷a 2=a B .a 3+a 2=a 5 C .(a 3)2=a 5
D .a 2·a 3
=a 6
3.下列几何体,正(主)视图是三角形的是 (
)
A .
B .
C .
D . 4.下列命题是假命题...
的是 ( ) A .等角的补角相等 B .内错角相等 C .两点之间,线段最短 D .两点确定一条直线
5.关于x 的一元二次方程22(1)10a x ax a -++-=的一个根是0,则a 的值为 A .1 B. 0 C. -1 D. ±1 6.如果等边三角形的边长为6,那么它的内切圆的半径为 ( ) A .3 B
. C
. D

7.下列图形中能肯定∠1=∠2的是
(
)
A .
B .
C .
D .
8.甲、乙、丙三人参加央视的“幸运52”.幸运的是,他们都得到了一件精美的礼物.
其过程是这样的:墙上挂着两串礼物(如图),每次只能从其中一串的最下端取一件,直到礼物取完为止.甲第一个取得礼物,然后,乙、丙依次取得第2件、第3件礼物.事后他们打开这些礼物仔细比较发现礼物B 最精美,那么取得礼物B 可能性最大的是
9.反比例函数y=
1
k
x
-
的图象,在每个象限内,y的值随x值的增大而增大,
则k的值可( )
A.0 B.1 C.2 D.3
10.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,
若用x,y表示矩形的长和宽(x>y),则下列关系式中不正
确的是
A. x+y=12 .
B. x-y=2.
C. xy=3
D. x2+y2=144.
二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)
11. 我国的国土面积为9596960平方千米,这个数用科学记数
_______________平方千米(保留三个有效数字).
12. 如图,半圆的直径AB=__________.
13. 将抛物线2
y x
=的图像向右平移3个单位,则平移后的抛物线的解析式为
___________
14.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a+b的值
为_________________
表一表二表三
三.(本题共 2 小题,每小题 8 分,满分 16 分)
15. 先化简代数式⎪




-
+
+2
2
2a
a
a
÷
4
1
2-
a
,然后选取一个合适
..的a值,代入求值.
第10题图
第12题图
16.“方程”是现实生活中十分重要的数学模型.请结合你的生活实际编写一道二元
一次方程组的应用题,并使所列出的二元一次方程组为
2
60
x y
x y
=


+=


,并写出求解过程
四、(本题共 2 小题,每小题 8 分,满分 16 分)
17.(1)按要求在网格中画图:画出图形“”关于直线l的对称图形,再将所画图
形与原图形组成的图案向右平移2格;
(2)根据以上构成的图案,请写一句简短、贴切的解说词:。

18. 某公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,计划
这两种产品全年共生产20件,这20件的总产值P不少于1140万元,且不多于1170
(1)设安排生产甲产品X件(X为正整数),写出X应满足的不等式组;
(2)请你帮助设计出所有符合题意的生产方案。

五、(本题共 2 小题,每小题 10 分,满分 20分)
19、 如图Rt ABO △中,30A ∠=,2OB =,如果将Rt ABO △在坐标平面内,绕原点O 按顺时针方向旋转到OA B ''的位置. (1)求点B '的坐标.
(2)求顶点A 从开始到A '点结束经过的路径长.
20、声音在空气传播的速度y (m/s)是气温x (℃)的一次函数,下表列出了一组不同气
温的音速:
(2)气温x =23℃时,某人看到烟花燃放5s 后才听到声响,那么此人与烟花燃放地约相距多远? x
六、(本题满分 12 分)
21、三角形中位线定理,是我们非常熟悉的定理.
①请你在下面的横线上,完整地叙述出这个定理: . ②根据这个定理画出图形,写出已知和求证,并对该定理给出证明.
.七、(本题满分 12分)
22、如图,AB 为⊙O 的直径,弦CD AB ⊥于点M ,过B 点作 BE CD ∥,交AC 的延长线于点E ,连接BC 。

(1)求证:BE 为⊙O 的切线;
(2)如果1
6tan 2
CD BCD =∠=,,求⊙O 的直径。

八、(本题满分 14 分)
23|、如图,一元二次方程2230x x +-=的二根12x x ,(12x x <)是抛物线2y ax bx c =++与
x 轴的两个交点B C ,的横坐标,且此抛物线过点(36)A ,.
(1)求此二次函数的解析式.
(2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标. (3)在x 轴上有一动点M ,当MQ MA +取得最小值时,求M 点的坐标.
E
数学参考答案及评分标准
11、9.60×106 12、22 13 2(3)y x =- 14、37 三.(本题共2小题,每小题8分,满分16分)
15、解: 方法一: 原式=41
)2)(2()2(2)2)(2()2(2
-÷⎥⎦
⎤⎢⎣⎡-+++-+-a a a a a a a a

)2)(2()
2)(2(4
2-+-++a a a a a =42+a
(6)

(注:分步给分,化简正确给5分.)
x
6)
方法二:原式=)2)(2(222-+⎪⎭
⎫ ⎝⎛-++a a a a a =)2(2)2(++-a a a
=42+a
…………………………6分
取a =1,得
…………………………7分 原式=5
(8)

(注:答案不唯一.如果求值这一步,取a =2或-2,则不给分.)
16、应用题:我家里有60棵树,其中杨树是柳树的2倍,求杨树和柳树各有多少棵?
·················································································································· 5分 解答过程:设杨树x 棵,柳树y 棵 ····································································· 6分
依题意:602x y x y +=⎧⎨=⎩
①② 解得4020x y =⎧⎨=⎩ ······························································· 7分
答:我家有杨树40棵,柳树20棵. ·································································· 8分
四、(本题共2小题,每小题8分,共16分)
17、
(1)按步骤给分,每步3分………………………6分
(2)解说合理即可,如爱心传递或我们心连心等…………………………………………………8分 18、(1)1140≤45x+75(20-x)≤1170…………………………4分
(2)11≤x ≤12…………………………5分
∵x 为正整数
∴当x=11时,20-11=9 当x=12时20-12=8
∴生产甲产品11件,生产乙产品9件
或 生产甲产品12件,生产乙产品8件。

…………………8分
五、(本题共2小题,每小题10分,满分20分) 19. 解:(1)过点B '作B D x '⊥轴于D ····························································· 3分 由题意知,30A '∠=°,60A OB ''∠=°,
24OB OA ''==,………………………………2分
1
cos60212OD OB '===∴°·…………………4分
sin 6022
DB OB ''===°·
5分 B '∴
的坐标为:(1B '………………………6分
(2)60AOB ∠=∵°,18060120AOA '∠=-=∴°°°········································· 7分
A ∴由开始到结束所经过的路径长为:120π48π
1803
=
·········································· 10分 20.解:(1)y =kx +b ∴331,
5334.
b k b =⎧⎨
+=⎩
∴k =35
.
∴33315
y x =+………………………………(7分) (2)当x =23时, 3
23331344.85
y =⨯+=.
∴5×344.8=1724.
∴此人与烟花燃放地相距约1724m …………(3分)
六、(本题满分 12 分)
21、(1)三角形的中位线平行于第三边且等于第三边的一半. ································· 2分 (2)已知:DE 是ABC △的中位线求证:DE BC ∥,1
2
DE BC =
·················································································································· 5分 证明:延长DE 到F ,使EF DE = ·································································· 6分 连接CF
AE CE =∵,AED CEF ∠=∠
ADE CEF ∴△≌△ ·
····················································································· 7分 AD CF ADE CFE =∠=∠∴, ·
······································································· 8分 AD CF ∴∥ ·
······························································································· 9分 AD BD =∵ BD CF =∴ ·
······························································································· 10分 ∴四边形BCFD 是平行四边形 ·
······································································· 11分 DE BC ∴∥,1
2
DE BC = ·
·········································································· 12分
x
22. 证明:BE CD ∥,AB CD ⊥, AB BE ∴⊥. 又AB 为直径,
BE ∴为⊙O 的切线. ·
···················································································· 3分 (2)AB 为直径,AB CD ⊥,
11
6322
CM CD ∴==⨯=. ·
··········································································· 5分 BC BD =.
BAC BCD ∴∠=∠.
1tan 2BCD ∠=,1
2BM CM ∴=.
13
22BM CM ∴==. ·
··················································································· 8分 1tan tan 2
CM BAC BCD AM ∴=∠=∠=, 6AM ∴=. ·
······························································································· 10分 ⊙O 的直径315
622
AB AM BM =+=+=. ······················································ 12分
八、(本题满分 14 分) 23. 解:(1)解方程2230x x +-=
得1231x x =-=, ····························································································· 1分
∴抛物线与x 轴的两个交点坐标为:(30)(10)C B -,,
, ·············································· 2分 设抛物线的解析式为
(3)(1)y a x x =+-
···························································································· 3分 (36)A ∵,在抛物线上 6(33)(31)a =+-∴· 1
2
a =
∴ ········································································ 4分 ∴抛物线解析式为:213
22
y x x =+- ·
·································································· 5分 (2)由22131
(1)2222
y x x x =+-=+- ································································· 6分
∴抛物线顶点P 的坐标为:(12)--,
,对称轴方程为:1x =- ·································· 7分 设直线AC 的方程为:y kx b =+ (36)(30)A C -∵,,,在该直线上 3630k b k b +=⎧⎨-+=⎩∴解得31b k =⎧⎨=⎩
∴直线AC 的方程为:3y x =+ ·
······································ 9分 将1x =-代入3y x =+得2y =
Q ∴点坐标为(12)-,
······················································································· 10分
设直线A Q '方程为y kx b =+ 362k b k b +=-⎧⎨-+=⎩∴解得02b k =⎧⎨=-⎩
∴直线A C ':2y x =- ···················································································· 12分 令0x =,则0y = ·························································································· 13分
M ∴点坐标为(00),
······················································································· 14分
x
6)。

相关文档
最新文档