第6讲空间向量及其运算4(老师)

合集下载

空间向量及其运算的坐标表示课件-2022-2023学年高二上学期数学人教A版选择性必修第一册

空间向量及其运算的坐标表示课件-2022-2023学年高二上学期数学人教A版选择性必修第一册
对应一个向量 O A ,且点A 的位置由向量 O A 唯一确定,由空间向量基本
定理,存在唯一的有序数组(x,y,z),使 OA xi y j z k .
在单位正交基底 { i ,j ,k } 下与向量对应
z
的有序数组(x,y,z),叫做点A在空间直
A
角坐标系中的坐标,记作A(x,y,z),其
6.平面向量的夹角余弦值如何用坐标表示?
x1 x2 y1 y2
a b
cos

.
2
2
2
2
| a || b |
x1 y1 x2 y2
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
(a1+b1,a2+b2,a3+b3)
(1)+=
Ԧ

(a1-b1,a2-b2,a3-b3)
(2)-=
Ԧ
(λa1,λa2,λa3)
(3)λ=
Ԧ
(λ∈R).
a1b1+a2b2+a3b3
(4)·=
Ԧ
.

=(a
Ԧ
1,a2,a3)=a1i+a2j+a3k,=(b1,b2,b3)
=b1i+b2j+b3k,所以 ·=(a
中x 叫做点A 的横坐标、y 叫做点A 纵坐标、
O
z 叫做点A 竖坐标.
x
y
在空间直角坐标系Oxyz中,给定向量 a ,作 OA a ,由空间向量基
本定理,存在唯一的有序数组(x,y,z),使 a xi y j z k .
有序实数组(x,y,z)叫做 a 在空间直角坐标系Oxyz中的坐标,上式可

高考理科第一轮复习课件(7.6空间向量及其运算)

高考理科第一轮复习课件(7.6空间向量及其运算)


【解析】∵ OP (1 t)OA tOB, ∴ OP OA t(OB OA), ∴ AP tAB, ∴A,B,P三点共线. 答案:②






考向 1
空间向量的线性运算
【典例1】(1)若P为平行四边形ABCD所在平面外的一点,且G为






3
3
4.若 OP (1 t)OA tOB, 则下列结论中正确的序号是________.
①O,P,A,B四点一定共线; ②P,A,B共线; ③P,A,B不共线; ④O,P,A,B不共面.


试用a,b,c表示以下各向量: ① AP ; ② A1 N; ③ MP NC . 1


【思路点拨】(1)先将 AG 进行分解,求出x,y,z的值,再求

x+y+z的值.
(2)用已知向量表示未知向量时,在转化时要结合向量的线性
运算.
【规范解答】(1)如图, AG AP PG,
∵G是△PCD的重心, ∴ PG 2 PH (H为CD的中点),
3
2 ∴ AG AP PH 3
2 1 AP [ (PC PD)] 3 2 1 1 AP PC PD 3 3 1 1 AP (PA AC) (PA AD) 3 3 1 1 1 1 AP PA (AB AD) PA AD 3 3 3 3 1 2 1 AB AD AP, 3 3 3 1 2 1 4 x , y , z , x y z . 3 3 3 3

教案)空间向量及其运算

教案)空间向量及其运算

教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。

2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。

3. 能够运用空间向量解决实际问题,提高空间想象力。

二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。

2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。

(2) 向量减法:差向量、相反向量。

(3) 数乘向量:数乘的定义、运算规律。

(4) 向量点乘:点乘的定义、运算规律、几何意义。

三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。

2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。

四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。

2. 利用实际例子,引导学生运用空间向量解决实际问题。

3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。

五、教学安排1. 第一课时:空间向量的概念及表示方法。

2. 第二课时:空间向量的线性运算(向量加法、减法)。

3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。

4. 第四课时:空间向量线性运算的应用。

5. 第五课时:总结与拓展。

六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。

2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。

3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。

4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。

七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。

2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。

3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。

4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。

空间直角坐标系及坐标运算

空间直角坐标系及坐标运算

基础知识梳理
4.空间向量坐标表示及应用 (1)数量积的坐标运算 则a·b若=aa=1b(1a+1,a2ab22,+aa33)b,3 .b=(b1,b2,b3), (2)共线与垂直的坐标表示 设a=(a1,a2,a3),b=(b1,b2,b3), 则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3= λb3,a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3= 0(a,b均为非零向量).
课堂互动讲练
2.证明空间四点共面的方法 对空间四点P,M,A,B可通过 证明下列结论成立来证明四点共面 (1)M→P=xM→A+yM→B; (2)对空间任一点 O,O→P=O→M+xM→A +yM→B;
课堂互动讲练
(3)对空间任一点 O,O→P=xO→M+yO→A +zO→B(x+y+z=1);
A.x=1,y=1 B.x=12,y=-12 C.x=16,y=-32
D.x=-16,y=32 答案:C
三基能力强化
3.已知空间四边形 OABC 中,点 M 在 线段 OA 上,且 OM=2MA,点 N 为 BC 的中
点,设O→A=a,O→B=b,O→C=c,则M→N等于
() A.12a+12b-23c
【解】 法一:(1)原式可变形为 O→P=O→M+(O→A-O→P)+(O→B-O→P) =O→M+P→A+P→B. ∴O→M=O→P-P→A-P→B. 由共面向量定理的推论知 M 与 P、A、 B 共面.
课堂互动讲练
(2)






→ OP

2
→ OA

→ OA

O→B+O→A-O→M=2O→A+B→A+M→A.
基础知识梳理
3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角

新课标2023版高考数学一轮总复习第6章立体几何第5节空间向量及其运算课件

新课标2023版高考数学一轮总复习第6章立体几何第5节空间向量及其运算课件

2
解析:|E→F|2=
→ EF
2=(E→C+C→D+D→F)2
=E→C2
+C→D2+D→F2+
→→ 2(EC·CD
+E→C·D→F+C→D·D→F
)=12+22+12+2(1×2×cos
120°+0+
2×1×cos 120°)=2,所以|E→F|= 2,所以 EF 的长为 2.
02
关键能力·研析考点强“四翼”
B 解析:M→N=O→N-O→M=12(O→B+O→C)-23O→A=-23a+12b+12c.
2.在正方体 ABCD-A1B1C1D1 中,点 E 为上底面 A1C1 的中心.若 A→E=A→A1+xA→B+yA→D,则 x,y 的值分别为( )
A.1,1
B.1,12
向量的数量积运算有两条途径,一是根据数量积的定义,利 用模与夹角直接计算;二是利用坐标运算.
考向 2 空间数量积的应用 如图,已知平行六面体 ABCD-A1B1C1D1 中,底面 ABCD
是边长为 1 的正方形,AA1=2,∠A1AB=∠A1AD=120°. (1)求线段 AC1 的长; (2)求异面直线 AC1 与 A1D 所成角的余弦值; (3)求证:AA1⊥BD.
空间向量基本定理 空间向量 p,存在唯一的有序实数组(x,y,z),
使得 p=xa+yb+zc
设 O,A,B,C 是不共面的四点,则对平面 ABC
推论
内任一点 P,都存在唯一的三个有序实数 x,y, z,使O→P=xO→A+yO→B+zO→C,且 x+y+z=1
空间向量基本定理的 3 点注意 (1)空间任意三个不共面的向量都可构成空间的一个基底. (2)由于零与任意一个非零向量共线,与任意两个非零向量共面, 故零不能作为基向量. (3)基底选定后,空间的所有向量均可由基底唯一表示.

【创新设计】高考数学一轮总复习 第八篇 第6讲 空间中向量的概念和运算课件 理 湘教版

【创新设计】高考数学一轮总复习 第八篇 第6讲 空间中向量的概念和运算课件 理 湘教版

【助学·微博】 一种方法 用空间向量解决几何问题的一般方法步骤是: (1)适当的选取基底{a,b,c}; (2)用a,b,c表示相关向量; (3)通过运算完成证明或计算问题.
两个理解
(1)共线向量定理还可以有以下几种形式:
①a=λb(b≠0)⇒a∥b;
②空间任意两个向量,共线的充要条件是存在 λ,μ∈R 使 λa=μb.
(3)设 M 是 EG 和 FH 的交点,求证:对空间任一点 O,有O→M
=14(O→A+O→B+O→C+O→D).
[审题视点] 对于(1)只要证出E→G=E→F+E→H即可;对于(2)只 要证出向量B→D与E→H共线即可;对于(3),易知四边形 EFGH 为平行四边形,则点 M 为线段 EG 与 FH 的中点,于是向量 O→M可由向量O→G和O→E表示,再将O→G与O→E分别用向量O→C, O→D和向量O→A,O→B表示.
考向三 空间向量数量积的应用
【例3】►已知空间四边形OABC中,M为BC的中点,N为 AC的中点,P为OA的中点,Q为OB的中点,若AB= OC,求证:PM⊥QN.
[审题视点] 欲证 PM⊥QN,只要证明P→M·Q→N=0 即可.
证明 如图所示,设O→A=a,O→B=b,O→C=c. ∵O→M=12(O→B+O→C)=12(b+c), O→N=12(O→A+O→C)=12(a+c),
( ).
A.充分不必要条件 C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
解析 a=λb⇒a∥b,但ba= ≠00, , 则 a∥b,a≠λb.
答案 A
5.在四面体 O-ABC 中,O→A=a,O→B=b,O→C=c,D 为 BC 的中点,E 为 AD 的中点,则O→E=________(用 a,b,c 表示). 解析 如图,O→E=12O→A+12O→D =12O→A+14O→B+14O→C=12a+14b+14c. 答案 12a+14b+14c

第六章向量空间

第六章向量空间

第六章 向量空间一 综述向量空间是高等代数最基本的概念之一,它用公理化方法首次引进了一个代数系,而这种公理化方法在高等代数以后各章以及在近世代数中将屡次遇到,它是近代数学研究的一个重要方法.本书以后各章如线性变换、欧几里德空间等概念都是直接建立在向量空间定义的基础上的.因此本章内容又是以后各章学习的基础. 二 教学目的使学生在集合、映射概念的基础上,理解并掌握向量空间的定义、性质和构造,并培养学生用公理化方法研究代数系的能力. 三 重点、难点教材重点:向量空间的定义、性质 教学难点:向量空间的定义6.1 定义和例子一 教学思考向量空间的定义是本章的重点和难点,是学生首次接触的一个用公理化方法引进的代数系.这一节的教学目的,不仅使学生正确理解和掌握向量空间的概念,而且应该使学生初步了解以集合论为基础运用公理化方法从具体的代数系抽象出一般的代数系的方法和意义,对此要心中有数,以便在教学中把传授知识与培养能力结合起来. 二 内容和要求1.内容:定义、例子及简单性质2.要求:掌握向量空间的概念及其简单性质,初步了解公理化的思想方法. 三 教学过程1. 引例 三维几何空间的实质及更多的类似结构的代数对象(略). 2. 定义及例子定义 1 令F 是一个数域,F 中的元素用小写拉丁字母 ,,b a 表示;令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα表示.我们把V 中的元素叫做向量,F 中的元素叫做纯量.若下列条件满足,就称V 是F 上的一个向量空间.1)在V 中定义了一个叫加法,对V 中任意两个向量βα,都有V 中唯一确定的向量与它们对应,这个向量叫做α与β的和,记为βα+.2)有一个纯量乘法,对于F 中的每一个数a 和V 中每一个向量α,有V 中唯一确定的向量与它们对应,这个向量叫做a 与α的积,记为αa .3)向量的加法和纯量乘法满足下列算律:F b a V ∈∈∀,;,,γβα有 (1)αββα+=+; (2))()(γβαγβα++=++;(3)在V 中存在一个向量叫零向量,积作ο;它满足对V ∈∀α 有ααο=+; (4)对V ∈∀α,V ∈'∃α使得οαα=+';这样的α'叫做α的负向量;(负向量的定义) (5)βαβαa a a +=+)(; (6)αααb a b a +=+)(; (7))()(ααb a ab =; (8)αα=1. 3. 向量空间的简单性质1)由于向量的加法满足结合律,所以任意n 个向量相加有唯一确定的含义且可写为不加括号的和的形式;再者由于加法满足结合律和交换律,所以在求任意n 个向量的和时可以任意交换被加项的次序.2)命题6.1.1(零向量、负向量的唯一性)在一个向量空间V 中,零向量是唯一的;对V ∈∀α,α的负向量是由α唯一确定的.(同一法,略) 3)命题6.1.2 对V ∈∀α,F a ∈∀有οα=0,οο=a ; αααa a a -=-=-)()(; 0=⇒=a a οα或οα=.4. 介绍一种写法-——(向量矩阵的记法)设V n ∈ααα,,,21 ,把它们排成一行写成一个以向量为元素的n ⨯1矩阵(n ααα,,,21 ),设)()(F M a A m n m n ij ⨯⨯∈=;定义(n ααα,,,21 )),,,(21m A βββ =,其中)1(,1m j a ni i ij j ≤≤=∑=αβ.即按照数域F 上矩阵的乘法定义(n ααα,,,21 )右乘以A (这里约定对V ∈∀α,F a ∈∀有a a αα=).并且设)(F M A m n ⨯∈,)(F M B P m ⨯∈,由向量与纯量乘法所满足的算律有:(n ααα,,,21 )B A AB n )),,,(()(21ααα = ,即结合律成立.6.2 子空间一 教学思考1.向量空间一章主要讨论向量空间的运算、性质和结构,一般是通过向量空间自身(基、维数等)或其子结构(子空间)来讨论的,这正是代数学的基本方法.因而本节的概念(子空间)和结论在理论上与方法上是重要的.2.由于本章与以后内容的(抽象)特点,需重点培养学生逻辑论证能力,除了在教学中经常结合问题讲解分析解决问题的一般思想方法外,还需对以后教学有重要影响的几类具体问题的论证思路作出明确的交代.本章主要是“子空间的判定”.3.内容作如下调整,即先定义子空间,再介绍为何称为子空间,然后介绍子空间的判定和运算. 二 内容要求1.内容:子空间的定义、子空间的交与和.2.要求:理解和掌握向量空间的子空间的概念和判定方法、子空间的交与和的概念.三 教学过程1.子空间的概念及判定 (1)定义定义1 设V 是数域F 上的向量空间,W 是V 的非空子集,若对V ∈∀βα,都有W ∈+βα,则称W 对V 的加法封闭.若对F a V ∈∀∈∀,α都有W a ∈α,则称W 对纯量乘法封闭.定义2 令W 是数域F 上的向量空间V 的一个非空子集,若W 对V 的加法和纯量乘法封闭,则称W 是V 的一个子空间.TH6.2.1设W 是数域F 上的向量空间V 的一个非空子集,若W 对V 的加法和纯量乘法封闭,则W 本身也作成F 上一个向量空间.(2)子空间的判定TH6.2.2向量空间V 的一个非空子集W 是V 的一个子空间的充要条件是对W F b a ∈∀∈∀βα,,,都有W b a ∈+βα.2.子空间的交与和定义3 设21,W W 都是V 的子空间,则21W W 称为两个子空间的交. 命题 21W W 也是V 的子空间.定义 4 设21,W W 都是V 的子空间,由所有能表示为),(221121W W ∈∈+αααα的向量组成的集合成为1W 与2W 的和,记为21W W +;即21W W +={}221121,|W W ∈∈+αααα. 命题 21W W +也是V 的子空间.6.3 向量的线性相关性一 教学思考1.向量的线性相关性在研究向量空间的结构时极为重要,并且学生在学习时感到困难的多是由于逻辑思维混乱以及推理不严谨造成的.2.本节重要的在于讲清诸概念,理清它们之间的关系,介绍一般方法和特殊方法,补充一些容易混淆的问题及一些错误做法或判断. 二 内容要求内容:向量的线性相关性定义、性质;替换定理;极大无关组.要求:正确理解和掌握向量组的线性相关性的概念及性质,掌握判断向量组线性关系的一般方法和特殊方法. 三.教学过程1.线性相关与线性无关(1)线性组合、线性表示及其性质定义 1 设r ααα,,,21 是向量空间V 的r 个向量,r a a a ,,,21 是数域F 中任意r 个数,我们把和r r a a a ααα ++2211叫做向量r ααα,,,21 的一个线性组合.定义 2 若V 中向量α可以表示成r ααα,,,21 的线性组合,即∃F a a a r ∈,,,21 使得r r a a a αααα ++=2211,则称α可以由r ααα,,,21 线性表示.(例略)性质 命题6.3.1向量组r ααα,,,21 中每一向量都可以由这一组向量线性表示.命题6.3.2若向量γ可以由r βββ,,,21 线性表示,而每个i β可由s ααα,,,21 线性表示,则γ可以由s ααα,,,21 线性表示.(2)线性相关、线性无关及有关性质定义3 设r ααα,,,21 是向量空间V 的r 个向量,若存在数域F 中r 个不全为0的数ra a a ,,,21 使得οααα=++r r a a a 2211,则称r ααα,,,21 线性相关,否则称r ααα,,,21 线性无关. 例1 若r ααα,,,21 中有一个零向量,则r ααα,,,21 一定线性相关. 例2 判断3F 中向量)9,7,1(),0,1,2(),3,2,1(321-==-=ααα是否线性相关 例3 在][x F 中对任意非负整数n ,证明nx x x ,,,,12线性无关.(解略)性质命题 6.3.3 若向量组{r ααα,,,21 }线性无关,则它的任一部分向量组也线性无关;等价地:若{r ααα,,,21 }有一部分组线性相关,则整个向量组{r ααα,,,21 }也线性相关.(证略)命题 6.3.4 设{r ααα,,,21 }线性无关,而{βααα,,,,21r }线性相关,则β一定可以由r ααα,,,21 线性表示,且表示法唯一.命题6.3.5 向量r ααα,,,21 (2≥r )线性相关的充要条件是其中某个向量是其余向量的线性组合.(证略)2.向量组的等价、替换定理定义 4 设{}r ααα,,,21 和{}s βββ,,,21 是V 中的两个向量组,若每个),2,1(r i i =α都可以由s βββ,,,21 线性表示,而每个),2,1(s j j =β也可以由r ααα,,,21 线性表示,则称这两个向量组等价.定理6.3.6(替换定理)设向量组{}r ααα,,,21 (1)线性无关,且每个),2,1(r i i =α都可以由{}s βββ,,,21 (2)线性表示.则A )s r ≤;B )必要时对(2)中向量重新编号,使得用r ααα,,,21 替换r βββ,,,21 后得向量组{}s r r ββααα,,,,,,121 +(3)与(2)等价.推论6.3.7两个等价的线性无关向量组含有相同个数的向量. 3.极大无关组(讨论一个非零向量组的一种部分组)定义 5 向量组{r i i i ααα,,,21 }是向量组{}n ααα,,,21 的一个部分组(n r ≤),若满足:1)ri i i ααα,,,21线性无关;2)每个),,1(n j j =α都可由ri i i ααα,,,21线性表示.则称rii i ααα,,,21是向量组{}n ααα,,,21 的一个极大线性无关部分组(简称极大无关组). 极大无关组的求法:1)一般方法——设给定{}n ααα,,,21 ,求其一个极大无关组.先从1α考虑,若οα≠1,保留;考虑21,αα看其是否线性无关.无关,保留;相关舍去2α,考虑31,αα看其是否线性无关.依次类推直至n α,便得.(由于考虑次序不同可得不同的极大无关组)例4 求向量组{}32,2,,12+++x x x x 的一个极大无关组.(解略)2)特殊方法——对n F 中向量组{}n ααα,,,21 ,求极大无关组. 首先:可以证明“命题”:“设)(F M m n ⨯的矩阵A 经过行的初等变换得到)(F M m n ⨯的矩阵B ,则A 与B 的列向量有相同的线性关系.”(证略)这样可得:A )求nm F ∈ααα,,,21 的线性关系,可以以m ααα,,,21 列作矩阵A ,通过对A 作行初等变换化为标准形B ,由B 的列向量的线性关系可得A 的列向量的线性关系.进而B )用上述方法可求n F 中向量组{}n ααα,,,21 的极大无关组. 例5 求3R 中向量组)6,1,5(),4,0,3(),3,1,2(),1,2,1(4321====αααα的一个极大无关组. 解:以4321,,,αααα为列作矩阵B A =⎪⎪⎪⎭⎫⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛=210010101001643110125321.设B 的列向量为4321,,,ββββ,这样4321,,,αααα与4321,,,ββββ有相同的线性关系.容易看出321,,βββ线性无关,且=4β3212βββ+-;因此321,,ααα线性无关且=4α3212ααα+-.于是321,,ααα是4321,,,αααα的一个极大无关组.6.4 基与维数一 教学思考1.向量空间的结构中基起着重要作用,那么基概念的引入及作用为重点.2.从内容上本节在于给出了基与维数的概念后,解决基的存在性、个数及求法,要注意方法的总结归纳,特别是生成子空间.3.从定义上维数依赖于基,即要求一个向量空间的维数须求一个基;但反过来从结果上看,若已知维数n 求基的话,即求一组n 个线性无关的向量.4.本节及以后主要讨论有限维向量空间,有所谓的维数公式,其反映有限维向量空间的两个子空间与它们的和与交空间的维数之间的关系.在证明中,从“最小”的子空间的基出发逐步扩充为所出现的子空间的基的方法是重要的.5.基的存在性、个数、求法(生成子空间的基的求法)、余子空间等方法,注意总结归纳. 二 内容要求内容:向量空间的基与维数,有限维向量空间的维数公式,余子空间要求:正确理解和掌握向量空间的基与维数的概念,余子空间的定义,了解基在向量空间的结构中的重要作用,掌握求基、余子空间的一般方法和特殊方法. 三 教学过程1.引言我们知道当{}ο≠V 时,V 有无穷多向量,那么它们之间的结构如何?具体地,我们能否用V 中有限个向量表示所有向量.下面讨论这个问题.2.一类特殊子空间——由一组向量生成的子空间定义1设V r ∈ααα,,,21 ,那么由r ααα,,,21 的线性组合组成的集合{}F a a a a W i r r ∈+++=|2211ααα 称为由这一组向量r ααα,,,21 生成的子空间.记为L (r ααα,,,21 ),其中r ααα,,,21 叫做生成元.例1 n F 中)1,,0,0(,),0,,,0,1(1 ==n εε,则nn F L =),,(1εε . 例2 ][x F 中n n x x ===+121,,,1ααα ,则][),,,1(x F x x L n n= .关于生成子空间有:定理 6.4.1设V n ∈ααα,,,21 ,且不全为零向量,r i i i ααα,,,21 为其一个极大无关组,则L (n ααα,,,21 )=L (r i i i ααα,,,21 ).3.基与维数1)定义2 设V n ∈ααα,,,21 ,若1)n ααα,,,21 线性无关;2)V ∈∀α都可由n ααα,,,21 线性表示.则称n ααα,,,21 为V 的一个基.定义 3 一个向量空间V 的一个基所含向量的个数叫做V 的维数;记为V dim .规定零空间的维数为0.2)定理定理6.4.2(基的作用)设n ααα,,,21 为V 的一个基,则V ∈∀α都可唯一地由n ααα,,,21 线性表示.定理6.4.3n 维向量空间V 任意多于n 个向量的向量组一定线性相关.定理 6.4.4设n V =dim ,V r ∈ααα,,,21 线性无关(易知n r ≤),则总可以添加r n -个向量n r r ααα,,,21 ++,使得n ααα,,,21 作为V 的一个基.特别V 的任意n 个线性无关向量都可以取作基.例3 将)1,2,3,1(),1,0,2,1(21-==αα扩充为4R 的一个基.解:(法一)思想方法:由定理的证明过程,取4R 的一个基(如标准基4321,,,εεεε),然后用21,αα代替其中某两个如21,εε,使得21,αα,43,εε线性无关;而代替哪两个,可用逐步添加法使添在21,αα上后线性无关.(法二)思想方法:可以从21,αα出发,利用21,αα为列再添上两个作成一个4阶方阵A ,使得0≠A ,如⎪⎪⎪⎪⎪⎭⎫⎝⎛-1011012000320011,取)1,0,0,0(),0,1,0,0(23==αα,则4321,,,αααα为4R 的一个基. 定理6.4.5设21,W W 是F 上向量空间V 的两个有限维子空间,则21W W +也是V 的一个有限维子空间,且:)dim (dim dim )dim (212121W W W W W W ⋂-+=+.推论 对n 维向量空间V 的子空间21,W W 有:}{dim dim dim 2121ο=⋂⇔=+W W V W W .4.余子空间(1) 定义:设W 是V 的子空间,若存在V 的子空间W '满足:1)V W W ='+,2)){ο='⋂W W ;则称W '是W 的一个余子空间,且称V 是W 与W '的直和,记为W W V '⊕=. (2)定理定理 6.4.6设W W V '⊕=,则对V ∈∀α有α可以唯一地表示成ββα'+=,其中W W '∈'∈ββ,.定理 6.4.7n 维向量空间V 的任一子空间W 都有余子空间.若W '是W 的一个余子空间,则V W W dim dim dim ='+.(3)上述概念及结论可扩充至有限设t W W W ,,,21 是V 的子空间,若1)t W W V ++= 1;2){}),,2,1(,)(111t i W W W W W t i i i ==+++++⋂+-ο,则称V 是t W W W ,,,21 的直和,记为t W W V ⊕⊕= 1.且有类似于定理6、7的结论.6.5 坐标一 教学思考1.对n 维向量空间V 取定基后,任意向量引入了坐标的概念后,可将抽象的对象用具体的形式(nF中的向量)表示出来,为我们研究抽象的向量空间提供了方便,如由此可建立n V 与nF 的同构,所以本节概念及结论在空间的讨论中有重要的作用.2.注意坐标的概念依赖于基的选择,坐标变换依赖于相应的基变换;注意过渡矩阵的概念与性质以及结论,其是下节建立n V 与nF 的同构的基础.3.具体方法有:1)坐标的求法(定义法、坐标变换法);2)过渡矩阵的求法;3)过渡矩阵的性质及由此反映的矩阵的运算的意义. 二 内容要求1. 内容:坐标、基变换、坐标变换、过渡矩阵;2. 要求:掌握坐标的概念及其意义,基变换与坐标变换公式,过渡矩阵的概念和性质. 三 教学过程(一) 坐标的概念1.定义 设{}n n V αα,,,dim 1 =是V 的一个基,对V ∈∀ξ有n n a a ααξ++= 11,则称n 元有序数组),,(1n a a 为向量ξ关于基{}n αα,,1 的坐标;其中i a 叫做向量ξ关于基{}n αα,,1 的第i 个坐标.2.定理6.5.1设{}n n V αα,,,dim 1 =是V 的一个基,V ∈ηξ,关于此基的坐标分别为),,(1n x x 和),,(1n y y ,则ξηξk ,+关于此基的坐标分别为: ),,(11n n y x y x ++ ,),,(1n ax ax .(二)坐标变换 1.基变换设,dim n V ={}n αα,,1 和{}n ββ,,1 是V 的两个基,则每个j β),,2,1(n j =可由{}n αα,,1 线性表示,设⎪⎪⎩⎪⎪⎨⎧++=++=++=nn n n nn nn a a a a a a ααβααβααβ1112112211111 (1),以j β关于基{}n αα,,1 的坐标为列构成的矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a T212222111211称为由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵. (1)式可以写成矩阵等式),,(1n ββ =T n ),,(1αα (2);称(1)或(2)为(由基{}n αα,,1 到基{}n ββ,,1 的)基变换. 设V ∈ξ关于基{}n αα,,1 的坐标为),,(1n x x ,关于基{}n ββ,,1 的坐标为),,(1n y y ,则一方面=ξ⎪⎪⎪⎭⎫ ⎝⎛n n x x 11),,(αα (3);另一方面=ξ⎪⎪⎪⎭⎫⎝⎛n n y y 11),,(ββ (4);(2)代入(4)得=ξ⎪⎪⎪⎭⎫ ⎝⎛n n y y T 11)),,((αα=))(,,(11⎪⎪⎪⎭⎫⎝⎛n n y y T αα (5),比较(3)和(5)由坐标的唯一性得⎪⎪⎪⎭⎫ ⎝⎛n x x 1=⎪⎪⎪⎭⎫⎝⎛n y y T 1 (6);于是得 定理 6.5.2设,dim n V =T 由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵,则V ∈ξ关于基{}n αα,,1 的坐标与关于基{}n ββ,,1 的坐标为),,(1n y y 由等式(6)⎪⎪⎪⎭⎫ ⎝⎛n x x 1=⎪⎪⎪⎭⎫⎝⎛n y y T 1联系着.3.过渡矩阵的性质 (1)基变换的传递性设,dim n V ={}n αα,,1 、{}n ββ,,1 、{}n γγ,,1 都是V 的基,且由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,基{}n ββ,,1 到基{}n γγ,,1 的过渡矩阵为B ,即),,(1n ββ =A n ),,(1αα 、),,(1n γγ =),,(1n ββ B ,则),,(1n γγ =A n ),,(1αα B ,即由基{}n αα,,1 到基{}n γγ,,1 的过渡矩阵为AB .(2)定理6.5.3设,dim n V =由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,那么A 是一个可逆矩阵.反过来,任意一个n 阶可逆矩阵A 都可以作为n 维向量空间中由一个基到另一个基的过渡矩阵.且若由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,则由基{}n ββ,,1 到基{}n αα,,1 的过渡矩阵为1-A .6.6 向量空间的同构一 教学思考1.向量空间的本质是一个带有加法和数乘的代数系,我们研究向量空间着眼点主要在于运算,至于元素是什么无关紧要.把具有某种关系的向量空间作为本质上没有区别的加以研究,从而取出其代表加以研究讨论以达到目的,本节正是解决这样一个问题.2.“同构”是这种关系的体现,在此关系下,同构的向量空间可以不加区别,因而维数就成了数域F 上有限维向量空间的唯一本质特征.3.注意“同构”映射的概念,向量空间同构的概念及各自的性质,以及有限维向量空间同构的判定. 二 内容要求1、内容:同构映射、向量空间同构的概念及各自的性质,有限维向量空间同构的判定.2、要求:理解向量空间同构的概念及性质,有限维向量空间同构的判定. 三 教学过程1.同构的概念和性质 (1)概念1)同构映射 设V 和W 是数域F 上两个向量空间,V 到W 的一个映射f 叫做一个同构映射; 若A )f 是V 到W 的一个双射;B )对)()()(,ηξηξηξf f f V +=+⇒∈∀;C )对)()(,,ξξξaf a f V F a =∈∀∈∀.(2)定理6.6.1数域F 上任一n 维向量空间V 都与nF 同构. (3)性质 1)同构映射的性质定理6.6.2设V 和W 是数域F 上两个向量空间, f 是V 到W 的一个同构映射,则: A);)(οο=f B)对ααα-=-∈∀)(,f V ;C))()()(1111n n n n f a f a a a f αααα++=++ ,其中V F a i i ∈∈α,; D))(,,1V n ∈αα 线性相关))((,),(1W f f n ∈⇔αα 线性相关; E) f 的逆映射1-f是W 到V 的一个同构映射.2)同构关系的性质(等价关系)A ) 反身性:V V ≅;B ) B )对称性:若W V ≅,则V W ≅;C) 传递性:若W V ≅,U W ≅,则U V ≅.(由双射性质及定义易证) 2.有限维向量空间同构的充要条件定理6.6.3数域F 上两个有限维维向量空间V 和W 有:W V ≅W V dim dim =⇔.6.7 矩阵的秩,齐次线性方程组的解空间一 教学思考1.矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构.2.注意:齐次线性方程组(含n 个未知量)的解的集合构成nF 的子空间,而非齐次线性方程组的解的集合非也.3.注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系. 二 内容要求1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间.2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法. 三 教学过程1.矩阵的秩的几何意义几个术语:设)(F M A n m ⨯∈,⎪⎪⎪⎭⎫⎝⎛=mn m n a a a a A 1111,A 的每一行看作nF 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的nF 的子空间),,(1m L αα 叫做矩阵A 的行空间.类似地,A 的每一列看作mF 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的mF 的子空间叫做矩阵A 的列空间.引理6.7.1设)(F M A n m ⨯∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间.定理6.7.2矩阵)(F M A n m ⨯∈的行空间的维数等于列空间的维数,等于这个矩阵的秩.定义 矩阵A 的行(列)向量组的极大无关组所含(行(列)空间的维数)向量的个数,叫做矩阵A 的秩.2.线性方程组的解的结构1)再证线性方程组有解的判定定理:“数域F 上线性方程组有解的充要条件是它的系数矩阵与增广矩阵的秩相同.”2)齐次线性方程组的解空间设⎪⎩⎪⎨⎧=++=++00111111n mn m n n x a x a x a x a(3)是数域F 上一个齐次线性方程组,令A 为其系数矩阵,则(3)可写为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001 n x x A (4)或ο=AX ;(3)的每一个解都可以看作n F 的一个向量,叫做(3)的一个解向量.令S 表示(3)的全体解向量构成的集合;首先:因S ∈ο,所以Φ≠S ;其次:F b a S ∈∀∈∀,,,ηξ,有οηξηξ=+=+bA aA b a A )(,即S b a ∈+ηξ.因此S 作成nF 的一个子空间,这个子空间叫做齐次线性方程组(3)的解空间.重新回顾解线性方程组的过程:设(3)的系数矩阵A 的秩为)(n r <,则A 可经过一系列(行)初等变换化为⎪⎪⎭⎫ ⎝⎛----r n r m r r m r n r r C I ,,,οο,与此相应的齐次线性方程组为:(5)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+++=+++++++0000001111111 n rn r rr r n n r r y c y c y y c y c y ,这里n y y ,,1 是n x x ,,1 的重新编号.(5)有r n -个自由未知量n r y y ,,1 +,依次让它们取)1,,0,0(,),0,,1,0(),0,,0,1( ,可得(5)的r n -个解向量:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=++++++100,,010,001122121111 rn n n rr r r rr r r c c c c c c ηηη.下面证其是(5)的解空间的一个基. 首先:n r ηη,,1 +线性无关.事实上设οηη=++++n n r r k k 11,由下面r n -个分量易得01===+n r k k .其次:设),,,(21n k k k 是(5)的任一解,代入(5)得:n rn r rr r nn r r nn r r k c k c k k c k c k k c k c k ---=---=---=++++++112112211111又有恒等式:nn r r k k k k ==++ 11此n 个等式即为n n r r n k k k k ηη++=⎪⎪⎪⎭⎫ ⎝⎛++ 111,即(5)的每个解向量都可以由n r ηη,,1 +线性表示,故{n r ηη,,1 +}为(5)的解空间的一个基.注意到(5)与(4)在未知量重新编号后同解,所以重新编排n r ηη,,1 +的次序可得(4)的解空间的一个基,从而解决了齐次线性方程组的解的构造问题.并且上述讨论也给出了求解空间的具体方法:即通过解方程组的允许变换得到等价组,在等价组中自由未知量是清楚的,给其一组线性无关值,便得等价组的一组解向量,其构成等价组的解空间的一个基,再调整解向量的次序便得.上述讨论得:定理 6.7.3数域F 上一个n 元齐次线性方程组的一切解作成nF 的一个子空间,称之为这个线性方程组的解空间.若所给方程组的系数矩阵的秩为r ,则解空间的维数为r n -.定义 一个齐次线性方程组的解空间的一个基,叫做这个方程组的一个基础解系.3)非齐次线性方程组的解的结构 设))((,11F M A b b x x A n m m n ⨯∈⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛ (6)是数域F 上一个n 元线性方程组.问题当(6)有无穷解时,解的结构如何?为此先引入:把(6)的常数项都换成0,便得一个齐次线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001 n x x A (7),齐次线性方程组(7)叫做方程组(6)的导出齐次线性方程组.定理6.7.4若(6)有解,则(6)的任一解都可以表示为(6)的一个固定解与(7)的一个解的和.。

第七章第6讲 空间向量及其运算

第七章第6讲 空间向量及其运算

第6讲 空间向量及其运算[学生用书P144])1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底.2.两个向量的数量积(与平面向量基本相同)(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π2,则称向量a ,b 互相垂直,记作a ⊥b . (2)两向量的数量积两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ⇔a ·b =0; ③|a |2=a ·a =a 2; ④|a ·b |≤|a ||b |.(4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3, a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ),cos 〈a ,b 〉=a ·b|a |·|b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2), 则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 4.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,显然一条直线的方向向量可以有无数个.(2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.5.空间位置关系的向量表示1.辨明四个易误点(1)注意向量夹角与两直线夹角的区别.(2)共线向量定理中a ∥b ⇔存在唯一的实数λ∈R ,使a =λb 易忽视b ≠0. (3)共面向量定理中,注意有序实数对(x ,y )是唯一存在的.(4)向量的数量积满足交换律、分配律,但不满足结合律,即(a ·b )c =a (b ·c )不一定成立. 2.建立空间直角坐标系的原则(1)合理利用几何体中的垂直关系,特别是面面垂直. (2)尽可能地让相关点落在坐标轴或坐标平面上. 3.利用空间向量坐标运算求解问题的方法用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.1.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ) A .a ∥c ,b ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥bD .以上都不对C [解析] 因为c =(-4,-6,2)=2a ,所以a ∥c .又a ·b =0,故a ⊥b .2.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|P A |=|PB |,则P 点坐标为( )A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)C [解析] 设P (0,0,z ),则有 (1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.3.教材习题改编 在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB .12a +12b +cC .-12a -12b +cD .12a -12b +cA [解析] 由题意,根据向量运算的几何运算法则,BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .4.教材习题改编 已知a =(2,4,x ),b =(2,y ,2),若|a |=6,且a ⊥b ,则x +y 的值为________.[解析] 因为a =(2,4,x ),|a |=6,则x =±4, 又b =(2,y ,2),a ⊥b , 当x =4时,y =-3,x +y =1. 当x =-4时,y =1,x +y =-3. [答案] 1或-35.若平面α的一个法向量为u 1=(-3,y ,2),平面β的一个法向量为u 2=(6,-2,z ),且α∥β,则y +z =________.[解析] 因为α∥β,所以u 1∥u 2,所以-36=y -2=2z ,所以y =1,z =-4,所以y +z =-3. [答案] -3空间向量的线性运算[学生用书P145][典例引领]如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点. (1)化简A 1O →-12AB →-12AD →=________.(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________.【解析】 (1)A 1O →-12AB →-12AD →=A 1O →-12(AB →+AD →)=A 1O →-AO →=A 1O →+OA →=A 1A →.(2)因为OC →=12AC →=12(AB →+AD →).所以OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. 【答案】 (1)A 1A →(2)12AB →+12AD →+AA 1→若本例条件不变,结论改为:设E 是棱DD 1上的点,且DE →=23DD 1→,若EO →=xAB →+yAD→+zAA 1→,试求x ,y ,z 的值.[解] EO →=ED →+DO → =-23DD 1→+12(DA →+DC →)=12AB →-12AD →-23AA 1→,由条件知,x =12,y =-12,z =-23.用基向量表示指定向量的方法(1)应结合已知和所求向量观察图形.(2)将已知向量和未知向量转化至三角形或平行四边形中.(3)利用三角形法则或平行四边形法则,把所求向量用已知基向量表示出来.如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.[解] (1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c . 因为N 是BC 的中点, 所以NC 1→=NC →+CC 1→=12BC →+AA 1→ =12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫a +12c =32a +12b +32c .共线、共面向量定理的应用[学生用书P146][典例引领]已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .【证明】 (1)连接BG (图略), 则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由共面向量定理的推论知,E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(1)证明空间三点P 、A 、B 共线的方法 ①P A →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P 、M 、A 、B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或P A →∥MB →或PB →∥AM →).已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM→=13(OA →+OB →+OC →). (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. [解] (1)由题知OA →+OB →+OC →=3OM →,所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面, 从而点M 在平面ABC 内.空间向量的数量积与坐标运算[学生用书P146][典例引领](1)如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,P i (i =1,2,…,8)是上底面上其余的八个点,则AB →·AP i →(i =1,2,…,8)的不同值的个数为( )A .1B .2C .4D .8(2)正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( ) A.23B .33 C.23D .63(3)已知向量a =(0,-1,1),b =(4,1,0),|λa +b |=29,且λ>0,则λ=________. 【解析】 (1)由题图知,AB 与上底面垂直,因此AB ⊥BP i (i =1,2,…,8),AB →·AP i→=|AB →||AP i →|cos ∠BAP i =|AB →|·|AB →|=1(i =1,2,…,8).故选A.(2)不妨设正方体的棱长为1,如图,建立空间直角坐标系,则D (0,0,0),B (1,1,0),B 1(1,1,1),平面ACD 1的法向量为DB 1→=(1,1,1),又BB 1→=(0,0,1),所以cos 〈DB 1→,BB 1→〉=DB 1→·BB 1→|DB 1→||BB 1→|=13×1=33, 所以BB 1与平面ACD 1所成角的余弦值为1-⎝⎛⎭⎫332=63.(3)λa +b =λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),由已知得|λa +b |=42+(1-λ)2+λ2=29,且λ>0,解得λ=3.【答案】 (1)A (2)D (3)3(1)空间向量数量积计算的两种方法 ①基向量法:a ·b =|a ||b |cos 〈a ,b 〉.②坐标法:设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),则a ·b =x 1x 2+y 1y 2+z 1z 2. (2)利用数量积解决有关垂直、夹角、长度问题 ①a ≠0,b ≠0,a ⊥b ⇔a ·b =0. ②|a |=a 2. ③cos 〈a ,b 〉=a ·b|a ||b |.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4).设a =AB →,b =AC →.(1)求a 和b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.[解] 因为A (-2,0,2),B (-1,1,2),C (-3,0,4),a =AB →,b =AC →,所以a =(1,1,0),b =(-1,0,2).(1)cos θ=a·b |a ||b |=-1+0+02×5=-1010,所以a 和b 的夹角θ的余弦值为-1010. (2)因为k a +b =k (1,1,0)+(-1,0,2)=(k -1,k ,2), k a -2b =(k +2,k ,-4)且(k a +b )⊥(k a -2b ),所以(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0. 解得k =-52或k =2.利用空间向量证明平行和垂直(高频考点)[学生用书P147]空间几何中的平行与垂直问题是高考试题中的热点问题.考查形式灵活多样,可以是小题,也可以是解答题的一部分,或解答题的某个环节,是高考中的重要得分点.高考对空间向量解决此类问题有以下两个命题角度:(1)证明平行问题; (2)证明垂直问题.[典例引领](1)(2015·高考湖南卷节选)如图,已知四棱台ABCD -A 1B 1C 1D 1的上、下底面分别是边长为3和6的正方形,A 1A =6,且A 1A ⊥底面ABCD ,点P ,Q 分别在棱DD 1,BC 上.若P 是DD 1的中点,证明:AB 1⊥PQ .(2)如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .【证明】 (1)由题设知,AA 1,AB ,AD 两两垂直.以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A (0,0,0),B 1(3,0,6),D (0,6,0),D 1(0,3,6),Q (6,m ,0),其中m =BQ ,0≤m ≤6.若P 是DD 1的中点,则P ⎝⎛⎭⎫0,92,3,PQ →=(6,m -92,-3). 又AB 1→=(3,0,6),于是AB 1→·PQ →=18-18=0, 所以AB 1→⊥PQ →,即AB 1⊥PQ .(2)因为平面P AD ⊥平面ABCD 且ABCD 为正方形,所以AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1),设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), 所以⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.所以PB →=2FE →+2FG →, 又因为FE →与FG →不共线, 所以PB →与FE →,FG →共面.因为PB ⊄平面EFG ,所以PB ∥平面EFG .(1)利用空间向量解决平行、垂直问题的一般步骤①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;③通过空间向量的坐标运算研究平行、垂直关系; ④根据运算结果解释相关问题. (2)空间线面位置关系的坐标表示设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).①线线平行l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. ②线线垂直l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0. ③线面平行(l ⊄α)l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0. ④线面垂直l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3. ⑤面面平行α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4.⑥面面垂直α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.[题点通关]角度一 证明平行问题 1.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.利用向量方法证明:直线MN ∥平面OCD .[证明] 作AP ⊥CD 于点P ,连接OP ,如图,分别以AB ,AP ,AO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则P ⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0,O (0,0,2),M (0,0,1),N ⎝⎛⎭⎫1-24,24,0,MN →=⎝⎛⎭⎫1-24,24,-1,OP →=⎝⎛⎭⎫0,22,-2,OD →=⎝⎛⎭⎫-22,22,-2. 设平面OCD 的一个法向量为n =(x ,y ,z ), 则n ·OP →=0,n ·OD →=0,即⎩⎨⎧22y -2z =0,-22x +22y -2z =0.取z =2,得n =(0,4,2).因为MN →·n =⎝⎛⎭⎫1-24,24,-1·(0,4,2)=0,所以MN →⊥n ,且MN ⊄平面OCD ,所以MN ∥平面OCD .角度二 证明垂直问题2.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC . [证明] (1)如图所示,以O 为坐标原点,以射线OD 为y 轴正半轴,射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4). 于是AP →=(0,3,4),BC →=(-8,0,0), 所以AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)连接MB ,MC .由(1)知AP =5, 又AM =3,且点M 在线段AP 上,所以AM →=35AP →=⎝⎛⎭⎫0,95,125,又BA →=(-4,-5,0), 所以BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则AP →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, 所以AP →⊥BM →,即AP ⊥BM , 又根据(1)的结论知AP ⊥BC ,所以AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .[学生用书P360(独立成册)]1.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143C.145D .2D [解析] 由题意知a ·(a -λb )=0,即a 2-λa ·b =0, 所以14-7λ=0,解得λ=2.2.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直B [解析] 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),所以AB →=-3CD →,所以AB →与CD →共线,又AB →与CD →没有公共点.所以AB ∥CD .3.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( )A.627 B .9 C.647D .657D [解析] 由题意知存在实数x ,y 使得c =x a +y b , 即(7,5,λ)=x (2,-1,3)+y (-1,4,-2), 由此得方程组⎩⎪⎨⎪⎧7=2x -y ,5=-x +4y ,λ=3x -2y .解得x =337,y =177,所以λ=997-347=657.4.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=( ) A .-1 B .0 C .1D .不确定B [解析] 如图,令AB →=a ,AC →=b ,AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC →=a ·(c -b )+b·(a -c )+c·(b -a )=a·c -a·b +b·a -b·c +c·b -c·a =0.5.如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP →,AE →〉=33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为( )A .(1,1,1)B .⎝⎛⎭⎫1,1,12 C.⎝⎛⎭⎫1,1,32 D .(1,1,2)A [解析] 设P (0,0,z ),依题意知A (2,0,0),B (2,2,0),则E ⎝⎛⎭⎫1,1,z2, 于是DP →=(0,0,z ),AE →=⎝⎛⎭⎫-1,1,z 2, cos 〈DP →,AE →〉=DP →·AE →|DP →||AE →|=z 22|z |·z24+2=33. 解得z =±2,由题图知z =2,故E (1,1,1).6.(2017·唐山统考)已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC→1,N为B 1B 的中点,则|MN →|为( ) A.216a B .66a C.156a D .153a A [解析] 以D 为原点建立如图所示的空间直角坐标系Dxyz ,则A (a ,0,0),C 1(0,a ,a ), N ⎝⎛⎭⎫a ,a ,a2.设M (x ,y ,z ), 因为点M 在AC 1上且AM →=12MC 1→,所以(x -a ,y ,z )=12(-x ,a -y ,a -z ),所以x =23a ,y =a 3,z =a3. 所以M ⎝⎛⎭⎫2a 3,a 3,a 3,所以|MN →| =⎝⎛⎭⎫a -23a 2+⎝⎛⎭⎫a -a 32+⎝⎛⎭⎫a 2-a 32=216a . 7.在空间直角坐标系中,点P (1,2,3),过点P 作平面yOz 的垂线PQ ,点Q 在平面yOz 上,则垂足Q 的坐标为________.[解析] 由题意知点Q 即为点P 在平面yOz 内的射影, 所以垂足Q 的坐标为(0,2,3). [答案] (0,2,3)8.在空间直角坐标系中,以点A (4,1,9),B (10,-1,6),C (x ,4,3)为顶点的△ABC 是以BC 为斜边的等腰直角三角形,则实数x 的值为__________.[解析] 由题意知AB →=(6,-2,-3), AC →=(x -4,3,-6).又AB →·AC →=0,|AB →|=|AC →|,可得x =2. [答案] 29.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.[解析] 由题意得,(2a +b )·c =0+10-20=-10. 即2a ·c +b ·c =-10,又因为a ·c =4,所以b ·c =-18, 所以cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12,所以〈b ,c 〉=120°,所以两直线的夹角为60°. [答案] 60°10.已知空间四边形OABC ,点M 、N 分别是OA 、BC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a 、b 、c 表示向量MN →=________.[解析] 如图所示,MN →=12(MB →+MC →)=12[(OB →-OM →)+(OC →-OM →)]=12(OB →+OC →-2OM →)=12(OB →+OC →-OA →)=12(b +c -a ). [答案] 12(b +c -a )11.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →; (2)EG 的长.[解] 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝⎛⎭⎫12c -12a ·(-a )=12a 2-12a ·c =14. (2)EG →=EB →+BC →+CG →=12a +b -a +12c -12b=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22.12.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以AB ,AC 为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标. [解] (1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2), 所以cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12.所以sin 〈AB →,AC →〉=32,所以以AB ,AC 为边的平行四边形的面积为 S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3. (2)设a =(x ,y ,z ), 由题意得⎩⎪⎨⎪⎧x 2+y 2+z 2=3,-2x -y +3z =0,x -3y +2z =0,解得⎩⎪⎨⎪⎧x =1,y =1,z =1或⎩⎪⎨⎪⎧x =-1,y =-1,z =-1,所以向量a 的坐标为(1,1,1)或(-1,-1,-1).13.有下列命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P ,M ,A ,B 共面; ④若P ,M ,A ,B 共面,则MP →=xMA →+yMB →. 其中真命题的个数是( ) A .1 B .2 C .3D .4B [解析] ①正确,②中若a ,b 共线,p 与a 不共线,则p =x a +y b 就不成立.③正确.④中若M ,A ,B 共线,点P 不在此直线上,则MP →=xMA →+yMB →不正确.14.已知e 1,e 2是空间单位向量,e 1·e 2=12,若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.[解析] 对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),说明当x =x 0,y =y 0时,|b -(x e 1+y e 2)|取得最小值1.|b -(x e 1+y e 2)|2=|b |2+(x e 1+y e 2)2-2b ·(x e 1+y e 2)=|b |2+x 2+y 2+xy -4x -5y ,要使|b |2+x 2+y 2+xy -4x -5y 取得最小值,需要把x 2+y 2+xy -4x -5y 看成关于x 的二次函数,即f (x )=x 2+(y -4)x +y 2-5y ,其图象是开口向上的抛物线,对称轴方程为x =2-y2,所以当x=2-y 2时,f (x )取得最小值,代入化简得f (x )=34(y -2)2-7,显然当y =2时,f (x )min =-7,此时x =2-y2=1,所以x 0=1,y 0=2.此时|b |2-7=1,可得|b |=2 2.[答案] 1 2 2 2 15.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .[证明] (1)设AD =DE =2AB =2a ,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),C (2a ,0,0), B (0,0,a ),D (a ,3a ,0), E (a ,3a ,2a ). 因为F 为CD 的中点, 所以F ⎝⎛⎭⎫32a ,32a ,0.AF →=⎝⎛⎭⎫32a ,32a ,0,BE →=(a ,3a ,a ),BC →=(2a ,0,-a ).因为AF →=12(BE →+BC →),AF ⊄平面BCE ,所以AF ∥平面BCE .(2)因为AF →=⎝⎛⎭⎫32a ,32a ,0,CD →=(-a ,3a ,0),ED →=(0,0,-2a ),所以AF →·CD →=0,AF →·ED →=0, 所以AF ⊥CD ,AF ⊥ED .又CD ∩DE =D ,所以AF ⊥平面CDE . 又AF ∥平面BCE ,所以平面BCE ⊥平面CDE .16.如图,正三角形ABC 的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC 的值;如果不存在,请说明理由.[解] (1)AB ∥平面DEF ,理由如下: 在△ABC 中,由E 、F 分别是AC 、BC 的中点, 得EF ∥AB .又因为AB ⊄平面DEF ,EF ⊂平面DEF , 所以AB ∥平面DEF .(2)以点D 为坐标原点,直线DB 、DC 、DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系(如图所示),则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),故DE →=(0,3,1). 假设存在点P (x ,y ,0)满足条件,则AP →=(x ,y ,-2), AP →·DE →=3y -2=0, 所以y =233.又BP →=(x -2,y ,0),PC →=(-x ,23-y ,0), BP →∥PC →,所以(x -2)(23-y )=-xy , 所以3x +y =2 3.把y =233代入上式得x =43,所以BP →=13BC →,所以在线段BC 上存在点P 使AP ⊥DE ,此时BP BC =13.。

空间向量及其运算详细教案

空间向量及其运算详细教案

空间向量及其运算3。

1。

1 空间向量及其加减运算教学目标:(1)通过本章的学习,使学生理解空间向量的有关概念。

(2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。

能力目标:(1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。

(2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。

(3)培养学生空间向量的应用意识教学重点:(1)空间向量的有关概念(2)空间向量的加减运算及其运算律、几何意义.(3)空间向量的加减运算在空间几何体中的应用教学难点:(1)空间想象能力的培养,思想方法的理解和应用。

(2)空间向量的加减运算及其几何的应用和理解.考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想.易错点:空间向量的加减运算及其几何意义在空间几何体中的应用教学用具:多媒体教学方法:研讨、探究、启发引导。

教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。

教学过程:(老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定?(学生):矢量,由大小和方向确定(学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板?(老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么?(学生)向量(老师):这三个向量和以前我们学过的向量有什么不同?(学生)这是三个向量不共面(老师):不共面的向量问题能直接用平面向量来解决么?(学生):不能,得用空间向量(老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算(老师):实际上空间向量我们随处可见,同学们能不能举出一些例子?(学生)举例(老师):然后再演示(课件)几种常见的空间向量身影。

第七章 第六节 空间向量及其运算

第七章  第六节  空间向量及其运算

[归纳领悟 归纳领悟] 归纳领悟 用已知向量表示未知向量时要注意: 用已知向量表示未知向量时要注意: 1.把要表示的向量置于封闭图形中,利用三角形法则或 .把要表示的向量置于封闭图形中, 多边形法则进行基向量代换. 多边形法则进行基向量代换. 2.用基向量表示一个向量时,如果此向量的起点是从基 .用基向量表示一个向量时, 底的公共点出发的,一般考虑用加法, 底的公共点出发的,一般考虑用加法,否则考虑用减 法,如果此向量与一个易求的向量共线,可用数乘. 如果此向量与一个易求的向量共线,可用数乘.
3.与向量 a=(1,- . ,-3,2)平行的一个向量的坐标是 平行的一个向量的坐标是( = ,- 平行的一个向量的坐标是 1 A.( ,1,1) . 3 1 3 C.(- , ,- ,-1) .- 2 2 B.(-1,- . - ,- ,-3,2) D.( 2,- ,- 2) . ,-3,- ,- ,-2
证明: 解:(1)证明:分别延长 PE、PF、PG、PH 交对边于 M、N、 证明 、 、 、 、 、 Q、R 点. 、 因为 E、F、G、H 分别是所在三角形的重心. 、 、 、 分别是所在三角形的重心. 所以 M、N、Q、R 为所在边的中点,顺次连接 M、N、Q、 、 、 、 为所在边的中点, 、 、 、 R 得到的四边形为平行四边形,且有: 得到的四边形为平行四边形,且有:
)
1 1 3 解析:可知- = - ,-1). 解析:可知- a=(- , ,- . 2 2 2
答案: 答案:C
4.如图所示,已知ABCD是平行四边形, 如图所示,已知 是平行四边形, 如图所示 是平行四边形 P点是 点是ABCD所在平面外一点,连接 所在平面外一点, 点是 所在平面外一点 PA、PB、PC、PD.设点 、F、G、H 、 、 、 设点 设点E、 、 、 分别为△ 分别为△PAB、△PBC、△PCD、 、 、 、 的重心. △PDA的重心. 的重心 (1)试用向量方法证明 、F、G、H四点共面; 试用向量方法证明E、 、 、 四点共面 四点共面; 试用向量方法证明 (2)试判断平面 试判断平面EFGH与平面 与平面ABCD的位置关系,并用向量方 的位置关系, 试判断平面 与平面 的位置关系 法证明你的判断. 法证明你的判断.

第6-1节(空间直角坐标系、向量及其运算

第6-1节(空间直角坐标系、向量及其运算

江西理工大学理学院第 六 章 向量代数与 空间解析几何江西理工大学理学院第 1 节 空间直角坐标系 向量及其运算江西理工大学理学院数轴上的点与数 x具有一一对应的关系。

平面直角坐标系使我们建立了平面上的点( x , y ) 与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究。

为了沟通空间图形与数的研究,我们用类 似于平面解析几何的方法,通过引进空间直角 坐标系来实现。

江西理工大学理学院一、空间点的直角坐标三个坐标轴的正方向 符合右手系.即以右手握住 z 轴, 当右手的四个手指从z 竖轴π 正向 x 轴以 角 2定点 o•y 纵轴度转向正向 y 轴时, 横轴 x 大拇指的指向就是 z 空间直角坐标系 轴的正向.注:为使空间直角坐标系画得更富于立体感通 常把 x 轴和 y轴间的夹角画成 130 0 左右。

江西理工大学理学院Ⅲzzox 面Ⅱyoz 面Ⅳxoy 面Ⅶ ⅧoyⅥ ⅤⅠx空间直角坐标系共有八个卦限江西理工大学理学院⎯ 空间的点 ←⎯ → 有序数组 ( x , y , z )特殊点的表示: 坐标轴上的点 P , Q , R, 坐标面上的点 A, B , C ,1− −1O ( 0, 0, 0 )B ( 0, y , z )•zR ( 0, 0, z )C ( x , o, z )M ( x, y, z )o xP ( x , 0 ,0 )Q ( 0 , y ,0 )yA( x , y ,0)江西理工大学理学院)各坐标面;( 2 )各坐 例1 求点 ( a , b, c )关于(1 标轴;(3 )坐标原点的对称点的 坐标。

解 (1)点( a , b , c )关于 xOy 面的对称点是 ( a , b ,− c );关于 yOz 面的对称点是 ( − a , b , c ); 关于 zOx 面的对称点是 ( a ,− b , c );( 2 )点( a , b , c )关于 x轴的对称点是 ( a ,− b ,− c ); 关于 y轴的对称点是 ( − a , b ,− c ); 关于 z轴的对 称点是 ( − a ,− b , c ); ( 3 )点( a , b , c )关于原点的对称点是 ( − a ,− b ,− c );江西理工大学理学院二、空间两点间的距离设 M 1 ( x1 , y1 , z1 ) 、 M 2 ( x 2 , y 2 , z 2 ) 为空间两点zR• M2M1d = M1 M 2 = ?•Po x2在直角 ∆M 1 NM 2 Q 及 直 角 ∆M PN 1 N 中,使用勾股定 y 理知2 2d = M 1 P + PN + NM 2 ,2江西理工大学理学院Q M 1 P = x2 − x1 , PN = y2 − y1 , NM 2 = z2 − z1 ,zR• M2M1 •Po x2 2Q Ny∴d =M 1 P + PN + NM 222M1 M 2 =( x2 − x1 ) + ( y2 − y1 ) + ( z2 − z1 ) .2 2空间两点间距离公式 特殊地:若两点分别为 M ( x , y , z ) , O ( 0,0,0)d = OM = x 2 + y 2 + z 2 .江西理工大学理学院例 2 求证以 M 1 (4,3,1)、 M 2 (7,1,2)、 M 3 (5,2,3) 三点为顶点的三角形是一个等腰三角形.解 M1 M 22(7 − 4)2 + (1 − 3)2 + ( 2 − 1)2 = 14, =M 2 M 3 = (5 − 7)2 + ( 2 − 1)2 + ( 3 − 2)2 = 6,2M 3 M1 =2(4 − 5)2 + ( 3 − 2)2 + (1 − 3)2 = 6,∴ M 2 M 3 = M 3 M1 ,原结论成立.。

空间向量及其线性运算(26张PPT)——高中数学人教A版选择性必修第一册

空间向量及其线性运算(26张PPT)——高中数学人教A版选择性必修第一册
C D
2.已知空间任一点O 和不共线的三点A,B,C, 下列能得到P,A,B,C四点共面的是(B )A.OP=OA+OB+OC
解 析 :若点P,A,B,C 共面,设OP=xOA+yOB+zOC,则x+y+z=1, 满足条件的只有B, 故选B.
D. 以上都不对
(2)∵M 是AA的中点,
又N 是BC的中点,
回顾一下本节课学习了哪些新知识呢?1.空间向量的概念2.空间向量的运算律3.共线向量和共面向量
小结:
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
的充要条件是
如图,0是直线1上一点,在直线1上取非零向量a, 则对于直线1上任意一 点P, 由数乘向量的定义及向量共线的充要条件可知,存在实数λ,使得
直线的方向向量
OP=λa. 把与向量a 平行的非零向量称为直线l的方向向量.
共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线1平行或重合,那么称向量α平行于直线l.如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.a0 Aa 1aa如果两个向量a,b 不共线,那么向量p 与 向 量a,b 共面的充要条件是存在唯一的有序实数对(x,y), 使 P=xa+yb.
证明:设 DA=a,DC=b.则DB=DC+CB=b+a,
10.如图,在平行六面体ABCD-A₁B₁CD₁中,设AA M,N,P 分别是AA,BC,C₁D₁的中点,试用a,b,c
=a,AB=b,AD=c,表示以下向量:

空间向量及其运算的坐标表示

空间向量及其运算的坐标表示

平面向量
平面向量的坐标运算: a ( x1 , y1 ), b ( x2 , y2 ) a b ( x1 x2 , y1 y2 );
空间向量
空间向量的坐标运算: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) a b ( x1 x2 , y1 y2 , z1 z 2 );
空间向量
空间向量的夹角: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) ab cos a,b | a || b | x1 x2 y1 y2 z1 z 2 2 2 2 2 2 x1 y1 z12 x2 y2 z 2
垂直与平行: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) x1 y1 z1 a // b (?) x2 y 2 z 2 a b x1 x2 y1 y2 z1 z 2 0
x1 x 2 y1 y 2 z1 z 2 (3)中点坐标公式: ( , , ) 2 2 2
2.两个向量夹角公式
a1b1 a2b2 a3b3 a b cos a, b ; 2 2 2 2 2 2 | a || b | a1 a2 a3 b1 b2 b3
垂直与平行: a ( x1 , y1 ), b ( x2 , y2 ) a // b x1 y2 x2 y1 0 a b x1 x2 y1 y2 0
对比表4
平面向量
平面向量基本定理: 如果e1 , e 2是同一平面内的两个不 共线 的向量,那么对于这个 平面内的任一 向量a,有且仅有一对实数 x, y,使a xe1 ye 2 .

空间向量及其运算

空间向量及其运算

第6讲 空间向量及其运算一、选择题 1.有下列命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b .③若MP →=xMA →+yMB →,则P ,M ,A 、B 共面; ④若P ,M ,A ,B 共面,则MP →=xMA →+yMB →.其中真命题的个数是( ).A .1B .2C .3D .4 解析 其中①③为正确命题. 答案 B2.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x = ( ). A .-4B .-2C .4D .2解析 ∵a =(1,1,x ),b =(1,2,1),c =(1,1,1), ∴c -a =(0,0,1-x ),2b =(2,4,2). ∴(c -a )·(2b )=2(1-x )=-2,∴x =2. 答案 D3.若{a ,b ,c }为空间的一组基底,则下列各项中,能构成基底的一组向量是( ). A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b }D .{a +b ,a -b ,a +2b }解析 若c 、a +b 、a -b 共面,则c =λ(a +b )+m (a -b )=(λ+m )a +(λ-m )b ,则a 、b 、c 为共面向量,此与{a ,b ,c }为空间向量的一组基底矛盾,故c ,a +b ,a -b 可构成空间向量的一组基底. 答案 C4.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos〈OA →,BC →〉的值为 ( ). A .0 B.12 C.32D.22解析 设OA →=a ,OB →=b ,OC →=c ,由已知条件〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA →·BC →=a ·(c -b )=a·c -a·b =12|a||c |-12|a||b|=0,∴cos 〈OA →,BC →〉=0.答案 A5.如图所示,在长方体ABCD -A1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是 ( ).A .-12a +12b +c B.12a +12b +c C .-12a -12b +cD.12a -12b +c 解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →) =c +12(b -a )=-12a +12b +c . 答案 A6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3B. 2 C .1 D.3- 2解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD →|=3- 2. 答案 D 二、填空题7. 在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=________.解析 如图,设AB →=a ,AC →=b ,AD →=c ,AB →·CD →+AC →·DB →+AD →·BC →=a ·(c -b )+b·(a -c )+c·(b -a )=0. 答案 08.在平行六面体(即六个面都是平行四边形的四棱柱)ABCD -A′B′C′D′中,AB =1,AD =2,AA′=3,∠BAD =90°,∠BAA′=∠DAA′=60°,则AC′的长为________.解析 如图,AC′→=AB →+BC →+CC′→=AB →+AD →+AA′→, 所以|AC′|=|AC′→|=|AB →+AD →+AA′→| =AB →2+AD →2+AA′→2+AB →·AD →+AB →·AA′→+AD →·AA′→=1+4+9++=23.答案 239.已知ABCD -A 1B 1C 1D 1为正方体,①(11A A +11A D +11A B )2=311A B 2;②1A C ·(11A B -11A A )=0;③向量1AD 与向量1A B 的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB ·1AA ·AD |.其中正确命题的序号是________.解析 由1AA ⊥11A D ,1AA ⊥11A B ,11A D ⊥11A B ⊥11A B ,得(1A A +11A D +11A B )2=3(11A B )2,故①正确;②中11A B -1A A =1AB ,由于AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成角为60°,但1AD 与1A B 的夹角为120°,故③不正确;④中|AB ·1AA ·AD |=0.故④也不正确. 答案 ①②10.如图,空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值等于________. 解析 设OA →=a ,OB →=b ,OC →=c . OA 与BC 所成的角为θ,OA →·BC →=a (c -b )=a ·c -a ·b =a ·(a +AC →)-a ·(a +AB →)=a 2+a ·AC →-a 2-a ·AB →=24-16 2.∴cos θ=|OA →·BC →||OA →|·|BC →|=24-1628×5=3-225.答案3-225 三、解答题11.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →、MB →、MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由已知OA →+OB →+OC →=3 OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知,MA →,MB →,MC →共面且基线过同一点M , ∴四点M ,A ,B ,C 共面,从而点M 在平面ABC 内.12.把边长为a 的正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长;(2)折起后∠EOF 的大小.解 如图,以O 点为原点建立空间直角坐标系O -xyz ,则A (0,-22a,0), B (22a,0,0),C (0,22a,0),D (0,0,22a ),E (0,-24a ,24a ), F (24a ,24a,0).(1)|EF →|2=⎝ ⎛⎭⎪⎫24a -02+⎝ ⎛⎭⎪⎫24a +24a 2+⎝ ⎛⎭⎪⎫0-24a 2=34a 2,∴|EF |=32a .(2)OE →=⎝ ⎛⎭⎪⎫0,-24a ,24a ,OF →=⎝ ⎛⎭⎪⎫24a ,24a ,0,OE →·OF →=0×24a +⎝ ⎛⎭⎪⎫-24a ×⎝ ⎛⎭⎪⎫24a +24a ×0=-a 28,|OE →|=a 2,|OF →|=a 2,cos 〈OE →,OF →〉=OE →·OF →|OE →||OF →|=-12,∴∠EOF =120°.13.如图,已知M 、N 分别为四面体ABCD 的面BCD 与面ACD 的重心,且G 为AM 上一点,且GM ∶GA =1∶3.求证:B 、G 、N 三点共线. 证明 设AB →=a ,AC →=b ,AD →=c ,则BG →=BA →+AG →=BA →+34AM →=-a +14(a +b +c )=-34a +14b +14c , BN →=BA →+AN →=BA →+13(AC →+AD →) =-a +13b +13c =43BG →.∴BN →∥BG →,即B 、G 、N 三点共线.14.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB 、AD 、CD 的中点,计算:(1)EF →·BA →;(2)EF →·DC →;(3)EG 的长; (4)异面直线AG 与CE 所成角的余弦值. 解 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,DC →=b -c , EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a·c =14,(2)EF →·DC →=12(c -a )·(b -c ) =12(b·c -a·b -c 2+a·c )=-14;(3)EG →=EB →+BC →+CG →=12a +b -a +12c -12b=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a·b +12b·c -12c·a =12,则|EG →|=22. (4)AG →=12b +12c ,CE →=CA →+AE →=-b +12a , cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23,由于异面直线所成角的范围是(0°,90°], 所以异面直线AG 与CE 所成角的余弦值为23.。

第7篇 第6节 空间向量及其运算课件 理 新人教A版 课件

第7篇 第6节 空间向量及其运算课件 理 新人教A版 课件
x1x2+y1y2+z1z2 ③夹角公式:cos〈a,b〉=__x_12_+__y21_+__z_21__x_22_+__y22. +z22
④模长公式:|a|= a·a=___x_12+__y_21_+__z_21 _.
⑤数乘运算:λa=____(_λ_x_1,__λ_y_1_,__λ_z1_)_ (λ∈R). ⑥平行的充要条件:a∥b⇔x1=λx2,y1=λy2,z1= λz2(λ∈R).
⑦垂直的充要条件:a⊥b⇔_x_1_x2_+__y_1_y_2+__z_1_z2_=__0___.
1.设三棱锥OABC中,
→ OA
=a,
→ OB
=b,
→ OC
=c,G是
△ABC的重心,则O→G等于( )
A.a+b-c
B.a+b+c
C.12(a+b+c)
D.13(a+b+c)
解析:如图所示,
O→G=O→A+A→G =O→A+13(A→B +A→C )
(1)求空间向量数量积的方法 ①定义法.设向量a、b的夹角为θ,则a·b=|a||b|cos θ; ②坐标法.设a=(x1,y1,z1),b=(x2,y2,z2),则a·b =x1x2+y1y2+z1z2.
=O→A+13(O→B-O→A+O→C-O→A) =13(a+b+c). 故选D. 答案:D
2.P-12,0,

3关于z轴的对称点为(

)
A.12,0,-

3

B.-12,0,-

3

C.12,0,

3

D.-12,0,

3

解析:关于z轴对称,横、纵坐标变为原来的相反数, 竖坐标不变.故选C.
a·b ③cos〈a,b〉=__|a_|_|b_| ____. ④a2=a·a=_|_a_|2_,|a|=__a_2_. ⑤|a·b|___≤_|a||b|.

空间向量及其应用

空间向量及其应用

第六节 空间向量及其应用考纲解读1.空间向量及其运算.(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;(2)掌握空间向量的线性运算及其坐标表示;(3)掌握空间向量的数量积及其表示,能用向量的数量积判断向量的共线与垂直. 2.空间向量的应用.(1)理解直线的方向向量与平面的法向量;(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系; (3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理);(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用. 命题趋势探究立体几何试题中,证明线面、面面的位置关系一般利用传统方法(非向量法)证明,对于空间角和距离的计算,既可用传统方法解答,也可以用向量法解答,而且多数情况下向量法会更容易一些.预测在2015年高考对本专题的考查会在解答题中以中档题出现,分值保持在12分左右. 知识点精讲一、空间向量及其加减运算1.空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB ,其模记为a 或AB .2.零向量与单位向量规定长度为0的向量叫做零向量,记作0.当有向线段的起点A 与终点B 重合时,0AB =.模为1的向量称为单位向量. 3.相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a -. 4.空间向量的加法和减法运算(1)OC OA OB a b =+=+,BA OA OB a b =-=-.如图8-152所示.(2)空间向量的加法运算满足交换律及结合律 a b b a +=+,()()a b c a b c ++=++ 二、空间向量的数乘运算1.数乘运算实数λ与空间向量a 的乘积a λ称为向量的数乘运算.当0λ>时,a λ与向量a 方向相同;当0λ<时,向量a λ与向量a 方向相反. a λ的长度是a 的长度的λ倍.2.空间向量的数乘运算满足分配律及结合律()a b a b λλλ+=+,()()a a λμλμ=.3.共线向量与平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a 平行于b ,记作//a b .4.共线向量定理对空间中任意两个向量a ,b ()0b ≠,//a b 的充要条件是存在实数λ,使a b λ=. 5.直线的方向向量如图8-153所示,l 为经过已知点A 且平行于已知非零向量a 的直线.对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+①,其中向量a 叫做直线l的方向向量,在l 上取AB a =,则式①可化为()()1OP OA t AB OA t OB OA t OA tOB =+=+-=-+②①和②都称为空间直线的向量表达式,当12t =,即点P 是线段AB 的中点时,()12OP OA OB =+,此式叫做线段AB 的中点公式. 6.共面向量如图8-154所示,已知平面α与向量a ,作OA a =,如果直线OA 平行于平面α或在平面α内,则说明向量a 平行于平面α.平行于同一平面的向量,叫做共面向量.7.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+.推论:(1)空间一点P 位于平面ABC 内的充要条件是存在有序实数对(),x y ,使AP xAB y AC =+;或对空间任意一点O ,有OP OA x AB y AC -=+,该式称为空间平面ABC 的向量表达式.(2)已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP xOA yOB zOC =++(其中1x y z ++=)的点P 与点A ,B ,C 共面;反之也成立.三、空间向量的数量积运算1.两向量夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b ,通常规定0,a b π≤≤,如果,2a b π=,那么向量a ,b 互相垂直,记作a b ⊥.2.数量积定义已知两个非零向量a ,b ,则cos ,a b a b 叫做a ,b 的数量积,记作a b ⋅,即cos ,a b a b a b ⋅=.零向量与任何向量的数量积为0,特别地,2a a a ⋅=.3.空间向量的数量积满足的运算律: ()()a b a b λλ⋅=⋅,a b b a ⋅=⋅(交换律); ()a b c a b a c ⋅+=⋅+⋅(分配律). 四、空间向量的坐标运算及应用(1)设()123,,a a a a =,()123,,b b b b =,则()112233,,a b a b a b a b +=+++;()112233,,a b a b a b a b -=---;Aaaα图 8-154O()123,,a a a a λλλλ=; 112233a b a b a b a b ⋅=++;()112233//0,,a b b a b a b a b λλλ≠⇒===; 1122330a b a b a b a b ⊥⇒++=.(2)设()111,,A x y z ,()222,,B x y z ,则()212121,,AB OB OA x x y y z z =-=---. 这就是说,一个向量在直角坐标系中的坐标等于表示该向量的有向线段的终点的坐标减起点的坐标.(3)两个向量的夹角及两点间的距离公式.①已知()123,,a a a a =,()123,,b b b b =,则221a a a ==+221b b b ==+;112233a b a b a b a b ⋅=++;cos ,a b =;②已知()111,,A x y z ,()222,,B x y z ,则(AB x =或者(),d A B AB =.其中(),d A B 表示A 与B 两点间的距离,这就是空间两点的距离公式.(4)向量a 在向量b 上的射影为cos ,a b a a b b⋅=.(5)设()0n n ≠是平面M 的一个法向量,AB ,CD 是M 内的两条相交直线,则0n AB ⋅=,由此可求出一个法向量n (向量AB 及CD 已知).(6)利用空间向量证明线面平行:设n 是平面的一个法向量,l 为直线l 的方向向量,证明0l n ⋅=,(如图8-155所示).已知直线l (l α⊄),平面α的法向量n ,若0l n ⋅=,则//l α.(7)利用空间向量证明两条异面直线垂直:在两条异面直线中各取一个方向向量a ,b ,只要证明a b ⊥,即0a b ⋅=.(8)利用空间向量证明线面垂直:即证平面的一个法向量与直线的方向向量共线.(9)证明面面平行、面面垂直,最终都要转化为证明法向量互相平行、法向量互相垂直.(10)空间角公式.①异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,a b a b a bθ⋅==.②线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,a n a n a nθ⋅==.③二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,n n θ=或12,n n π-(需要根据具体情况判断相等或互补),其中1212cos n n n n θ⋅=.(11)点A 到平面α的距离为d ,B α∈,n 为平面α的法向量,则AB n d n⋅=.题型归纳及思路提示题型116 空间向量及其运算思路提示空间向量的运算包括空间向量的加法、减法、数乘、数量积的几何意义及坐标运算,可以类比平面向量的运算法则.一、空间向量的加法、减法、数乘运算例8.41 如图8-156所示,已知空间四边形OABC ,点,M N 分别为OA ,BC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN=.解析1122OM OA a ==,()()1122ON OB OC b c=+=+,()()111222MN ON OM b c a b c a =-=+-=+-.变式1 如图8-157所示,已知空间四边形OABC ,其对角线为OB ,AC ,M 和N 分别是对边OA 和BC 的中点,点G 在线段MN 上,且2MG GN =,现用基向量OA ,OB ,OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( ).A 111,,333x y z ===.B 111,,336x y z ===.C 111,,363x y z ===.D 111,,633x y z ===变式2 如图8-158所示,在四面体O ABC -中,OA a =,OB b =,OC c =,D 为BC 的中点,E 为AD 的中点,则OE = (用a ,b ,c 表示).变式3 在空间四边形ABCD 中,连接对角线,AC BD ,若BCD ∆是正三角形,且E 为其重心,则1322AB BC DE AD +--的化简结果为 . 变式4 如图8-159所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( ).A 1122a b c -++ .B 1122a b c ++.C 1122a b c --+ .D 1122a b c -+二、空间共线向量定理的应用空间共线向量定理:()//0a b b a b λ≠⇔=. 利用此定理可解决立体几何中的平行问题.例8.42 已知3240m a b c =--≠,()182n x a b yc =+++,且,,a b c 不共面,若//m n ,求,x y 的值.解析 因为//m n 且0m ≠,所以n m λ=,即()()182324x a b yc a b c λ+++=--.又因为,,a b c 不共面,所以138224x y λλλ+=⎧⎪=-⎨⎪=-⎩,解得138x y =-⎧⎨=⎩.二、空间向量的数量积运算121212cos ,a b a b a b x x y y z z ⋅==++;求模长时,可根据2222111a a x y z ==++求空间向量夹角时,可先求其余弦值cos ,a b a b a b⋅=.要判断空间两向量垂直时,可以求两向量的数量积是否为0,即0a b a b ⋅=⇔⊥.,a b 为锐角0a b ⇒⋅>;,a b 为钝角0a b ⇒⋅<.由此,通常通过计算a b ⋅的值来判断两向量夹角是锐角还是钝角.例8.43 已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,AE ⋅AF 的值为( )..A 2a .B 21.2B a 21.4C a 23.4D a 解析 依题意,点,EF 分别是,BC AD 的中点,如图8-160所示,AE ⋅AF ()1122AB AC AD =+⋅()14AB AD AC AD =⋅+⋅ ()22211cos60cos6044a a a =︒+︒=. 故选C .变式1 如图8-161所示,已知平行六面体1111ABCD A B C D -中,1160A AD A AB DAB ∠=∠=∠=︒,且11A A AB AD ===,则1AC = .变式2 如图8-162所示,设,,,A B C D 是空间不共面的4个点,且满足0AB AC ⋅=,0AD AC ⋅=,0AD AB ⋅=,则BCD ∆的形状是( )..A 钝角三角形 .B 直角三角形 .C 锐角三角形 .D 无法确定例8.44 如图8-163所示,在45︒的二面角l αβ--的棱上有两点,A B ,点,C D 分别在,αβ内,且AC AB ⊥,45ABD ∠=︒,1AC BD AB ===,则CD 的长度为 . 分析 求CD 的长度转化为求空间向量CD 的模.解析 因为CD CA AB BD =++,故()22CD CA AB BD =++ 222222CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅1110211cos1352CA BD =++++⨯⨯⨯︒+⋅,设点C 在β内的射影为H ,则HA AB ⊥,,135HA BD =︒.故()CA BD CH HA BD CH BD HA BD⋅=+⋅=⋅+⋅10cos1351cos 45cos1352HA BD =+︒=⨯︒︒=-.故22CD =,则2CD =-变式1 已知二面角l αβ--为60︒,动点,P Q 分别在面,αβ内,P 到βQ 到α的距离为,P Q 两点之间距离的最小值为( )..2B C .4D变式2 在直角坐标系中,设()3,2A ,()2,3B --,沿y 轴把坐标平面折成120︒的二面角后,AB 的长为( ).A B C D例8.45 如图8-164所示,设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,记11D PD Bλ=.当APC ∠为钝角时,求λ的取值范围. 解析 由题设可知,以1,,DA DC DD 为单位正交基底,建立如图8-165所示的空间直角坐标系D xyz -,则有()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D . 由()11,1,1D B =-,()11,,D P D B λλλλ==-,()()()111,0,1,,1,,1PA D A D P λλλλλλ=-=---=---,()()()110,1,1,,,1,1PC DC D P λλλλλλ=-=---=---. 显然APC ∠不是平角,所以APC ∠为钝角,cos cos ,0PA PC APC PA PC PA PC⋅∠==<,等价于0PA PC ⋅<,即()()()()()21110λλλλλ--+--+-<,得113λ<<.因此,λ的取值范围是1,13⎛⎫⎪⎝⎭.评析 利用向量知识将APC ∠为钝角转化为cos ,0PA PC <求解是本题的关键. 变式1 已知正方体1111ABCD A B C D -的棱长为1,点P 在线段1BD 上,当APC ∠最大时,三棱锥P ABC -的体积为( ).1.24A 1.18B 1.9C 1.12D 例8.46 如图8-166所示,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP MC =,则点M 在正方形ABCD 内的轨迹为( ).解析 取AD 的中点O ,以OA 为x 轴,垂直于OA 的OE 为y 轴,OP 为z 轴,建立空间直角坐标系如图8-167所示.设(),,0M x y ,正方形的边长为a ,30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭,,,02a C a ⎛⎫- ⎪⎝⎭,则()222a MC x y a ⎛⎫=++- ⎪⎝⎭22234MP x y a =++,MP MC =, 得()22222324a a x y a x y ⎛⎫++-=++ ⎪⎝⎭,即202a x y -+=.所以点M 在正方形ABCD 内的轨迹为一条线段,且过D 点和AB 的中点.故选A .评注 本题利用空间线面位置关系求解也很快.由题意知空间内与两定点距离相等的点均在线段中垂面内,即M 在线段PC 的中垂面内.又M 为底面ABCD 内一动点,则M 的轨迹为两平面的交线落在底面内的部分,排除C 、D .又BP BC >,故排除B .故选A .变式1 到两互相垂直的异面直线距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )..A 直线 .B 椭圆 .C 抛物线 .D 双曲线变式2 空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离,已知平面α,β,γ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是点P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是( )..33A -.33B -.63C .3D 题型117 空间向量在立体几何中的应用思路提示用向量法可以证点共线、线共点、线(或点)共面、两直线(或线与面、面与面)垂直的问题,也可以求空间角和距离.因此,凡涉及上述类型的问题,都可以考虑利用向量法求解,且其解法一般都比较简单.用向量法解题的途径有两种:一种是坐标法,即通过建立空间直角坐标系,确定出一些点的坐标,进而求出向量的坐标,再进行坐标运算;另一种是基底法,即先选择基向量(除要求不共面外,还要能够便于表示所求的目标向量,并优先选择相互夹角已知的向量作为基底,如常选择几何体上共点而不共面的三条棱所在的向量为基底),然后将有关向量用基底向量表示,并进行向量运算.一、证明三点共线(如A ,B ,C 三点共线)的方法先构造共起点的向量AB ,AC ,然后证明存在非零实数λ,使得AB AC λ=. 例8.47 如图8-168所示,已知在长方体1111ABCD A B C D -中,点M 为1DD 的中点,点N 在AC 上,且:2:1AN NC =,点E 为BM 的中点.求证:1A ,E ,N 三点共线.解析 以D 为坐标原点建立空间直角坐标系-D xyz ,如图8-169所示.不妨设DA a =,DC b =,1DD c =,则0,0,2c M ⎛⎫ ⎪⎝⎭,(),,0B a b ,,,224a b c E ⎛⎫ ⎪⎝⎭,()1,0,A a c ,2,,033a b N ⎛⎫ ⎪⎝⎭,则13,,224a b c A E ⎛⎫=-- ⎪⎝⎭,122,,33a b A N c ⎛⎫=-- ⎪⎝⎭,因为1143A N A E =,故1A ,E ,N 三点共线.变式1 在正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 和1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( )..A 不存在 .B 有且只有两条 .C 有且只有三条 .D 有无数条变式2 如图8-170所示,在空间四边形ABCD 中,M ,N 分别是AB 和CD 的中点,P 为线段MN 的中点,Q 为BCD ∆的重心.求证:,,A P Q 三点共线.二、证明多点共面的方法要证明多点(如A ,B ,C ,D )共面,可使用以下方法解题.先作出从同一点出发的三个向量(如AB ,AC ,AD ),然后证明存在两个实数,x y ,使得AD x AB y AC =+.例8.48 如图8-171所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,1//2BC AD ,1//2BE AF .求证:,,,C D E F 四边共面. 解析 由平面ABEF ⊥平面ABCD ,又AF AB ⊥,平面ABEF 平面ABCD AB =, 得AF ⊥平面ABCD ,以A 为坐标原点,建立空间直角坐标系A xyz -,如图8-172所示.设AB a =,BC b =,BE c =,则(),0,0B a ,(),,0C a b ,()0,2,0D b ,(),0,E a c , ()0,0,2F c .()0,,CE b c =-,()0,2,2DF b c =-,因为2DF CE =,所以//DF CE ,则 ,CE DF 确定一个平面,即,,,C D E F 四点共面.变式 1 如图8-173所示,已知平行六面体1111ABCD A B C D -,,,,E F G H 分别是棱11111,,,A D D C C C AB 的中点.求证:,,,E F G H 四点共面.三、证明直线和直线平行的方法将证线线平行转化为证两向量共线.设,a b 是两条不重合的直线,它们的方向向量分别为,a b ,则()//,0a b a b R λλλ⇔=∈≠.例8.49 如图8-174所示,在正方体1111ABCD A B C D -中,MN 是异面直线1A D 与AC 的公垂线段.求证:1//MN BD .解析 以点D 为坐标原点,建立空间直角坐标系D xyz -,如图8-175所示.设正方体的棱长为a ,则()1,0,A a a ,(),0,0A a ,()0,,0C a ,(),,0B a a ,()10,0,D a .设(),,z MN x y =,由MN 是异面直线1A D 与AC 的公垂线段,得1MN A D ⊥, MN AC ⊥,又()1,0,A D a a =--,(),,0AC a a =-,故100MN A D MN AC ⎧⋅=⎪⎨⋅=⎪⎩,00ax az ax ay --=⎧⎨-+=⎩,令1x =,则1z =-,1y =,所以()1,1,1MN =-,()1,,BD a a a aMN =--=-,即 1//BD MN .因此1//MN BD .四、证明直线和平面平行的方法(1)利用共面向量定理.设,a b 为平面α内不共线的两个向量,证明存在两个实数,x y ,使得l xa yb =+,则//l α.(2)转化为证明直线和平面内的某一直线平行.(3)转化为证明直线的方向向量与平面的法向量垂直(此方法最常用).例8.50 如图8-176所示,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,//AB DC ,E 是DC 的中点.求证:1//D E 平面1A BD .解析 因为11D E DE DD =-,11DD AA =,E 是DC 的中点,12DE DC AB ==,所以111D E AB AA A B =-=.又因为1D E ⊄平面1A BD ,11//D E A B ,所以1//D E 平面1A BD .评注 利用空间向量证明线面平行,已知直线的方向向量为a ,只要在平面内找到一条直线的方向向量为b ,问题转化为证明a b λ=即可.变式1 如图8-177所示,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是PA 、 BD 上的点,且::5:8PM MA BN ND ==.求证:直线//MN 平面PBC .五、证明平面与平面平行的方法(1)证明两平面内有两条相交直线分别平行.(2)转化为证两平面的法向量平行(常用此方法).例8.51 如图8-178所示,在正方体1111ABCD A B C D -中,,,M N P 分别是11111,,C C B C C D 的中点.求证:平面//MNP 平面1A BD .解析 解法一:以1D 为坐标原点,11D A 为x 轴,11D C 为y 轴,1D D 为z 轴,建立空间直角坐标系1D xyz -,如图8-179所示.设正方体的棱长为a ,则()1,0,0A a ,()0,0,D a ,()10,,0C a ,()0,,C a a ,()1,,0B a a ,0,,2a M a ⎛⎫ ⎪⎝⎭,0,,02a P ⎛⎫ ⎪⎝⎭,,,02a N a ⎛⎫ ⎪⎝⎭,()1,0,A D a a =-,11,0,222a a MN A D ⎛⎫=-=- ⎪⎝⎭,所以1//MN A D ,即1//MN A D ,(),,0BD a a =--,1,,0222a a PN BD ⎛⎫==- ⎪⎝⎭,所以//PN BD ,即//PN BD .因为MN PN N =,1A D BD D =,所以平面//MNP 平面1A BD .解法二:设平面MNP 的法向量为()1111,,n x y z =,由1MN n ⊥,1PN n ⊥,得1111022022a a x z a a x y ⎧-=⎪⎪⎨⎪+=⎪⎩,令11z =,得111111x y z =⎧⎪=-⎨⎪=⎩,所以()11,1,1n =-.设平面1A BD 的法向量为()2222,,n x y z =,由12A D n ⊥,2BD n ⊥,得222200ax az ax ay -+=⎧⎨--=⎩,令21z =,得222111x y z =⎧⎪=-⎨⎪=⎩, 所以()21,1,1n =-.因为12//n n ,所以平面//MNP 平面1A BD .变式1 如图8-180所示,在平行六面体1111ABCD A B C D -中,,,E F G 分别是11111,,A D D D D C 的中点.求证:平面//EFG 平面1AB C .六、证明直线与直线垂直的方法设直线12,l l 的方向向量为,a b ,则a b ⊥0a b ⇔⋅=.这里要特别指出的是,用向量法证明两直线尤其是两异面直线垂直是非常有效的方法.例8.52 如图8-181所示,四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =,AB AC =.求证:AD CE ⊥.分析 平面ABC ⊥平面BCDE ,在平面ABC 内作AO BC ⊥AO ⇒⊥平面BCDE ,以点O 为坐标原点建立空间直角坐标系.解析 作AO BC ⊥,垂足为O ,则AO ⊥平面BCDE ,且O 为BC 的中点,以O 为坐标原点,OC 为x 轴,建立如图8-182所示的直角坐标系O xyz -.设()0,0,A a ,由已知条件知()1,0,0C ,()1,2,0D ,()1,2,0E -,()2,2,0CE =-,()1,2,AD a =-.因为0CE AD=⋅,所以CE AD ⊥。

高中数学教(学)案第6讲:空间向量的坐标运算

高中数学教(学)案第6讲:空间向量的坐标运算

题目 第九章(B)直线、平面、简单几何体空间向量的坐标运算高考要求要使学生理解空间向量、空间点的坐标的意义,掌握向量加法、减法、数乘、点乘的坐标表示以及两点间的距离、夹角公式通过解题,会应用空间向量的坐标运算解决立体几何中有关平行、垂直、夹角、距离等问题 知识点归纳1空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面; 2.空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 3.空间向量的直角坐标运算律: (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++, 112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4模长公式:若123(,,)a a a a =,123(,,)b b b b =, 则21||a a a a =⋅=+21||b b b b =⋅=+5.夹角公式:21cos ||||a ba b a b a ⋅⋅==⋅+. 6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB ==或,A B d =题型讲解例1 已知AB =(2,2,1),AC =(4,5,3),求平面ABC 的单位法向量 解:设面ABC 的法向量(,,)n x y z =,则n ⊥且n ⊥,即n ·=0,且n ·=0,即2x +2y +z=0且4x +5y +3z=0,解得1,2,x z y z ⎧=⎪⎨⎪=-⎩∴n =z (21,-1,1),单位法向量0||n n n ==±(31,-32,32) 点评:一般情况下求法向量用待定系数法由于法向量没规定长度,仅规定了方向,所以有一个自由度,可把n 的某个坐标设为1,再求另两个坐标平面法向量是垂直于平面的向量,故法向量的相反向量也是法向量,所以本题的单位法向量应有两解例2 已知A (3,2,1)、B (1,0,4),求: (1)线段AB 的中点坐标和长度;(2)到A 、B 两点距离相等的点P (x ,y ,z )的坐标满足的条件 解:(1)设P (x ,y ,z )是AB 的中点,则OP =21(OA +OB )=21[(3,2,1)+(1,0,4)]=(2,1,25),∴点P 的坐标是(2,1,25),d AB =222)14()20()31(-+-+-=17 (2)设点P (x ,y ,z )到A 、B 的距离相等,则222)1()2()3(-+-+-z y x =222)4()1(-++-z y x化简得4x +4y -6z +3=0(线段AB 的中垂面方程,其法向量的坐标就是方程中x,y,z 的系数),即为P 的坐标应满足的条件点评:空间两点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2)的中点为(221x x +,221y y +,221z z +),且|P 1P 2|=221221221)()()(z z y y x x -+-+-例3 棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?解:以D 为原点建立如图所示的坐标系,设存在点P (0,0,z ),AP =(-a ,0,z ), AC =(-a ,a ,0),1DB =(a ,a ,a ), ∵B 1D ⊥面P AC ,∴1DB ·AP =0,1DB ·AC =0∴-a 2+az =0∴z =a ,即点P 与D 1重合∴点P 与D 1重合时,DB 1⊥面P AC例 4 在三棱锥S —ABC 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29(1)求证:SC ⊥BC ;(2)求SC 与AB 所成角的余弦值解法一:如图,取A 为原点,AB 、AS 分别为y 、z 轴建立空间直角坐标系,则有AC =2,BC =13,SB =29, 得B (0,17,0)、S (0,0,23)、C (21713,174,0), ∴SC =(21713,174,-23),CB =(-21713,1713,0) (1)∵SC ·CB =0,∴SC ⊥BC (2)设SC 与AB 所成的角为α,∵AB =(0,17,0),SC ·AB =4,|SC || AB |=417,∴cos α=1717,即为所求 解法二:(1)∵SA ⊥面ABC ,AC ⊥BC ,AC 是斜线SC 在平面ABC 内的射影,∴SC ⊥B C (2)如图,过点C 作CD ∥AB ,过点A 作AD ∥BC 交CD 于点D ,连结SD 、SC ,则∠SCD 为异面直线SC 与AB 所成的角∵四边形ABCD 是平行四边形,CD =17,SA =23,SD =22AD SA +=1312+=5,∴在△SDC 中,由余弦定理得cos ∠SCD =1717,即为所求 点评:本题(1)采用的是“定量”与“定性”两种证法题(2)的解法一应用向量的数量积直接计算,避免了作辅助线、平移转化的麻烦,但需建立恰当的坐标系;解法二虽然避免了建系,但要选点、平移、作辅助线、解三角形例5 如图,直棱柱ABC —A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点 (1)求BN 的长;(2)求cos 〈1BA ,1CB 〉的值;(3)求证:A 1B ⊥C 1M(1)解:如图建立坐标系,依题意得B (0,1,0),N (1,0,1), ∴|BN |=222)01()10()01(-+-+-=3(2)解:A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2), ∴1BA =(1,-1,2),1CB =(0,1,2), ∴1BA ·1CB =3,|1BA |=6,|1CB |=5 ∴cos 〈1BA ,1CB 〉=1111||||BA CB BA CB ⋅=1030(3)证明:∵C 1(0,0,2),M (21,21,2), ∴1A B =(-1,1,-2),1C M =(21,21,0),∴1A B ·1C M =0,∴A 1B ⊥C 1M例6 如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点 (1)证明AD ⊥D 1F ; (2)求AE 与D 1F 所成的角; (3)证明面AED ⊥面A 1D 1F 解:取D 为原点,DA 、DC 、DD 1为x 轴、y 轴、z 轴建立直角坐标系,取正方体棱长为2, 则A (2,0,0)、A 1(2,0,2)、 D 1(0,0,2)、E (2,2,1)、F (0,1,0)(1)∵DA ·1D F =(2,0,0)·(0,1,-2)=0,∴AD ⊥D 1F (2)∵AE ·1D F =(0,2,1)·(0,1,-2)=0,∴AE ⊥D 1F ,即AE 与D 1F 成90°角(3)∵DE ·1D F =(2,2,1)·(0,1,-2)=0,∴DE ⊥D 1F ∵AE ⊥D 1F ,∴D 1F ⊥面AE D ∵D 1F 面A 1D 1F ,∴面AED ⊥面A 1D 1F点评:①通过建立空间直角坐标系,点用三维坐标表示,向量用坐标表示,进行向量的运算,轻而易举地解决立体几何问题,不需要添加辅助线一个需要经过严密推理论证的问题就这样被简单机械的运算代替了②本题是高考题,标准答案的解法较为复杂,而运用代数向量求解则轻而易举,充分显示出代数化方法研究几何图形的优越性,这应作为立体几何复习的一个重点去掌握通过坐标法计算数量积去证垂直,求夹角、距离,是高考的重点例7 如图,正三棱柱ABC-A 1B 1C 1的底边长为a,侧棱长为2a建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角分析:(1)所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算,(2)首先要找出所求的角,或找出平面的法向量与直线所成的角,然后再求之 解:(1)建系如图,则A (0,0,0) B (0,a,0) A 1(0,0,2a),C 1(-23a,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M ,于是M (0,a 2,2a),连结AM ,MC 1则有13(,0,0)MC =-(0,,0)AB a =,1(0,02)AA a =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角13(,2)22a AC a a =-,(0,2)2aAM a =, ∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==由cos<1,AC AM >=113||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°解法二: 13(,2)22aAC a a =-, A BCA 1B 1C 1MzyxA BCA 1B 1C 1Mzyx平面ABB 1A 1的一个法向量(1,0,0)n =- ∴AC 1与侧面ABB 1A 1所成的角θ的正弦为:1sin cos ,AC n θ=<>=1112||||AC n AC n ⋅=∴AC 1与侧面ABB 1A 1所成的角为30°例8 棱长为2的正方体A 1B 1C 1D 1-ABCD 中,E 、F 分别是C 1C 和D 1A 1的中点,(1)求EF 长度;(2)求<,AB EF >;3)求点A 到EF 的距离分析:一般来说,与长方体的棱或棱上的点有关的问题,建立空间直角坐标系比较方便,适当建立坐标系后,正确地写出相关点的坐标及向量然后进行运算即可得解 解:以D 为原点,DA ,DC ,DD 1分别为x 轴, y 轴,z 轴建立直角坐标系,则A (2,0,0),B (2,2,0), E (0,2,1),F (1,0,2) 由此可得:AB =(0,2,0),EF =(1,-2,1)FA =(1,0,-2),|AB |=2,|FA |=5,AB EF ⋅= - 4, FA EF ⋅=1-2=-1, 所以(1)||EF =6 (2)c os<,AB EF >=||||AB EFAB EF ⋅=-36,所以<,AB EF >=π-arcc os 36 (3)FA 在EF 上的射影的数量FA c os<,FA FE >=||FA FE FE ⋅=61∴ A 到EF 的距离21||(6FA -= 点评:点到直线的距离的向量求法,就是先求出该点与直线上某点连线在直线上的射影,再用勾股定理求对应的距离例9 平面ABCD ⊥平面ABEF ,ABCD 是正方形,ABEF 是矩形,且,21a AD AF ==G 是EF 的中点,(1)求证平面AGC ⊥平面BGC ;(2)求GB 与平面AGC 所成角正弦值; (3)求二面角B —AC —G 的大小解:如图,以A 为原点建立直角坐标系, 则A (0,0,0),B (0,2a ,0),C (0,2a ,2a ), G (a ,a ,0),F (a ,0,0)(1)证明:(,,0),(0,2,2)AG a a AC a a ==,(,,0),(0,0,2)BG a a BC a =-=,设平面AGC 的法向量为111(,,1)n x y =, 设平面BGC 的法向量为222(1,,)n y z =,∴120n n ⋅= 即 12n n ⊥ ∴平面AGC ⊥平面BGC ; (2)由⑴知平面AGC 的法向量为1(1,1,1)n =-(,,0),(0,0,2)BG a a BC a =-=,∴||sin ||||2BG n BG n a θ⋅===⋅⋅(3)因1(1,1,1)n =-是平面AGC 的法向量,又AF ⊥平面ABCD , 平面ABCD 的法向量(,0,0)AF a =, 得11|||cos |||||3n AF n AF θ⋅===⋅∴二面角B —AC —G 的大小为求平面法向量的另一种方法:由 A (0,0,0),B (0,2a ,0),C (0,2a ,2a ), G (a ,a ,0),F (a ,0,0) 设平面AGC 的方程为:11110A x B y C z D +++=则11111111111111111111100000000,002200A B C D D A a B a C D A B A C B D A aB aC D B C +++==⎧⎧⎪⎪+++=⇒+=⇒==-=⎨⎨⎪⎪+++=+=⎩⎩ ∴平面AGC 的法向量为11111(,,)(1,1,1)n A B C A ==- 设平面BGC 的方程为:22220A x B y C z D +++=则222222222222222222222220200200220220,0000A aBCD aB D A aB aC D aB aC D B A C aA aB C D aA aB D +++=+=⎧⎧⎪⎪+++=⇒++=⇒==⎨⎨⎪⎪+++=++=⎩⎩∴平面BGC 的法向量为12222(,,)(1,1,0)n A B C A ==点评:①平面平行于哪一个轴,其法向量的对应坐标就是0;②平面经过原点时平面方程中的常数项等于0; ③平面法向量的两种求法的区别 小结:1运用空间向量的坐标运算解决几何问题时,首先要恰当建立空间直角坐标系,计算出相关点的坐标,进而写出向量的坐标,再结合公式进行论证、计算,最后转化为几何结论2本节知识是代数化方法研究几何问题的基础,向量运算分为向量法与坐标法两类,以通过向量运算推理,去研究几何元素的位置关系为重点利用两个向量(非零)垂直⇔数量积为零,可证明空间直线垂直;利用数量积可计算两异面直线的夹角,可求线段的长度;运用共面向量定理可证点共面、线面平行等;利用向量的射影、平面的法向量,可求点面距、线面角、异面直线的距离等 学生练习1若a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则 A x =1,y =1 B x =21,y =-21 C x =61,y =-23 D x =-61,y =23解析:∵a =(2x ,1,3)与b =(1,-2y ,9)共线,故有12x=y 21-=93 ∴x =61,y =-23应选C 答案:C 2在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z )A3 B2 C1 D0 解析:P 关于x 轴的对称点为P 1(x ,-y ,-z ),关于yOz 平面的对称点为P 2(-x ,y ,z ),关于y 轴的对称点为P 3(-x ,y ,-z )故①②③错误 答案:C3已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 值是A1B51C53 D57 解析:k a +b =k (1,1,0)+(-1,0,2)=(k -1,k ,2),2a -b =2(1,1,0)-(-1,0,2)=(3,2,-2)∵两向量垂直,∴3(k -1)+2k -2×2=0∴k =57答案:D 4设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为A (41,41,41) B (43,43,43)C (31,31,31)D (32,32,32) 解析:∵OG =43 1OG = 43(OA +1AG )=43OA + 43·32[21(AB +AC )]=43OA +41[(OB -OA )+(OC -OA )]=41OA + 41OB + 41OC ,而OG =x OA +y OB +z OC ,∴x =41,y =41,z =41答案:A5在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成的角为Aarccos23 Barccos1010 Carccos53 Darccos 52 解:建立坐标系,把D 点视作原点O ,分别沿DA 、DC 、1DD 方向为x 轴、y 轴、z 轴的正方向,则A (1,0,0),M (1,21,1),C (0,1,0),N (1,1,21) ∴AM =(1,21,1)-(1,0,0)=(0,21,1),CN =(1,1,21)-(0,1,0)=(1,0,21)故AM ·CN =0×1+21×0+1×21=21,|AM |=2221)21(0++= 25,|CN |=222)21(01++=25∴cos α=||||AM CNAM CN ⋅=252521⋅=52∴α=arccos 52答案:D 6已知空间三点A (1,1,1)、B (-1,0,4)、C (2,-2,3),则AB 与CA 的夹角θ的大小是_________解析:AB =(-2,-1,3),CA =(-1,3,-2), cos 〈AB ,CA 〉=1414)2(33)1()1()2(⋅-⨯+⨯-+-⨯-=147-=-21, ∴θ=〈AB ,CA 〉=120° 答案:120°7已知点A (1,2,1)、B (-1,3,4)、D (1,1,1),若AP =2PB ,则|PD |的值是__________解析:设点P (x ,y ,z ),则由AP =2PB ,得(x -1,y -2,z -1)=2(-1-x ,3-y ,4-z ),即1,3122,8262,,3182,3,x x x y y y z z z ⎧=-⎪-=--⎧⎪⎪⎪-=-=⎨⎨⎪⎪-=-⎩=⎪⎪⎩解得则|PD |=222)13()138()131(-+-+--=377答案: 3778设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,求a 的值解:PA =(-1,-3,2),PB =(6,-1,4) 根据共面向量定理,设PC =x PA +y PB (x 、y ∈R ),则(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4)=(-x +6y ,-3x -y ,2x +4y ),∴⎪⎩⎪⎨⎧+=--=++-=-.422,31,612y x y x a y x a 解得x =-7,y =4,a =16 另法:先求出三点确定的平面方程,然后代入求a 的值9已知正方体ABCD —A 1B 1C 1D 1的棱长为2,P 、Q 分别是BC 、CD 上的动点,且|PQ |=2,建立坐标系,把D 点视作原点O ,分别沿DA 、DC 、1DD 方向为x 轴、y 轴、z 轴的正方向,(1)确定P 、Q 的位置,使得B 1Q ⊥D 1P ;(2)当B 1Q ⊥D 1P 时,求二面角C 1—PQ —A 的大小解:(1)设BP =t ,则CQ =2)2(2t --,DQ =2-2)2(2t --∴B 1(2,0,2),D 1(0,2,2),P (2,t ,0),Q (2-2)2(2t --,2,0), ∴1QB =(2)2(2t --,-2,2),1PD =(-2,2-t ,2) ∵B 1Q ⊥D 1P 等价于1QB ·1PD =0, 即-22)2(2t ---2(2-t )+2×2=0, 整理得2)2(2t --=t ,解得t =1此时,P 、Q 分别是棱BC 、CD 的中点,即P 、Q 分别是棱BC 、CD 的中点时,B 1Q ⊥D 1P ;(2)二面角C 1—PQ —A 的大小是π-arctan2210已知三角形的顶点是A (1,-1,1),B (2,1,-1),C (-1,-1,-2)试求这个三角形的面积解:S ABC ∆=21|AB ||AC |sin α,其中α是AB 与AC 这两条边的夹角 则S ABC ∆=21|AB ||AC |α2cos 1- =21|AB ||AC |2)||||ABAC =21在本题中,AB =(2,1,-1)-(1,-1,1)=(1,2,-2),AC =(-1,-1,-2)-(1,-1,1)=(-2,0,-3),∴|AB |2=12+22+(-2)2=9, |AC |2=(-2)2+02+(-3)2=13,AB ·AC =1·(-2)+2·0+(-2)·(-3)=-2+6=4, ∴S ABC ∆=2124139-⨯=210111证明正三棱柱的两个侧面的异面对角线互相垂直的充要条件是它的底面边长与侧棱长的比为2∶1证明:如图,以正三棱柱的顶点O 为原点,棱OC 、OB 为y 轴、z轴,建立空间直角坐标系,设正三棱柱底面边长与棱长分别为2a 、b ,则A (3a ,a ,b )、B (0,0,b )、C (0,2a ,0)因为异面对角线OA ⊥BC ⇔·BC =0⇔(3a ,a ,b )·(0,2a ,-b )=2a 2-b 2=0⇔b =2a ,即2a ∶b =2∶1,所以OA ⊥BC 的充要条件是它的底面边长与侧棱长的比为2∶112如图,ABCD 是边长为a 的菱形,且∠BAD =60°,△P AD为正三角形,且面P AD ⊥面ABCD(1)求cos 〈,〉的值;(2)若E 为AB 的中点,F 为PD 的中点,求||的值;(3)求二面角P —BC —D 的大小 解:(1)选取AD 中点O 为原点,OB 、AD 、OP 所在直线A分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A (0,-2a,0),B (23a ,0,0),P (0,0,23a ),D (0,2a,0) ∴AB =(23a ,2a ,0),PD =(0,2a,-23a ),则cos 〈AB ,PD 〉=||||AB PDAB PD⋅00()a a +⨯+⨯41(2)∵E 、F 分别为AB 、PD 的中点, ∴E (43 a ,-4a ,0),F (0,4a ,43a ) 则|EF=410a (3)∵面P AD ⊥面ABCD ,PO ⊥AD ,∴PO ⊥面ABCD∵BO ⊥AD ,AD ∥BC ,∴BO ⊥BC 连结PB ,则PB ⊥BC ,∴∠PBO 为二面角P —BC —D 的平面角 在Rt △PBO 中,PO =23a ,BO =23a , ∴tan ∠PBO =BO PO =a a2323=1则∠PBO =45°故二面角P —BC —D 的大小为45° 课前后备注。

高中数学空间向量

高中数学空间向量

第6讲空间向量及其运算最新考纲 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2.掌握空间向量的线性运算及其坐标表示;3.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量(或平行向量)表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).垂直 a·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0) cos 〈a ,b 〉=错误!诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)空间中任意两非零向量a ,b 共面( )(2)对任意两个空间向量a ,b ,若a·b =0,则a ⊥b ( ) (3)若{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量( )(4)若a·b <0,则〈a ,b 〉是钝角( )2.在空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A.垂直 B.平行C.异面D.相交但不垂直3.(选修2-1P97A2改编)如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA →1=c ,则下列向量中与BM→相等的向量是( ) A.-12a +12b +c B.12a +12b +c C.-12a -12b +cD.12a -12b +c4.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.5.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C 四点共面,则实数t =________.考点一 空间向量的线性运算【例1】 如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP→;(2)MP →+NC 1→.【训练1】 (2017·上饶期中)如图,三棱锥O -ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM→=( ) A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )考点二 共线定理、共面定理的应用【例2】 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证: (1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .【训练2】 已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →). (1)判断MA→,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 考点三 空间向量数量积的应用【例3】 如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点. (1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值. 【训练3】 如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.其它向量,向量运算转化为基向量的运算.[易错防范]1.在利用MN→=xAB →+yAC →①证明MN ∥平面ABC 时,必须说明M 点或N 点不在面ABC 内(因为①式只表示MN →与AB →,AC →共面).2.求异面直线所成角,一般可转化为两向量夹角,但要注意两种角范围不同,注意两者关系,合理转化.3.找两个向量的夹角,应使两个向量具有同一起点,不要误找成它的补角.4.a ·b <0不等价为〈a ,b 〉为钝角,因为〈a ,b 〉可能为180°; a ·b >0不等价为〈a ,b 〉为锐角,因为〈a ,b 〉可能为0°.基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·黄冈模拟)已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( ) A.32B.-2C.0D.32或-22.(2017·海南模拟)在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( ) A.19B.459C.259D.233.空间四边形ABCD 的各边和对角线均相等,E 是BC 的中点,那么( )A.AE→·BC →<AE →·CD → B.AE→·BC →=AE →·CD → C.AE→·BC →>AE →·CD → D.AE→·BC →与AE →·CD →的大小不能比较 4.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是( ) A.-1B.43C.53D.755.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( ) A.a 2B.12a 2C.14a 2D.34a 2二、填空题6.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.7.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 中点,则EF 的长为________.8.(2017·南昌调研)已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG→=2GN →,现用基底{OA →,OB →,OC →}表示向量OG →,有OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为________. 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB→,b =AC →. (1)若|c |=3,且c ∥BC→,求向量c . (2)求向量a 与向量b 的夹角的余弦值. 10.如图,在棱长为a 的正方体OABC -O 1A 1B 1C 1中,E ,F 分别是棱AB ,BC 上的动点,且AE =BF =x ,其中0≤x ≤a ,以O 为原点建立空间直角坐标系Oxyz . (1)写出点E ,F 的坐标; (2)求证:A 1F ⊥C 1E ;(3)若A 1,E ,F ,C 1四点共面,求证:A 1F →=12A 1C 1→+A 1E →.。

空间向量及其加减运算

空间向量及其加减运算

[ 解题过程 ] → AD1.
→ → → → → → (1) AA1 - CB = AA1 + BC = AA1 + A1D1 =
→ → → → (2)AB1+B1C1+C1D1=AD1. (3)设 M 是线段 AC1 的中点, 1 → 1→ 1 → 1 → 1→ 1 → 则 AD+ AB- A1A= AD+ AB+ AA1 2 2 2 2 2 2 1 → → → 1→ =2(AD+AB+AA1)=2AC1.
学科网
你能确定实际的风速和风向吗?
2 .在必修 4 中,我们已经学习了平面向量,你还知道下列
几个问题是怎么定义的吗?
(1)什么叫向量? (2)什么是向量的长度(或模)? (3)什么叫零向量、单位向量、相反向量、相等向量? (4)向量的表示方法有哪些? 那么,在空间中,上述问题又是如何定义的呢?
1.空间向量 定义 在空间,把具有 大小 和 方向 的量叫做空间向量 长度 向量的 大小 叫做向量的长度或 模 .



.
给出下列命题: ①两个空间向量相等, 则它们的起点相同, 终点也相同; ②若空间向量 a,b 满足|a|=|b|,则 a=b;
→ → ③在正方体 ABCD-A1B1C1D1 中,必有AC=A1C1;
④若空间向量 m,n,p 满足 m=n,n=p,则 m=p; ⑤空间中任意两个单位向量必相等. 其中不正确的命题的个数是( )
【错因】
对向量减法的三角形法则理解、记忆错误,差
向量的方法没有确定准确.
【正解】 → → → → → → DA-DB+B1C-B1B+A1B1-A1B
→ → → =BA+BC+BB1 → → → → → =BD+BB1=BD+DD1=BD1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规律方法 (1)利用数量积解决问题的两条途径:一是根据数量积的定义,利用模 与夹角直接计算;二是利用坐标运算. (2)利用数量积可解决有关垂直、夹角、长度问题. ①a≠0,b≠0,a⊥b⇔a· b=0; ②|a|= a2; a· b ③cos<a,b>=|a||b|. 【训练 3】 如图,在直三棱柱 ABC-A′B′C′中,AC=BC=AA′,∠ACB =90° ,D,E 分别为 AB,BB′的中点. (1)求证:CE⊥A′D; (2)求异面直线 CE 与 AC′所成角的余弦值. (1)证明 → → → 设CA=a,CB=b,CC′=c,
2 2 a2 1+a2+a3 a1b1+a2b2+a3b3 cos<a,b>= 2 2 2 2 2 a1+a2 +a2 3· b1+b2+b3
辨 析 感 悟 1.空间向量的线性运算 → → → → (1)若 A,B,C,D 是空间任意四点,则有AB+BC+CD+DA=0.(√) (2)(教材习题改编)|a|-|b|=|a+b|是 a,b 共线的充要条件.(×) (3)若 a,b 共线,则 a 与 b 所在直线平行.(×) → → → → (4)对空间任意一点 O 与不共线的三点 A,B,C,若OP=xOA+yOB+zOC(其中
1 / 69
x,y,z∈R),则 P,A,B,C 四点共面.(×) 2.共线、共面与垂直 (5)对于空间非零向量 a,b,a⊥b⇔a· b=0.(√) (6)(教材习题改编)已知 a=(2,4,x),b=(2,y,2),若|a|=6,且 a⊥b,则 x+y 的 值为 1 或-3.(√) (7)已知 a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若 a,b,c 三向量共面, 65 则实数 λ 等于 7 .(√) 3.空间向量的数量积 (8)在向量的数量积运算中满足(a· b)· c=a· (b· c).(×) (9)已知向量 a=(4,-2,-4),b=(6,-3,2),则(a+b)· (a-b)的值为-13.(√) 2 5 (10)已知 a=(1,2,-2),b=(0,2,4),则 a,b 夹角的余弦值为- 15 .(√) [感悟· 提升] 1.一种思想 2.两种方法 理解空间向量概念、性质、运算,注意和平面向量类比,如 (5). 一是用向量方法解决立体几何问题,树立“基底”意识,利用基
根据题意,|a|=|b|=|c|且 a· b=b· c=c· a=0,
5 / 69
→ → 1 1 1 ∴CE=b+2c,A′D=-c+2b-2a, → → 1 1 ∴CE· A′D=-2c2+2b2=0. → → ∴CE⊥A′D,即 CE⊥A′D. (2)解 → → 1 AC′=-a+c,CE=b+2c,
→ → 5 ∴|AC′|= 2|a|,|CE|= 2 |a|. → → 1 1 1 b+2c= c2= |a|2, AC′· CE=(-a+c)· 2 2 → → ∴cos<AC′,CE>= 1 2 2|a| 10 = 10 . 5 2·2 |a|2
10 即异面直线 CE 与 AC′所成角的余弦值为 10 . 1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础. 2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量 积运算可以解决一些距离、夹角问题. 3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知 向量表示未知向量, 然后通过向量的运算或证明去解决问题.其中合理选取基底 是优化运算的关键. 方法优化 6——特殊化思想在空间向量中的应用 → → → → → → 【典例】 在空间四边形 ABCD 中,则AB· CD+AC· DB+AD· BC的值为( A.-1 B.0 C.1 D.2 ).
7 / 69
ห้องสมุดไป่ตู้
2×1 22+1
②若向量 a,b 所在的直线为异面直线,则向量 a,b 一定不共面; ③若三个向量 a,b,c 两两共面,则向量 a,b,c 共面; ④已知空间的三个向量 a, b, c, 则对于空间的任意一个向量 p 总存在实数 x, y, z 使得 p=xa+yb+zc. 其中正确命题的个数是( A.0 B.1 C.2 D.3 ).
规律方法 证明点共面问题可转化为证明向量共面问题,如要证明 P,A,B,C → → → → → → → 四点共面, 只要能证明PA=xPB+yPC或对空间任一点 O, 有OA=OP+xPB+yPC → → → → 或OP=xOA+yOB+zOC(x+y+z=1)即可. 共面向量定理实际上也是三个非零向 量所在直线共面的充要条件. 【训练 2】 已知 A,B,C 三点不共线,对平面 ABC 外的任一点 O,若点 M 满 → 1 → → → 足OM=3(OA+OB+OC). → → → (1)判断MA,MB,MC三个向量是否共面; (2)判断点 M 是否在平面 ABC 内. → → → → 解 (1)由已知OA+OB+OC=3 OM, → → → → → → ∴OA-OM=(OM-OB)+(OM-OC), → → → → → → → → 即MA=BM+CM=-MB-MC,∴MA,MB,MC共面. → → → (2)由(1)知,MA,MB,MC共面且基线过同一点 M, ∴四点 M,A,B,C 共面,从而点 M 在平面 ABC 内. 考点三 空间向量的数量积及其应用
→ → → [一般解法] 如图,令AB=a,AC=b,AD=c,
6 / 69
→ → → → → → 则AB· CD+AC· DB+AD· BC → → → → → → → → → =AB· (AD-AC)+AC· (AB-AD)+AD· (AC-AB) =a· (c-b)+b· (a-c)+c· (b-a) =a· c-a· b+b· a-b· c+c· b-c· a=0. [优美解法] 如图,则在三棱锥 A-BCD 中,不妨令其各棱长都相等,则正四面 → → → → 体的对棱互相垂直.∴AB· CD=0,AC· DB=0, → → → → → → → → AD· BC=0.∴AB· CD+AC· DB+AD· BC=0.
【例 3】 如图,在平行四边形 ABCD 中,AB=AC=1,∠ACD=90° ,把△ADC 沿对角线 AC 折起,使 AB 与 CD 成 60° 角,求 BD 的长.
4 / 69
审题路线
由图形折叠的相关知识得到折叠后图形中线段的位置关系和数量关 → BD2求解.
→ → → → → 系,然后用AB,AC,CD表示BD,根据|BD|=
→ → 解 ∵AB 与 CD 成 60° 角,∴<BA,CD>=60° 或 120° , 又∵AB=AC=CD=1,AC⊥CD,AC⊥AB, → ∴|BD|= = = = → BD2= → → → BA+AC+CD2
→ → → → → → → → → BA2+AC2+CD2+2BA· AC+2AC· CD+2BA· CD → → 1+1+1+0+0+2×1×1×cos<BA,CD> → → → ,∴ | BD |=2 或 2.∴BD 的长为 2 或 2. 3+2cos<BA,CD>
向量进行线性运算,如(5).二是强化坐标运算,如(6)、(7)、(9)、(10). 考点一 空间向量的线性运算
【例 1】 如图所示,已知空间四边形 OABC,其对角线为 OB,AC,M,N 分别 → → → → → → 为 OA、 BC 的中点, 点 G 在线段 MN 上, 且MG=2GN, 若OG=xOA+yOB+zOC,
答案 B [反思感悟] 与空间几何体有关的向量运算问题,当运算的结果与几何体的形状 无关时,可构造特殊的几何体(如正四面体、正方体等),利用特殊几何体的边角 关系,使运算能够快速准确的解答,提高做题速度和效率.
【自主体验】(2013· 北京卷)如图,在棱长为 2 的正方体 ABCD-A1B1C1D1 中,E 为 BC 的中点, 点 P 在线段 D1E 上, 点 P 到直线 CC1 的距离的最小值为________. 解析 点 P 到直线 CC1 的距离等于点 P 在平面 ABCD 上的射影到点 C 的距离, 设点 P 在平面 ABCD 上的射影为 P′,显然点 P 到直线 CC1 的距离的最小值为 P′C 的长度的最小值, 当 P′C⊥DE 时, P′C 的长度最小, 此时 P′C= 2 5 = 5 . 一、选择题 1.在下列命题中: ①若向量 a,b 共线,则向量 a,b 所在的直线平行;
2 / 69
→ → → → 又OG=xOA+yOB+zOC, 1 1 根据空间向量的基本定理,x=6,y=z=3.答案 1 1 1 6,3,3
规律方法 (1)选定空间不共面的三个向量作基向量,并用它们表示出指定的向量, → → → → → 是用向量解决立体几何问题的基本要求. 如本例用OA, OB, OC表示CN, MC等, 另外解题时应结合已知和所求观察图形,联想相关的运算法则和公式等,就近表 示所需向量. (2)首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的 向量.所以在求若干向量的和,可以通过平移将其转化为首尾相接的向量求和. 【训练 1】 如图所示,在长方体 ABCD-A1B1C1D1 中,O 为 AC 的中点.设 E → 2→ → → → → 是棱 DD1 上的点,且DE=3DD1,试用AB,AD,AA1表示EO. → → → 解 EO=ED+DO 2 → 1→ 2 → 1 → → =3D1D+2DB=3D1D+2(DA+AB) 2 → 1 → 1→ =3A1A+2DA+2AB 1→ 1 → 2 → =2AB-2AD-3AA1. 考点二 共线定理、共面定理的应用
则 x,y,z 的值分别为________________. → → → 1→ 2 → 解析 ∵OG=OM+MG=2OA+3MN 1→ 2 → → 1→ 2→ 2 → =2OA+3(ON-OM)=2OA+3ON-3OM 1→ 2 1 → → 2 1→ 1→ 1→ 1→ =2OA+3×2(OB+OC)-3×2OA=6OA+3OB+3OC,
相关文档
最新文档