电力系统潮流计算软件设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
电力系统潮流计算是在给定电力网络结构,分布参数,运行状态等情况下,确定电力系统稳态运行状况的一种计算方法,是电力系统规划和运营中不可缺少的一部分。
也是电力系统分析中最基本、最不可缺少的计算,是整个电力系统分析的基础。
MATLAB自问世以来,以其强大的功能给电力系统分析和数据计算提供了重要支持。
而相关的潮流计算算法的研究已经成为大规模电力系统仿真的关键。
本次设计就是采用基于MATLAB软件的牛顿拉夫逊法和PQ法计算潮流,经验证,本次设计经济实用,方便快捷。
关键词:潮流计算; MATLAB;牛顿拉夫逊法; PQ法
Abstract
Power system power flow calculation is in a given power network structure, distribution parameters, running status and other circumstances, determine a method of calculating the running status of power system steady state, is an indispensable part of in power system planning and operation.As well as the most basic power system analysis, the most indispensable computing, is the foundation of the whole power system analysis.Since the advent of MATLAB, with its powerful functions for power system analysis and data calculation provides important support.And the associated flow calculation algorithm research has become the key of large-scale power system simulation.This design is based on MATLAB software Newton-Raphson method and PQ method to calculate trend, verified, this design to adapt to economic, convenient and quick.
Keywords: Power flow calculation;MATLAB;Newton-Raphson method;
PQ method;
目录
第一章绪论 (1)
1.1课题背景及意义 (1)
1.2我国电力系统现况与发展 (2)
1.2.1电力系统现状 (2)
1.2.2电力系统发展趋势 (5)
1.3潮流计算的发展 (7)
1.4本次设计基本内容 (8)
1.4.1设计的基本要求 (8)
1.4.2本次设计的意义 (9)
1.4.3 章节安排 (9)
1.5方案的确定 (10)
第二章简单电力系统潮流计算 (11)
2.1潮流计算理论依据 (11)
2.1.1一般线路的等值电路 (11)
2.1.2变压器等效模型 (13)
2.1.3变压器的参数和数学模型 (17)
2.1.4潮流计算的基本数据的计算 (19)
2.2潮流计算的数学模型 (29)
2.2.1电力网络的基本方程 (29)
2.2.2自导纳和互导纳的确定方法 (31)
2.2.3 节点导纳矩阵的性质及意义 (32)
2.2.4网络中节点的分类 (33)
2.2.5潮流计算的约束条件 (34)
第三章复杂电力系统潮流计算的计算机算法 (36)
3.1牛顿拉夫逊法简介 (36)
3.1.1潮流计算时的修正方程式 (36)
3.1.2潮流计算的基本步骤 (43)
3.2 PQ分解法简介 (45)
3.2.1潮流计算时的修正方程式 (45)
3.2.2 PQ分解法潮流计算的基本步骤 (51)
3.3高斯-塞德尔法简介 (52)
3.3.1高斯-塞德尔法的基本原理 (52)
3.3.2高斯-塞德尔潮流计算过程 (53)
第四章基于MATLAB的潮流计算软件的实现 (56)
4.1MATLAB简介 (56)
4.1.1MATLAB简介 (56)
4.1.2矩阵的运算 (56)
4.2潮流计算的软件设计 (59)
4.2.1原始数据的输入和说明 (59)
4.2.2运行结果显示 (61)
4.2.3运行结果分析 (67)
总结 (68)
参考文献 (69)
外文翻译....................................................................................... 错误!未定义书签。
致谢.. (103)
第一章绪论
1.1课题背景及意义
电力是衡量一个国家经济发展的主要指标,也是反映人民生活水平的重要标志,它已成为现代工农业生产、交通运输以及城乡生活等许多方面不可或缺的能源和动力。
电力系统是由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。
它的功能是将自然界的一次能源中的化学能转变为发电装置的机械能再由发电动力装置转化成电能,再经变电、输电和配电网络将电能供应到各用户。
为实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、经济、优质的电能。
电力系统的出现,使电能得到广泛应用,推动了社会生产各个领域的变化,开创了电力时代,出现了近代史上的第二次技术革命。
20世纪以来,电力系统的发展使动力资源得到更充分的开发,工业布局也更为合理,使电能的应用不仅深刻地影响着社会物质生产的各个侧面,也越来越广地渗透到人类日常生活的各个层面。
电力系统的发展程度和技术水准已成为各国经济发展水平的标志之一。
潮流计算是在给定电力系统网络结构、参数和决定系统运行状态的边界条件的情况下确定系统稳态运行状态的一种基本方法,是电力系统规划和运营中不可缺少的一个重要组成部分。
可以说,它是电力系统分析中最基本、最重要的计算,是系统安全、经济分析和实时控制与调度的基础。
是电力系统研究人员长期研究的一个课题。
MATLAB自1980年问世以来,它的强大的矩阵处理功能给电力系统的分析、计算带来许多方便。
在处理潮流计算时,其计算机软件的速度已无法满足大电网模拟和实时控制的仿真要求,而高效的潮流问题相关软件的研究已成为大规模电力系统仿真计算的关键。
随着计算机技术的不断发展和成熟,对MATLAB 潮流计算的研究为快速、详细地解决大电网的计算问题开辟了新思路。
电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各母线的电压,各元件中流过的功率,系统的功率损耗等等。
在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量的分析比较供电方案或运行方式的合理性、可靠性和经济性。
此外,电力系统潮流计算也是计算系统动态稳定和静态稳定的基础。
所以潮流计算是研究电力系统的一种十分重要且基本的计算。
1.2我国电力系统现况与发展
1.2.1电力系统现状
一.电力建设
1.发电装机容量、发电量持续增长。
截止2007年底,全国新增装机容量10,009万千瓦,总量达到71,329万千瓦。
其中,水电新增1,306.5万千瓦,火电新增8,158.35万千瓦。
同时,华能玉环电厂、华电邹县电厂、国电泰州电厂共七台百万千瓦超超临界机组的相继投运,标志着中国已成功掌握世界先进的火力发电技术,电力工业已经开始进入“超超临界”时代。
此外,中国电网建设快速发展,新增220千伏及以上输电线路回路长度4.15万公里,新增220千伏及以上变电设备容量18,848万千伏安。
其中,四川至上海±800千伏特高压直流输电示范工程开工建设;三峡输变电工程全面建成通过国家验收;贵广二回直流输电工程正式投产,使西电东送南线输送能力新增150万千伏。
在2007年,中国加大了电源结构调整力度,水电建设步伐加快,三峡电站已有21台机组投产,发电能力达1480万千瓦。
龙滩、小湾、向家坝、溪洛渡等一批大型水电站相继开工建设,其中一些项目的部分工程投产发电;金沙江水电开发全面启动,溪洛渡电站于2007年11月8日实现截流;核电方面,随着田湾核电站两台核电机组投产,全国核电装机容量已达885万千瓦,红沿河核电项目已开始启动。
同时,风力发电取得突破性进展,内蒙古自治区成为全国首个风电装机容量突破百万千瓦的省份。
2007年11月8日,中国第一个海上风电站在渤海油田顺利投产,拉开了中国有效利用海上风能的序幕;一批生物质发电厂建成投产,光伏发电和煤层气开发积极推进。
2.电源结构不断调整我国电力行业的产业政策主旨是优化电源结构,加强电网建设。
优先发展水电、核电、风电、太阳能发电、生物质发电等可再生能源及新能源,而对煤电则立足优化结构、节约资源、重视环保、提高技术经济水平。
上大压小的举措提高了火电行业平均单机装机容量,增强了行业的总体经济效益,提高了环境效益。
对于新能源的各项政策及规划,将引导降低火电在电力中的占比,增加水电、核电、风电的比例,优化电力结构。
在行业结构变化的同时,衡量电力企业竞争力的因素也正发生变化。
节能发电调度办法的出台,在很大程度上改变了行业内企业的竞争格局;那些新能源发电比例高、资源利用率高的企业将更具长期的竞争优势。
面对我国的严峻能源环境形势,“节能减排”侧重于“节流”,而对于新能源的鼓励则侧重于“开源”。
《可再生能源法》的颁布,从法律上确认了国家将可再生能源的开发利用列为能源发展的优先领域,该法规定政府必须制定可再生能源
开发利用总量目标和采取相应措施,推动可再生能源市场的建立和发展。
到2020年,我国小水电总发电装机容量将达到7500万千瓦,年替代8000万吨标准煤;风力发电装机容量可以达到4000万千瓦,年替代3000万吨标准煤;生物质发电装机容量达到2000万千瓦,年替代2800万吨标准煤;生物油开发可达到年产2000万吨标准煤;太阳能热水器总集热面积达到2.7亿平方米,年替代10000多万吨标准煤。
专家表示,如能实现上述发展目标,我国到2020年可再生能源开发利用总量将达到3亿吨标准煤,约占届时一次能源消费总量的10%。
节能发电调度等政策在很大程度上改变了行业内企业的竞争格局;大机组比例高、新能源发电比例高、资源利用率高、煤耗低的“三高一低”企业,如水电中的长电、桂冠、川投;火电中华能、大唐、国电等将更具长期的竞争优势。
风电短期内业绩释放不明显,但是我们看好其长期增长潜力及速度,如银星能源等。
3.西电东送和全国联网发展迅速。
我国能源资源和电力负荷分布的不均衡性,决定了“西电东送”是我国的必然选择。
西电东送重点在于输送水电电能。
按照经济性原则,适度建设燃煤电站,实施西电东送。
目前,西电东送已进入全面实施阶段:贵州到广东500千伏交、直流输变电工程已先后投产运行,向广东送电规模已达1088万千瓦。
三峡到华东、广东±500千伏直流输变电工程先后投产。
蒙西、山西、陕西地区向京津唐电网送电能力逐步增加。
华北与东北、福建与华东、川渝与华中等一批联网工程已经投入运行, 2003年跨区交换电量达到862亿千瓦时。
截至2005年7月,除海南外已经初步实现了全国联网,初步实现了跨区域资源的优化配置,区域电网间的电力电量交换更加频繁,交易类型出现了中长期、短期、超短期、可中断交易等多种模式,呈现多样化的良好局面,由于跨区跨省电力交易比较活跃,部分联网输电通道长期保持大功率送电。
西电东送、全国联网工程对调剂电力余缺、缓解电力供应紧张和促进资源优化配置起到重要作用。
二.可再生能源发电取得进步
1.风力发电建设规模逐步扩大。
从“七五”开始建设风电场,到2004年底,内地已建成43个风电场,累计装机1292台,总装机容量达到76.4万千瓦,占全国电力装机的0.17%。
单机容量达到2000千瓦。
2.2.2地热发电得到应用。
到1993年底,西藏地热发电的总装机达到28.13兆瓦,约占全国地热发电装机(包括台湾在内)的94%;年发电量9700万千瓦时,占拉萨电网约20%。
2.太阳能发电开始起步。
至1999年,光伏发电系统累计装机容量超过13兆瓦。
2004年建成容量为1兆瓦的太阳能发电系统,这是目前中国乃至亚洲总装机容量第一的并网光伏发电系统,同时,也是世界上为数不多的兆瓦级大型太阳能
光伏发电系统之一。
3.小水电建设取得巨大成绩。
截止到2000年底,全国已建成小水电站4万多座,装机达2485万千瓦,占全国水电装机的32,4%,占世界小水电开发量的40%以上,年发电量800亿千瓦时,占全国水电发电量的36.27%。
三.电力需求旺盛,发展潜力巨大,但需求不平衡
1.国民经济持续快速增长,对电力的拉动作用巨大。
上世纪70年代起,我国基本处于长期严重缺电的局面,电力供应短缺是制约经济发展的主要瓶颈。
随着电力工业快速发展,1997年开始实现了电力供需的基本平衡,部分地区供大于求。
进入新世纪,随着我国实施西部大开发战略,实行积极财政政策和扩大内需的经济方针,国民经济持续发展,电力需求增长也屡创新高。
继2001年用电增长9%之后,2002年增长11.8%、2003年增长15.4%、2004年增长14.8%。
经济较发达的长江三角洲、珠江三角洲等沿海地区电力需求持续旺盛。
从2002年下半年开始,全国电力供需状况又趋紧张,发电装机利用率(利用小时数)大幅提高,局部地区开始启用限电措施。
2003年~2004年,全国电力供需平衡继续总体偏紧。
整体看来,由于人均发电装机占有量偏低,电力供应的高速增长仍难以满足更快增长的电力需求,电力工业仍存在较大发展空间。
2.经济发展不平衡,使电力需求不平衡。
受经济增长、尤其是工业生产增长的强劲拉动,我国电力需求实现高速增长,但是我国用电增长地区分布不均。
用电增长按地区分布很不平衡,总体来看我国东部沿海经济发达地区用电强劲增长,西部地区高耗能产业分布较多的省区用电增长幅度也较大,中部地区增长较慢。
主要表现为:
(1)用电负荷普遍高于用电量增长,具有不确定性。
夏季表现为负荷增长快,冬季表现为用电量增长快。
(2)随着夏季降温负荷所占的比重逐渐加大,气温气候对最大负荷的增长影响越来越大,使最大负荷增长的随机性增大,对温度的敏感性也越大,高温季节的热场面积不断扩大,各网达到最高负荷有同时性。
除东北、西北年负荷曲线是双峰形之外,其他各网全年最大负荷同现在夏季,年内季不均衡增大。
这是经济和社会发展的特征标志之一。
(3)高峰负荷持续的时间短,华东电网全年负荷超过95%,最大负荷的时间在100h以内,超过90%最大负荷时间为200-300h;华中电网全年负荷超过95%最大负荷的时间在30h以内,超过90%最大负荷的时间在120h以内,北京供电局0.85倍最高及以上的运行天数为17天,而2001年则为43天。
(4)年平均月不均衡系数变化不大,但夏季不均衡系数明显低于冬季月不均衡系数,冬夏典型日负荷率尤其是夏季黄型的负荷率,日最小负荷率有明显上升。
我国现在电力系统发电能力增长趋缓,有利于发挥现有的发电能力,但是对今后电力供应会造成影响。
现在看来,全国综合利用小时达到4860h,大体上是一个临界点了,电力平衡处于一种略微偏紧的平衡。
局部地区已出现拉闸限电,福建、安徽省有多余电力;华中电网供需基本平衡,其中河南较为紧张,而江西电力则有余。
川渝电网受来水影响,冬季较紧张,也出现了拉闸限电,东北电网仍然有富余的电力,西北电网供需基本平衡。
四.结构性矛盾突出,技术升级任重道远
1.电源结构有待优化一是煤电比重很高,近几年又增长较快,所占比重进一步提高,水电开发率较低,清洁发电装机总容量所占比例较小;二是20万千瓦及以下机组超过1亿千瓦(4403台),其中10万千瓦及以下有6570万千瓦(3993台),加之目前各地小机组关停步伐明显放缓、企业自备燃油机组增多,燃煤和燃油小机组仍占有过高比重,投入运行的60万千瓦及以上火电机组仅55台,大型机组为数较少;三是在运行空冷机组容量约500万千瓦,与三北缺水地区装机容量相比,所占比例低,其节水优势没有体现出来;四是热电联产机组少,城市集中供热普及率为27%;五是电源调峰能力不足,主要依靠燃煤火电机组降负荷运行,调峰经济性较差。
2.电力生产主要技术指标与国际水平还有一定差距。
火电机组参数等级不够先进,亚临界及以上参数机组占40%,高压、超高压参数机组占29%,高压及以下参数机组占31%;超临界机组仅960万千瓦,占火电装机总量的2.95%。
国产大机组的经济性落后于相应进口机组,30万千瓦容量等级,国产亚临界机组的供电煤耗比进口机组高4~12g/kWh;60万千瓦容量等级,国产亚临界机组的供电煤耗比进口机组高20~23g/kWh,比进口超临界机组高28~39.5g/kWh。
在30万千瓦、60万千瓦亚临界机组主、辅机引进消化过程中,由于主、辅机出力、可靠性等因素影响,形成从标准上、设计和管理上要求增大辅机配备裕度,直接导致辅机运行偏离经济工况,厂用电升高,机组经济性下降。
电网的平均损失率为7.71%,尚有进一步降低的空间。
清洁煤发电技术、核电技术的进步较慢,大型超(超)临界机组、大型燃气轮机、大型抽水蓄能设备及高压直流输电设备等本地化水平还比较低,自主开发和设计制造能力不强,不能满足电力工业产业升级和技术进步的需要。
1.2.2电力系统发展趋势
一.电力建设任务艰巨
1.资源条件制约发展。
我国水能、煤炭较丰富,油、气资源不足,且分布很不均衡。
水能资源居世界首位,但3/4以上的水能资源分布在西部。
我国煤炭探明保有储量居世界第三位,人均储量为世界平均水平的55%。
我国天然气和石油
人均储量仅为世界平均水平的11%和4.5%。
风能和太阳能等新能源发电受技术因素限制,多为间歇性能源,短期内所占比重不可能太高,需要引导积极开发。
2.电力发展与资源、环境矛盾日益突出。
电力生产高度依赖煤炭,大量开发和燃烧煤炭引发环境生态问题,包括地面沉陷、地下水系遭到破坏,酸雨危害的地理面积逐年扩大,温室气体和固体废料的大量排放等。
火力发电需要耗用大量的淡水资源,而我国淡水资源短缺,人均占有量为世界平均水平的1/4,且分布不均,其中华北和西北属严重缺水地区。
同时,我国也是世界上水土流失、土地荒漠化和环境污染严重的国家之一。
以我国的发展阶段分析,未来若干年,是大量消耗资源、人与自然之间冲突极为激烈的时期。
目前的能源消耗方式,是我国能源、水资源和环境容量无法支撑的。
3.经济增长方式需要转变。
当前我国经济尚属于高投入、高消耗、高排放、不协调、难循环、低效率的粗放型增长模式。
若按近几年的用电增速计算,2020年全国电力需求将高达11万亿千瓦时,相应发电装机24亿千瓦,发电用煤将超过50亿吨,是目前的6倍,这显然是不可能的。
在持续、快速的经济增长背景下,经济增长方式中长期被GDP数字大幅上升掩盖的不足正逐渐显现,直接给经济运行带来隐忧。
经济增长方式需要根本性转变,以保证国民经济可持续发展。
改革开放以来,通过科技进步和效率提高,我国产值单耗不断下降,单位产值电耗从1980年的0.21千瓦时降至2000年的0.151千瓦时,下降了0.059千瓦时。
假如未来20年仍能保持这样的下降幅度,按照2020年GDP翻两番的目标,约可减少电耗3.22万亿千瓦时。
节能提效空间巨大。
4.电网安全要求不断提高。
我国电网进入快速发展时期,大电网具有大规模输送能量,实现跨流域调节、减少备用容量,推迟新机组投产,降低电力工业整体成本,提高效率等优点。
但随着目前电网进一步扩展,影响安全的因素增多,技术更加复杂,需要协调的问题更多,事故可能波及的范围更广,造成的损失可能会更大。
8·14美加电网事故造成大范围停电给全世界敲响了警钟,大电网的电力安全要求更高。
二.电力发展需求强劲
1.经济增长率仍将持续走高。
目前我国处于工业化的阶段,重化工业产业发展迅速,全社会用电以工业为主,工业用电以重工业为主的格局还将持续一段时间。
随着增长方式的逐步转变、结构调整力度加大、产业技术进步加快和劳动生产率逐步提高,第二产业单耗水平总体上将呈下降趋势。
从今后一个较长时期来看,一方面,随着工业化、城镇化进程以及人民生活水平的提高,我国电力消耗强度会有一个加大的过程,但另一方面通过结构调整,高附加值、低能耗的产业将加快发展,即使是高耗能行业,其电耗水平也应有较大
下降。
2.用电负荷增长速度高于用电量增长。
预计用电负荷增长速度高于电量增长,但考虑加强电力需求侧管理,负荷增长速度与电量增长速度的差距将逐步缩小。
预计2010年我国全社会用电量为30450亿千瓦时左右,2005年~2010年期间平均增长6%左右;2020年全社会用电量将不低于45000亿千瓦时,后10年年均增长4%左右。
1.3潮流计算的发展
利用电子计算机进行潮流计算从20世纪50年代中期就已经开始。
此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。
电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程。
因此其数学模型不包含微分方程,是一组高阶非线性方程。
非线性代数方程组的解法离不开迭代,因此,潮流计算方法首先要求它是能可靠的收敛,并给出正确答案。
随着电力系统规模的不断扩大,潮流问题的方程式阶数越来越高,目前已达到几千阶甚至上万阶,对这样规模的方程式并不是采用任何数学方法都能保证给出正确答案的。
这种情况促使电力系统的研究人员不断寻求新的更可靠的计算方法。
知道现在潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的。
此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法也逐渐被引入潮流计算。
但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位。
由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域。
通过几十年的发展,潮流算法日趋成熟。
近几年,对潮流算法的研究仍然是如何改善传统的潮流算法,即高斯-塞德尔法、牛顿法和快速解耦法。
牛顿法,由于其在求解非线性潮流方程时采用的是逐次线性化的方法,为了进一步提高算法的收敛性和计算速度,人们考虑采用将泰勒级数的高阶项或非线性项也考虑进来,于是产生了二阶潮流算法。
后来又提出了根据直角坐标形式的潮流方程是一个二次代数方程的特点,提出了采用直角坐标的保留非线性快速潮流算法。
岩本伸一等提出了一种保留非线性的快速潮流计算法,但用的是指教坐标系,因而没法利用P-Q解耦。
为了更有利于大电网的潮流计算,将此原理推广用于P-Q解耦。
这样,既利用了保留非线性的快速算法,在迭代中使用常数雅克比矩阵,又保留了P-Q 解耦的优点。
对于一些病态系统,应用非线性潮流计算方法往往会造成计算过程的振荡或者不收敛,从数学上讲,非线性的潮流计算方程组本来就是无解的。
这样,人们提出来了将潮流方程构造成一个函数,求此函数的最小值问题,称之为。