【精选】苏科版八年级数学上册 整式的乘法与因式分解单元测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)20182+20192+20202-2018×2019-2019×2020-2018×2020
= ×[(2018-2019)2+(2019-2020)2+(2020-2018)2]
= ×(1+1+4)
= ×6
=3.
【点睛】
本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.
2.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;
一、八年级数学整式的乘法与因式分解解答题压轴题(难)
1.因式分解是多项式理论的中心内容之一,是代数中一种重要的恒等变形,它是学习数学和科学技术不可缺少的基础知识.在初中阶段,它是分式中研究约分、通分、分式的化简和计算的基础;利用因式分解的知识,有时可使某些数值计算简便.因式分解的方法很多,请根据提示完成下面的因式分解并利用这个因式分解解决提出的问题.
【点睛】
本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.
(2)已知a﹣b=4,ab+c2﹣6c+13=0,求a+b+c的值.
【答案】(1)1;(2)3.
【解析】
【分析】
(1)根据题意y的值,从而可以得到2x+y的值;(2)根据a-b=4,ab+c2-6c+13=0,可以得到a、b、c的值,从而可以得到a+b+c的值.
(2)利用(1)的结论,完成下面的计算:
2199+2198+2197+…+22+2+1.
【答案】(1) , , , (2)
【解析】
【分析】
根据简单的多项式运算推出同类复杂多项式运算结果的一般规律,然后根据找出的规律进行解决较难的运算问题.
【详解】
解:(1)
(2)
= ( )
= .
【点睛】
考查了学生的基础运算能力和对同一类运算问题计算结果的一般规律性洞察力.
(1)填空:
① () ()()
② =()()=() ()
(2)解决问题,计算:
【答案】(1)① , ,② , , , ;(2)
【解析】
【分析】
(1)根据完全平方公式和平方差公式计算可得;
(2)利用前面所得规律变形即可.
【详解】
(1)
故答案为:① , ,② , , , ;
(2)
【点睛】
本题考查了因式分解的应用;熟练掌握完全平方公式和平方差公式是解题的关键.
4.(1)你能求出(a﹣1)(a99+a98+a97+…+a2+a+1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值.
(a﹣1)(a+1)=;
(a﹣1)(a2+a+1)=;
(a﹣1)(a3+a2+a+1)=;…
由此我们可以得到:(a﹣1)(a99+a98+…+a+1)=.
5.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到 .请回答下列问题:
(1)写出图2中所表示的数学等式是;
(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有 , 的式子表示);
(3)通过上述的等量关系,我们可知:当两个正数的和一定时,它们的差的绝对值越小,则积越(填“大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越(填“大”或“小”).
【详解】
解:(1)∵x2+2xy+2y2+2y+1=0,
∴(x2+2xy+y2)+(y2+2y+1)=0,
∴(x+y)2+(y+1)2=0,
∴x+y=0,y+1=0,
解得,x=1,y=−1,
∴2x+y=2×1+(−1)=1;
(2)∵a−b=4,
∴a=b+4,
∴将a=b+4代入ab+c2−6c+13=0,得
(2)根据题目中的等式可以求得所求式子的值.
【详解】
解:(1) [(a-b)2+(b-c)2+(c-a)2]
= (a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)
= ×(2a2+2b2+2c2-2ab-2bc-2ac)
=a2+b2+c2-ab-bc-ac,
故a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2]正确;
3.利用我们学过的知识,可以导出下面这个等式:

该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
(1)请你展开右边检验这个等式的正确性;
(2)利用上面的式子计算:

【答案】(1)见解析;(2)3.
【解析】
【分析】
(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;
b2+4b+c2−6c+13=0,
∴(b2+4b+4)+(c2−6c+9)=0,
∴(b+2)2+(c−3)2=0,
∴b+2=0,c−3=0,
解得,b=−2,c=3,
∴a=b+4=−2+4=2,
∴a+b+c=2−2+3=3.
【点睛】
此题考查了因式分解方法的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.此题解答的关键是要明确:用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.
(3)两正数和一定,则和的平方一定,根据等式 ,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;
【详解】
(1)看图可知,
(2)
(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.
【答案】(1) ;(2) ;
(3)大小
【解析】
【分析】
(1)图2面积有两种求法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形面积之和求出,表示即可;
(2)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x-y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可;
相关文档
最新文档