最新人教版七年级数学上册 代数式单元达标训练题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)
1.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!
某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:
数量范围(千克)0~50部
分
(含50)
50以上~150部分(含
150,不含50)
150以上~250部分(含
250,不含150)
250以上
部分
(不含
250)
价格(元)零售价的
95%
零售价的85%零售价的75%
零售价的
70%
________元;
(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);
(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890
(2)54x;45x+1200
(3)解:当x=170时,
54x=54×170=9180,
45x+1200=45×170+1200=8850,
因为9180>8850,所以他选择在B家批发更优惠
【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。
( 2 )A:60×90%x=54x,
B:50×60×95%+100×60×85%+(x-150)×60×75%=45x+1200.
【分析】(1)根据A、B两家的优惠办法分别列式求出在两家批发需要的费用。
(2)根据题意列式分别表示出在A、B两家批发x千克太湖蟹(150<x<200)所需的费用。
(3)将x=170分别代入(2)种表示的在A、B两家批发所需费用的两个式子计算,然后再比较大小即可。
2.已知A=2x2+3xy-2x-1,B=x2-xy-1
(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示
(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值
【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,
∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1
(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;
∵4A-(2B+3A)的值与字母x的取值无关,
∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,
5y-2=0,则y= .
则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .
【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;
(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。
3.解答题:
(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.
(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?
(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.
①这10枝钢笔的最高的售价和最低的售价各是几元?
②当小亮卖完钢笔后是盈还是亏?
【答案】(1)解:∵a,b互为相反数,c,d互为倒数,
∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x
∵|x|=1,∴x=±1
∴当x=1时,x2﹣x=0;
当x=﹣1时,x2﹣x=2
(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣3
30×10+(﹣3)=897
答:这10箱苹果的总质量是897千克.
(3)解:①最高售价为6+9=15元
最低售价为6﹣2.1=3.9元
②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50
=16.3元
答:小亮卖完钢笔后盈利16.3元.
【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;
(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;
(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。
4.已知A,B在数轴上分别表示的数为m、n.
(1)对照数轴完成下表:
(3)已知A,B在数轴上分别表示的数为x和﹣2,则A、B两点的距离d可表示为d=|x+2|,如果d=3,求x的值.
(4)若数轴上表示数m的点位于﹣5和3之间,求|m+5|+|m﹣3|的值.
【答案】(1)3;7;2
(2)解:d=|m﹣n|,文字描述为:数轴上两点间的距离d等于表示两点数之差的绝对值(3)解:d=|x+2|
根据题意得出:d=|x﹣(﹣2)|=|x+2|,
如果d=3,那么3=|x+2|,
解得x=1或﹣5
(4)解:根据题意得出:∵﹣5<m<3,
∴|m+5|+|m﹣3|=|5+3|=8
【解析】【解答】解:(1)填表如下:
故答案为:3,7,2;
【分析】(1)结合数轴,得出两点间的距离公式,即可求解。
若A,B在数轴上分别表示的数为m、n,A,B两点间的距离为d,则d=|m﹣n|,根据此公式即可求解。
(2)根据(1)可得出结论。
(3)将d=3代入d=|x+2|,建立方程求解。
(4)根据已知可知﹣5<m<3,得出m+5>0,m-3<0,则|m+5|=m+5,|m﹣3|=-(m-3),就可得出结果。
5.某超市在春节期间对顾客实行优惠,规定如下:
(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款________元,当x大于或等于500元时,他实际付款________元.(用含x的代数式表示).
(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?
【答案】(1)530
(2)0.9x;0.8x+50
(3)解:0.9a+0.8(820﹣a﹣500)+450=0.1a+706
【解析】【解答】解:(1)500×0.9+(600﹣500)×0.8=530;(2)0.9x;500×0.9+(x﹣500)×0.8=0.8x+50;
【分析】(1)王老师一次性购物600元,超过500元,因此得出其中500元给予九折优惠,100元给予八折优惠,列式计算即可。
(2)根据已知当x小于500元但不小于200时,九折优惠,即可列出代数式;当x大于或等于500元时,其中500元部分给予九折优惠,(x-500)元给予八折优惠,即可列出代数式。
(3)根据已知可知,第二次购物超过500元,由已知200<a<300,得出两次购物王老师实际付款=第一次购物款乘以0.9+500乘以0.9+(800-a-500),计算即可。
6.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).
(1)用代数式表示(所填式子需化简):
当购买乒乓球的盒数为x盒时,在甲店购买需付款________元;在乙店购买需付款________元.
(2)当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.
(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?
【答案】(1)(5x+60);(4.5x+72)
(2)解:当x=10时,甲店需付费5×10+60=110元;乙店需付费4.5×10+72=117元,
∴到甲商店比较合算
(3)解:可在甲店购买4副乒乓球拍子,在乙店购买(10﹣4)盒乒乓球,所需费用为:4×20+(10﹣4)×5×0.9=80+27=107元
【解析】【解答】解:(1)甲店需付费:4×20+(x﹣4)×5=80+5x﹣20=(5x+60)元;乙店需付费:(4×20+x×5)×0.9=(4.5x+72)元;
故答案为(5x+60);(4.5x+72);
【分析】(1)甲店需付费:4副乒乓球拍子费用+(x﹣4)盒乒乓球费用;乙店需付费:(4副乒乓球拍子费用+x盒乒乓球费用)×0.9,把相关数值代入求解即可;(2)把x=10代入(1)得到的式子计算,比较结果即可;(3)可在甲店购买乒乓球拍子,在乙店购买乒乓球.
7.已知:a是﹣1,且a、b、c满足(c﹣6)2+|2a+b|=0,请回答问题:
(1)请直接写出b、c的值:b=________,c=________
(2)在数轴上,a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,
①当点P在AB间运动(不包括A、B),试求出P点与A、B、C三点的距离之和.
②当点P从A点出发,向右运动,请根据运动的不同情况,化简式子:|x+1|﹣|x﹣2|+2|x﹣6|(请写出化简过程)
【答案】(1)2;6
(2)解:①∵PA=x﹣(﹣1)=x+1,PB=2﹣x,PC=6﹣x,
∴PA+PB+PC=x+1+2﹣x+6﹣x=9﹣x;|x+1|﹣|x﹣2|+2|x﹣6|
②当﹣1≤x<2时,原式=x+1+x﹣2﹣2(x﹣6)=11;
当2≤x<6时,原式=x+1﹣(x﹣2)﹣2(x﹣6)=﹣2x+15;
当x≥6时,原式=x+1﹣(x﹣2)+2(x﹣6)=2x﹣9
【解析】【解答】解:(1)∵(c﹣6)2+|2a+b|=0,
∴c=6,2a+b=0,即b=﹣2a,
又∵a=﹣1,
∴b=2,
故答案为:2,6;
【分析】(1)根据非负数的性质可得;(2)①根据两点间距离公式列出算式,化简可得;②分别根据﹣1≤x<2、2≤x<6、x≥6结合绝对值性质,去绝对值符号后化简可得.
8.观察下表:
我们把表格中字母的和所得的多项式称为"'特征多项式",例如:第1格的“特征多项式”为4x+y,第 2 格的“特征多项式”为 8x+4y, 回答下列问题:
(1)第 3 格的“特征多项式”为________第 4 格的“待征多项式”为________, 第 n 格的“特征多项式”为________.
(2)若第 m 格的“特征多项式”与多项式-24x+2y-5 的和不含有 x 项,求此“特征多项式”. 【答案】(1)12x+9y;16x+16y;4nx+n2y
(2)解:由(1)可得,第m格的“特征多项式”是4mx+m2y,
∴(4mx+m2y)+(−24x+2y−5)=4mx+m2y−24x+2y−5=(4m−24)x+(m2+2)y−5,
∵第m格的“特征多项式”与多项式−24x+2y−5的和不含有x项,
∴4m−24=0,解得m=6,
∴此“特征多项式”是24x+36y.
【解析】【解答】解:(1)由表格可得:第3格的“特征多项式”为12x+9y,第4格的“特征多项式”为16x+16y,第n格的“特征多项式”为4nx+n2y,
故答案为:12x+9y, 16x+16y, 4nx+n2y;
【分析】(1)根据表格中的数据找出规律即可解答本题;(2)根据(1)中的结果可以写出第m格的“特征多项式”,然后根据“和不含有x项”可以求得m的值,从而可以写出此“特征多项式”.
9.如图,将连续的奇数1,3,5,7……排成如下的数表,用十字形框框出5个数.
(1)探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为________,这说明被十字框框中的五个奇数的和一定是正整数n(n>1)的倍数,这个正整数n是________;
(2)探究规律二:落在十字框中间且位于第二列的一组奇数是21,39,57,75,…,则这一组数可以用整式表示为18m+3(m为序数),同样,落在十字框中间且位于第三列的一组奇数可以表示为________;(用含m的式子表示)
(3)运用规律一:已知被十字框框中的五个奇数的和为2025,则十字框中间的奇数是________,这个奇数落在从左往右第________列;
(4)运用规律二:被十字框框中的五个奇数的和可能是2020吗?若能,请求出这五个数:;若不能,请说明理由.
【答案】(1)5x;5
(2)(18m+5)
(3)405;五
(4)这五个数为404、402、406、396、422.
【解析】【解答】解:(1)根据题意,得,
设十字框中间的奇数为x,则框中其它五个奇数为:
x﹣2,x+2,x﹣18,x+18.
∴x+x﹣2+x+2+x﹣18+x+18=5x,
五个奇数的和一定是正整数n(n>1)的倍数,这个正整数n是5.
故答案为:5x、5.
2)因为第二列的一组奇数是21,39,57,75,…
21=1×18+3
39=2×18+3
57=3×18+3
75=4×18+3
∴这一组数可以用整式表示为18m+3(m为序数).
∴落在十字框中间且位于第三列的一组奇数可以表示为(18m+5).
故答案为:(18m+5).
3)根据题意,得
5x=2025
解得:x=405
∴十字框中间的奇数是405.
∵18m+9=405,解得:m=22,
∴405这个奇数落在从左往右第五列.
故答案为:405、五;
4)十字框框中的五个奇数的和可以是2020.理由如下:
5x=2020
解得:x=404,
∴x﹣2=402,x+2=406,x﹣18=396,x+18=422.
答:这五个数为:404、402、406、396、422.
【分析】(1)根据表中数据规律即可列出代数式进而求解;(2)根据第二列的一组奇数的规律即可写出第三列的一组奇数的规律;(3)根据探究规律一和探究规律二所得代数式即可求解;(4)根据探究规律一所得代数式列方程即可求解.
10.对于三位正整数:121、253、374、495、583、671、880、…,它们都能11整除。
若设百位数字是十位数字是个位数字是
(1)观察这些三位数,根据你的观察、总结, 应满足的关系式是________;
(2)为了说明满足上述关系式的三位正整数都能被11整除,请利用代数式的运算证明你得出的结论的正确性;
(3)除此之外,还有一类三位正整数,例:429、506、528、638、517、759、…,它们也能被11整除。
请观察这组数字的特点,发现有什么规律?再自选一个异于上面3个数字且满足“规律”的三位数,来验证你所发现的“规律”的正确性。
【答案】(1)a+c=b
(2)解:此三位数可表示为:100a+10b+c,
∵a+c=b,
∴100a+10b+c
=100a+10(a+c)+c
=110a+11c
=11(10a+c),
∴满足上述关系式的三位正整数都能被11整除
(3)解:∵429:4+9-11=2、506:5+6-11=0、528:5+8-11=2、638:6+8-11=3、517:5+7-11=1、759:7+9-11=5、…,
∴a+c-11=b,
如a=3,c=9,则b=3+9-11=1,该三位数是319,
∵319÷11=29,
∴满足该特点的三位数能被11整除.
【解析】【解答】(1)解:∵121:1+1=2、253:2+3=5、374:3+4=7、495:4+5=9、583:5+3=8、671:6+1=7、880:8+0=8、…,
∴应满足的关系式是a+c=b
【分析】(1)根据所给数字可以发现,百位数字+个位数字=十位数字,据此解答即可;(2)根据多位数的表示法写出该三位数,把a+c=b代入即可证明其正确性;(3)根据所给数字可以发现,百位数字+个位数字-11=十位数字,据此解答即可.
11.某市居民使用自来水接如下标准收费(水费按月缴纳)
户月用水量单价
不超过10m3的部分2元/m3
超过10m3但不超过18m3的部分3元/m3
超过18m3的部分4元/m3
(1)某用户一个月用了25m3水,求该用户这个月应缴纳的水费}
(2)设某户月用水量为"n”立方米,当n>18时,求该用户应缴纳的水费(用含n的代数式表示)}
(3)甲、乙两用户一个月共用水36m3。
已知甲用户缴纳的水费超过了20元。
设甲用户这个月用水xm3,直接写出甲、乙两用户一个月共缴纳的水费(用含x的代数式表示).
【答案】(1)解:∵25>18
∴10×2+3×(18-10)+4×(25-18)
=20+24+28
=72
答:某用户一个月用了25m3水,求该用户这个月应缴纳的水费为72元;
(2)解:∵n>18
∴10×2+3×8+4(n-18)
=20+24+4n-72
=4n-28
答:当n>18时,求该用户应缴纳的水费4n-28;
(3)解:∵甲、乙两用户一个月共用水36m3。
已知甲用户缴纳的水费超过了20元
∴x>10
当10<x≤18时,则36-x>18时,甲、乙两用户一个月共缴纳的水费:
20+3(x-10)+2×10+3×8+4(36-x-18)
=20+3x-30+20+24+72-4x
=106-x
当x>18,0<36-x<10时,甲、乙两用户一个月共缴纳的水费:
44+4(x-18)+2(36-x)
=44+4x-72+72-2x
=2x+44
当x>18,10<36-x<18时,甲、乙两用户一个月共缴纳的水费:
44+4(x-18)+20+3(36-x-10)
=44+4x-72+20+78-3x
=x+70
答:
当10<x≤18时,则36-x>18时,甲、乙两用户一个月共缴纳的水费为:106-x;
当x>18,则0<36-x<10时,甲、乙两用户一个月共缴纳的水费为:2x+44;
当x>18,则10<36-x<18时,甲、乙两用户一个月共缴纳的水费为:x+70;
【解析】【分析】(1)利用表中数据,根据用户用水量,列式计算可求解。
(2)利用表中数据,根据用户用水量n>18,列式化简可求解。
(3)由题意分情况讨论:当10<x≤18时,则36-x>18时;当x>18,则0<36-x<10时;当x>18,则10<36-x<18时,分别列式化简,可得出答案。
12.如图
设a1=22-02, a2=32-12,…,a n=(n+1)2-(n-1)2(n为大于1的整数)
(1)计算a15的值;
(2)通过拼图你发现前三个图形的面积之和与第四个正方形的面积之间有什么关系:
________(用含a、b的式子表示);
(3)根据(2)中结论,探究a n=(n+1)2-(n-1)2是否为4的倍数.
【答案】(1)解:a15=162-142=256-196=60
(2)(a+b)2=a2+2ab+b2
(3)解:a n=(n+1)2-(n-1)2 =(n2+2n+1)-(n2-2n+1) =n2+2n+1-n2+2n-1=4n 是4的倍数.
【解析】【分析】(1)把n=15代入计算;
(2)通过观察可以得到前三个图形的面积与第四个图形面积之间的关系,从而可以用式子进行表示;
(3)利用(2)的关系式展开,合并同类项后可判断.。