苏科版七年级上册数学 代数式单元测试与练习(word解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)
1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.
我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.
(1)求a,c的值;
(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;
(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值;
②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.
【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30
(2)-70或
(3)解:①如下图所示:
当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,
点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果
AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,
点A,C之间
每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,
点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.
【解析】【解答】解:(2)分三种情况讨论,
•当点D在点A的左侧,
∵CD=2AD,
∴AD=AC=50,
点C点表示的数为-20-50=-70,
‚当点D在点A,C之间时,
∵CD=2AD,
∴AD= AC= ,
点C点表示的数为-20+ =- ,
ƒ当点D在点C的右侧时,
AD>CD与条件CD=2AD相矛盾,不符合题意,
综上所述,D点表示的数为-70或 ;
【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。

(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时,根据CD=2AD,及点A、C表示的数,就可求出点D表示的数。

(3)① 根据题意画出图形,当t=0时,AB=21,BC=29 ,分情况讨论:a.点A,C在相遇前时; b.点A,C在相遇时,AB=BC ,分别求出符合题意的t的值即可;②当时间为t 时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,建立方程求出m的值即可。

2.已知A=2x2+3xy-2x-1,B=x2-xy-1
(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示
(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值
【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,
∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1
(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;
∵4A-(2B+3A)的值与字母x的取值无关,
∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,
5y-2=0,则y= .
则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .
【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;
(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。

3.A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差别:A公司,年薪20000元,每年加工龄工资200元;B公司,半年薪10000元,每半年加工龄工资50元.
(1)第二年的年待遇:A公司为________元,B公司为________元;
(2)若要在两公司工作n年,从经济收入的角度考虑,选择哪家公司有利(不考虑利率等因素的影响)?请通过列式计算说明理由.
【答案】(1)20200;20250
(2)解:A公司:20000+200(n-1)=200n+19800
B公司:10000+50(2n-2)+10000+50(2n-1)=200n+19850,
∴从应聘者的角度考虑的话,选择B家公司有利.
【解析】【解析】(1)解:A公司招聘的工作人员第二年的工资收入是:20000+200=20200元;
B公司招聘的工作人员第二年的工资收入是:1000+50×2+1000+50×3=20250元;
【分析】(1)根据第二年的年待遇等于年薪+工龄工资,即可算出;
(2)分别表示出第n年在A,B两家公司工作的年收入,再比较大小即可。

4.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .
(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?
(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.
【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6
;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t
(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;
所以①P在Q的右侧时
8-4t-(-2t-6)=2
解得x=6
②P在Q左侧时
-2t-6-(8-4t)=2
解得x=8
答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.
故答案为:6或8秒
(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t
因点M为线段AP的中点,点N为线段BP的中点
所以MP=AP=2t;NP=BP=7-2t
MN=MP+NP=2t+7-2t=7
②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14
因点M为线段AP的中点,点N为线段BP的中点
所以MP=AP=2t;NP=BP=2t-7
MN=MP-NP=2t-(2t-7)=7
因此在点P的运动过程中,线段MN的长度不变, MN=7
【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;
②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t
(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;
(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.
5.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:
(1)数轴上表示2和5的两点之间的距离是________,数轴上表示2和﹣3的两点之间的距离是________
(2)数轴上表示x和﹣2的两点之间的距离表示为________.
(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=________
(4)若|x+3|+|x﹣5|=8,利用数轴求出x的整数值.
【答案】(1)3;5
(2)|x+2|
(3)6
(4)解:∵|x+3|+|x﹣5|=8,
∴﹣3≤x≤5,
∵x为整数,
∴x=﹣3,﹣2,﹣1,0,1,2,3,4,5
【解析】【解答】解:(1)数轴上表示2和5两点之间的距离是5﹣2=3,数轴上表示2和﹣3的两点之间的距离是2﹣(﹣3)=5;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|;(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=6;
故答案为:3,5;|x+2|;6.
【分析】(1)根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上两点间的距离是大数减小数,可得答案;(3)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案;(4)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案.
6.用如图所示的甲、乙、丙木板做一个长、宽、高分别为a厘米,b厘米,h厘米的长方体有盖木箱(a>b),其中甲刚好能做成箱底和一个长侧面,乙刚好能做成一个长侧面和一个短侧面,丙刚好能做成箱盖和一个短侧面。

(1)填空:用含a、b、h的代数式表示以下面积:
甲的面积________;乙的面积________;丙的面积________.
(2)当h=20cm时,若甲的面积比丙的面积大200cm2,乙的面积为1400cm2,求a和b 的值;
(3)现将一张长、宽分别为a厘米、b厘米的长方形纸板(如图①)分割成两个小长方形。

左侧部分刚好分割成两个最大的等圆,和右侧剩下部分刚好做成一个圆柱体模型(如图②),且这样的圆柱体模型的高刚好与木箱的高相等。

问:一个上述长方体木箱中最多可以放________个这样的圆柱体模型。

【答案】(1)ab+ah;ah+bh;ab+bh
(2)解:,
化简得,
解得: .
(3)8
【解析】【解答】(1)甲的面积= ab+ah,乙的面积= ah +bh;丙的面积 =ab+bh;
(3)设圆的直径为d,
∵将一张长、宽分别为a厘米、b厘米的长方形纸板(如图①)分割成两个小长方形。

左侧部分刚好分割成两个最大的等圆,和右侧剩下部分刚好做成一个圆柱体模型,
∴b=2d,a-d=πd,
∴a=(π+1)d
∵圆柱体模型的高刚好与木箱的高相等,
∴只有比较木箱的上表面有几个正方形ACDF即可,

∴可以放两层,
∴b=2r+πr

∴一个上述长方体木箱中最多可以放8个这样的圆柱体模型.
故答案为:8.
【分析】(1)根据矩形的面积公式,分别求出甲,乙,丙的面积即可;
(2)根据甲的面积-丙的面积=200cm2,乙的面积为1400cm2,列出方程组,将h=20cm代入并解出方程组,即可求出a,b的值;
(3)设圆的直径为d,观察图像由已知可得到b=2d,a=(π+1)d,再根据圆柱体模型的高刚好与木箱的高相等,就可得到只有比较木箱的上表面有几个正方形ACDF即可,因此利用木箱的上表面的面积除以正方形ACDF的面积即可求解。

7.已知(其中是各项的系数,是常数项),我们规定的伴随多项式是,且
. 如
,则它的伴随多项式
.
请根据上面的材料,完成下列问题:
(1)已知,则它的伴随多项式 ________.
(2)已知,则它的伴随多项式 ________;若
,x=________
(3)已知二次多项式,并且它的伴随多项式是,若关于的方程有正整数解,求的整数值.
【答案】(1)5x4
(2)10x-27;x=4;
(3)解:∵
∴g(x)=2(a+3)x+16=(2a+6)x+16,
由g(x)=-2x,得(2a+6)x+16=-2x,
化简整理得:(2a+8)x=-16,
∵方程有正整数解,

∴,
∵a为整数,
∴a+4=-1或-2或-4或-8,
∴a=-5或-6或-8或-12.
【解析】【解答】解:(1)∵,
∴g(x)=5x4;
故答案为:5x4;
( 2 )解:∵ = ,
∴g(x)=10x-27,
由g(x)=13,得10x-27=13,
解得:x=4;
故答案为:10x-27;x=4;
【分析】(1)由题意可知n=5,根据题中的新定义确定出g(x)即可;(2)先变形为 = ,再根据题中的新定义确定出g(x),并求出所求x的值即可;
(3)确定出f(x)的伴随多项式g(x)=(2a+6)x+16,由g(x)=-2x得,再根据方程有正整数解,确定出整数a的值即可.
8.已知多项式,,其中,马小虎同学在计算“ ”时,误将“ ”看成了“ ”,求得的结果为.
(1)求多项式;
(2)求出的符合题意结果;
(3)当时,求的值.
【答案】(1)解:∵,,


(2)解:∵,,

(3)解:当时,
【解析】【分析】(1)因为,所以,将代入即可求出;(2)将(1)中求出的与代
入,去括号合并同类项即可求;(3)根据(2)的结论,把代入求值即可.
9.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为,宽为的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.
(1)能否用只含的式子表示出图②中两块阴影部分的周长和?________(填“能”或“不能”);
(2)若能,请你用只含的式子表示出中两块阴影部分的周长和;若不能,请说明理由. 【答案】(1)能
(2)解:能,理由如下:
设小长方形的长为a,宽为b,
上面的长方形周长为:
下面的长方形周长为:
两式联立,总周长为:
(由图可得)
阴影部分总周长为
【解析】【解答】解:(1)能;故答案为能;
【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周
长,求出之和,根据题意得到,代入计算即可得到结果.
10.对于三位正整数:121、253、374、495、583、671、880、…,它们都能11整除。

若设百位数字是十位数字是个位数字是
(1)观察这些三位数,根据你的观察、总结, 应满足的关系式是________;
(2)为了说明满足上述关系式的三位正整数都能被11整除,请利用代数式的运算证明你得出的结论的正确性;
(3)除此之外,还有一类三位正整数,例:429、506、528、638、517、759、…,它们也能被11整除。

请观察这组数字的特点,发现有什么规律?再自选一个异于上面3个数字且满足“规律”的三位数,来验证你所发现的“规律”的正确性。

【答案】(1)a+c=b
(2)解:此三位数可表示为:100a+10b+c,
∵a+c=b,
∴100a+10b+c
=100a+10(a+c)+c
=110a+11c
=11(10a+c),
∴满足上述关系式的三位正整数都能被11整除
(3)解:∵429:4+9-11=2、506:5+6-11=0、528:5+8-11=2、638:6+8-11=3、517:5+7-11=1、759:7+9-11=5、…,
∴a+c-11=b,
如a=3,c=9,则b=3+9-11=1,该三位数是319,
∵319÷11=29,
∴满足该特点的三位数能被11整除.
【解析】【解答】(1)解:∵121:1+1=2、253:2+3=5、374:3+4=7、495:4+5=9、583:5+3=8、671:6+1=7、880:8+0=8、…,
∴应满足的关系式是a+c=b
【分析】(1)根据所给数字可以发现,百位数字+个位数字=十位数字,据此解答即可;(2)根据多位数的表示法写出该三位数,把a+c=b代入即可证明其正确性;(3)根据所给数字可以发现,百位数字+个位数字-11=十位数字,据此解答即可.
11.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下(注:水费按月份结算):
价目表
每月用水量价格
不超过6立方米的部分2元/立方米
超出6立方米,不超出10立方米的部分4元/立方米
(1)填空:若某户居民2月份用水4立方米,则应收水费________元;
(2)若该户居民3月份用水a立方米(其中6<a<10),则应收水费________元;(用含a 的代数式表示,并化简)
(3)若该户居民4、5两个月共用水15立方米(5月份用水量超过了4月份),设4月份用水x立方米,求该户居民4、5两个月共交水费多少元?(用含x的代数式表示,并化简)
【答案】(1)8
(2)4a-12
(3)解:当0<x<5时,则15-x>10,
应收水费为:2x+2×6+4×4+(15-x-10)×8=-6x+68(元);
当5≤x<6时,则9≤15-x≤10,
应收水费为:2x+2×6+(15-x-6)×4=-2x+48(元);
当6≤x,则6<x<15-x<9,
应收水费为:2×6+(x-6)×4+2×6+(15-x-6)×4=36(元)。

【解析】【解答】解:(1)4×2=8(元);
故答案为:8.
(2)因为6<a<10,
所以应收水费为:6×2+(a-6)×4=12+4a-24=4a-12(元)
故答案为:4a-12。

【分析】(1)水量不超过6立方米,故每立方米按2元/立方米;(2)因为6<a<10 ,所以a中6立方米水费按2元/立方米,(a-6)立方米水费按4元/立方米计算;(3)需要分类讨论x的取值范围,对15-x的取值范围的影响。

分别假设0<x<5,5≤x<6,6≤x时,再判别15-x的取值范围,并用x分别表示出4月和5月的水费,并求它们的和。

12.某单位在十月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为4000 元/人,两家旅行社同时又对10 人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有n(n>10)人,则甲旅行社的费用为________元,乙旅行社的费用为________元;(用含 n 的代数式表示)
(2)假如这个单位现组织共30 名员工到旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.
(3)如果计划在十月份外出旅游七天,这七天的日期之和(不包含月份)为105,则他们于十月________号出发.
【答案】(1)3000n;3200(n-1)
(2)解:当n=30时:
甲: (元),
乙: (元),
因为90000<92800,所以选择甲旅行社更优惠
(3)12
【解析】【解答】解:(1)甲旅行社的费用为
乙旅行社的费用为
故答案为3000n;3200(n-1);
( 3 ) 设 x 号出发,则 x+x+1+x+2+x+3+x+4+x+5+x+6=105,
解得 x=12,所以他们于十月 12 号出发.
【分析】(1)按照两个旅行社的优惠方法,分别表示出各自的费用。

(2)将n=30分别代入(1)中的代数式求值,再比较大小即可得出结果。

(3)设 x 号出发,根据这七天的日期之和(不包含月份)为 105,建立关于x的方程,求解即可。

相关文档
最新文档