钻井工程-19-井身结构讲解

合集下载

井身结构设计

井身结构设计

井身结构设计一、套管的分类作用1、表层套管主要用途:封隔地表浅水层及浅部疏松和复杂地层;安装井口、悬挂和支撑后续各层套管。

下深位置:根据钻井的目的层深度和地表状况而定,一般为上百米甚至上千米。

2、生产套管(油层套管)主要用途:用以保护生产层,提供油气生产通道。

下深位置:由目的层位置及完井方式而定。

3、中间套管(技术套管)在表层套管和生产套管之间由于技术要求下入的套管,可以是一层、两层或更多层。

主要用来封隔不同地层压力层系或易漏、易塌、易卡等井下复杂地层。

4、尾管(衬管)是在已下入一层技术套管后采用,即在裸眼井段下套管、注水泥,而套管柱不延伸到井口。

减轻下套管时钻机的负荷和固井后套管头负荷;节省套管和水泥。

一般在深井和超深井。

二、井身结构设计的原则1、有效地保护油气层;2、有效避免漏、喷、塌、卡等井下复杂事故的发生,保证安全、快速钻进;3、钻下部地层采用重钻井液时产生的井内压力,不致压裂上层套管鞋处最薄弱的裸露地层;4、下套管过程中,井内钻井液液柱压力和地层压力间的压差不致于压差卡套管;5、当实际地层压力超过预测值而发生井涌时,在一定压力范围内,具有压井处理溢流的能力。

三、井身结构设计的基础数据•地层岩性剖面、地层孔隙压力剖面、地层破裂压力剖面、地层坍塌压力剖面。

•6个设计系数:抽吸压力系数Sb;0.024 ~0.048 g/cm3激动压力系数Sg;0.024 ~0.048 g/cm3压裂安全系数Sf;0.03 ~0.06 g/cm3井涌允量Sk;:0.05 ~0.08 g/cm3压差允值∆p;∆P N: 15~18 MPa ,∆P A:21~23 MPa 四、井身结构设计方法套管层次和下入深度设计的实质是确定两相邻套管下入深度之差,它取决于裸眼井段的长度。

在这裸眼井段中,应使钻进过程中及井涌压井时不会压裂地层而发生井漏,并在钻进和下套管时不发生压差卡钻事故。

设计前必须有所设计地区的地层压力剖面和破裂压力剖面图,图中纵坐标表示深度,横坐标表示地层孔隙压力和破裂压力梯度,皆以等效密度表示。

钻井工程设计样本井身结构及钻机

钻井工程设计样本井身结构及钻机
m
3.3.4.2
序号
井深
m
井斜角
(°)
方位角
(°)
垂深
m
水平位移
m
N坐标
E坐标
1
2
3
4
5
6
7
8
9
10

要求按每30m一点列出从造斜点开始的剖面数据。
3.3.5定向井、水平井井眼轨迹垂直投影示意图
3.3.6定向井、水平井井眼轨迹水平投影示意图
3.3.7定向井、水平井防碰计算表
序号
垂深
m
设计井
参考邻井
水平
3.3井身结构
3.3.1井身结构示意图
3.3.2井身结构设计数据表
开钻次序
井深
m
钻头尺寸
mm
套管尺寸
mm
套管下入
地层层位
套管
下入深度
m
环空水泥浆
返深
m
导管
22
660
508
20
地面-22
一开
635
444.5
339.7
633
地面-633
二开
3305
311.2
244.5
3302
2500-3302
530-1330
882
柴油机2#
PZ12V190B—1
882
柴油机3#
PZ12V190B—1
882
柴油机4#
柴油机5#





发电机1#
Z8V190MD/300GF
300
发电机2#
Z8V190MD/300GF
300
发电机3#

第2讲_井身结构设计

第2讲_井身结构设计

测技术得到发展,特别是近平衡钻井的推广和井控技术的掌
握,使井身结构中套管层次和下入深度的设计,逐步总结出 一套较为科学的设计方法。
在“六五”期间,我国开始应用这套方法.首先在中原
油田取得很大效益。如在3500到4700m深井中,使平均事故 时间大幅度下降、建井周期缩短、钻井成本下降。
长江大学石油工程学院钻井工程研究所
5.1、中间套管设计
2.2、发生溢流(井涌)时

f 2
剖面图中最大地层压力梯度点对应的深度(m)

p m ax
Sb S
f

D p m ax D 21
Sk
井涌条件允许值
地层设计破裂压当量密度
激动压力系数
剖面图中最大地层压力对应的当量密度值 破裂压力安全增值 中间套管下入深度的初始假定点深度(m)
长江大学石油工程学院钻井工程研究所
3、井身结构设计中所需要的基础数据
地层破裂安全增值Sf由地区统计资料得到,一般取 0.031 g/cm3; 井涌条件允许值Sk由地区统计资料得到,一般取 0.051-0.10 g/cm3; 最大回压pwh由工艺条件决定,一般取2.0-4.0MPa;
. 钻压差允许值 卡
7、水泥返深设计
对于油层,生产套管的管外水泥返深至少应该在油 层顶部200m以上。对于气层,生产套管的管外水泥 返深至少应该在油层顶部300m以上;
中间套管的管外水泥返深至少应该在复杂或大断层
100m以上; 尾管的管外水泥返深至少在尾管的悬挂器以上;
表层套管的管外水泥返到地面。
长江大学石油工程学院钻井工程研究所
长江大学石油工程学院钻井工程研究所
5.1、中间套管设计
(2)中间套管下入深度 的初始假定点D21 在压力剖面图的横坐标 上,找出前面已经确定的

石油工程技术 井下作业 井身结构及完井方法

石油工程技术    井下作业    井身结构及完井方法

井身结构及完井方法1井身结构所谓井身结构,就是在已钻成的裸眼井内下入直径不同、长度不等的几层套管,然后注入水泥浆封固环形空间间隙,最终形成由轴心线重合的一组套管和水泥环的组合。

如图1所示。

图1井身结构示意图1—导管;2—表层套管;3—技术套管;4—油层套管;5—水泥环1.1导管井身结构中靠近裸眼井壁的第一层套管称为导管。

导管的作用是:钻井开始时保护井口附近的地表层不被冲垮,建立起泥浆循环,引导钻具的钻进,保证井眼钻凿的垂直等,对于不同的油田或地层,导管的下入要求也不同。

钻井时是否需要下入导管,要依据地表层的坚硬程度与结构状况来确定。

下入导管的深度一般取决于地表层的深度。

通常导管下入的深度为2~40m。

下导管的方法较简单,是把导管对准井位的中心铅垂直方向下入,导管与井壁中间填满石子,然后用水泥浆封固牢。

1.2表层套管井身结构中的第二层套管叫做表层套管。

表层套管的下入深度一般为300~400m,其管外用水泥浆封固牢,水泥上返至地面。

表层套管的作用是加固上部疏松岩层的井壁,供井口安装封井器用。

1.3技术套管在表层套管里面下入的一层套管(即表层套管和油层套管之间)叫做技术套管。

下入技术套管的目的主要是为了处理钻进过程中遇到的复杂情况,如隔绝上部高压油(气、水)层、漏失层或坍塌层,以保证钻进的顺利进行。

下入技术套管的层次应依据钻遇地层的复杂程度以及钻井队的技术水平来决定。

一般为了加速钻进和节省费用,钻进过程中可以通过采取调整泥浆性能的办法控制复杂层的喷、坍塌和卡钻等,尽可能不下或少下技术套管。

下入技术套管的层次、深度以及水泥上返高度,以能够封住复杂地层为基本原则。

技术套管的技术规范应根据油层套管的规范来确定。

1.4油层套管油井内最后下入的一层套管称为油层套管,也称为完井套管,简称套管,油层套管的作用是封隔住油、气、水层,建立一条封固严密的永久性通道,保证石油井能够进行长时期的生产。

油层套管下入深度必须满足封固住所有油、气、水层。

【钻井工程】井身结构设计

【钻井工程】井身结构设计


深 ,
表 套
m
破裂压力
技 套
设计 井深
地层压力
1.0 1.3 1.6
油套
1.8 当量密度,g/cm3
1. 自下而上的设计法
2)设计特点
(1)每层套管下入的深度最浅,套管费用最低。适合已探明 地区开发井的井身结构设计;
(2)上部套管下入深度的合理性取决于对下部地层特性了解 的准确程度和充分程度;
(3)应用于已探明地区的开发井的井身结构设计比较合理; (4)在保证钻井施工顺利的前提下,自下而上的设计方法可 使井身结构的套管层次最少,每层套管下入的深度最浅,从而达 到成本最优的目的。
(3) 0.00981 (dmax pmin ) Dpmin P
(4)
d max S f
Sk
Dpmax Dc1
fc1
防井涌 防井漏 防压差卡钻 防关井井漏
第三节 井身结构设计依据与原理
五、地层必封点
(1)钻进过程中钻遇易坍塌页岩层、塑性泥岩层、盐岩层、岩膏 层、煤层等,易造成井壁坍塌和缩径。 (2)裂缝溶洞型、破裂带地层、不整合交界面地层。 (3)含H2S等有毒气体的油气层。 (4)低压油气层的防污染问题。 (5)井眼轨迹控制等施工方面的特殊要求。SY/T 6396-2009 中第4.6条的规定:“井身结构除按SY/T5431的规定执行外,丛 式井组各井的表层下深宜交替错开10m以上。” (6)在采用欠平衡压力钻井时,为了维持上部井眼的稳定性,通 常将技术套管下至产层顶部。 (7)表层套管的下入深度应满足环境保护的要求。
油气井工程设计与应用
第一部分 井身结构设计
第一部分 井身结构设计
第一节 地层—井眼压力系统 第二节 井身结构设计的内容及套管层次 第三节 井身结构设计依据与原理 第四节 井身结构设计方法 第五节 套管与井眼尺寸的选择 第六节 设计举例

井身结构设计

井身结构设计
钻井工程设计方法-井身结构
井身结构设计是钻井方案的核心,直接成本占钻井总成本的20%以上,同时与 周期有关的钻井成本亦即确定。
19% 41%
23% 5% 6% 2% 4%
服务费用 套管及附件 钻具 水泥及添加剂 钻井液 钻前工程费用 钻机费用
7%
服务费用
21%
套管及附件
钻具
52%
水泥及添加剂
钻井液
6%
最大套铣钻具 (mm)
177.80
177.80
198.76 207.01
10.16 10.80ຫໍສະໝຸດ 244.48 250.83
177.80 200.00
224.41
10.04
266.7
215.90
220.5 252.73 247.9
11.99 10.16 12.58
266.7 298.45 298.45
212.73 244.48 238.13
•主要特征:借助相关领域的发展,井 身结构设计采用了数量化方法。
• 提出了以满足防止套管鞋处地层压 裂和避免压差卡钻为主要依据,满足 工程必封点为约束条件的设计思想;
• 确定了以四条压力剖面为根据,从 下而上确定下入深度,再由约束条件 进行调节的设计方法,用图解或解析 的数量化方法,实现了井身结构设计 方法实质性的飞跃;
ρm≥ρpmax+ Sb +△ρ (ρmax-ρpmin)×Hpmin×0.0098≤△P ρemax+ Sg + Sf ≤ρfmin ρemax+ Sf + Sk ×Hpmax/ Hc1≤ρfc1
防井涌 防卡钻 防漏 防关井井漏
钻井工程设计方法-井身结构
依据压力剖面,以保证钻进套管 以下的井段时的最大井内压力梯 度不压裂最薄弱的裸露地层(一 般为套管鞋处)为原则,从全井 最大地层压力梯度处开始,由下 向上确定套管的层次(技术套管 和表层套管)和各层套管的下入 深度。

井身结构设计

井身结构设计

•2.工程数据
(2)激动压力系数Sg,以当量钻井液密度表示,单位g/cm3。 Sg由计算的激动压力用(2-58)进行计算,美国墨西湾地 区取Sg=0.06,我国中原油田Sg=0.015~0.049。
(3)地层压裂安全增值Sf,以当量钻井液密度表示,单位 g/cm3。
Sf是考虑地层破裂压力检测误差而附加的,此值与地层 破裂压力检测精度有关,可由地区统计资料确定。美国 油田Sf取值0.024,我国中原油田取值为0.02~0.03。
•地层压力和地层破裂压力的数据一般是离散的,是由若干个压 力梯度和深度数据的离散点构成。为了求得连续的地层压力和 地层破裂压力梯度剖面,拟合曲线是不适用的,但可依靠线性 插值的方法。在线性插值中,认为离散的两邻点间压力梯度变 化规律为一直线。
•对任意深度H求线性插值的步骤:
•设自上而下顺序为i的点具有深度为Hi,地层压力梯度为GPi, 地层破裂压力梯度为Gfi,而其上部相邻点的序号为i-1,相邻 的地层压力梯度为GPi-1,地层破裂压力梯度为Gfi-1,则在深度 区间Hi~Hi-1内任意深度H有:
m P Sw
钻至某一井深Hx时,发生一个大小为Sk的溢流,停泵关闭防
喷器,立管压力读数为Psd
Psd 0.00981 Sk H
关井后井内有效液柱压力平衡方程为PmE=Pm+Psd
0.00981 mE H 0.00981 H ( P Sw ) 0.00981 Sk H x
mE
P
Sw
Hx H
井身结构设计原理—液体压力体系的当
量梯度分布
Pm Pm 0.0981 mH m
Gm Gm 0.0981 m
•非密封液柱体系 的压力分布和当
量梯度分布

【钻井工程】井身结构图

【钻井工程】井身结构图
测井基础


石油勘探和开发过程中工程技术环节:
物探----钻井(录井)----测井---井下(试油)---采油(油建)
• 测井资料解释:利用测井资料分析地层的岩性,判断油、气、 水层,计算孔隙度、饱和度、渗透率等地质参数。
创新与测井学科的进步
模拟测井
20年代末
数字测井
60年代末
数控测井
80年代末
利用脉冲中子源的测井
—C/O比、中子寿命、中子活化测井
地层倾角测井 其他测井 气测井等
生产测井
自然电位测井
自然电位测井(SP )就是测量自然电位随 井深的变化,是划分岩 性和研究储集层性质的 基本方法之一。
N
M
图1-1 自然电位测量原理图
(一)自然电位测井曲线的特征
1、大段泥岩或页岩, 显示为电位不变的直线, 即所谓的泥岩基线。岩性 均匀的砂岩地层,曲线对 称于地层中部并显示极值
测量时先给介质通入 电流造成人工电场,测量 两测量电极间的电位差, 进而将电位差转换为电阻 率。所以只要测出各种介 质中的电场分布特点就可 确定介质的电阻率。
Ⅱ RE
ER

MA MA
N
B
M
A
A
M
B
N
普通电阻率测井原理线路图 A、B-供电电极;M、N-测量电极; E-电源;R-调节电阻;Ⅱ-测量仪
器;MA-毫安表
日产液情况
水分析

水 含水 CL 离子 矿化度 电阻率
3.6
58.5 94测井曲线图
微电极
电阻率
自然伽玛 自然电位
浅电阻率 中电阻率 深电阻率
液:44.3, 油:0.5, 含水:98.8%

井身结构设计

井身结构设计

第二章 井身结构设计井身结构设计是钻井工程的基础设计。

它的主要任务是确定套管的下入层次、下入深度、水泥浆返深、水泥环厚度、生产套管尺寸及钻头尺寸。

基础设计的质量是关系到油气井能否安全、优质、高速和经济钻达目的层及保护储层防止损害的重要措施。

由于地区及钻探目的层的不同,钻井工艺技术水平的高低,国内外各油田井身结构设计变化较大。

选择井身结构的客观依据是地层岩性特征、地层压力、地层破裂压力。

主观条件是钻头、钻井工艺技术水平等。

井身结构设计应满足以下主要原则:1.能有效地保护储集层;2.避免产生井漏、井塌、卡钻等井下复杂情况和事故。

为安全、优质、高速和经济钻井创造条件;3.当实际地层压力超过预测值发生溢流时,在一定范围内,具有处理溢流的能力。

本章着重阐明地下各种压力概念及评价方法,井身结构设计原理、方法、步骤及应用。

第一节 地层压力理论及预测方法地层压力理论和评价技术对天然气及石油勘探开发有着重要意义。

钻井工程设计、施工中,地层压力、破裂压力、井眼坍塌压力是合理钻井密度设计;井身结构设计;平衡压力钻井;欠平衡压力钻井及油气井压力控制的基础。

一、几个基本概念1.静液柱压力静液柱压力是由液柱自身重量产生的压力,其大小等于液体的密度乘以重力加速度与液柱垂直深度的乘积,即0.00981h P H r = (2-1)式中:P h ——静液柱压力,MPa ;——液柱密度,g/cm 3; H ——液柱垂直高度,m 。

静液柱压力的大小取决于液柱垂直高度H 和液体密度,钻井工程中,井愈深,静液柱压力越大。

2.压力梯度指用单位高度(或深度)的液柱压力来表示液柱压力随高度(或深度)的变化。

ρ00981.0==HP G hh (2-2) 式中:G h ——液柱压力梯度,MPa/m ; P h ——液柱压力,MPa ; H ——液柱垂直高度,m 。

石油工程中压力梯度也常采用当量密度来表示,即HP h00981.0=ρ (2-3)式中:——当量密度梯度,g/cm 3; 3.有效密度钻井流体在流动或被激励过程中有效地作用在井内的总压力为有效液柱压力,其等效(或当量)密度定义为有效密度。

海洋钻井手册--井身结构与套管设计

海洋钻井手册--井身结构与套管设计
1 1 3 3
钻头尺寸 mm 88.9 88.9 95.3 95.3 95.3 104.8 107.9 107.9 107.9 114.3 117.5 120.6 120.6 123.8 149.2 152.4 155.6 155.6 212.7 215.9 215.9 219.1 228.6 228.6 244.5 244.5 304.8 311.1 311.1 374.6 374.6 381 444.5 469.9 469.9 469.9
表 3-1-1
孔隙压力剖面 地层破裂 / 坍塌压力剖面 塑性盐层和泥页岩位置 地层信息 渗透层位置或漏失层位置 断层、破碎地层等 淡水砂层位置 浅气层位置 地质目标 定向井数据 定向井轨迹 其他 完井需求 所需最小直径
井身结构设计所需基本数据列表
满足钻井和采油目标所需要的最小井眼直径 测试 / 测井工具外径 油管尺寸 封隔器及相关设备要求尺寸 井下安全阀外径 生产井资料 在完井、生产和井下作业中所需求的套管尺寸 法律、法规限制 库存情况或采办策略 钻机设备限制
· 95 ·
2.井身结构设计内容 按井内压力系统平衡原则设计出各层套管的下入深度。要求在同一井段的裸眼内保持 压力系统平衡,即在钻进、起下钻及井涌压井过程中不会压裂上部地层而发生井漏;在钻 井作业和下套管时不会发生压差卡钻、卡套管等复杂情况。当特殊地层造成不能正常钻进 时,应考虑适当调整井身结构。 开发井的井身结构设计通常采用自下而上的原则进行,最后一层套管的下入深度通常 取决于井深或地质要求,而完井的油层套管尺寸通常取决于完井和采油作业的要求。对于 预探井,也可以采用自上而下的原则进行设计,最后一层套管的尺寸应考虑地层评价的相 关要求。 无论采用自下而上还是自上而下井的设计方法,井身结构设计均应保证同一裸眼段内 满足压力平衡原则,达到防喷、防卡和防漏的目的,同一裸眼井段井身结构设计必须满足 的压力约束条件为: (1)防喷、防塌:

井身结构设计

井身结构设计
为了准确掌握地层破裂压力,国内外学者提出 了不同的方法和模型,如Mathews&Kelly法、 Hubbert&Willis 法、Eaton 法和以及石油大学黄荣 樽提出的预测模型等等。
第一章 井身结构设计
第二节 地层破裂压力预测方法
1、地层破裂压力定义:在井下一定深度出露的地 层,承受液体压力的能力是有限的。当液体压力达 到某一数值时会使地层破裂,这个液体压力称为地 层破裂压力。
地震波法预测地层压力计算方法主要有等 效深度法,Fillipone法、R比值法。
2020/11/13
第二节 地层破裂压力预测方法
第一章 井身结构设计
在采油作业上,20世纪40年代就利用水力压裂 地层达到增产的目的,但对钻井工程不希望地层破 裂,因为容易发生井漏,造成井下复杂事故。因此 了解地层的破裂压力对合理的油井设计和钻井施工 都十分重要。
三、地层压力预测方法 钻速法--随钻监测 测井法--钻后评价 地球物理方法--钻前预测
目前应用某一种方法是很难准确评价一个地区或 区块的地层压力,往往需要采用多种方法进行综合 分析和解释。
dc指数法、声波时差法、地震法。
2020/11/13
第一章 井身结构设计
第一节 地层压力理论及预测技术
1、dc指数法
在正常地层压力情况下,如岩性和钻井条件不变,机械钻 速随井深的增加而下降。当钻入压力过渡带之后,由于压差 减小,岩石孔隙度增大,机械钻速反而加快。 dc指数则正是 利用这种差异预报异常高压。
宾汉在不考虑水力因素的影响下建立了钻速方程;根据室
内及油田钻井试验 ,再进行合理的假设,采用统一的单位可
得d指数(钻压)表达式:
2020/11/13
第一章 井身结构设计

井深结构设计

井深结构设计

井身结构包括套管层次和下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合。

井身结构设计是钻井工程设计的基础。

一、套管柱类型(1) 表层套管;(2) 中间套管(技术套管)(3) 生产套管(油层套管)(4) 尾管。

二、井眼中压力体系在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压力。

三个压力体系必须同时满足于以下情况:p m f p p p ≥≥ (1-1) 式中 f p -地层的破裂压力,MPa ;m p -钻井液的液柱压力,MPa ;p p -地层孔隙压力,MPa 。

即泥浆液柱压力应稍大于孔隙压力以防止井涌,但必须小于破裂压力以防止压裂地层发生井漏。

由于在非密闭的洗井液压力体系中(即不关封井器憋回压时),压力随井深是呈线性变化的,所以使用压力梯度概念是较方便的。

式(1-1)可写成:p m t G G G ≥≥ (1-2)式中 t G -破裂压力梯度,MPa/m ;m G -液柱压力梯度,MPa/m ;p G -孔隙压力梯度,MPa/m 。

一、井身结设计所需基础资料(一) 地质资料(1) 岩性剖面及事故提示(2) 地层压力数据(3) 地层破裂压力数据(二) 工程资料(1) 抽吸压力与激动压允许值(g b S S 与)各油田应根据各自的情况来确定。

(2) 地层压裂安全增值(f S )。

该值是为了避免将上层套管鞋处地层压裂的安全增值,它与预测破裂压力值的精度有关,可以根据该地区的统计数据来确定。

以等效密度表示g/cm 3。

美国现场将f S 取值为0.024,中原油田取值为0.03。

(3) 井涌条件允许值(k S )。

此值是衡量井涌的大小,用泥浆等效密度差表示(用于压井计算,另一种计量方法是以进入井眼的流体的总体积来表示,多用于报警)。

美国现场取值为0.06。

该值可由各油田根据出现井涌的数据统计和分析后得出。

中源油田将k S 值定为0.06~0.14。

(4) 压差允值(a N P P ∆∆与)。

裸眼中,泥浆液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行地固井和完井工作。

钻井柱状图及井身结构图等

钻井柱状图及井身结构图等

1
0-6
6
泥 岩 粘 土 球 大 粿 粒 砂 套 管
2
6-23
17
3
23-30
7
泥 岩 砂 砾 料
4
30-70
40
小 粿 粒 砂
花 管 24 米
七、钻井柱状及井身结构图 第二分部 层 序 地层 深度 (m) 第一单元4号井 地质柱状图 (比例尺1: ) 地层厚度 (m) 岩 性 井管结构 井身结构图 类型 回填 滤料
2
12-38
26
3
38-48
10
泥 岩 砂 砾 料
4
48-70
22
细 砂
花 管 24 米
70
七、钻井柱状及井身结构图 第三分部 层 序 地层 深度 (m) 第二单元8号井 地质柱状图 (比例尺1: ) 地层厚度 (m) 岩 性 井管结构 井身结构图 类型 回填 滤料
1
0-10
10
泥 岩
2
10-24
花 管 24 米
70
七、钻井柱状及井身结构图 第三分部 层 序 地层 深度 (m) 第四单元15号井 地质柱状图 (比例尺1: ) 地层厚度 (m) 岩 性 井管结构 井身结构图 类型 回填 滤料
1
0-6
6
泥 岩
2
6-25
19
大 粿 粒 砂
套 管
粘 土 球
3
25-31
6
泥 岩
4
31-67
34
小 粿 粒 砂
9
泥 岩 砂 砾 料
4
50-70
20
小 粿 粒 砂
花 管 24 米
七、钻井柱状及井身结构图 第三分部 层 序 地层 深度 (m) 第三单元12号井 地质柱状图 (比例尺1: ) 地层厚度 (m) 岩 性 井管结构 井身结构图 类型 回填 滤料

钻井工程 19 井身结构讲解

钻井工程 19 井身结构讲解
一、套管的分类及作用 二、井身结构设计原则 三、井身结构设计基础数据 四、裸眼井段应满足力学平衡 五、井身结构设计方法(举例) 六、套管尺寸和井眼尺寸选择
4
一、套管的分类及作用
1、表层套管—Surface casing 封隔地表浅水层及浅部疏松和复杂层 安装井口、悬挂及支撑后续各层套管
2、中间套管—Intermediate casing 表层和生产套管间因技术要求下套管 可以是一层、两层或更多层 主要用来分隔井下复杂地层
求出继续向下钻进时
裸眼段允许最大地层压力 ? pper
? pper
?
?f2
?
Sb
?
Sf
?
D31 D2
?
Sk
试算法:
先试取一个 D31,计算 ? pper, 若计算 ? pper与实际值接近且略大,
则 D31 为尾管初选点,否则重试。
16
4、校核尾管下到 D31 是否被卡 校核方法同 2,△P N 换成△P A
13
2、验证中间套管下到 深度D21是否被卡 (1)首先求裸眼可能存在的最大静压差:
? P ? (? pmax ? Sb ? ? pmin ) ? Dmin ? 0.00981
ρ pmax :钻进至D21遇到的 最大地层压力当量泥浆密度。
Dmin :最小地层孔隙压力所处的井深,m
? 若 ? P ? ? PN ,不卡,D21为中间套管下入深度D2。 ? 若 ? P ? ? PN ,会卡,中间套管应小于初选点深度,
钻井工程
井身结构
中国石油大学(北京)
1
oil zone
一开 表层套管
二开 中间套管
(技术套管)
三开 生产套管
(油层套管)

井身结构

井身结构

下入深度:30-1500m,取
决于上部疏松岩层的位置。
套管尺寸:15¾〃和12¾〃
2、井身结构的组成—— 技术套管
导管 表层套管
作用:在钻井中用以封隔某
些难以控制的复杂地层,以 便能顺利的钻达预定的生产 目的层。(还可保护生产套 技术套管 管)
下入深度:取决于复杂
地层的位置
套管尺寸:13¼〃和8 /
人工井底深 套管深度: 套补距:钻 射开油层底 套管直径:下 射开油层顶 度:完井时 下入油层套 井时的方补 部深度:射 入油层套管的 部深度:射 套管内最下 管的深度, 心与套管头 开井段最下 公称直径,单 开井段最上 部水泥顶界 单位为米 的距离,单 部至方补心 位为毫米 部至方补心 面至方补心 (m)。 位为米(m)。 的距离,单 (mm)。 的距离,单 的距离,单 位为米(m)。 位为米(m)。 位为米(m)。
适用的地质条件
无气顶、无底水、无含水夹层及易塌夹层的储层 单一厚储层,或压力、岩性基本一致的多层储层 不准备实施分隔层段及选择性处理的储层 岩性较为疏松的中、粗砂粒储层 无气顶、无底水、无含水夹层的储层 单一厚储层,或压力、岩性基本一致的多层储层
割缝衬管完 井
裸眼砾石充 填
不准备实施分隔层段及选择性处理的储层
割缝衬管完 井
裸眼砾石充 填
不准备实施分隔层段及选择性处理的储层
岩性疏松且出砂严重的中、粗、细砂粒储层 有气顶,或有底水,或有含水夹层及易塌夹层等复杂地 质条件,因而要求实施分隔层段的储层
套管内砾石 充填
各分层之间存在压力、岩性等差异,因而要求实施选择性处理 的储层 岩性疏松且出砂严重的中、粗、细砂粒储层
岩性疏松且出砂严重的中、粗、细砂粒储层 有气顶,或有底水,或有含水夹层及易塌夹层等复杂地 质条件,因而要求实施分隔层段的储层
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Sf

D31 D2

Sk
2.15 0.036 0.03 D31 0.06 3200
试取 D31 =3900m,得 pper 2.01g / cm3
由ρp曲线,p3900 1.94 pper 2.01g / cm3
故确定初选点 D31 = 3900 m.
21
(4)校核是否会卡尾管 计算压差:
钻井工程
井身结构
中国石油大学(北京)
1
oil zone
一开 表层套管
二开 中间套管
(技术套管)
三开 生产套管
(油层套管)
2
井身结构—油井基础,全井骨架 固井工程—套管柱设计和注水泥 不仅关系全井能否顺利钻进完井, 而且关系能否顺利生产和寿命。
3
井身结构设计 内容:套管层次; 每层套管下深; 套管和井眼尺寸配合。
Dpmin ——最小地层孔隙压力所处的井深,m
f min ——裸眼段最小地层破裂压力的当量泥浆密度, g / cm3
fc1 ——套管鞋处地层破裂压力的当量泥浆密度, g / cm3
Dc1 ——套管下入深度,m
11
五、井身结构设计方法
1、求中间套管下入深度初选点 D21 (1)不考虑发生井涌
一、套管的分类及作用 二、井身结构设计原则 三、井身结构设计基础数据 四、裸眼井段应满足力学平衡 五、井身结构设计方法(举例) 六、套管尺寸和井眼尺寸选择
4
一、套管的分类及作用
1、表层套管—Surface casing 封隔地表浅水层及浅部疏松和复杂层 安装井口、悬挂及支撑后续各层套管
2、中间套管—Intermediate casing 表层和生产套管间因技术要求下套管 可以是一层、两层或更多层 主要用来分隔井下复杂地层
求出继续向下钻进时
裸眼段允许最大地层压力 pper
pper
f2
Sb
Sf

D31 D2

Sk
试算法:
先试取一个 D31,计算 pper , 若计算 pper与实际值接近且略大,
则 D31 为尾管初选点,否则重试。
16
4、校核尾管下到 D31 是否被卡 校核方法同 2,△P N 换成△P A
目前,根据套管层次不同,已基本形成了较稳定的系列。
24
25
克拉2气田典型井身结构
28″导管 26″x300m
18-5/8″x300m
16″x2600m 13-3/8″x2600m
12-1/;9-7/8″x封白云 岩
8-1/2″*目的层
7″尾管*目的层
26
2.16
P ( pmax Sb pmin ) Dmin 0.00981
(1.94 0.036 1.435)3200 0.00981 16.98MPa
因为
P PA 18MPa ,
故确定尾管下深为 D3 = D31 = 3900m 。
22
(5)确定表层套管下深 D1
• 6 个设计系数:
抽吸压力系数Sb:0.024~0.048 g/cm3
激动压力系数Sg:0.024~0.048 g/cm3
压裂安全系数Sf:0.03~0.06 g/cm3
井涌允量 Sk:0.05~0.08 g/cm3
压差允值 △P: △PN = 15~18 MPa
△P A = 21~23 MPa
9
压力梯度 剖面如图 。
试进行该井井身结构设计。
给定设计系数: Sb = 0.036 ;
Sg = 0.04 ;
Sk = 0.06 ;
Sf = 0.03 ;
ΔPN = 12 Mpa ;
ΔPA = 18 MPa ;
18
解: 由图上查得 pmax 2.04g / cm3, Dpmax 4250m
2.18 2.30
泥线90m 30" 20"
16"
13-3/8" 10-3/4" 9-5/8"
27
(1)中间套管下入深度初选点 D21 由 f pmax Sb S f Sk Dpmax / D21
试取 D21 =3400 m,代入上式得:
f 2.04 0.036 0.03 0.06 4250 / 3400
2.181g / cm3
由破裂压力曲线查得
3、生产套管—Production casing 钻达目的层后下入的最后一层套管 用以保护生产层,提供油气生产通道
4、尾管(衬管) —Liner 5
例:克拉2气田井身结构实施方案
28″导管 26″x300m
18-5/8″x300m
16″x2600m 13-3/8″x2600m
12-1/4″x 封白云岩 10-3/4″x100m+9-7/8″x封白云岩
需根据压差卡钻条件确定中间套管的下深。
14
(2)求压差 PN 条件下允许
的最大地层压力 pper
pper

PN 0.00981 Dmin

p min

Sb
在地层压力曲线上找出 pper
深度即为中间套管的下深 D2 。
15
3、求钻井尾管下入深度初选点 D31
根据 D2 处地层破裂压力 f 2 ,
8-1/2″*目的层
7″尾管*目的层
6
7
二、井身结构设计原则 1、有效保护油气层 2、有效避免漏、喷、塌、卡等井 下复杂事故,安全、快速钻井 3、井涌时,有压井处理溢流能力 4、下套管顺利,不压差卡套管
8
三、井身结构设计基础数据
• 4个剖面:
孔隙压力剖面 破裂压力剖面 坍塌压力剖面 漏失压力剖面
13
2、验证中间套管下到 深度D21是否被卡 (1)首先求裸眼可能存在的最大静压差:
P ( pmax Sb pmin ) Dmin 0.00981
ρ pmax :钻进至D21遇到的 最大地层压力当量泥浆密度。
Dmin :最小地层孔隙压力所处的井深,m
• 若 P PN ,不卡,D21为中间套管下入深度D2。 • 若 P PN ,会卡,中间套管应小于初选点深度,
10
其中:
d d max p max
——钻井液密度, g / cm3
——裸眼段内使用的最大钻井液密度, g / cm3 ——裸眼段钻遇最大地层压力的当量泥浆密度,g / cm3
Dpmax ——最大地层孔隙压力所处的井深,m
pmin ——裸眼段钻遇最小地层压力的当量泥浆密度,g / cm3
5、计算表层套管下入深度 D1
根据 D2 处地层压力 p2 ,
计算若钻进到 D2 发生井涌关井,
表层套管鞋处承受压力当量密度:
fE
p2
Sb
Sf

D2 D1
Sk
试算:试取 D1,
计算 fE ≤查得ρ fE,确定 D1
否则重试。
17
设计举例
某井设计井深为 4400 m;
地层孔隙压力梯度和破裂
四、裸眼井段应满足的力学平衡
(1)防井涌
d p max Sb
(2)防压差卡套管
(d max pmin ) Dpmin 0.00981 P
(3)防井漏
d max Sg S f f min
(4)防关井井漏
d max S f Sk Dpmax / Dc1 fc1
由: fE
p2
Sb
Sf

D2 D1
Sk
1.435 0.036 0.03 3200 0.06 D1
试取 D1 = 850 m , 代入上式计算得 fE 1.737g / cm3
由ρf曲线查得 f 850 1.74g / cm3, fE f 850 ,

p min

Sb

12 0.00981 3050
1.07 0.036
1.435g
/ cm3
查得 pper =1.435 对应 D2 = 3200 m。
20
(3)确定尾管下深的初选点 D31
由ρf曲线查得: f 3200 2.15g / cm3
由: pper

f2
Sb
f 3400 2.19g / cm3, f f 3400
且接近,故确定 D21 = 3400 m 。
19
(2)校核中间套管是否会被卡 由ρ P曲线,钻进到深度 D21 =3400 m时,
遇到最大地层压力 p3400 = 1.57 g/cm3
因 pmin 1.07g / cm3, Dmin 3050m
由 f pmax Sb Sg S f
计算出ρ f ,在破裂压力曲线
查出ρf 所在的井深 D21 , 即为中间套管下入井深初选点。
12
(2)考虑可能发生井涌
由 f pmax Sb S f Sk Dpmax / D21
试算法求ρf 先试取一个D21 ,计算ρf , 将计算ρf 与查图ρf’ 比较, ρf ≤ ρf’ ,D21为中间套管初选点 否则,重新试算。 一般情况下,在新探区,取以上 两种条件下较大值。
故确定 D1 = 850 m。
23
六、套管尺寸和井眼尺寸选择
目前我国使用最多的套管/钻头系列是:
(26")20"(17
1 2
")13
3 8
"(12
1 4 " )9
5 8
"(8
1 2
")7"(5
相关文档
最新文档