线性代数n维向量空间小结

合集下载

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结1.a j:向量α的第j个分量。

2.n维实向量空间:全体n维实列向量构成的集合及其上定义的向量。

的加法和数乘运算的合称。

Ps:1.全体n维行向量构成的集合记为R1*n;2.R2即2维空间。

3.R n的子集:多个n维实向量构成的一个集合。

4.V是R n的子空间:V具有下列性质的R n的子集。

设V?R n是一个非空集合,V满足:(1)若α、β∈V,则α+β∈V;(2)若γ∈V,k∈R,则kγ∈V;5.齐次线性方程组的解空间:齐次线性方程组的全部解向量构成的合。

6.向量组:多个相同维数的向量组成的集合。

7.线性组合:给定R n中向量组A:α1,α2,…,αm,以及数k1,k2,…,k m,称向量β=k1α1+k2α2+…+k mαm(k∈R)为向量组A的一个线性组合。

8.张成:给定R n中向量组A:α1,α2,…,αm,由A的全体线性组合构成的集合。

Ps;(1)记为Span(α1,α2,…,αm)={k1α1+k2α2+…+k mαm};(2)张成是一R n的一个子空间;9.向量β能由向量组A线性表示:给定n维向量组A:α1,α2,…,αm和n维向量β,若存在m个数k1,k2,…,k m,使β=k1α1+k2α2+…+k mαm(k∈R)10.线性方程的三中表示:(1)矩阵方程Ax=b;(2)向量方程x1α1+x2α2+…+x nαn=β;(3)一般式方程;11.线性相关;k1α1+k2α2+…+k nαn=0(k不全为0);线性无关;k1α1+k2α2+…+k nαn=0(k全为0);12.线性相关的几何解释;(1)若向量组A:α1,α2线性相关,则它们共线:(2)若向量组A:α1,α2α3线性相关,则它们共面。

,13.向量组A线性相关的充要条件为R(A)<n(即齐次线性方程组有非零解);向量组A线性无关的充要条件为R(A)=n(……只有零解)。

Ps:秩:R(A)为系数矩阵的行阶梯形的非零行个数。

线性代数知识点总结

线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。

北京工业大学线性代数第四章第一节 n 维向量空间

北京工业大学线性代数第四章第一节 n 维向量空间

n
向量组 1 , 2 , , n 称为矩阵A 的列向量组.
10
类似地, 矩阵A (aij )mn 又有m个n维行向量
a11 a12 a 21 a 22 A ai1 ai 2 a m1 am 2 a1n 1 1 a 2 n 2 2 , a in i m a mn m
23
例4 已知
1 1, 4, 0, 2,2 2, 7, 1, 3, 3 0, 1, 1, a , 3, 10, b, 4 , 不能由1 ,2 ,3 线性表出? ⑴ a , b为何值时, 能由1 ,2 ,3 线性表出且表示法 ⑵ a , b 为何值时,

, n
n xn 是否有解。
n xn
,n 线 性表出.
19
*若方程组 1 x1 2 x2
有解,则 可以由1 ,2 ,
n xn
,n 线 性表出.
且方程组的一组解就是表出系数. ① 若方程组有唯一解,则 可以由1 ,2 , ,n 线性表出且表示法唯一. ② 若方程组有无穷多解,则
1
第一节 n 维向量空间
一. n 维向量空间的概念 二.向量与矩阵的关系 三.向量的线性组合与线性表出
2
一. n 维向量空间的概念 一个mn矩阵的每一行都是由n个数组成 的有序数组,其每一列都是由m个数组成的有序 数组。 n元线性方程组的一个解也是由n个数 组成的有序数组。所以研究线性方程组解的结 构离不开有序数组。 1.定义:由数域P 中n 个数组成的有序数组称为 数域P 上的一个n 维向量,用小写的希腊字母 , , …表示.

线性代数-n维向量

线性代数-n维向量
第三章 n维向量
一. n维向量及其线性运算 二. 线性相关性 三. 向量组的秩 四. 向量空间
五. 内积与正交化
第Байду номын сангаас节 n维向量及其线性运算
(一) n维向量的概念
定义
由n 个有数 a1 , a2 ,
, an 组成的有序数组 a1 , a2 ,
, an
称为一个n 维向量。 这 n 个数称为该向量的 n 个分量,第 i 个数 a i 称为第i个分量。 分量全为实数的向量称为实向量, 分量全为复数的向量称为复向量.
2
0
0 3 1 2 0 3 1 2 2 0 1 1 2 0 1 1 0 1 1 b 0 0 0 b 2 0 0 a 1 0 1 a 2 0
1 0 0 0
T T T (2, 5,1) , (10,1, 5) , (4,1, 1) , 求 . 其中 1 2 3
解 3 1 3 2 2 2 5 3 5 ,
6 3 1 2 2 5 3 ,
1 ( 3 1 2 2 5 3 ) (1, 2, 3)T . 6
一般用希腊字母 , , 等表示 n 维向量。
a1 , a2 , 向量通常写成一行:
, an 称为行向量。
a1 a 2 有时也写成一列: 称为 列向量 。它们的区别只是 写法上的不同。 an
分量全为零的向量 0,0,
,0 称为零向量,记为 0。
, km称为这个线性组合的系数。 , m ,和向量 , 如果存在
m m
定义2:给定向量组 A : 1 , 2 , 一组实数 1 , 2 , m , 使得 1 1 2 2

数学线性代数n维向量空间

数学线性代数n维向量空间
A = (α1, α2 ,L , αm ),°A = (α1, α2 ,L , αm , β)。
线性方程组(4.2)可表示为两种矩阵方程:
(1). 将所有系数构成一个系数矩阵A
a11 a12 L
a21 M
a22 M
L M
an1 an2 L
即:AX B
a1m x1 b1
a2m M
# 向量加法和向量的数乘满足的运算规律:
1 加法交换律: α + β = β + α; 2 加法结合律 : α β γ α β γ ; 3 α Ο α; 4 α α O; 51 α α; 6 k(lα) (kl)α; 7 k(α β) kα kβ 8 (k l)α kα lα
# 向量α和β的差为 α - β = α + (- β) = (a1 - b1, a2 - b2 ,L , an - bn )T
# 实向量a :向量a的分量都是实数; # 复向量b :向量b的分量都是复数。 定义4.1 所有n维实向量(real vector)的集合称为, n维实向量空间,记为R n,即
第四章 n维向量空间
第一节 n维向量的概念 第二节 向量的线性表示与线性相关 第三节 等价向量组 第四节 线性方程组的结构 第五节 向量空间的子空间
4.1 n维向量的概念
由第一章知道
行向量(1 n矩阵) 列向量(n 1矩阵)
通称:n维向量
n个数构成的有序数组
a1
本章所称的n维向量指n维列向量:a= a1, a2 ,L
证(1) β可由向量α1 ,α2 ,L ,αm线性表示
存在m个数x1, x2 ,L , xm,使得
x1α1 x2α2 L xmαm β
方程组 AX β 有解

线性代数-知识点总结part 2

线性代数-知识点总结part 2

线性代数知识点总结—part 2三、向量组的线性相关与线性方程组(1)n 维向量记为a=(a 1,a 2……a n )第i 个a i 称为a 的得i 个分量或坐标有几个向量就是几维向量。

(2)向量加减法按照对应项相加减。

(3)若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组0 ,0 ,,,;,0 ,,,,,,, 3.42122112122112121。

可以推出称为线性无关,如果由一向量组则称该向量组线性相关使全为零的数如果存在不给定向量组定义=====+++=+++m m m m mm m m k k k k k k k k k k k k ΛρΛΛρΛΛΛαααααααααααα(4)向量组线性相关的充分必要条件是至少有一个向量可由其他向量线性表示。

(5)部分向量组线性相关,则整个向量组线性相关;整个向量组线性无关,则部分向量组线性无关。

(6)线性无关组添加相同数量个分量所得的向量组仍线性无关;线性相关组减少相同位置相同数量个分量所得的向量组仍线性相关。

唯一表示。

可由线性相关,则,线性无关,而设mm m αααββαααααα,,,,,,,,, 212121ΛΛΛ向量组⎪⎪⎪⎪⎪⎫⎛=⎪⎪⎪⎪⎪⎫⎛=n n T T a a aa a a A M MML L M 222211121121αα(7)若(8)若向量组A 和B 能相互线性表示就称A 和B 等价;(9)一个向量组T ,从中选出r 个向量a 1,a 2,…..a r 满足它们线性无关,并且T 中任意一个向量都可以用a 1,a 2…..a r 线性表示 那么我们就称a 1,a 2,…..a r 是T 的最大向量无关组(10)向量组的最大线性无关组所含向量的个数,称为向量组的秩. (11)矩阵A 的秩等于它的列向量组的秩,也等于行向量组的秩 (12)设向量组(I)的秩为r1,向量组(II)的秩为r2,且(I)能由(II)线性表示,则r1<=r2(13)等价的向量组有相同的秩。

线性代数[第三章n维向量]山东大学期末考试知识点复习

线性代数[第三章n维向量]山东大学期末考试知识点复习

线性代数[第三章n维向量]⼭东⼤学期末考试知识点复习第3章 n维向量⼀、n维向量的概念1.n维向量的定义由n个数a1,a2,…,a n所组成的⼀个有序数组α=(a1,a2,…,a n)称为⼀个n维向量,其中第i个数ai称为向量α的第i个分量(i=1,2,…,n).向量常⽤希腊字母α,β,γ,…来表⽰,其分量常⽤⼩写拉丁字母a,b,c,…来表⽰.2.零向量所有分量都是零的向量称为零向量.3.负向量向量α中的每个分量都变号后得到的向量,称为α的负向量,记为-α.4.向量相等两个向量相等的充要条件是它们的对应分量相等.⼆、向量的线性运算1.向量的加法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),定义α+β为这两个向量的对应元素相加所得到的向量,即α+β=(a1+b1,a2+b2,…,a n+b n),并称其为向量的加法.2.数与向量的乘法设α=(a1,a2,…,a n),k∈R,则kα=(ka1,ka2,…,ka n)3.向量的减法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),则α-β=(a1-b1,a2-b2,…,a n-b n).4.向量的线性运算向量的加法以及数与向量的乘法称为向量的线性运算.向量的线性运算满⾜以下⼋条运算规律:(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)α+θ=α;(4)α+(-α)=θ;(5)1.α=α;(6)(kl)α=k(lα);(7)k(α+β)=kα+kβ;(8)(k+l)α=kα+lα三、向量的线性组合1.向量的线性组合的定义设β,α1,α2,…,αn是⼀组m维向量,如果存在数k1,k2,…,k n使得关系式β=k1α1+k2α2+…+k nαn成⽴,则称卢是向量组α1,α2,…,αn的线性组合,或称β可由向量组α1,α2,…,αn线性表⽰.2.⼏个常⽤结论(1)零向量可由任意同维向量组线性表⽰;(2)向量组中的任⼀向量可由该向量组线性表⽰;(3)任⼀n维向量α=(a1,a2,…,a n)都可由n维单位向量组ε1,ε2,…,ε线性表⽰,且α=a1ε1+a2ε2+…+a nεn.n四、向量组的等价1.定义设有两个向量组α1,α2,…,αm,(1)β1,β2,…,βn.(2)若向量组(1)中每个向量可以由向量组(2)线性表⽰,则称向量组(1)可由向量组(2)线性表⽰.若向量组(1)与向量组(2)可互相线性表⽰,则称两向量组等价,记作{α1,α2,…,αm}≌{β1,β2,…,βn}.2.向量组的等价性质向量组的等价满⾜反⾝性、对称性、传递性.五、向量组线性相关与线性⽆关1.定义设α1,α2,…,αn为n个m维向量,如果存在⼀组不全为零的数k1,k2,…,k n,使得k1α1+k2α2+…+k nαn=θ成⽴,则称向量组α1,α2,…,αn线性相关;否则,称向量组α1,α2,…,αn线性⽆关.线性⽆关的⼏种等价定义:(1)对任意⼀组不全为零的数k1,k2,…,k n,都有k1α1+k2α2+…+k nαn≠θ(2)k1α1+k2α2+…+k nαn=θ当且仅当k1,k2,…,k n全为零.2.⼏个常⽤结论(1)由⼀个向量α构成的向量组线性相关的充要条件是α=θ.(2)由两个向量构成的向量组线性相关的充要条件是其对应分量成⽐例.(3)含有零向量的任⼀向量组线性相关.(4)若⼀个向量组中有⼀个部分向量组线性相关,则该向量组线性相关;反之,若⼀个向量组线性⽆关,则它的任⼀部分组都线性⽆关.我们可把这个结论简单地记为“部分相关,整体相关;整体⽆关,部分⽆关”.(5)⼀个线性⽆关的向量组中的每个向量按相同的位置随意增加⼀些分量所得到的⾼维向量组仍线性⽆关.逆否命题:⼀个线性相关的向量组中的每个向量按相同的序号划去⼀些分量所得的低维向量组仍线性相关.(6)n维向量组α1,α2,…,αn线性⽆关的充要条件是D=det(α1,α2,…,αn)≠0;n维向量组α1,α2,…,αn线性相关的充要条件是D=det(α1,α2,…,αn)=0.(7)向量组α1,α2,…,αs(s≥2)线性相关的充要条件是其中⾄少有⼀个向量是其余s-1个向量的线性组合.(8)若向量组α1,α2,…,αs线性⽆关,⽽α1,α2,…,αs,β线性相关,则向量β可由向量组α1,α2,…,αs线性表⽰,且表⽰法惟⼀.(9)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,且s>t,则向量组α1,α2,…,αs线性相关.逆否命题:若向量组α1,α2,…,αs线性⽆关,且可由向量组β1,β2,…,βt线性表⽰,则s≤t.(10)m个n维向量组(m>n)必线性相关.(11)两个等价的线性⽆关的向量组必含有相同个数的向量.六、向量组的极⼤线性⽆关组1.极⼤线性⽆关组的概念向量组α1,α2,…,αr,αr+1,…,αs的部分组α1,α2,…,αr是极⼤⽆关组(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中每个向量可由α1,α2,…,αr 线性表⽰.(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中任意r+1个向量线性相关.2.关于极⼤线性⽆关组的常⽤结论(1)含⾮零向量的任⼀向量组⼀定存在极⼤⽆关组.(2)线性⽆关向量组的极⼤⽆关组是其⾃⾝、.(3)任何向量组均与其极⼤⽆关组等价.(4)⼀个向量组的任意两个极⼤⽆关组都含有相同个数的向量.七、向量组的秩1.向量组的秩的定义向量组α1,α2,…,αs的任⼀极⼤⽆关组所含向量的个数称为这个向量组的秩,记为r(α1,α2,…,αs).2.关于向量组的秩的常⽤结论(1)对任何向量组α1,α2,…,αs均有0≤r(α1,α2,…,αs)≤s;(2)向量组α1,α2,…,αs线性⽆关?r(α1,α2,…,αs)=s;(3)向量组α1,α2,…,αs线性相关?r(α1,α2,…,αs)(4)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,则r(α1,α2,…,αs)≤r(β1,β2,…,βt).特别地,若两向量组等价,则它们的秩相同;反之不真.(5)若向量组的秩为r,则其任何含r个向量的线性⽆关的部分组都是其极⼤线性⽆关组.⼋、矩阵的⾏秩与列秩1.定义矩阵A的⾏(列)向量组的秩称为A的⾏(列)秩.2.矩阵秩的性质(1)对任何矩阵A,都有A的⾏秩=A的列秩=r(A);(2)r(AB)≤min{r(A),r(B)};(4)r(A+B)≤r(A)+r(B).九、极⼤⽆关组的求法1.矩阵的初等⾏(列)变换不改变其列(⾏)向量间的线性关系2.求向量组α1,α2,…,αs的⼀个极⼤⽆关组的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B,设r(B)=r,且B中第j1,j2,…,j r列有⼀个r阶⼦式不等于零,则αj1,αj2,…,αjr 即为所求向量组的⼀个极⼤⽆关组.3.求向量组α1,α2,…,αs的极⼤⽆关组并将其余向量⽤该极⼤⽆关组表出的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B;(3)再通过初等⾏变换化为⾏简化阶梯形矩阵C,设矩阵C的第j1,j2,…,j r列为单位向量,则αj1,αj2,…,αjr即为所求向量组的⼀个极⼤⽆关组,且C 中列向量间的线性关系即为A中相应列向量间的线性关系.⼗*、向量空间1.向量空间的定义设V是⾮空的n维向量的集合,若集合V对于加法及数乘两种运算封闭,则称V是向量空间.2.向量空间的⽣成3.向量空间的相等若{α1,α2,…,αm}≌{β1,β2,…,βn},则span(α1,α2,…,αm)=span(β1,β2,…,βn).4.向量空间的⼦空间设有向量空间V1,V2,若V1?V2,则称V1是V2的⼦空间.5.向量空间的基及其维数设V是向量空间,如果存在r个向量α1,α2,…,αr∈V,满⾜(1)α1,α2,…,αr线性⽆关;(2)V中任⼀向量都可由α1,α2,…,αr线性表⽰;则称α1,α2,…,αr为V的⼀个基,r称为V的维数.⼗⼀、重点难点(⼀)重点(1)向量的线性运算可以看做是特殊矩阵的线性运算,它是后⾯讨论向量的线性组合、线性相关性等概念的基础,必须熟练掌握.(2)向量的线性组合、线性相关、线性⽆关的概念、性质及三者之间的关系定理是本章的重点,要熟练掌握三个概念及有关结论,详见内容提要;要深刻理解概念、定理的本质,熟练掌握线性相关和线性⽆关的有关性质及判别法,并能灵活应⽤.(3)向量组的极⼤⽆关组是特别重要的概念,它在向量组线性相关性的证明中往往能起到重要的作⽤;此外,还应当掌握求向量组的极⼤⽆关组的⽅法.(4)理解并掌握向量组的秩的概念,理解矩阵的秩与其⾏(列)向量组的秩的关系,熟练掌握求向量组的秩的⽅法,并能通过秩这⼀重要⼯具来判断向量组的线性相关性.(⼆)难点(1)向量组的线性相关性的证明.常见的⽅法有:定义法、利⽤有关结论及定理、利⽤齐次线性⽅程组有⽆⾮零解、利⽤向量组的秩与向量组所含向量的个数关系等.(2)向量组的秩与线性⽅程组有关理论的证明.。

3.2 n维向量空间

3.2 n维向量空间

证 设x V1,则x可由a1 ,, am线性表示.
因a1 ,, a m 可由b1 ,, bs 线性表示,故x可由b1 ,, bs 线性表示,所以x V2 .
这就是说,若x V1,则x V2, 因此V1 V2 .
类似地可证: 若x V2 , 则x V1 ,
因此V2 V1 . 因为V1 V2,V2 V1,所以V1 V2 .
y1 y2 y , y n

称 x, y 为向量 x 与 y的内积.
内积可用矩阵记号表示为 :
x, y x1 y1 x2 y2 xn yn
说明 内积是向量的一种运算, 如果x , y都是列向量,
x, y x T y.
定理
设, R n,则
,

称为柯西-施瓦茨不等式.
单位向量及n维向量间的夹角
1 当 x 1时, 称 x 为单位向量 . x, y 2 当 x 0, y 0时, arccos
x y
称为n维向量x与y的夹角 . 例 求向量 1,2,2,3与 3,1,5,1的夹角.
, V , 则 V ;
V , R, 则 V .
2.n 维实向量的全体构成的集合是一个向量 R n. 空间,记作
例1 3 维向量的全体R 3 , 是一个向量空间 .
例2 判别下列集合是否为向量空间.
T
1 V1 x 0, x2 ,, xn x2 ,, xn R 2V2 x 1, x2 ,, xn T x2 ,, xn R T T 解 1 0, a2 , , an , 0, b2 , , bn V1 ,

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结一、行列式1、N阶行列式中元素aij的第一个下标i 为行指标(横行),第二个下标j 为列指标(竖列)。

即aij位于行列式的第i 行第j 列。

2、在一个排列中,若数较大的数码排在较小的数码之前则称这两个数组成此排列的一个逆序。

一个排列中所有逆序的总数称为此排列的逆序数。

记为 (每个元素的逆序数之总和即为所求排列的逆序数)逆序数为奇数的为奇排列,偶数为偶排列。

3、上/下三角行列式主对角线以下/上元素都是0,上/下三角行列式的值为主对角线上所有元素乘积。

(详见课本p4)4、(1)行列式与它的转置行列式相等既D=D T。

(把D的各行换成同序号的列的运算就是行列式的转置行列式)(2)行列式中行与列具有同等的地位,因此行列式的性质凡是对行成立的对列也同样成立。

(3)互换行列式的两行(列),行列式变号。

推论:如果行列式有两行(列)完全相同,则此行列式为零。

(4)行列式的某一行(列)中所有的元素都乘以同一数k等于用数k乘此行列式。

因此行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。

(5)行列式中如果有两行(列)元素成比例,则此行列式为零。

(6)若行列式的某一列(行)的元素都是两数之和那么可以把改行列式表达成两个行列式之和。

(详见课本p8)(7)把行列式的某一列(行)的各元素乘以同一数k 然后加到另一列(行)对应的元素上去,行列式的值不变。

(8)计算行列式常用方法:(1)利用定义(详见课本p3);(2)利用性质把行列式化为上三角形行列式,从而算得行列式的值. 5、在n 阶行列式中,把元素a ij 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素a ij 的余子式,记作M ij叫做元素a ij 的代数余子式=-M ij6、行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即7、行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零既8、一个n 阶行列式,如果其中第i 行所有元素除a ij 外都为零,那末这行列式等于a ij 与它的代数余子式的乘积既D=a ij A ij 二、矩阵及其运算主对角线全为1其余的位置全是0的矩阵称为单位阵()ij ji ij M A +-=144434241343332312423222114131211a a a a a a a a a a a a a a a a D =44424134323114121123a a a a a a a a a M =()2332231M A +-=in in i i i i A a A a A a D +++=L 2211()n i ,,2,1L =.,02211j i A a A a A a jn in j i j i ≠=+++L ⎪⎪⎪⎪⎪⎭⎫⎝⎛==100010001L L L L L L L n E E(1) 两个矩阵的行数相等,列数相等时,称为同型矩阵。

线性代数3 n维向量与向量空间

线性代数3 n维向量与向量空间

初等矩阵是可逆矩阵, 初等矩阵是可逆矩阵,且其逆矩阵是同类型的初等矩阵
由于
E (i , j ) E (i , j ) =
1 O 1 0 1 1 O 1 1 0 1 O 1
1 O 1 0 1 1 O 1 1 0 1 O 1
同样可以得到,定理对其它两种初等行变换也成立 同样可以得到,定理对其它两种初等行变换也成立. 类似的,可以得到初等列变换的情形 类似的,可以得到初等列变换的情形.
例2
例3
1 0 0 a1 a 2 a1 a 2 0 0 1 b1 b2 = c1 c 2 0 1 0 c c b1 b2 2 1 1 0 k a1 a 2 a1 + kc1 a 2 + kc 2 b2 0 1 0 b1 b2 = b1 0 0 1 c c c c2 2 1 1
a1 b1 c 1
a1 b1 c 1
a2 1 b2 0 c2 a2 1 b2 0 c 2
0 k
k 1
a1 = b1 c 1
a1 = b1 c 1
ka 2 kb2 k ≠ 0 kc 2
ka1 + a 2 kb1 + b2 kc1 + c 2
0 2 0 , 0 1 0
1 0 0 0 1 0 2 0 1
0 0 , 1 0 0 1 0 , 0 1
1 1 0 0 = 0 1 0 0 0 0 0 1 1 0 = 0 2 0 1 0 0 0 1 1 0 = 0 0 1 0
0 0 1 0 . 0 1
所以
例1 矩阵
1 1 0 1 ,
0 1 = 1 0 1 1 = 1 0
2 0 0 1
1
0 , 1 0 , 1

线性代数各要点整理

线性代数各要点整理

第一章行列式主要知识点一、行列式的定义和性质1. 余子式 L和代数余子式的定义2. 行列式按一行或一列展开的公式I牛吐二工岭牛八口...那啊二忖| (1)7屮「手i行… |_0 k3. 行列式的性质1)叶⑷2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍.推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数.推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等二、行列式的计算1. 二阶行列式和三角形行列式的计算•2. 对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算3. 对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开4. 行列式中各行元素之和为一个常数的类型.5. 范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1. 要分清矩阵与行列式的区别2. 几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1. 矩阵A , B的加、减、乘有意义的充分必要条件2. 矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点)(肚卯二屮別+於心+引(小二护+胡」乩护;(AB)k = ABAB艸計;(4 ±卯二才±2虫+£3. 转置对称阵和反对称阵1)转置的性质(A±Bf =A r±B r,(财)『=2",(朋)「=2)若A T=A(A T= - A ),则称A为对称(反对称)阵4. 逆矩阵1)方阵A 可逆(也称非异,非奇异,满秩)的充分必要条件是3) 重要结论:若 n 阶方阵A,B 满足AB=E 贝U A,B 都可逆,且 A -1=B ,B -1=A. 4) 逆矩阵的性质:5)消去律:设方阵 A 可逆,且AB=AC (BA=CA ,则必有B=G (若不知 A 可逆, 仅知A M0结论不一定成立。

线性代数-第二章-向量和向量空间

线性代数-第二章-向量和向量空间

n维单 位坐标 向量组
所以,称 是 1, 2 , 3 ,4 的线性组合, 或 可以由 1, 2 , 3 ,4线性表示。
命题2 设向量可由向量组(I) :1,2,,m
线性表出,而(I)中每个向量都可以由向量组
(II) : 1, 2,, s线性表出, 那么也可由向量组
(II)线性表出 给出证明
二 线性相关
当 r( A) r n 时,求得基础解系是1 ,2 , ,nr , 则 x k11 k22 knr nr 是AX 0 的解,
称为通解。
4. 解的结构
AX 0 的通解是 x k11 k22 knr nr
例3 : 求下列齐次方程组的通解。
(1)
x1 2 x1
2 x2 4 x2
分量全为复数的向量称为复向量.
以后我们用小写希腊字母 , , 来代表向量。
例如:
(1,2,3,, n)
(1 2i,2 3i,,n (n 1)i)
第2个分量 第1个分量
第n个分量
n维实向量 n维复向量
向量通常写成一行: a1,a2 , ,an 称为行向量。
有时也写成一列:
a1
xr1 1 0
,nr
是令
xr2

0
,
1
,
xn
0
0
0
,
0
所得。
1
Ax 0 的通解是 x k11 k22 knr nr
注:
(1) 证明过程提供了一种求解空间基(基础 解系)的方法。
(2) 基(基础解系)不是唯一的。
(3) 当 r( A) n 时,解空间是{0}.
(2) s t
则向量组 1,2 , , s 必线性相关。

第七章线性变换(小结)

第七章线性变换(小结)

第七章 线性变换(小结)本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换与矩阵的一一对应关系.线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用.本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换与矩阵对应和相互转换. 一、线性变换及其运算1. 基本概念: 线性变换,可逆线性变换与逆变换; 线性变换的值域与核,秩与零度; 线性变换的和与差, 乘积和数量乘法, 幂及多项式.2. 基本结论(1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组(2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换.(3) 线性变换的基本运算规律(略).(4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间.(5) 线性空间V 的线性变换A 的象Im(A )= A V 与核ker A = A -1(0) (a) A 的象Im(A )= A V 与核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }.ker A = A -1(0)= { α∈V | A α=0}.(c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n .(d)A 是双射⇔A 是单射⇔ Ker(A )={0}⇔A 是满射.(e)像空间的一组基的原像与核空间的一组基合并就是线性空间V 的一组基:取Im A 的一组基r βββ ,,21,存在,,...,21r ααα使得A i i βα=,i=1,2,…,r. 再取ker A 的基,,...1n r αα+则,,...,21r ααα,,...1n r αα+就是V 的一组基. 二、线性变换与矩阵1.基本概念:(1)线性变换在基下的矩阵:设A ∈L(V),取定n 维线性空间V 的一组基n ααα,...,,21,则A α1, A α2,… ,A αn 可由α1,α2,…,αn 线性表示, 即(A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,矩阵A 称为线性变换A 在此基下的矩阵.(2) 一个线性变换在不同基下的矩阵相似:设n ααα,...,,21,n βββ,...,,21是线性空间V 的两组基,(n βββ,...,,21)=(n ααα,...,,21)P, (A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,则(A β1, A β2,… ,A β n )=(n βββ,...,,21)AP P 1-.2.基本结论(1) 若n ααα,,,21 是线性空间V 的一个基, V n ∈∀βββ,,,21 ,则存在唯一A )(V L ∈,使得A n i i i ,,2,1,)( ==βα.(2) 在取定n 维线性空间V 的一个基之后,将V 的每一线性变换与它在这个基下的矩阵相对应,则这个对应使得线性变换的和、乘积、数量乘积的矩阵分别对应于矩阵的和、乘积、数量乘积;可逆线性变换与可逆矩阵对应,且逆变换对应逆矩阵。

向量线性运算知识点总结

向量线性运算知识点总结

向量线性运算知识点总结一、向量的定义在数学中,向量通常用箭头符号表示,比如$\vec{a}$或者$\overrightarrow{AB}$。

向量是有方向和大小的量,通常用于表示空间中的位移、速度等。

在n维空间中,一个向量可以表示为一个具有n个有序实数的n维坐标组$(x_1, x_2, \cdots, x_n)$,而在实际应用中,可以用行向量或列向量来表示。

在数学中,向量可以用于表示空间几何中的位移、速度、力等,同时也可以用于表示抽象意义上的量,比如代数中的多项式、矩阵等。

在计算机科学中,向量也被广泛应用于向量空间的表示,比如在机器学习中的特征向量等。

二、向量的线性运算向量的线性运算包括两种基本运算:向量的加法和数乘运算。

1. 向量的加法设有两个n维向量$\vec{a}=(a_1,a_2,\cdots,a_n)$和$\vec{b}=(b_1,b_2,\cdots,b_n)$,则它们的和是一个n维向量,记作$\vec{a}+\vec{b}=(a_1+b_1,a_2+b_2,\cdots,a_n+b_n)$。

向量的加法满足以下性质:- 交换律:$\vec{a}+\vec{b}=\vec{b}+\vec{a}$- 结合律:$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$- 零向量:对于任意向量$\vec{a}$,都有$\vec{a}+\vec{0}=\vec{a}$,其中$\vec{0}$表示零向量- 相反向量:对于任意向量$\vec{a}$,都有$\vec{a}+(-\vec{a})=\vec{0}$,其中$-\vec{a}$表示向量$\vec{a}$的相反向量2. 数乘运算设有一个n维向量$\vec{a}=(a_1,a_2,\cdots,a_n)$和一个实数$k$,则它们的数乘运算结果是一个n维向量,记作$k\vec{a}=(ka_1,ka_2,\cdots,ka_n)$。

线性代数知识点总结(第3章)

线性代数知识点总结(第3章)

线性代数知识点总结(第3章)(一)向量的概念及运算1、向量的内积:(α,β)=αTβ=βTα2、长度定义:||α||=3、正交定义:(α,β)=αTβ=βTα=a1b1+a2b2+…+a n b n=04、正交矩阵的定义:A为n阶矩阵,AA T=E ←→ A-1=A T←→ A T A=E → |A|=±1 (二)线性组合和线性表示5、线性表示的充要条件:非零列向量β可由α1,α2,…,αs线性表示(1)←→非齐次线性方程组(α1,α2,…,αs)(x1,x2,…,x s)T=β有解。

★(2)←→r(α1,α2,…,αs)=r(α1,α2,…,αs,β)(系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验)6、线性表示的充分条件:(了解即可)若α1,α2,…,αs线性无关,α1,α2,…,αs,β线性相关,则β可由α1,α2,…,αs线性表示。

7、线性表示的求法:(大题第二步)设α1,α2,…,αs线性无关,β可由其线性表示。

(α1,α2,…,αs|β)→初等行变换→(行最简形|系数)行最简形:每行第一个非0的数为1,其余元素均为0(三)线性相关和线性无关8、线性相关注意事项:(1)α线性相关←→α=0(2)α1,α2线性相关←→α1,α2成比例9、线性相关的充要条件:向量组α1,α2,…,αs线性相关(1)←→有个向量可由其余向量线性表示;(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,x s)T=0有非零解;★(3)←→r(α1,α2,…,αs)<s 即秩小于个数特别地,n个n维列向量α1,α2,…,αn线性相关(1)←→ r(α1,α2,…,αn)<n(2)←→|α1,α2,…,αn |=0(3)←→(α1,α2,…,αn)不可逆10、线性相关的充分条件:(1)向量组含有零向量或成比例的向量必相关(2)部分相关,则整体相关(3)高维相关,则低维相关(4)以少表多,多必相关★推论:n+1个n维向量一定线性相关11、线性无关的充要条件向量组α1,α2,…,αs线性无关(1)←→任意向量均不能由其余向量线性表示;(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,x s)T=0只有零解(3)←→r(α1,α2,…,αs)=s特别地,n个n维向量α1,α2,…,αn线性无关←→r(α1,α2,…,αn)=n ←→|α1,α2,…,αn |≠0 ←→矩阵可逆12、线性无关的充分条件:(1)整体无关,部分无关(2)低维无关,高维无关(3)正交的非零向量组线性无关(4)不同特征值的特征向量无关13、线性相关、线性无关判定(1)定义法★(2)秩:若小于阶数,线性相关;若等于阶数,线性无关【专业知识补充】(1)在矩阵左边乘列满秩矩阵(秩=列数),矩阵的秩不变;在矩阵右边乘行满秩矩阵,矩阵的秩不变。

向量空间知识点总结

向量空间知识点总结

向量空间知识点总结一、向量空间的定义和性质1.1 向量空间的定义向量空间的定义是线性代数中的基础知识之一。

一般来说,向量空间是一个满足一系列条件的集合。

设V是一个包含向量的集合,如果满足以下条件,则称V为一个向量空间:(1)V中的任意两个向量的和仍然在V中,即对于任意的u、v∈V,有u+v∈V;(2)V中的任意一个向量与实数的乘积仍然在V中,即对于任意的u∈V,λ∈R,有λu∈V;(3)向量空间V中存在一个零向量0∈V,满足对于任意的u∈V,有u+0=u。

满足以上三个条件的向量空间V,通常记作(V,+,·),其中“+”表示向量的加法运算,“·”表示数量乘法运算。

1.2 向量空间的性质向量空间具有一些重要的性质,这些性质对于理解向量空间具有重要意义,并且也是研究向量空间的基础。

向量空间的一些性质如下:(1)向量空间的加法和数量乘法封闭性:对于向量空间中的任意两个向量u和v,以及任意的实数λ,有u+v∈V和λu∈V,即向量空间对加法和数量乘法运算是封闭的。

(2)向量空间中的零向量唯一:向量空间中只存在一个零向量0,满足对于任意的u∈V,有u+0=u。

(3)向量空间中的相反元存在性:对于向量空间中的任意一个向量u,存在一个向量-v,使得u+(-v)=0。

(4)向量空间中的数量乘法分配律:对于向量空间中的任意两个实数λ和μ,以及任意的向量u,有(λ+μ)u=λu+μu和λ(u+v)=λu+λv。

向量空间的定义和性质是向量空间理论的基础,对于理解向量空间的概念和性质具有重要的意义。

在实际问题中,向量空间的定义和性质也具有重要的应用价值。

二、子空间2.1 子空间的定义子空间是向量空间中一个重要的概念,它是指在一个向量空间中的子集合,它本身也构成一个向量空间。

设V是一个向量空间,W是V的一个非空子集合,如果满足以下条件,则称W是V的一个子空间:(1)W中的任意两个向量的和仍然在W中,即对于任意的u、v∈W,有u+v∈W;(2)W中的任意一个向量与实数的乘积仍然在W中,即对于任意的u∈W,λ∈R,有λu∈W。

维向量空间

维向量空间

维向量空间n-维向量空间(n-dimensional vector space),在解析几何中有些事物的性质不能用一个数来刻画,如一个n元方程组的解是由n 个数组成,而这n个数作为方程组的解是一个整体,分开来谈是没有意义的,这时我们就需要用n维向量来刻画方程组的解。

在几何上这样的例子是很多的,所以n维向量在抽象代数这一领域的研究中起着很重要的作用。

若向量空间V中分别有两组基,[a1a2⋅⋅⋅an]与[b1b2⋅⋅⋅bm],那么这两组基有什么特点呢?实际上,只要是同一个向量空间中的基,它们包含的向量数目一定是相等的,即m=n=dimV我们将这个固定的数字dimV称为向量空间的维数。

若dimV是有穷的,我们称向量空间V是有限维的,否则称V是无限维的。

在绝大多数情况下,机器学习聚焦的都是有限维的向量空间,因为无限维的向量空间性质上会有一些不同。

下面是一些显而易见的定理:定理1:有限维向量空间的任意两个基的长度都相同(都等于dimV)。

证明:设B1,B2是V中的任意两组基,则B1在V中是线性无关的,并且B2张成V,因此B1的长度不小于B2长度,互换B1,B2的角色,可以得出B2的长度不小于B1长度,因此两个向量组长度相等。

定理2:若V是有限维的,并且U是V的子空间,则dimU≤dimV。

定理3:若V是有限维的,则V中每个长度为dimV的张成向量都是V的一个基。

定理4:如果V是有限维的,则V中每个长度为dimV的线性无关向量组都是V的基。

定理5:如果U1,U2是同一个有限维向量空间的两个子空间,那么dim(U1+U2)=dimU1+dimU2−dim(U1∩U2)定理6:在有限维向量空间中,线性无关向量组的长度小于或等于张成向量组的长度。

定理7:在有限维向量空间中,每个线性无关向量组都可以扩充成一组基。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为零的数 k 1 , k 2 , L , k r , 使 k 1α 1 + k 2 α 2 + L + k r α r = 0 考虑线性方程
k 1 x1 + k 2 x 2 + L + k r x r = 0 因为 r ≥ 2 , 它必有非零解 , 设 ( t 1 , t 2 , L , t r )为任一非 零解 , 则对任意向量 β , 都有
关于向量空间和子空间: 基,维数。 关于向量空间和子空间: 维数。 组(I)无关,组(I)可由(II)表出, (I)无关, (I)可由(II)表出, 无关 可由(II)表出 则组(I)的个数< (II)的个数 (I)的个数 的个数。 则组(I)的个数<组(II)的个数。
7
四、 { X AX = 0} 解空间,维数:n - R( A)
19
解二
1 0 − 1 Q α 1 = − 2 ,α 2 = 2 ,α 3 = 0 , 3 − 5 2 0 − 1 1 0 , ∴ 矩阵A = (α 1 ,α 2 ,α 3 ) = − 2 2 3 −5 2
当P ≠ 0,
P
α1,α2,α3 ) = (α1 α2,α2 α3,α3 +α1) P−1 + + (
组 1 α2,α2 α3,α3 +α1与 1, 2, 3等 。 α+ + α α α 价
当P=时 R(α1 +α2,α2 +α3,α3 +α1) 0 , in ≤ m { R(α1,α2,α3 ) , R(P)} < 3
即向量方程
k 1α 1 + k 2 α 2 + L + k r α r + (k 1 t 1 + k 2 t 2 + L + k r t r )β = 0
22
是否有某组不全为零的 数 k 1 , k 2 , L , k r , 而使得对 每个 β 恒有非零解 ,因此可得如下证明 .
证明 因为 α 1 , α 2 , L , α r 线性相关 , 所以存在不全
(α1,α2,L,αm) P
P ≠ 0, 价 , 。
13
典 型
例 题
一、向量组线性关系的判定 二、求向量组的秩 三、向量空间的判定 四、基础解系的证法 五、解向量的证法
14
一、向量组线性关系的判定
研究这类问题一般有两个方法 方法1 方法1 从定义出发
令 k 1 α 1 + k 2 α 2 + L k m α m = 0, a11 a 21 a m1 0 a12 a 22 am 2 0 = k1 + k 2 + L + k m M M M M 0 a1 n a2n a mn
6
例:α1 ,L,α n ∈ 无关 ⇔ 任一n维向量可由α1 ,L,α n线性表出;
n
⇒ 证: ) : 是最大无关组,显然。 ⇐) : ε1, ,ε n可由其表出; L
α1, ,α n可由ε1, ,ε n 表出; L L
等价。所以秩相等。
论设 量 T 秩 r 则中 意个 性 关 结 : 向 组的 为, T 任 r 线 无 向 均 T 最 无 组 的 量 为的 大 关 。
25
证明 不失一般性 , 设 α i1 , α i 2 , L , α i r 是 α 1 , α 2 , L ,
α s 中的任意 r个线性无关的向量 , 于是对于任意 的 α k ( k = 1,2, L , s ),向量组 α i1 , α i 2 , L , α i r , α k 线性
L , α m 线性无关 .
(∗)
若线性方程组 (∗ )只有唯一零解 , 则 α 1 , α 2 , 若线性方程组 (∗ )有非零解 , 则 α 1 , α 2 , L , α m 线性相关 .
16
方法2 方法2
利用矩阵的秩与向量组的秩之间关 系判定
给出一组 n维向量 α 1 ,α 2 ,L ,α m , 就得到一个 相应的矩阵 A = (α 1 ,α 2 ,L ,α m ), 首先求出 R( A). 若 R( A) = m , 则α 1 ,α 2 ,L ,α m 线性无关 , 若 R( A) < m , 则α 1 ,α 2 ,L ,α m 线性相关 .
2.
a11 x1 + a12 x2 + L + a1n xn = 0 LLL ai1 x1 + ai 2 x2 + L + ain xn = 1 对i = 1,2,L n LLL an1 x1 + an 2 x2 + L + ann xn = 0 ⇔ A ≠0
9
证 ε1, 2,, n可 α1, 2,, n线 : ε L ε αL α
为零的数 t 1 , t 2 , L , t r , 使对任何向量 β 都有 α 1 + t 1 β ,α 2 + t 2 β ,L ,α r + t r β ( r ≥ 2) 线性相关 . 分析 我们从定义出发 , 考察向量方程
k 1 (α 1 + t 1 β ) + k 2 (α 2 + t 2 β ) + L + k r (α r + t r β ) = 0
24
例3 已知向量组 α 1 , α 2 , L , α s 的秩是 r , 证明 : α 1 ,
α 2 , L , α s 中任意 r个线性无关的向量均构 成它的
一个最大线性无关组 .
分析 证明向量组的一个部分组构成最大线性无 关组的基本方法就是: 关组的基本方法就是: 根据最大线性无关组的定义来证, 根据最大线性无关组的定义来证,它往往还 与向量组的秩相联系. 与向量组的秩相联系.
第四章 n维向量空间小结 维向量空间小结
n维向量空间 维向量空间 线性方程组
主要内容: 主要内容: 一.两个重要概念: 两个重要概念:
线性相关性: 本质上考察 x1α1 + x2α 2 + L + xnα n = 0 是否“只有”x1=L=xn=0 时成立; 线性表出:
•8†ð: 0 组,⋅ α1 +L +0 ⋅ α n = 0 ⇒ α1 ,L,α n线 关。
×
2
二、 (1) 向量组α1 ,α 2 ,L,α n线性相关 ⇔ AX = 0有非零解,A = (α1 ,L,α n )
⇔ R( A) < n
n: 个数, 个数。
矩阵 组线 关⇔
组 组
。 < 个数
3
相关结论: 相关结论:
一个向量线性无关 ⇔ 非零向量 两个向量线性无关 ⇔ 不成比例 向量个数 > 向量维数 ⇒ 相关 部分相关 ⇒ 整体相关,整体无关 ⇒ 部分无关 部分无关
23
k 1α 1 + k 2 α 2 + L + k r α r + (k1 t1 + k 2 t 2 + L + k r t r )β = 0
由 k 1 , k 2 , L , k r 不全为零得知 : α 1 + t 1 β ,α 2 + t 2 β ,L ,α r + t r β 线性相关 .
20
0 − 1 1 1 0 − 1 初等行变换 A = − 2 2 0 ~ 0 2 − 2 3 −5 2 0 0 0
R ( A ) = 2 < 3, 故向量组 α 1 ,α 2 ,α 3 线性相关 .
21
例2
设 α 1 , α 2 , L , α r 线性相关 , 证明 : 存在不全
, ,
α1, 2,, n可 ε1, 2,, n线 αL α εL ε
组 价 , 。
1.
α1 α 2,α 2+α 3, ,α n−1 α n ,α n+α1 关 ? + L +
(1 n为 数 ) : (2)n为 数 线 : 关 。 关⇔α1, 2,, n线 αL α 关 。
10
n=3 , 时 1 0 1 α1 α2,α2 α3,α3 +α1) = (α1,α2,α3 ) 1 1 0 ( + + 0 1 1
18
整理得到
− k 3 = 0, k1 = 0, − 2 k1 + 2 k 2 3 − 5 + 2 = 0. k1 k2 k3
−1 0 = 0, 2
(∗)
Q 线性方程组 (∗ )的系数行列式 1 −2 3 0 2 −5
∴ 线性方程组 (∗ )必有非零解 , 从而 α 1 , α 2 , α 3 线性相关 .
P
当P = lm−1≠ 0, 可 时 两 ,
组 价 , 关 。
12
4.
α1 = β 2 + β 3 + L + β m ,α 2 = β1 + β 3 + L + β m ,L, α m = β1 + β 2 + L + β m−1, 两 组 关系。 0 1 1 1 1 0 1 1 ŽY ( β1, β2,L βm ) = ( α1,α2,Lαm ) : , , 1 1 0 1 1 1 1 0
17
例1
研究下列向量组的线性相关性 1 0 − 1 α 1 = − 2 ,α 2 = 2 ,α 3 = 0 . 3 − 5 2
解一
令 k 1 α 1 + k 2 α 2 + k 3 α 3 = 0, 即 1 0 − 1 0 k1 − 2 + k 2 2 + k 3 0 = 0 3 − 5 2 0
相关文档
最新文档