当阳市第三中学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当阳市第三中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 下列关系正确的是( )
A .1∉{0,1}
B .1∈{0,1}
C .1⊆{0,1}
D .{1}∈{0,1}
2. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅ 3. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1
B .2
C .3
D .4
4. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717
100201717
S S -=,则d 的值为( ) A .
120 B .110
C .10
D .20 5. 下列命题的说法错误的是( )
A .若复合命题p ∧q 为假命题,则p ,q 都是假命题
B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件
C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0
D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0” 6. 已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )
A .2对
B .3对
C .4对
D .5对
7. 某程序框图如图所示,则该程序运行后输出的S 的值为( )
A .1
B .
C .
D .
8. 把函数y=sin (2x ﹣)的图象向右平移
个单位得到的函数解析式为( )
A .y=sin (2x ﹣
) B .y=sin (2x+

C .y=cos2x
D .y=﹣sin2x
9. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )
A .0
B .1
C .2
D .3
10.已知a n =(n ∈N *
),则在数列{a n }的前30项中最大项和最小项分别是( )
A .a 1,a 30
B .a 1,a 9
C .a 10,a 9
D .a 10,a 30
11.若复数满足
7
1i i z
+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -
12.平面向量与的夹角为60°,=(2,0),||=1,则|+2|=( )
A .
B .
C .4
D .12
二、填空题
13.若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|=.
14.设i是虚数单位,是复数z的共轭复数,若复数z=3﹣i,则z•=.
15.如图所示,在三棱锥C﹣ABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角是.
16.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米.(太阳光线可看作为平行光线)
17.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和
是.
18.对于|q|<1(q为公比)的无穷等比数列{a n}(即项数是无穷项),我们定义S n(其中S n是数列{a n}
的前n项的和)为它的各项的和,记为S,即S=S n=,则循环小数0.的分数形式是.三、解答题
19.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图
所示的几何体
(Ⅰ)求几何体的表面积
(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.
20.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.
(1)写出y与x之间的函数关系式;
(2)此游艇使用多少年,可使年平均盈利额最大?
21.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为
(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).
(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.
22.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率
之积等于﹣.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
23.在平面直角坐标系中,已知M(﹣a,0),N(a,0),其中a∈R,若直线l上有且只有一点P,使得|PM|+|PN|=10,则称直线l为“黄金直线”,点P为“黄金点”.由此定义可判断以下说法中正确的是
①当a=7时,坐标平面内不存在黄金直线;
②当a=5时,坐标平面内有无数条黄金直线;
③当a=3时,黄金点的轨迹是个椭圆;
④当a=0时,坐标平面内有且只有1条黄金直线.
24.已知f(x)=|﹣x|﹣|+x|
(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,求实数a的取值范围;(Ⅱ)若f(m)+f(n)=4,且m<n,求m+n的取值范围.
当阳市第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B
【解析】解:由于1∈{0,1},{1}⊆{0,1},
故选:B
【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键.
2. 【答案】A
【解析】解:∵A={x|a ﹣1≤x ≤a+2}
B={x|3<x <5} ∵A ∩B=B ∴A ⊇B

解得:3≤a ≤4 故选A
【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.
3. 【答案】B
【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2, 故选B .
4. 【答案】B 【解析】
试题分析:若{}n a 为等差数列,
()
()111212n
n n na S d a n n
n -+
==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭
为等差数列公差为2d ,
2017171
100,2000100,201717210
S S d d ∴
-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 5. 【答案】A
【解析】解:A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,因此不正确;B.由x2﹣3x+2=0,解得x=1,2,因此“x=1”是“x2﹣3x+2=0”的充分不必要条件,正确;
C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0,正确;
D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”,正确.
故选:A.
6.【答案】D
【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,
∴面PDA⊥面ABCD,面PDC⊥面ABCD,
又∵四边形ABCD为矩形
∴BC⊥CD,CD⊥AD
∵PD⊥矩形ABCD所在的平面
∴PD⊥BC,PD⊥CD
∵PD∩AD=D,PD∩CD=D
∴CD⊥面PAD,BC⊥面PDC,AB⊥面PAD,
∵CD⊆面PDC,BC⊆面PBC,AB⊆面PAB,
∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD
综上相互垂直的平面有5对
故答案选D
7.【答案】C
【解析】解:第一次循环第二次循环得到的结果第三次循环得到的结果
第四次循环得到的结果

所以S是以4为周期的,而由框图知当k=2011时输出S
∵2011=502×4+3
所以输出的S是
故选C
8.【答案】D
【解析】解:把函数y=sin(2x﹣)的图象向右平移个单位,
所得到的图象的函数解析式为:y=sin[2(x ﹣)﹣]=sin (2x ﹣π)=﹣sin2x .
故选D . 【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x 加与减,上下平移,y 的另
一侧加与减.
9. 【答案】B 【解析】111]
试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B .
考点:几何体的结构特征. 10.【答案】C
【解析】解:a
n ==1+
,该函数在(0,
)和(
,+∞)上都是递减的,
图象如图, ∵9<
<10.
∴这个数列的前30项中的最大项和最小项分别是a 10,a 9.
故选:C . 【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,
是基础题.
11.【答案】A 【解析】
试题分析:4
2
7
3
1,1i i i i i ==-∴==-,因为复数满足7
1i i z +=,所以()1,1i i i i z i z
+=-∴=-,所以复数的虚部为,故选A.
考点:1、复数的基本概念;2、复数代数形式的乘除运算. 12.【答案】B
【解析】解:由已知|a|=2,
|a+2b|2=a 2+4ab+4b 2=4+4×2×1×cos60°+4=12,
∴|a+2b|=.
故选:B .
【点评】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,根据和的模两边平方,注意要求的结果非负,舍去不合题意的即可.两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,结果可正、可负、可以为零,其符号由夹角的余弦值确定.
二、填空题
13.【答案】5.
【解析】解:P(1,4)为抛物线C:y2=mx上一点,
即有42=m,即m=16,
抛物线的方程为y2=16x,
焦点为(4,0),
即有|PF|==5.
故答案为:5.
【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.
14.【答案】10.
【解析】解:由z=3﹣i,得
z•=.
故答案为:10.
【点评】本题考查公式,考查了复数模的求法,是基础题.
15.【答案】30°.
【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,
故∠GEF即为EF与CD所成的角.
又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.
故答案为:30°
【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.
16.【答案】 3.3
【解析】
解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.
设BC=x,则根据题意
=,
AB=x,
在AE=AB﹣BE=x﹣1.4,
则=,即=,求得
x=3.3(米)
故树的高度为3.3米,
故答案为:3.3.
【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.
17.【答案】64.
【解析】解:由图可知甲的得分共有9个,中位数为28
∴甲的中位数为28
乙的得分共有9个,中位数为36
∴乙的中位数为36
则甲乙两人比赛得分的中位数之和是64
故答案为:64.
【点评】求中位数的关键是根据定义仔细分析.另外茎叶图的茎是高位,叶是低位,这一点一定要注意.
18.【答案】.
【解析】解:0.=++…+==,
故答案为:.
【点评】本题考查数列的极限,考查学生的计算能力,比较基础.
三、解答题
19.【答案】
【解析】解:(1)根据题意,得;
该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,
其表面积为S=×4π×2×2=8π,
或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;
(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,
∴∠MFE为二面角M﹣BC﹣D的平面角,
设∠CAM=θ,∴
EM=2sinθ,EF=,
∵tan∠MFE=1,∴,∴tan=,∴,
∴CM=2.
【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
20.【答案】
【解析】解:(1)(x∈N*) (6)
(2)盈利额为…
当且仅当即x=7时,上式取到等号 (11)
答:使用游艇平均7年的盈利额最大. (12)
【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.
21.【答案】
【解析】解:(Ⅰ)根据直线l的参数方程为(t为参数),
消去参数,得
x+y﹣=0,
直线l的直角坐标方程为x+y﹣=0,
∵圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).
∴(x+)2+(y+)2=r2(r>0).
∴圆C的直角坐标方程为(x+)2+(y+)2=r2(r>0).
(Ⅱ)∵圆心C(﹣,﹣),半径为r,…(5分)
圆心C到直线x+y﹣=0的距离为d==2,
又∵圆C上的点到直线l的最大距离为3,即d+r=3,
∴r=3﹣2=1.
【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识.
22.【答案】
【解析】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).
设点P的坐标为(x,y)
化简得x2+3y2=4(x≠±1).
故动点P轨迹方程为x2+3y2=4(x≠±1)
(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)
则.
因为sin∠APB=sin∠MPN,
所以
所以=
即(3﹣x0)2=|x02﹣1|,解得
因为x02+3y02=4,所以
故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为.
【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.
23.【答案】
①②③
【解析】解:①当a=7时,|PM|+|PN|≥|MN|=14>10,因此坐标平面内不存在黄金直线;
②当a=5时,|PM|+|PN|=10=|MN|,因此线段MN上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;
③当a=3时,|PM|+|PN|=10>6=|MN|,黄金点的轨迹是个椭圆,正确;
④当a=0时,点M与N重合为(0,0),|PM|+|PN|=10=2|PM|,点P在以原点为圆心、5为半径的圆上,因此坐标平面内有且无数条黄金直线.
故答案为:①②③.
【点评】本题考查了新定义“黄金直线”、“黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题.
24.【答案】
【解析】解:(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,即|﹣x|﹣|+x|≥a2﹣3a恒成立.
由于f(x)=|﹣x|﹣|+x|=,故f(x)的最小值为﹣2,
∴﹣2≥a2﹣3a,求得1≤a≤2.
(Ⅱ)由于f(x)的最大值为2,∴f(m)≤2,f(n)≤2,
若f(m)+f(n)=4,∴m<n≤﹣,∴m+n<﹣5.
【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题.。

相关文档
最新文档