成人高考数学专题一总复习资料课件
成人高考数学考试考前复习资料
成人高考数学考试考前复习资料成人高考数学考试考前复习资料(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
能力目标由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。
情感目标培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
分层目标A层(1)理解因式分解的概念和意义(2)会运用因式分解与整式乘法的相互关系寻求因式分解的方法。
B层会自行探求解题途径观察、学会分析、判断能力和创新能力。
C层(1)深化学生逆向思维能力和综合运用能力。
(2)培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
教学方法1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。
2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑感知概括运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高能力。
3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。
4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。
5.改变传统言传身教的方式,利用电化教学手段进行教学,增大教学的容量和直观性,提高教学效率成考数学应试策略1.调整知识结构,在代数部分中增加一个新的知识模块“集合与简易逻辑”,是由原“函数”中的“元素与集合”知识点与“直线”中的“充分必要条件”知识点整合而成。
2.删除3个知识点或知识模块及相应的考核要求(1)删除了“会根据三角形两边及夹角求三角形的面积”。
(2)删除了“掌握直线的向量参数方程”。
成人高考数学复习课件一原版.ppt
181h,
全集
如果一个集合含有我们所研究的各个集合的全部元素, 在研究过程中,可以将这个集合叫做全集,一般用U来表示, 所研究的各个集合都是这个集合的子集.
.
在研究数集时,常把实数集R作为全集.
181h,
补集
如果集合A是全集U子集,那么,由U中不属于A的所有元 素组成的集合叫做集合A在全集U中的补集.
成人高考高起点数学 复习教程
181h,
课程作用
数学复习课 旨在帮助学生熟悉并快速掌握中学 数学基础知识、基本技能、基本方法,提高数学思维 能力,包括:空间想象、直觉猜想、归纳抽象、符号 表示、运算求解、演绎证明、体系构建等,以及运用 所学数学知识和方法分析问题和解决问题的能力。
181h,
学情分析
181h,
本章复习提纲
集合的概念 集合的表示法 集合与集合的关系 集合与集合的运算 简易逻辑
181h,
一、集合的概念
通常把由某些确定的对象组成的整体叫做集合(简称集). 组成集合的对象叫做这个集合的元素.
一般采用大写英文字母A,B,C…表示集合, 小写英文字母a,b,c… 表示集合的元素.
B A B真包含于A
常见几种数集之间的关系:N Z Q R
181h,
例 1 用符号“ ”、“ ”、“”或“”填空:
(1) a,b,c,d a,b ;(2) 1 , 2 ,3;
(3) N Q ;
(4) 0 R ;
(5) d a,b,c ; (6) x | 3 x 5 x | 0 x 6.
(一)平面向量
第三部分 (二)直线 平面解析几何
(三)圆锥曲线
(一)排列与组合 第四部分 概率与统计初步 (二)概率统计初步
成人高考专升本高等数学(一)复习资料
第一阶段(3月初)主要任务是全面复习,夯实基础。
这个阶段,要按照考试大纲所列复习考试内容,全面系统地复习基础知识,对基本概念与基本原理狠下功夫,对两者的理解要深、透、不留死角。
复习基础知识时要讲究方法,注意各种知识点的归纳与类比、分析与综合,注意各知识点之间纵向与横向的联系,建立基础知识框架,总体把握基础知识的脉络。
第二阶段(8月初)主要任务是重点复习,强化练习。
这个阶段,要抓住复习重点,加强考试热点、常考知识点的复习,同时强化练习,掌握基本方法、基本技能,提高解题能力。
第三阶段(9月底10月初)主要任务是冲刺复习,模拟测试。
这个阶段,在重点复习的同时,要进行模拟测试。
通过模拟测试能发现自己的薄弱环节,从而拾遗补缺,针对薄弱环节重点复习。
同时,通过模拟测试,有利于熟悉考试情景,合理安排答题时间,调整应考心里,从而提高应试能力。
第一章极限和连续第一节极限[复习考试要求]1.理解极限的概念(对极限定义、、等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4.熟练掌握用两个重要极限求极限的方法。
第二节函数的连续性(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处连续性的方法 (2)会求函数的间断点。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单的命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限 精选考题例题1 设,0≠b 当0→x 时,bx sin 是2x 的( ) 高阶无穷小量 等阶无穷小量 同阶但不等价无穷小量 低阶无穷小量 【答案】 D【考点】 本题考查了无穷小量的比较的知识点. 【解析】 因为,1lim 1lim sin lim sin lim 00020∞==⋅⋅=→→→→x b x b bxbx x bx x x x x 故bx sin 是比2x 低阶的无穷小量,即bx sin 是2x 的低阶无穷小量.例题2 函数22)(-+=x x x f 的间断点为=x _______________. 【答案】 2【考点】 本题考查了函数的间断点的知识点. 【解析】 函数22)(-+=x x x f 在2=x 处无定义,故2=x 为)(x f 的间断 点.例题3 计算.1)1sin(lim 21--→x x x 解:.2111lim 1)1(lim 1)1sin(lim 12121=+=--=--→→→x x x x x x x x 第二章 一元函数微分学第一节 导数与微分(一)导数与微分(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义要求函数在一点处的导数的方法。
成人高考-数学知识复习资料
成人咼考-数学知识提纲数学复习资料1•集合:会用列举法、描述法表示集合,会集合的交、并、补运算,能借助数轴解决集合运算的问题,具体参看课本例2、4、5.2. 充分必要条件要分清条件和结论,由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
从集合角度解释,若 A B,则A是B的充分条件;若B A,则A是B的必要条件;若A=B,则A是B的充要条件。
例1:对“充分必要条件”的理解.请看两个例子:(1)“ x2 =9 ”是“ x=3 ”的什么条件?(2)x 2是x 5的什么条件?我们知道,若A= B,则A是B的充分条件,若“ A= B ”,则A是B的必要条件,但这种只记住定义的理解还不够,必须有自己的理解语言:“若A= B,即是A能推出B”,但这样还不够具体形象,因为“推出”指的是什么还不明确;即使借助数轴、文氏图,也还是“抽象”的;如果用“A中的所有元素能满足B,的自然语言去理解,基本能深刻把握“充分必要条件”的内容.本例中,X2=9即集合{ -3,3},当中的元素-3不能满足或者说不属于{3},但⑶ 的元素能满足或者说属于{ -3,3}.假设 A 二{x|x2= 9}, B 二{x|x=3},则满足“ A二B ”,故“ x2 =9 ”是“ x=3 ”的必要非充分条件,同理x 2是x 5的必要非充分条件.3. 直角坐标系注意某一点关于坐标轴、坐标原点、y=x,y--x的坐标的写法。
如点(2, 3)关于x轴对称坐标为(2, -3),点(2, 3)关于y轴对称坐标为(-2, 3),点(2, 3)关于原点对称坐标为(-2, -3),点(2, 3)关于y = x轴对称坐标为(3, 2),点(2, 3)关于y二-x轴对称坐标为(-3, -2),4. 函数的三要素:定义域、值域、对应法则,如果两个函数三要素相同,则是相同函数。
5. 会求函数的定义域,做21页第一大题6. 函数的定义域、值域、解析式、单调性、奇偶性性、周期是重要的研究内容,尤其是定义域、一次和二次函数的解析式,单调性最重要。
高升专 数学课件
2
a 2 2ab b 2
(a b)(a ab b ) a b
2 2 3
3
第一章
基础知识
,
(3)因式分解(整式乘法的逆运算) 因式分解的含义 将一个多项式转化成单项式或几个整式相乘的 形式,叫因式分解。如 a 2 b 2 (a b)( a b) 因式分解的原则: 1.从加减形式化简为乘除形式; 2.结果是否使最简形式(不能再约分)。 因式分解的方法: 主要有公式法、十字相乘法、分组分解法等。
,
当n>3时,使用分组分解法,分组后,再按 照n=2、n=3的方法继续分解。 第三步:检查因式分解是否完成,结果是否是最简 形式。 注意:并不是所有的多项式都能够在实数范围内分解。
高升专《 数学》 第一讲 (上)
第一章 基础知识
讲师:张国强
第一章 基础知识
例1-1:对下列式子迚行因式分解:
①
, ,
,
,
第一章
基础知识
,
因式分解的步骤 第一步:提取公因式,将共同的部分提取出来。 第二步:按照项数的多少使用不同的方法; 当n=2时,使用公式法为主,主要运用平方差、 立方差立方和公式; 当n=3时,使用完全平方公式与十字相乘法为主。 如果这两种方法无法使用,在求助于求根公式法, 其结果带有根号。
,
第一章
基础知识
(2)整式乘法:用乘法法则和乘法公式进行运算。 乘法法则:(a b)( m n)
a ( m n) b( m n) am an bm bn
平方差公式: (a b)( a b) a 2
b
2
( 完全平方公式: a b)
立方和(差)公式:
成人高考(专升本)高等数学(一)知识点复习资料
C.关于坐标原点对称 D.关于直线 y=x对称 [答]B.
,由于不论 x为何值,总有 ,所以它的图形总是在 x轴的上 。
[主要知识内容] (一)函数的概念 1.函数的定义
由方程 为隐函数。
确定的函数关系
(4)在 ,称
内,下列函数中是无界函数的是
定义 设在某个变化过程中有两个变量 x和 y,变量 y 例如
母 y换成 x得
(1)各组函数中,两个函数相等的是
3)对分段函数求函数值时,不同点的函数值应代入相 结论:
应范围的公式中去求;
这就是
的反函数。
A.
4)分段函数的定义域是各段定义域的并集。
(1)直接函数
与它的反函数 y=
的
例 4.分段函数
图形,必定对称于直线 y=x(一般地,二者是不同的函
B.
数,其图形是不同的曲线);
, 等都是初等函数。
y=arcsin x 和 。
的定义域都是 附录:常用的初等数学基本公式
一、乘法公式;反之,因式分解公式
,
第一节 极限
[复习考试要求]
个常数 1.我们称:当
1.理解极限的概念(对极限定义
、
、有
等形式的描述不作要求)。会求函数在一点处的 (3)当 左极限与右极限,了解函数在一点处极限存在的充分必
就是一个隐函数,它可以转化成显 (A)
(B)
随变量 x的变化而变化,如果变量 x在实数集合 D或 D 的某一个子集合中每取一数值时,变量 y依照某一法则 函数的形式
(C) y=sin x(D)
f总有一个确定的数值与之对应,则称变量 y为变量 x 要注意的是:并非所有隐函数都可以转化为成显函数。 (四)反函数
成人高考专升本高等数学(一)考试辅导复习资料【全】
成人高等学校招生考试专升本高等数学(一)(适合2022年及往后的成考复习)函数、极限与连续本章内容一、函数二、极限三、连续本章约13%,20分选择题、填空题、解答题第一节函数知识点归纳●函数的概念、性质●反函数●复合函数●基本初等函数●初等函数考试要求1、理解概念会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。
2、掌握判断掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。
3、理解函数理解函数与它的反函数之间的关系,会求单调函数的反函数。
4、掌握过程掌握函数四则运算与复合运算,熟练掌握复合函数的复合过程。
5、掌握性质掌握基本初等函数的简单性质及其图象。
6、掌握概念掌握初等函数的概念。
第一节函数一、函数的概念定理设x和y是两个变量,D是一个给定的数集,如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y=f(x).y是因变量,x是自变量。
函数值全体组成的数集W={y|y=f(x),x∈D} 称为函数的值域。
函数概念的两个基本要素对于给定的函数y=f(x),当函数的定义域D确定后,按照对应法则f,因变量的变化范围也随之确定,所以定义域和对应法则就是确定一个函数的两个要素。
两个函数只有在它们的定义域和对应法则都相同时,才是相同的。
例:研究函数y=x和y=2是不是表示相同的函数。
解:y=x是定义在(−∞,+∞)上的函数关系,y=2是定义在(−∞,0)∪(0,+∞)上的函数关系,它们定义域不同,所以这两个函数是不同的函数关系。
例:研究下面这两个函数是不是相同的函数关系f(x)=x,g(x)=2解:f(x)=x和g(x)=2是定义在(−∞,+∞)上的函数关系,f(x)的值域在(−∞,+∞)上的函数,g(x)的值域在[0,+∞),它们定义域相同,值域不同函数。
函数的定义域(1)在分式中,分母不能为零;(2)在根式中,负数不能开偶次方根;(3)在对数式中,真数必须大于零,底数大于零且不等于1;(4)在反三角函数式中,应满足反三角函数的定义要求;(5)如果函数的解析式中含有分式、根式、对数式和反三角函数式中的两者或两者以上的,求定义域时应取各部分定义域的交集。
2022年全国成人高考专升本高等数学一复习资料
2022年全国成人高考专升本高等数学一复习资料一、函数一、函数、极限和连续(一)函数1.知识范围(1)函数的概念函数的定义函数的表示法分段函数隐函数(2)函数的性质单调性奇偶性有界性周期性(3)反函数反函数的定义反函数的图像(4)基本初等函数幂函数指数函数对数函数三角函数反三角函数(5)函数的四则运算与复合运算(6)初等函数2.要求(1)理解函数的概念。
会求函数的表达式、定义域及函数值。
会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
(二)极限1.知识范围(1)数列极限的概念数列数列极限的定义(2)数列极限的性质唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义(4)函数极限的性质唯一性四则运算法则夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶(6)两个重要极限2.要求(1)理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
(三)连续1.知识范围(1)函数连续的概念函数在一点处连续的定义左连续与右连续函数在一点处连续的充分必要条件函数的间断点及其分类(2)函数在一点处连续的性质连续函数的四则运算复合函数的连续性反函数的连续性(3)闭区间上连续函数的性质有界性定理最大值与最小值定理介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
超详细最新成人高考(高起专)数学复习资料大全(精华版)
成人高考数学复习资料集合和简易逻辑考点:交集、并集、补集概念:1、由所有既属于集合A又属于集合 B 的元素所组成的集合,叫做集合 A 和集合B 的交集,记作A∩B,读作“A 交B”(求公共元素)A∩ B={x|x ∈A,且x∈B}2、由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做集合 A 和集合B 的并集,记作A∪B,读作“ A 并B”(求全部元素)A∪B={x|x ∈A,或x∈B}C u A , 读作“A 补”3、如果已知全集为U,且集合A 包含于U,则由U 中所有不属于 A 的元素组成的集合,叫做集合 A 的补集,记作C u A ={ x|x∈U,且x A }解析:集合的交集或并集主要以例举法或不等式的形式出现考点:简易逻辑概念:在一个数学命题中,往往由条件 A 和结论B 两部分构成,写成“如果 A 成立,那么B成立”。
充分条件:如果必要条件:如果充要条件:如果A 成立,那么B 成立,那么B 成立,记作“ A→B”“A 推出B,B不能推出A”。
A 成立,记作“ A←B”“B 推出A,A不能推出B”。
A→B, 又有A←B,记作“ A←B”“A 推出B ,B 推出A”。
解析:分析 A 和B 的关系,是 A 推出B 还是B 推出A,然后进行判断不等式和不等式组考点:不等式的性质如果如果如果如果如果如果a>b,那么b<a;反之,如果a>b,且b>c,那么a>cb>a,那么a<b 成立a>b,存在一个c(c 可以为正数、负数或一个整式),那么a+c>b+c,a-c>b-c a>b,c>0,那么ac>bc (两边同乘、除一个正数,不等号不变)a>b,c<0,那么ac<bc (两边同乘、除一个负数,不等号变号)a>b>0,那么a2>b2a b a b如果a>b>0,那么;反之,如果,那么a>b解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面考点:一元一次不等式定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
成人高考(高起专)数学复习资料
成人高考数学复习资料集合和简易逻辑考点:交集、并集、补集概念:1、由所有既属于集合A又属于集合B的元素所组成的集合,叫做集合A和集合B的交集,记作A∩B,读作“A交B”(求公共元素)A∩{∈A,且x∈B}2、由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A和集合B的并集,记作A∪B,读作“A并B”(求全部元素)A∪{∈A,或x∈B}3、如果已知全集为U,且集合A包含于U,则由U中所有不属于A的元素组成的集合,叫做集合A的补集,记作ACu,读作“A补”ACu={ ∈U,且∉ }解析:集合的交集或并集主要以例举法或不等式的形式出现考点:简易逻辑概念:在一个数学命题中,往往由条件A和结论B两部分构成,写成“如果A成立,那么B成立”。
充分条件:如果A成立,那么B成立,记作“A→B”“A推出B,B不能推出A”。
必要条件:如果B成立,那么A成立,记作“A←B”“B推出A,A不能推出B”。
充要条件:如果A→B,又有A←B,记作“A←B”“A推出B ,B推出A”。
解析:分析A和B的关系,是A推出B还是B推出A,然后进行判断不等式和不等式组考点:不等式的性质如果a>b,那么b<a;反之,如果b>a,那么a<b成立如果a>b,且b>c,那么a>c如果a>b,存在一个c(c可以为正数、负数或一个整式),那么>,>如果a>b,c>0,那么>(两边同乘、除一个正数,不等号不变)如果a>b,c<0,那么<(两边同乘、除一个负数,不等号变号)如果a>b>0,那么a2>b2如果a>b>0,那么ba>;反之,如果ba>,那么a>b解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面考点:一元一次不等式定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
成人高考专升本《高等数学(一)》通关资料
(特殊情况:对数求导法时,先两边同时取对数, 再求解)
一、求导方法
(七)对数函数求导法
利用对数函数的运算性质可以将原来的函数两边同时取对数后化简 然后利用隐函数求导法或复合求导法求导,因此称为对数求导法 通常解决函数类型为:
y u( x)v( x) 步骤为: (1)两边同时取对数得 ln y vx.lnu( x)
0,则函数f (x)在区间(a, b)内是递增的 0,则函数f (x)在区间(a, b)内是递减的 0不影响f (x)的单调性.
五、导数的应用
(四)函数的极值
1.极值的第一充分条件
设f (x)在x0的某领域内可导.
1 若x x0 时,f"(x) 0,x 0 x ," f (x) 0时则0 称x 为极大值点,0f (x )为极大
在连续的曲线上的凹弧与凸弧之间的分界点称为曲线的拐点。
五、导数的应用
(六)曲线的水平渐近线与铅直渐近线
定义:
若 lim f (x) A或 lim f (x) A或 lim f (x) A,
dt
三、导数
(六)隐函数的求导
解析法表示函数通常有两种: (1).y f(x)来表示的,称之为显函数。
如y sinwx,y xe ln(x 1 2 x ) (2).x与y之间的函数关系是由一 个方程F(x,y)
这种称之为隐函数,
0来确定
如2x y3 -1 0,xy -x e y e 0 对于隐函数的求导通常做法: 可直接在方程F(x,y) 0的两端同时对x求导,而把y 视为中间变量,利用复合函数求导法即可。
M (x0,f (x0 ))的切线方程为:
y - f (x ) "f (x )(x x )
成人高考高起专数学复习资料全
成人高考(高起专)数学复习资料全成人高考(高起专)数学复习资料一、考试大纲在成人高考(高起专)的数学考试中,主要考察的是考生的基础数学知识和应用能力。
考试大纲要求考生掌握代数、三角函数、平面解析几何、数列、概率与统计等基础知识,同时能够运用这些知识解决一些实际问题。
二、知识点梳理1.代数部分:包括集合与简易逻辑、函数、数列、三角函数、不等式等内容。
2.三角函数部分:包括三角函数的定义与基本公式、诱导公式、和差倍角公式、半角公式等。
3.解析几何部分:包括直线与圆的方程、圆锥曲线的方程等。
4.数列部分:包括等差数列和等比数列的通项公式与求和公式。
5.概率与统计部分:包括排列组合、随机事件概率、统计初步知识等。
三、复习策略1.注重基础知识的掌握:数学是一门基础学科,对于基础知识的掌握非常重要。
考生在复习过程中要注重对基本概念、公式、定理的理解与记忆,做到知其然并知其所以然。
2.注重解题能力的提高:数学考试中涉及到的题型有选择题、填空题和解答题等,不同类型的题目有不同的解题方法和技巧。
考生要通过多做练习题,提高解题能力,掌握解题技巧。
3.注重知识点的融会贯通:数学各知识点之间存在内在的联系,考生在复习过程中要注重知识点之间的联系与融合,将各个知识点串联起来,形成完整的知识体系。
4.注重实际应用能力的提高:数学是一门应用学科,考生在复习过程中要注重实际应用能力的提高,将数学知识与实际问题相结合,学会用数学思维和方法解决实际问题。
5.注重模拟考试的进行:模拟考试是检验考生复习效果的有效手段之一。
考生要通过模拟考试,了解自己的不足之处,及时查漏补缺,提高复习效果。
四、备考建议1.制定合理的复习计划:考生要根据自己的实际情况,制定合理的复习计划,明确每天的复习任务和目标,做到有的放矢。
2.合理安排时间:数学考试中涉及到的知识点较多,考生要根据每个知识点的难度和重要程度合理安排复习时间,做到事半功倍。
3.多做练习题:数学是一门需要通过大量练习来提高解题能力的学科。
成人高考专升本高数一复习资料
成人高考高数一复习资料、、等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
1.数列按一定顺序排列的无穷多个数称为数列,记作,其中每一个数称为数列的项,第n项。
为数列的一般项或通项,例如(1)1,3,5,…,, (2)(3)(4)1,0,1,0,…,…都是数列。
在几何上,数列可看作数轴上的一个动点,它依次取数轴上的点。
2.数列的极限定义对于数列,如果当时,无限地趋于一个常数A,则称当n趋于无穷大时,数列以常数A为极限,或称数列收敛于A,记作否则称数列没有极限,如果数列没有极限,就称数列是发散的。
数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列以A为极限,就表示当n趋于无穷大时,点定理1.1(惟一性)若数列收敛,则其极限值必定惟一。
定理1.2(有界性)若数列收敛,则它必定有界。
注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。
定理1.3(两面夹定理)若数列,,满足不等式且。
定理1.4若数列单调有界,则它必有极限。
下面我们给出数列极限的四则运算定理。
定理1.5(1)(2)(3)当1.当时函数的极限(1)当时的极限定义对于函数,如果当x无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的极限是A,记作或(当时)(2)当时的左极限定义对于函数,如果当x从的左边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的左极限是A,记作例如函数或当x从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当时,的左极限是1,即有(3)当时,的右极限定义对于函数,如果当x从的右边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的右极限是A,记作或又如函数当x从0的右边无限地趋于0时,无限地趋于一个常数-1 。