2020-2021七年级数学下期中一模试卷(附答案) (5)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:(2,4)或(-2,-4).
【解析】
【分析】
根据平面直角坐标系中的点到x轴的距离等于这一点纵坐标的绝对值得出|2x|=4,解方程求出x的值,进而得到这点的坐标.
【详解】
∵点 到x轴的距离为4,
∴ ,
解得x=±2.
A.60°B.50°C.45°D.40°
3.已知x、y满足方程组 ,则x+y的值是()
A.3B.5C.7D.9
4.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为( )
A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)
5.对于两个不相等的实数 ,我们规定符号 表示 中较大的数,如 ,按这个规定,方程 的解为( )
7.A
解析:A
【解析】
【分析】
【详解】

由①,得x<4,
由②,得x≤﹣3,由①②得,
原不等式组的解集是x≤﹣3;
故选A.
8.D
解析:D
【解析】
【分析】
解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.
【详解】

解不等式①得,x>-1;
解不等式②得,x≤1;
∴不等式组的解集是﹣1<x≤1.
不等式组的解集在数轴上表示为:
二、填空题
13.已知关于x的不等式组 只有四个整数解,则实数a的取值范是______.
14.m的3倍与n的差小于10,用不等式表示为______________.
15.如果点 到x轴的距离为4,则这点的坐标是(,_____).
16.已知:m、n为两个连续的整数,且m< <n,则 =_____.
17.如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是_________。
详解:
由不等式①解得:
由不等式②移项合并得:−2x>−4,
解得:x<2,
∴原不等式组的解集为
由不等式组只有四个整数解,即为1,0,−1,−2,
可得出实数a的范围为
故答案为
点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数 的取值范围.
14.3m-n<10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m-n<10故答案为:3m-n<10【点睛】本题考查不等式的书写
∵AB//CD,∴PE//CD.
……
请你帮助小明完成剩余的解答.
(2)问题迁移:请你依据小明的解题思路,解答下面的问题:
如图3,AD//BC,当点P在A、B两点之间时,∠ADP=∠α,∠BCP=∠β,则∠CPD,∠α,∠β之间有何数量关系?请说明理由.
25.通过对某校七年级学生体育选修课程的统计,得到以下信息:
【详解】
解:A、错误,因为∠C=∠D,所以AC∥DE;
B、错误,不符合三线八角构不成平行;
C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;
D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.
故选:D.
【点睛】
在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
请根据以上信息解答下列问题:
(1)填空m=________,态度为C所对应的圆心角的度数为________;
(2)补全条形统计图;
(3)若全区15~65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;
23.对 , 定义一种新运算 ,规定 (其中 , 均为非零常数),这里等式右边是通常的四则运算,例: .
22.各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15~65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A.没影响;B.影响不大;C.有影响,建议做无声运动;D.影响很大,建议取缔;E.不关心这个问题,将调查结果统计整理并绘制成如下两幅不完整的统计图.
18.下列说法:① ;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有___________
19.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.
解析:3m-n<10.
【解析】
【分析】
根据题意利用不等符号进行连接即可得出答案.
【详解】
解:由题意可得:3m-n<10
故答案为:3m-n<10.
【点睛】
本题考查不等式的书写.
15.(24)或(-2-4)【解析】【分析】根据平面直角坐标系中的点到x轴的距离等于这一点纵坐标的绝对值得出|2x|=4解方程求出x的值进而得到这点的坐标【详解】∵点到x轴的距离为4∴解得x=±2∴这个点
考点:平移的性质.
二、填空题
13.-3<a≤-2【解析】分析:求出不等式组中两不等式的解集根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集由不等式组只有四个整数解根据解集取出四个整数
解析:-3<a≤-2
【解析】
分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围.
已知 , .
(1)求 , 的值;
(2)若关于m的不等式组 恰好有3个整数解,求实数 的取值范围.
24.(1)同题情景:如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明想到一种方法,但是没有解答完:
如图2,过P作PE//AB,∴∠APE+∠PAB=180°,
∴∠APE=180°-∠PAB=180°-130°=50°
2020-2021七年级数学下期中一模试卷(附答案) (5)
一、选择题
1.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50º,∠ABC=100º,则∠CBE的度数为()
A.45°B.30°C.20°D.15°
2.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于( )
A. B.
C. D.
9.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
A. B. C. D.
解析:D
【解析】
【分析】
选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;
选项B中,不符合三线八角,构不成平行;
选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;
选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行.
故选D.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.
9.A
解析:A
【解析】
【分析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
【详解】
设索长为x尺,竿子长为y尺,
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE的度数.
【详解】
解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,
∴AC∥BE,
∴∠CAB=∠EBD=50°(两直线平行,同位角相等),
∵AB∥CD,
∴∠BAD=∠D=40°.
故选D.
3.B
解析:B
【解析】
【分析】
把两个方程相加可得3x+3y=15,进而可得答案.
【详解】
两个方程相加,得3x+3y=15,
∴x+y=5,
故选B.
【点睛】
本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.
4.C
解析:C
【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.
∵∠ABC=100°,
∴∠CBE的度数为:180°-50°-100°=30°.
故选B.
【点睛】
此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.
2.D
解析:D
【解析】
【分析】
【详解】
∵∠C=80°,∠CAD=60°,
∴∠D=180°﹣80°﹣60°=40°,
20.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达 点,那么 点对应的数是______.你的理由是______.
三、解答题
21.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品进价为300元/件,商店考虑继续按之前的降价率再次降价,请你算一算第三次降价后出售的商品是否会亏本.
故选:C
【点睛】
本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD这两条直线,故是错误的.
12.C
解析:C
【解析】
试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.
11.C
解析:C
【解析】
【分析】
判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.
【详解】
①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;
②∠1 =∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;
③∠3 =∠4,内错角相等,可判断AB∥CD;
④∠B=∠5,同位角相等,可判断AB∥CD
根据题意得: .
故选A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
10.C
解析:C
【解析】
【分析】
分别计算四个选项,找到正确选项即可.
【详解】
A. ,故选项A错误;
B. ,故选项B错误;
C. ,故选项C正确;
D. ,故选项D错误;
故选C.
【点睛】
本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.
【详解】
当 ,即 时,所求方程变形为 ,
去分母得: ,即 ,
解得:
经检验 是分式方程的解;
当 ,即 时,所求方程变形为 ,
去分母得: 代入公式得: ,
解得: (舍去),
经检验 是分式方程的解,
综上,所求方程的解为 或-1.
故选D.
【点睛】
本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.
6.D
A. B. C. D. 或-1
6.如图所示,已知直线BF、CD相交于点O, ,下面判定两条直线平行正确的是()
A.当 时,AB//CDB.当 时,BC//DEC.当 时,CD//EFD.当 时,BF//DE
7.不等式组 的解集,在数轴上表示正确的是( )
A. B. C. D.
8.不等式组 的解在数轴上表示为( )
10.下列运算正确的是()
A. B.∥CD的条件有()
①∠B+∠BCD=180°②∠1 =∠2③∠3 =∠4④∠B=∠5
A.1B.2C.3D.4
12.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()
A.16cmB.18cmC.20cmD.21cm
①参加选课的总人数为300;
②参加选课的学生在“足球、篮球、排球、乒乓球”中都选择了一门;
③选足球和选排球的人数共占总人数的50%;选乒乓球的人数是选排球人数的2倍;
选足球和选篮球的人数共占总人数的85%.
设选足球的人数为x,选排球的人数为y,试列出二元一次方程组,分别求出选择足球、篮球、排球、乒乓球各门课程的人数.
详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,
∴点B的坐标是(-2,1).
故选:C.
点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.
5.D
解析:D
【解析】
【分析】
分 和 两种情况将所求方程变形,求出解即可.
相关文档
最新文档