【易错题】数学中考一模试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【易错题】数学中考一模试题及答案
一、选择题
1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×107
2.如图是某个几何体的三视图,该几何体是()
A.三棱柱B.三棱锥C.圆柱D.圆锥
3.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()
A.x>3
2
B.x<
3
2
C.x>3D.x<3
4.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()
A.66°B.104°C.114°D.124°
5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )
A.③④B.②③C.①④D.①②③
6.如图,AB,AC分别是⊙O的直径和弦,OD AC
⊥于点D,连接BD,BC,且10
AB=,8
AC=,则BD的长为()
A.25B.4C.213D.4.8
7.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )
A.3.5B.3C.4D.4.5
8.若点P1(x1,y1),P2(x2,y2)在反比例函数
k
y
x
(k>0)的图象上,且x1=﹣
x2,则()
A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2
9.如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到
△ANM,若AN平分∠MAB,则折痕AM的长为()
A.3 B.3C.2D.6
10.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()
A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)
11.下列计算错误的是()
A.a2÷a0•a2=a4B.a2÷(a0•a2)=1
C.(﹣1.5)8÷(﹣1.5)7=﹣1.5D.﹣1.58÷(﹣1.5)7=﹣1.5
12.已知关于x的方程2x+a-9=0的解是x=2,则a的值为
A.2 B.3 C.4 D.5
二、填空题
13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则
c=_____.
14.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.
15.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为
米.
16.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 17.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .
18.已知62x =+,那么222x x -的值是_____.
19.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____.
20.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.
三、解答题
21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:
(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.
(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.
22.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中a的值为;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,
CD=3.
(1)求DE的长;
(2)求△ADB的面积.
24.问题:探究函数y=x+的图象和性质.
小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:
(1)函数的自变量x的取值范围是:____;
(2)如表是y与x的几组对应值,请将表格补充完整:
x…﹣3﹣2﹣﹣1123…y…﹣3﹣3﹣3﹣443…(3)如图,在平面直角坐标系中描点并画出此函数的图象;
(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).
25.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】230000000=2.3×108 ,故选C.
2.A
解析:A
【解析】
试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.
考点:由三视图判定几何体.
3.B
解析:B
【解析】
【分析】
根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.
【详解】
解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),
∴b=3,
令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=3
2

∴点B(3
2
,0).
观察函数图象,发现:
当x<3
2
时,一次函数图象在x轴上方,
∴不等式﹣2x+b>0的解集为x<3
2

故选:B.
【点睛】
本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.C
解析:C
【解析】
【分析】
根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=1
2
∠1,再根据三角形内角和定
理可得.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ACD=∠BAC,
由折叠的性质得:∠BAC=∠B′AC,
∴∠BAC=∠ACD=∠B′AC=1
2
∠1=22°
∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;
故选C.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.
5.C
解析:C
【解析】
试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①当x=1时,y=a+b+c=0,故本选项错误;
②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;
③由抛物线的开口向下知a <0,
∵对称轴为1>x=﹣
>0,
∴2a+b <0,
故本选项正确;
④对称轴为x=﹣>0, ∴a 、b 异号,即b >0,
∴abc <0,
故本选项错误;
∴正确结论的序号为②③.
故选B .
点评:二次函数y=ax 2+bx+c 系数符号的确定:
(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;
(2)b 由对称轴和a 的符号确定:由对称轴公式x=﹣b2a 判断符号;
(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0; (4)当x=1时,可以确定y=a+b+C 的值;当x=﹣1时,可以确定y=a ﹣b+c 的值. 6.C
解析:C
【解析】
【分析】
先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142
CD AD AC ==
=,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,
∴90ACB ︒∠=, ∴22221086BC AB AC =-=-,
∵OD AC ⊥, ∴142
CD AD AC ===, 在Rt CBD ∆中,2246213BD =
+=
故选C .
【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.
7.B
解析:B
【分析】
【详解】
解:∵∠ACB =90°,∠ABC =60°,
∴∠A =30°,
∵BD 平分∠ABC ,
∴∠ABD =
12
∠ABC =30°, ∴∠A =∠ABD ,
∴BD =AD =6, ∵在Rt △BCD 中,P 点是BD 的中点,
∴CP =
12
BD =3. 故选B . 8.D
解析:D
【解析】 由题意得:1212
k k y y x x ==-=- ,故选D. 9.B
解析:B
【解析】
【分析】
根据折叠的性质可得∠MAN=∠DAM ,再由AN 平分∠MAB ,得出∠DAM=∠MAN=∠NAB ,最后利用三角函数解答即可.
【详解】
由折叠性质得:△ANM ≌△ADM ,
∴∠MAN=∠DAM ,
∵AN 平分∠MAB ,∠MAN=∠NAB ,
∴∠DAM=∠MAN=∠NAB ,
∵四边形ABCD 是矩形,
∴∠DAB=90°,
∴∠DAM=30°,

== 故选:B .
【点睛】
本题考查了矩形 的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 10.D
【解析】
【分析】
根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.
【详解】
解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,
A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;
B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;
C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;
D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,
故选D.
【点睛】
本题考查规律型:数字的变化类.
11.D
解析:D
【解析】
分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.
详解:∵a2÷a0•a2=a4,
∴选项A不符合题意;
∵a2÷(a0•a2)=1,
∴选项B不符合题意;
∵(-1.5)8÷(-1.5)7=-1.5,
∴选项C不符合题意;
∵-1.58÷(-1.5)7=1.5,
∴选项D符合题意.
故选D.
点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.
12.D
解析:D
【解析】
∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0,
解得a =5.故选D .
二、填空题
13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7
解析:7
【解析】
【分析】
根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.
【详解】
∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,
∴a ﹣7=0,b ﹣1=0,
解得a=7,b=1,
∵7﹣1=6,7+1=8,
∴68c <<,
又∵c 为奇数,
∴c=7,
故答案为7.
【点睛】
本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出
A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得
解析:2n-1
【解析】
【分析】
根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案.
【详解】
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此类推:△A n B n A n+1的边长为 2n-1.
故答案是:2n-1.
【点睛】
此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.
15.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051
解析:5
【解析】
【分析】
根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.
【详解】
以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,
由题意可得A(0,2.5),B(2,2.5),C(0.5,1)
设函数解析式为y=ax2+bx+c
把A. B. C三点分别代入得出c=2.5
同时可得4a+2b+c=2.5,0.25a+0.5b+c=1
解得a=2,b=−4,c=2.5.
∴y=2x2−4x+2.5=2(x−1)2+0.5.
∵2>0
∴当x=1时,y min=0.5米.
16.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且
解析:n<2且
3 n
2≠-
【解析】
分析:解方程3x n
2
2x1
+
=
+
得:x=n﹣2,
∵关于x的方程3x n
2
2x1
+
=
+
的解是负数,∴n﹣2<0,解得:n<2.
又∵原方程有意义的条件为:
1
x
2
≠-,∴
1
n2
2
-≠-,即
3
n
2
≠-.
∴n的取值范围为n<2且
3
n
2≠-.
17.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°
解析:110°
【解析】
∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°
18.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确
解析:4
【解析】
【分析】
将所给等式变形为26
x=
∵x=,
∴x-=
∴(22
x=,
∴226
x-+=,
∴24
x-=,
故答案为:4
【点睛】
本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.
19.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-
4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根
解析:-2
【解析】
【分析】
若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.
【详解】
∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,
∴△=4-4(a+1)×3≥0,且a+1≠0,
解得a≤-2
3
,且a≠-1,
则a的最大整数值是-2.
故答案为:-2.
【点睛】
本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:
①当△>0时,方程有两个不相等的实数根;
②当△=0时,方程有两个相等的实数根;
③当△<0时,方程无实数根.
上面的结论反过来也成立.也考查了一元二次方程的定义.
20.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC
解析:6
【解析】
试题解析:∵DE是BC边上的垂直平分线,
∵△EDC的周长为24,
∴ED+DC+EC=24,①
∵△ABC与四边形AEDC的周长之差为12,
∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②
∵BE=CE,BD=DC,
∴①-②得,DE=6.
考点:线段垂直平分线的性质.
三、解答题
21.(1)过点C作CG⊥AB于G
在Rt△ACG中∵∠A=60°
∴sin60°=∴……………1分
在Rt△ABC中∠ACB=90°∠ABC=30°
∴AB=2 …………………………………………2分
∴………3分
(2)菱形………………………………………4分
∵D是AB的中点∴AD=DB=CF=1
在Rt△ABC中,CD是斜边中线∴CD=1……5分
同理 BF=1 ∴CD=DB=BF=CF
∴四边形CDBF是菱形…………………………6分
(3)在Rt△ABE中
∴……………………………7分
过点D作DH⊥AE 垂足为H
则△ADH∽△AEB ∴
即∴ DH=……8分
在Rt△DHE中
sinα==…=…………………9分
【解析】
(1)根据平移的性质得到AD=BE ,再结合两条平行线间的距离相等,则三角形ACD 的面积等于三角形BEF 的面积,所以要求的梯形的面积等于三角形ABC 的面积.根据60度的直角三角形ABC 中AC=1,即可求得BC 的长,从而求得其面积;
(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;
(3)过D 点作DH ⊥AE 于H ,可以把要求的角构造到直角三角形中,根据三角形ADE 的面积的不同计算方法,可以求得DH 的长,进而求解.
22.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.
【解析】
【分析】
【详解】
试题分析:(1)、用整体1减去其它所占的百分比,即可求出a 的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.
试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%; 则a 的值是25;
(2)、观察条形统计图得: 1.502 1.554 1.605 1.656 1.70324563
x ⨯+⨯+⨯+⨯+⨯=++++=1.61; ∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65; 将这组数据从小到大排列为,其中处于中间的两个数都是1.60, 则这组数据的中位数是
1.60.
(3)、能; ∵共有20个人,中位数是第10、11个数的平均数,
∴根据中位数可以判断出能否进入前9名;
∵1.65m >1.60m , ∴能进入复赛
考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数
23.(1)DE=3;(2)ADB S 15∆=.
【解析】
【分析】
(1)根据角平分线性质得出CD=DE ,代入求出即可;
(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.
【详解】
(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,
∴CD=DE ,
∵CD=3,
∴DE=3;
(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=,
∴△ADB 的面积为ADB 11S AB DE 1031522
∆=⋅=⨯⨯=. 24.(1)x ≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.
【解析】
【分析】
(1)由分母不为零,确定x 的取值范围即可;(2)将x =1,x =2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;
【详解】
(1)因为分母不为零,
∴x≠0;
故答案为a≠0.
(2)x =1时,y =3;
x =2时,y =3;
故答案为3,3.
(3)如图:
(4)此函数有最小值和最大值;
【点睛】
本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.
25.123米.
【解析】
【分析】
在Rt △ABC 中,利用tan BC CAB AB
∠=
即可求解. 【详解】
解:∵CD ∥AB ,
∴∠CAB=∠DCA=39°.
在Rt △ABC 中,∠ABC=90°,
tan
BC CAB
AB
∠=.

100
123
tan0.81
BC
AB
CAB
==≈


答:A、B两地之间的距离约为123米.
【点睛】
本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.。

相关文档
最新文档