复杂网络的基础知识

合集下载

复杂网络基础理论

复杂网络基础理论

无标度网络
定义:无标度网络是指节点的度分布遵循幂律分布的网络即少数节点拥有大量连接大部分节点 只有少数连接。
特性:无标度网络具有高度的异质性其结构可以抵抗随机攻击但容易受到定向攻击。
构建方法:无标度网络的构建通常采用优先连接机制即新节点更倾向于与已经具有大量连接的 节点相连。
应用场景:无标度网络在现实世界中广泛存在如社交网络、互联网、蛋白质相互作用网络等。
07
复杂网络的未来研究方向和挑战
跨领域交叉研究
复杂网络与计算机 科学的交叉:研究 网络算法、网络安 全和网络流量控制 等。
复杂网络与生物学 的交叉:研究生物 系统的网络结构和 功能如蛋白质相互 作用网络和基因调 控网络等。
复杂网络与物理学 的交叉:研究网络 的拓扑结构和动力 学行为如复杂系统 、自组织系统和非 线性系统等。
复杂网络的演化过程中节点和边 的动态变化会导致网络的拓扑结 构和性质发生改变。
添加标题
添加标题
添加标题
添加标题
复杂网络具有非线性和自组织的 特性能够涌现出复杂的结构和行 为。
复杂网络在现实世界中广泛存在 如社交网络、生物网络、交通网 络等。
复杂网络的特征
节点数量巨大且具有自组织、 自相似、小世界等特性
03
复杂网络的基本理论
网络拓扑结构
节点:复杂网络中的基本单元
连通性:网络中节点之间是否存 在路径
添加标题
添加标题
添加标题
添加标题
边:连接节点的线段表示节点之 间的关系
聚类系数:衡量网络中节点聚类 的程度
网络演化模型
节点增长模型:节点按照一定概 率在网络中加入形成无标度网络
节点属性演化模型:节点属性随 时间发生变化影响网络的演化

网络科学中的复杂网络理论

网络科学中的复杂网络理论

网络科学中的复杂网络理论网络科学是一门涵盖计算机科学、数学、物理学等多个学科的交叉学科,其研究的对象是网络,包括社交网络、物流网络、电力网络、金融网络等。

在网络科学的研究中,复杂网络理论是一个重要的分支,它能够帮助我们理解网络的特性和行为。

本文将从复杂网络的概念、网络拓扑结构、网络动力学、网络优化等方面介绍复杂网络理论。

一、复杂网络的概念复杂网络是由许多节点和边组成的网络,节点和边之间的关系可以是同性的或异性的,也可以是有向的或无向的。

复杂网络中的节点可以是人、公司、电力系统中的发电站等,边可以表示这些节点之间的联系,如社交网络中的朋友关系、电力系统中的输电线路等。

由于网络中的节点和边是多种多样的,所以复杂网络具有超过简单网络的复杂性和多样性。

复杂网络理论研究的是网络的结构和行为,通过分析网络节点和边之间的关系,可以揭示网络中的规律和特性。

复杂网络理论已被应用于许多领域,如社交网络分析、流行病模型、交通优化、生物信息学等。

二、网络拓扑结构网络的拓扑结构是指节点和边之间关系的模式,包括邻接矩阵、度分布、聚类系数、路径长度等几个方面。

1. 邻接矩阵邻接矩阵是一个方阵,其中的行和列分别对应网络的节点,矩阵中的元素为1表示对应节点之间有一条边,为0则表示没有边相连。

邻接矩阵是表示网络拓扑结构最简单的方式,但对于大规模网络,其密集的矩阵往往需要大量的存储空间,使得计算和分析变得困难。

2. 度分布节点的度是指该节点连接的边数。

度分布是一个度数与节点数量或概率的关系图,可以揭示网络节点之间关系的多样性。

常见的度分布包括泊松分布、幂律分布等。

幂律分布是指在一个网络中存在很少的高度连接的节点,多数节点的度数较低,这称为“无标度网络”。

无标度网络中的少数节点有着重要的作用,称为“超级节点”,它们是网络中的枢纽或关键节点。

3. 聚类系数聚类系数是指一个节点的邻居之间相互之间已经连接的比例。

聚类系数越高表示该节点的邻居之间越紧密。

复杂网络的基础知识

复杂网络的基础知识

第二章复杂网络的基础知识2.1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。

如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。

如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。

图2-1 网络类型示例(a) 无权无向网络(b) 加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。

如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。

如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。

图2-2 规则网络示例(a) 一维有限规则网络(b) 二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length )、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。

2.2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。

定义网络的直径(diameter )为网络中任意两个节点之间距离的最大值。

即}{max ,ij ji l D = (2-1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值。

即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 为网络节点数,不考虑节点自身的距离。

复杂网络理论基础题

复杂网络理论基础题

复杂网络理论基础题复杂网络理论作为计算机科学和网络科学领域的重要分支,旨在研究复杂系统中的网络拓扑结构及其动态演化规律。

本文将介绍复杂网络理论的基础知识,包括网络拓扑结构、节点度分布、小世界网络和无标度网络等内容。

一、网络拓扑结构网络拓扑结构是指网络中各节点之间连接关系的模式。

最简单的网络拓扑结构是随机网络,其中每个节点以等概率与其他节点相连。

然而,在许多实际网络中,节点的连接并不是完全随机的,而是具有某种特定的模式或结构。

二、节点度分布节点度是指节点连接的边的数量,节点度分布描述了网络中不同节点度值的节点数量。

在随机网络中,节点度分布通常呈现泊松分布,即节点度相差不大。

而在复杂网络中,节点度分布往往呈现幂律分布,即存在少数高度连接的节点(大度节点),大部分节点的度较低。

这也是复杂网络与随机网络的一个显著区别。

三、小世界网络小世界网络是指同时具有较高聚集性和较短平均路径长度的网络。

在小世界网络中,节点之间的平均距离较短,通过少数的中心节点即可实现较快的信息传递。

同时,小世界网络中也存在着高度的聚集性,即节点之间存在较多的局部连接。

四、无标度网络无标度网络是指网络中节点度分布呈现幂律分布的网络。

在无标度网络中,只有少数节点具有极高的度,而大部分节点的度较低。

这些高度连接的节点被称为“超级节点”或“中心节点”,它们在网络中起到关键的作用。

五、复杂网络的动态演化复杂网络的动态演化是指网络随时间发展过程中结构和拓扑特性的变化。

常见的复杂网络动态演化模型包括BA 模型和WS 模型。

BA 模型通过优先连接原则,使具有较高度的节点更容易吸引连接,从而形成无标度网络。

WS 模型则通过随机重连机制,在保持网络聚集性的同时,增加了节点之间的短距离连接。

六、复杂网络的应用复杂网络理论在许多领域都有广泛的应用。

例如,在社交网络中,研究人们之间的联系方式和信息传播规律;在生物学领域中,研究蛋白质相互作用网络和基因调控网络;在物流和供应链中,研究供应商和客户之间的联系。

复杂网络动力学分析

复杂网络动力学分析

复杂网络动力学分析一、引言复杂网络动力学分析是一种用于研究复杂网络结构和网络动力学特征的分析方法。

随着信息技术的发展和应用场景的不断扩大,复杂网络动力学分析逐渐成为网络科学领域的热门研究方向。

本文将从基础概念、网络结构分析、网络动力学分析等方面进行探讨,旨在深入了解复杂网络动力学分析的相关知识。

二、基础概念1. 复杂网络复杂网络是指由大量节点和相互连接的边构成的网络,具有随机性、动态性、节点异构性和拓扑结构复杂性等特点。

常见的复杂网络包括社交网络、生物网络、交通网络、互联网等。

2. 节点度节点度是指节点在网络中的相邻节点数,与节点相连的边数称为节点的度。

节点度越大,代表节点在网络中的重要程度越高。

3. 小世界效应小世界效应是指在大规模的随机网络中,任意两个节点之间的距离很短,具有“六度分隔理论”的特点。

即任意两个节点之间的距离最多只需要经过六个中间节点。

4. 群体聚类系数群体聚类系数是指网络中任意一个节点的邻居节点之间存在联系的概率。

群体聚类系数越高,代表网络中存在更多的紧密联系的节点群体。

三、网络结构分析1. 度分布度分布描述网络中各个节点的度数分布情况,可以用横坐标表示节点的度,纵坐标表示该度出现的节点数目。

通过度分布可以发现网络的度分布是否呈现幂律分布的特点。

2. 网络中心性网络中心性是指节点在复杂网络中的重要性程度,包括介数中心性、接近中心性和度中心性等。

介数中心性表示一个节点与其他节点之间的最短路径数目之和,接近中心性表示一个节点到其他节点的平均路径长度,度中心性表示节点的度。

3. 网络聚类系数网络聚类系数是指复杂网络中群体聚集性的量化指标,反映了网络中节点间联系的紧密程度。

常见的网络聚类系数包括全局聚类系数和局部聚类系数,全局聚类系数是指网络中所有节点的聚类系数均值,局部聚类系数是指每个节点的聚类系数均值。

4. 强连通分量强连通分量是指在有向图中,所有节点之间均可相互到达的最大节点集合。

(完整版)复杂网络的基础知识

(完整版)复杂网络的基础知识

第二章复杂网络的基础知识2。

1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。

如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。

如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。

图2—1 网络类型示例(a) 无权无向网络 (b)加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。

如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。

如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。

图2—2 规则网络示例(a)一维有限规则网络 (b)二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length)、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。

2。

2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。

定义网络的直径(diameter)为网络中任意两个节点之间距离的最大值.即}{max ,ij ji l D = (2—1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值.即 ∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2) 其中N 为网络节点数,不考虑节点自身的距离.网络的平均路径长度L 又称为特征路径长度(characteristic path length)。

复杂网络的建模和分析

复杂网络的建模和分析

复杂网络的建模和分析复杂网络研究是当今科学领域中的热点之一,它涉及到社会、生物、物理、信息等多个领域。

复杂网络模型能够帮助我们更好地理解网络结构和演化规律。

本文主要讨论复杂网络的建模和分析方法。

一、复杂网络的基本概念复杂网络是由大量节点和连接所组成的网络,它的确切定义是一个非常复杂的问题,因此我们需要对其进行具体的描述和定义。

一般来说,复杂网络具有以下特点:1. 大规模性:复杂网络中节点数目非常庞大,通常超过数百甚至上万个。

2. 非线性性:复杂网络的演化过程存在非线性的关系,而这种非线性关系是复杂网络分析中的一个重要问题。

3. 动态性:复杂网络不断地产生新的连接,整个网络在不断地演化,形成更为复杂的结构。

4. 自相似性:复杂网络的局部结构和整体结构之间存在自相似性,即某些局部结构在整体结构中重复出现。

5. 非均质性:复杂网络中不同节点和连接的权重、度数、邻居数等参数都存在一定程度的不均质性。

基于以上特点,我们可以将复杂网络建模成为一个包含大量节点和连接的网络结构,通过分析网络的演化过程以及节点和连接之间的关系,来研究其运作机制和规律。

二、复杂网络的建模方法为了研究复杂网络的特性和演化过程,需要对其进行建模。

复杂网络的建模方法主要可以分为两类:统计模型和物理模型。

1. 统计模型统计模型是利用大量的数据进行拟合,而得到的数学模型。

统计模型通常把复杂网络建模成一个随机图,其中节点、连边、度数等概率都是随机的。

根据这些概率可以推出整个网络的拓扑结构。

统计模型中比较常见的是随机图模型和小世界模型。

随机图模型是一种最简单的复杂网络模型,该模型中所有节点的度分布都是相同的,没有统计规律可言。

随机图模型不仅适合描述现实中的网络,而且可以作为一种基准,评估现实中复杂网络的性质和特点。

相比随机图模型,小世界模型更加符合现实中复杂网络的分布规律。

小世界模型主要基于「小世界效应」,即复杂网络中任意两个节点之间距离较短,由少数中心节点所控制。

面向大数据的复杂网络理论与应用

面向大数据的复杂网络理论与应用

面向大数据的复杂网络理论与应用一、背景介绍随着信息技术的快速发展,数据已成为当今社会的一大资源。

大数据时代的到来,使得数据量呈现指数级增长。

在这种背景下,网络分析方法被广泛应用于复杂数据的分析。

复杂网络是由大量节点和连接组成的网络结构,例如社交网络、交通网络和互联网等。

复杂网络的理论和应用对于解决大规模数据的问题具有重要意义。

二、复杂网络的基本理论1. 复杂网络的表示方法复杂网络可以用图形和矩阵表示。

在图形表示中,节点表示复杂体系中的元素,边表示这些元素之间的关系。

矩阵表示法则是将复杂体系转化为一个矩阵,该矩阵中的数值表示节点与节点之间的距离或者相似程度。

2. 复杂网络的属性复杂网络的属性包括度、聚类系数和介数中心性等。

节点的度指的是连接该节点的边数,聚类系数表示相邻节点之间的联系程度,介数中心性反映一个节点在网络中的重要程度。

3. 复杂网络的模型常见的复杂网络模型包括随机网络模型、小世界网络模型和无标度网络模型等。

随机网络模型是指连接节点的方式随机分布的网络,小世界网络模型则是在随机网络的基础上,使得节点之间具备一定的距离,无标度网络模型则是建立在度分布律的基础上,节点的度数呈现幂律分布。

三、复杂网络在大数据分析中的应用1. 社交网络分析社交网络是人们在社交关系中形成的互联网络,例如微博、微信等。

社交网络分析可以对用户行为进行建模和预测,对于社交媒体的商业应用,例如用户关注度分析和用户行为分析等方面带来了巨大的商业价值。

2. 交通网络分析交通网络是人们在交通出行中形成的互联网络,例如地铁、公交、高速公路等。

交通网络分析可以预测车流量、拥堵情况和出行方案,对于城市交通管理和规划方面带来了重要的应用支持。

3. 互联网搜索引擎互联网搜索引擎是人们搜索网络信息的重要工具,例如百度、谷歌等。

在海量的数据搜索和排名方面,复杂网络分析技术可以提高搜索结果的准确性和效率。

四、面向大数据的复杂网络的未来展望复杂网络的发展已经走到了一个全面应用的时代,大数据在此背景下推进网络技术的创新和升级。

复杂网络的基础知识

复杂网络的基础知识

第二章複雜網路の基礎知識2.1 網路の概念所謂“網路”(networks),實際上就是節點(node)和連邊(edge)の集合。

如果節點對(i,j)與(j,i)對應為同一條邊,那麼該網路為無向網路(undirected networks),否則為有向網路(directed networks)。

如果給每條邊都賦予相應の權值,那麼該網路就為加權網路(weighted networks),否則為無權網路(unweighted networks),如圖2-1所示。

圖2-1 網路類型示例(a) 無權無向網路(b) 加權網路(c) 無權有向網路如果節點按照確定の規則連邊,所得到の網路就稱為“規則網路”(regular networks),如圖2-2所示。

如果節點按照完全隨機の方式連邊,所得到の網路就稱為“隨機網路”(random networks)。

如果節點按照某種(自)組織原則の方式連邊,將演化成各種不同の網路,稱為“複雜網路”(complex networks)。

圖2-2 規則網路示例(a) 一維有限規則網路(b) 二維無限規則網路2.2 複雜網路の基本特徵量描述複雜網路の基本特徵量主要有:平均路徑長度(average path length )、簇係數(clustering efficient )、度分佈(degree distribution )、介數(betweenness )等,下麵介紹它們の定義。

2.2.1 平均路徑長度(average path length )定義網路中任何兩個節點i 和j 之間の距離l ij 為從其中一個節點出發到達另一個節點所要經過の連邊の最少數目。

定義網路の直徑(diameter )為網路中任意兩個節點之間距離の最大值。

即}{max ,ij ji l D = (2-1) 定義網路の平均路徑長度L 為網路中所有節點對之間距離の平均值。

即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 為網路節點數,不考慮節點自身の距離。

复杂网络理论及其应用研究概述

复杂网络理论及其应用研究概述

复杂网络理论及其应用研究概述一、本文概述随着信息技术的飞速发展,复杂网络理论及其应用研究已成为当今科学研究的热点之一。

复杂网络无处不在,从社交网络到生物网络,从互联网到交通网络,它们构成了我们现代社会的基础架构。

复杂网络理论不仅关注网络的结构和性质,还致力于探索网络的行为和演化规律,以及如何利用网络进行优化和控制。

本文旨在全面概述复杂网络理论的基本概念、主要研究方法及其在各领域的应用实践,以期为读者提供一个清晰、系统的复杂网络研究视角。

在本文中,我们首先介绍复杂网络理论的基本概念,包括网络的定义、分类和性质。

然后,我们将重点介绍复杂网络的主要研究方法,包括网络建模、网络分析、网络演化等。

在此基础上,我们将探讨复杂网络理论在各领域的应用实践,包括社交网络分析、生物网络研究、互联网拓扑结构分析、交通网络优化等。

我们将对复杂网络理论的发展趋势和未来挑战进行展望,以期为读者提供一个全面了解复杂网络理论及其应用研究的框架。

二、复杂网络理论基础知识复杂网络理论作为图论和统计物理学的交叉学科,旨在揭示现实世界中复杂系统的结构和动力学行为。

其理论基础主要源自图论、统计物理、非线性科学以及计算机科学等多个学科。

图论为复杂网络提供了基本的数学语言和描述工具。

在网络中,节点代表系统中的个体,边则代表个体之间的关系或交互。

基于图论,可以定义诸如度、路径、聚类系数、平均路径长度等关键的网络参数,从而量化网络的拓扑结构和性质。

统计物理学的概念和方法为复杂网络提供了深入分析大规模网络结构的工具。

例如,通过引入概率分布来描述网络中的节点度、路径长度等属性,可以揭示网络的全局统计特性。

网络中的相变、自组织临界性等现象也为复杂网络理论带来了新的视角和思考。

非线性科学则为复杂网络的动力学行为提供了理论支撑。

在网络中,节点之间的相互作用和演化往往是非线性的,这导致网络的动力学行为表现出复杂的时空特征。

通过研究网络的稳定性、同步性、演化机制等,可以深入理解复杂系统的动力学行为。

复杂网络理论及应用研究

复杂网络理论及应用研究

复杂网络理论及应用研究网络是现代社会中不可或缺的一部分。

复杂网络理论和应用研究的发展是近年来网络领域中的热点之一。

本文将探讨复杂网络理论的基础知识、应用研究与发展趋势。

一、复杂网络理论的基础知识复杂网络是指由大量节点和连接线交织在一起的网络。

这些网络可以是社交媒体、电力网、生物网络、物流系统等。

复杂网络的结构复杂多样,但通常具有以下特点:1.小世界性:即网络上的任意两个节点间的距离较短,也就是任意两个人之间可能存在一个较短的路径。

2.无标度性:即网络中大部分节点的度数很低,但少数几个节点的度数极高,这些节点被称为“超级节点”。

例如,Facebook和Twitter中的明星用户。

3.聚集性:即节点之间往往呈现出一定的集群现象,即同一社群内的节点之间联系紧密。

例如,朋友之间形成的社交圈子。

复杂网络理论主要研究网络的结构、特征,以及节点之间的相互作用规律。

其中,最常用的方法是网络拓扑结构研究。

这种方法可以显示节点之间的关联方式,例如,节点的度数、聚集系数等。

二、复杂网络的应用研究复杂网络理论在众多领域中都有着广泛的应用。

下面列举一些具体的应用研究。

1.社交网络中的信息传播社交网络是复杂网络应用的重要领域之一。

在社交网络中,如果一个节点发布了某种内容,那么它可以通过与之相连的其他节点将信息传递给更广泛的人群。

因此,社交网络可以被用来研究信息传播的速度、路径和影响力。

2.网络犯罪的预测和预防网络犯罪是一个与日俱增的全球问题。

复杂网络理论可以分析网络犯罪的结构和特点,以及预测犯罪所需要的技术和资源。

例如,可以使用聚类算法对不同的犯罪事件进行聚类,以便了解不同犯罪之间的关系,或者预测未来的犯罪趋势。

3.交通系统的优化在城市交通系统中,复杂网络理论可以应用于分析城市交通网络的结构和稳定性,以及优化交通流和减少拥堵。

例如,可以通过分析不同交通节点的连接方式,以便预测交通拥堵的范围和程度。

三、复杂网络理论的发展趋势随着大数据技术的不断发展,复杂网络理论已经成为了一个蓬勃发展的领域。

复杂网络与六度空间理论

复杂网络与六度空间理论

复杂网络与六度空间理论随着信息技术的飞速发展和互联网的普及,人们之间的连接和交流变得越来越频繁和紧密。

在这样的背景下,复杂网络的研究成为了社会学、物理学和计算机科学等领域的热门话题。

复杂网络是指由大量节点和连接构成的网络结构,其中节点之间的连接关系呈现出一定的规律性和复杂性。

复杂网络的研究不仅有助于深入了解现实世界中的各种网络结构和现象,也有助于揭示网络中的一些普遍规律和特性。

六度空间理论则是指任意两个人之间的关系最多经过6个中间人就可以联系上。

本文将介绍复杂网络和六度空间理论的相关概念和研究进展,并探讨它们在现实生活中的应用和意义。

一、复杂网络的基本概念1.1 复杂网络的定义复杂网络是由大量节点和连接组成的网络结构,其中节点代表网络中的个体或单位,连接则代表节点之间的关系或联系。

复杂网络的拓扑结构可以是任意的,包括随机网络、小世界网络和无标度网络等。

随机网络是指节点之间的连接关系是随机的,没有明显的规律性;小世界网络是指网络中的节点之间具有较短的平均路径长度和较大的聚集系数;无标度网络则是指网络中的节点度分布呈幂律分布。

复杂网络具有高度的灵活性和鲁棒性,能够适应各种复杂环境和动态变化,因此在生物学、社会学、信息科学等领域得到了广泛的应用和研究。

复杂网络具有许多独特的特性,如小世界效应、无标度特性和社群结构等。

小世界效应表明网络中的任意两个节点之间的平均最短路径长度较短,使得信息传播和交流变得更加高效和便利。

无标度特性表明网络中的节点度分布呈现出幂律分布,即存在少数节点的度数极高,而大多数节点的度数较低。

社群结构则表明网络中的节点之间存在着密集的内部连接,形成了一些子网络或社群。

这些特性使得复杂网络在信息传播、灾害传播、社交网络等方面都具有重要的应用意义和研究价值。

研究复杂网络的方法主要包括图论、统计物理学、计算机模拟和实证研究等。

图论是研究网络结构和性质的基本工具,通过构建网络模型和分析网络特性可以揭示网络的一些规律和特性。

计算机科学中的复杂网络理论

计算机科学中的复杂网络理论

计算机科学中的复杂网络理论随着计算机技术的发展,越来越多的系统通过网络连接起来,从而形成了复杂网络。

复杂网络是由许多相互交互和连通的节点组成的网络。

这些节点可以是人、机器、物体等,并且它们之间的联系可以是社交关系、交通流量、生态系统中的食物链、分子间的相互作用等等。

在接下来的文章中,我们将介绍计算机科学中的复杂网络理论,包括其定义、发展、应用等相关知识。

1. 复杂网络的定义复杂网络是一种由多个节点和连接组成的系统,这些节点之间的联系可以是不同类型的,比如说有向边、无向边、带权边等等。

根据节点之间的联系,复杂网络可以被分为很多种类,比如社交网络、交通网络、生态网络、蛋白质相互作用网络等等。

这些网络中的节点通常是不同的实体,例如人、车、路灯、动物、植物等等。

2. 复杂网络的发展历程复杂网络的研究源远流长,早在上世纪五六十年代,科学家们就开始研究网络中的节点和边之间的关系。

但是直到二十一世纪初,才开始对复杂网络的结构和功能进行深入的研究。

2002年,美国诺贝尔经济学奖得主罗纳德·科斯(Ronald Coase)提出了一篇名为《产权与企业成本》的文章,在这篇文章中,他提出了“交易成本”这个概念,这个概念引发了一大批科学家对网络中节点和边之间交互的研究,并逐渐形成了复杂网络的理论框架。

2003年,科学家巴拉巴西(Albert-László Barabási)提出了一个基于网络拓扑结构的复杂网络模型,称之为“无标度网络”,这个模型能够解释现实中很多复杂网络的拓扑结构和特性,也是复杂网络研究领域的一个重要里程碑。

自此以后,复杂网络理论得到了迅猛的发展,不断有新的研究成果、新的模型被提出,使得我们更好地理解了复杂网络的结构和功能。

3. 复杂网络的应用复杂网络理论的应用非常广泛,下面列举几个例子:(1)社交网络社交网络是应用于人际交往中的复杂网络,如Facebook、Twitter、LinkedIn等社交网站。

复杂网络的理论及应用

复杂网络的理论及应用

复杂网络的理论及应用随着科技的不断发展,人们的生活和社会组织方式也在不断变化。

在这个过程中,网络的作用越来越显著。

复杂网络作为网络科学的一支重要学科,研究的是网络的结构和性质。

通过探究网络中节点的联系及其交互关系,为许多实际问题提供了解决思路。

1. 复杂网络的理论复杂网络学理论基础主要有三个方面:图论、随机过程、统计物理学。

图论是复杂网络学理论的基础,它将复杂网络看作由节点和边构成的图。

随机过程是强大的工具,它可以描述复杂网络的动态演化。

统计物理学则为复杂网络提供了相当严密的理论基础,将网络中的节点当作对象,基于概率论和热力学的基本假设,研究网络的各种性质。

在以上基础上,复杂网络的理论发展主要包括以下几个方面:1.1. 网络的基本属性网络的基本属性包括:度数分布、聚类系数和平均路径长度。

其中,度数分布指的是每个节点拥有的链接数,而聚类系数和平均路径长度则分别描述了节点间的紧密程度和短距离程度。

1.2. 小世界效应小世界网络是指网络具有高聚类系数和短路径长度的共同特点。

研究表明,许多真实网络都具有小世界特性,表现为较高的聚集指数和较短的平均路径长度。

这种现象被称为小世界效应。

1.3. 无标度网络与节点重要性无标度网络是指网络中节点度数分布呈幂律分布。

具有该特性的网络具有重要的节点。

研究表明,少数节点在网络中的重要性远高于其他节点,这些节点被称为“关键节点”。

识别和保护这些关键节点对于网络的稳定性和鲁棒性至关重要。

1.4. 阻尼振荡阻尼振荡是复杂网络中的一种现象,它可以描述节点之间的同步现象。

研究表明,网络的结构和同步现象密切相关,不同的结构会导致不同的同步行为。

2. 复杂网络的应用复杂网络的应用广泛,尤其在社会学、生物学等领域中有着非常重要的地位。

下面分别介绍常见的应用领域。

2.1. 社交网络社交网络指的是人与人之间的联系网络。

研究表明,社交网络中的节点和联系具有很多特性,比如关闭性、传染性等。

基于这些特性,社交网络可以应用于疾病的传播、信息的传递等领域。

复杂网络的基本模型及其应用

复杂网络的基本模型及其应用

复杂网络的基本模型及其应用随着信息技术的飞速发展,我们生活中的各个领域都已经形成了庞大的网络系统。

而这些网络系统不仅在数量上迅速增长,同时也在复杂度上逐渐提高。

这就为我们研究网络系统带来了新的挑战,同时也为我们提供了丰富的研究机会。

复杂网络正是这样的一门热门研究领域,本文将介绍复杂网络的基本模型以及它们的应用。

一、复杂网络的基本模型1. 随机网络模型随机网络是复杂网络研究的基础模型,也是最简单的网络模型之一。

在随机网络中,节点和连接是随机连接的,也就是说,连接的生成没有规律或者是基于概率分布。

随着网络规模的增大,随机网络的度分布逐渐趋向于高斯分布。

而高斯分布的一个重要特征就是其均值和方差都非常重要,并且许多实际系统的度分布都具有高斯分布特征。

随机网络的主要局限性是其缺乏社区结构,也就是说,在随机网络中,不存在形态或功能的相似节点的聚簇现象。

2. 小世界模型小世界模型是在维持较高的局部聚集程度的前提下具有较短平均距离的网络模型。

与随机网络模型不同的是,小世界模型中,节点的连接是随机化的,但是节点之间距离却非常接近。

小世界模型的典型特征就是“六度分隔理论”,也就是在小世界网络中,从任何一个节点出发,找到其他节点的平均距离都不会超过6个。

小世界模型是现实世界网络的典型模型,例如社交网络和蛋白质相互作用网络等。

它的局限性主要在于缺乏完整的社区结构,也就是节点之间的聚集程度仍然不够高。

3. 无标度网络模型无标度网络是目前复杂网络研究中最流行的网络模型之一。

在这个模型中,网络的度分布不是均匀的,而是具有“幂律分布”特征。

也就是说,只有极少数节点拥有极高的度数,而大多数节点的度数都很低。

这种模型通常被用来描述物理网络和大规模互联网。

无标度网络模型与其他两个基础模型的最大不同之处就在于其在网络中加入了“富者愈富”这一原则,即在网络中度数较高的节点往往更容易与其它节点建立新的连接。

这种现象导致了网络的非线性增长,以及一些非常重要的复杂网络现象,例如小世界现象、无标度现象等。

复杂网络的分析与建模方法研究

复杂网络的分析与建模方法研究

复杂网络的分析与建模方法研究在当今社会,网络已经成为了信息传递、交流和娱乐的主要手段。

而复杂网络则是由大量节点和边(或链接)组成的复杂结构。

复杂网络具有许多重要的应用领域,例如社交网络、物流网络、金融网络和生物网络等。

因此,对于复杂网络的分析和建模非常重要。

本文将介绍复杂网络的分析与建模方法,并讨论它们的应用及局限性。

一、复杂网络的基本概念复杂网络是指由大量节点和边组成的复杂结构。

其中,节点表示网络中的个体或者物品,边则代表它们之间的联系。

在复杂网络中,节点的度数(即边的数量)可能是非常不均匀的,有些节点连接着大量的其他节点,而有些节点则只有很少的链接。

节点的度分布是衡量复杂网络拓扑性质的重要指标之一。

通常,度分布可以分为幂律分布、指数分布和高斯分布等几种形式。

幂律分布的度分布函数表示为P(k) ~ k^(-γ),其中γ 是幂律指数。

在复杂网络中,常见的拓扑结构有随机网络、小世界网络和无标度网络。

其中,随机网络指的是节点之间的链接是随机构成的,没有明显的规律。

小世界网络则是指节点之间存在一些局部联系,同时又存在跨越较远节点的长程联系。

最后,无标度网络是指只有少数节点拥有大量链接,而绝大多数节点只有极少的链接。

二、复杂网络的分析方法复杂网络的分析方法可以分为图论方法、统计物理方法和机器学习方法三类。

2.1 图论方法图论方法是指利用网络的基本拓扑结构进行分析。

其中,最基本的方法是度分布分析。

除此之外,还包括小世界性、聚集系数、路径长度等指标。

聚集系数表示网络中节点的密集程度,表示为节点的邻居之间已经连接的边条数除以节点的邻居总数。

在小世界网络中,节点之间存在较多的短路径,即只需要经过几个节点就可以相互联系。

小世界网络具有高聚集性和短路径特性。

2.2 统计物理方法统计物理方法是指利用物理学中的概念和方法对网络进行分析。

其中,最重要的方法是随机矩阵论和Percolation理论。

随机矩阵论是指研究大规模随机矩阵性质的一类数学理论。

复杂网络系统的基础和应用

复杂网络系统的基础和应用

复杂网络系统的基础和应用一、引言随着信息技术的发展,网络系统在社会经济领域中的应用越来越广泛。

复杂网络系统已经成为一个热门话题,它涉及计算机科学、物理学、生物学、社会学、经济学等多个领域。

在网络系统的建立和维护过程中,需要考虑到复杂网络系统的基础和应用,这对于我们建立高效、稳定的网络系统至关重要。

二、复杂网络系统的基础1.什么是复杂网络系统?复杂网络系统是指由大量的节点和链接组成的网络,在这个系统中,节点之间的联系构成了一个复杂的网络结构。

2.复杂网络系统的分类复杂网络系统可以按照不同的方式进行分类,例如:根据节点的属性,网络的拓扑结构或者是节点之间的联系分布等。

3.节点的度数分布节点的度数是指与某个节点相连的边数,度数分布是指网络中各个节点的度数占比。

4.网络的拓扑结构网络的拓扑结构可以分为完全图、随机图、小世界网络、无标度网络等不同类型。

这些类型的网络结构具有不同的特点,需要根据实际需求来选择合适的结构。

5.网络中的聚类系数和平均路径长度聚类系数和平均路径长度反映了网络中节点之间的联系密切程度和信息传递的效率。

6.网络的模型与算法网络模型和算法是构建复杂网络系统的关键部分,例如:Erdos-Renyi模型、Watts-Strogatz模型、Barabasi-Albert模型等多种模型,以及PageRank算法、社区发现算法等。

三、复杂网络系统的应用1.社交网络社交网络是最为广泛的应用之一,其涵盖了各个行业和领域。

社交网络系统需要考虑到用户之间的互动、信息传递及数据处理等。

2.金融网络金融网络系统涵盖金融市场、银行系统、保险及证券交易等各个方面。

在金融网络系统中需要考虑到对已经存在的网络进行监管和风险控制等方面的问题。

3.交通网络交通网络系统涵盖城市交通、物流、航空、铁路及船运等方面。

在交通网络系统中需要考虑到管理及优化不同交通方式之间的协调与有效性。

4.生态网络生态网络系统涵盖了水、空气及土壤污染、气候变化等方面,需要通过复杂网络系统来理解和解决这些问题。

复杂网络基础理论3

复杂网络基础理论3
3
3.1 引言
每一种网络系统都有其自身的特殊机制,有其自 身的演化机制,但由于都可以使用网络分析的方法进 行分析,所以也有其共性。 研究网络的集合性质、网络的形成机制、网络演 化的统计规律、网络上的模型性质以及网络的结构稳 定性,并把它与现实系统结合起来加以研究比较是复 杂网络研究的主要任务。
返回 目录
18


3.3.2 随机网络的度分布
Xk值的概率接近如下泊松分布 这样一来,度为k的节点数目Xk满足均值为λk的泊松分 布。上式意味着Xk的实际值和近似结果Xk=N· P(ki= k)并没有很大偏离,只是要求节点相互独立。这样, 随机图的度分布可近似为二项式分布
在N比较大的条件下,它可以被泊松分布取代
20
3.3.3 随机网络的直径和平均距离
对于大多数的p值,几乎所有的图都有同样的直径 。这就意味着连接概率为p的N阶随机图的直径的变化 幅度非常小,通常集中在
一些重要的性质:若<k>小于1,则图由孤立树 组成,且其直径等于树的直径。若<k>大于1,则图 中会出现连通子图。当<k>大于等于3.5时,图的直 径等于最大连通子图的直径且正比于ln(N)。若<k >大于等于ln(N),则几乎所有图是完全连通的,其 直径集中在ln(N)/ln(pN)左右。
1.概念 星形耦合网络,它有一个中心点,其余的N-1个 点都只与这个中心点连接,而彼此之间不连接,如下 图所示。
13
3.2.3 星型耦合网络
2.特性 中心节点的度为N-1,而其它节点的度均为1,所 以星型耦合网络的度分布可以描述为如下函数 星形网络的平均距离为L=2-2/N 。当N→∞, L→2。 假设定义一个节点只有一个邻居节点时,其集聚 系数为1,则中心节点的集聚系数为0,而其余N-1个 节点的集聚系数均为1,所以整个网络的平均集聚系数 为C=(N-1)/N 。当N →∞,C→1。 由此可见,星型耦合网络是比较特殊的一类网络 返回 目录 ,它具有稀疏性、集聚性和小世界特性。

复杂网络的基本统计特征理论知识

复杂网络的基本统计特征理论知识

复杂网络的基本统计特征理论知识复杂网络的基本统计特征理论知识2.1 路网拥挤核2.1.1路网拥挤核的定义路网的总体拥堵评估,用路网拥挤核这一指标来进行评估。

路网拥挤核为路段拥挤度居全网前k%且相互连通成为一个局部网络,并且不能忽略的是,该网络对于所研究区域整体的人口,经济,政策等与人类活动的因素有着不可忽视的作用,那么这个城市道路局部网络,称为路网拥挤核。

2.1.2路网拥挤核k 值的计算根据宁波市交通工程的实际情况,考虑到宁波市的经济社会发展水平以及交通需求水平,利用宁波市的GDP 增长率、国省道日均流量增长比以及汽车拥有量增长比这三个指标,运用以下公式:;(2.1)本文选择的研究对象为宁波市,所以这里K 值计算暂时只讨论宁波市的路网拥挤核;根据公式,结合你宁波近十年数据,计算可得k=17.7,而考虑到宁波市的经济总量和汽车拥有量较大,在经济总量足够大以及汽车拥有量趋于饱和后,它们的增长率和增长比的数值会有所下降,所以将k 值暂定为15,即路段拥挤度居全网前15%且相互连通成为一个局部网络,就称该局部网络为一个路网拥挤核。

2.2复杂网络的基本统计特征对于城市道路网络演化模型构建与评估必须对于复杂网络的一些基础知识进行必要的了解。

汽车拥有量增长比增长率国省道日均流量增长比??=GDP K2.2.1复杂网络的度与度分布度是对于复杂网络系统里面,最常用同时也是最简单的一种概念。

在一个复杂网络系统里面,具体的每个节点的度m i 是指与这个节点连接在一起的边的具体的数量,而如果给这个复杂网络系统加上方向,那么具体的度可以分为二种:出度和入度;前者指的是从选定的节点,沿着复杂网络系统的方向指向的其他节点的具体的边的数目,后者指的是从选定的节点,反着复杂网络系统的方向指向的其他节点的具体的边的数目。

复杂网络系统的度m i 平均值叫做,网络的平均度用符号表示。

对于有向的复杂网络系统,有如下公式m m m out in i +=;(2.2)其中,m in 表示选定的节点的入度;m out 表示选定的节点的出度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章复杂网络的基础知识2.1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。

如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。

如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。

图2-1 网络类型示例(a) 无权无向网络(b) 加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。

如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。

如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。

图2-2 规则网络示例(a) 一维有限规则网络(b) 二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length )、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。

2.2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。

定义网络的直径(diameter )为网络中任意两个节点之间距离的最大值。

即}{max ,ij ji l D = (2-1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值。

即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 为网络节点数,不考虑节点自身的距离。

网络的平均路径长度L 又称为特征路径长度(characteristic path length )。

网络的平均路径长度L 和直径D 主要用来衡量网络的传输效率。

2.2.2 簇系数(clustering efficient )假设网络中的一个节点i 有k i 条边将它与其它节点相连,这k i 个节点称为节点i 的邻居节点,在这k i 个邻居节点之间最多可能有k i (k i -1)/2条边。

节点i 的k i 个邻居节点之间实际存在的边数N i 和最多可能有的边数k i (k i -1)/2之比就定义为节点i 的簇系数,记为C i 。

即)1(2-=i i i i k k N C (2-3) 整个网络的聚类系数定义为网络中所有节点i 的聚类系数C i 的平均值,记为C 。

即∑==Ni iC N C 11 (2-4) 显然,0 ≤ C ≤ 1之间。

当C =0时,说明网络中所有节点均为孤立节点,即没有任何连边。

当C =1时,说明网络中任意两个节点都直接相连,即网络是全局耦合网络。

2.2.3 度分布(degree distribution )网络中某个节点i 的度k i 定义为与该节点相连接的其它节点的数目,也就是该节点的邻居数。

通常情况下,网络中不同节点的度并不相同,所有节点i 的度k i 的的平均值称为网络的(节点)平均度,记为<k >。

即∑==〉〈N i i kN k 11 (2-5)网络中节点的分布情况一般用度分布函数P (k )来描述。

度分布函数P (k )表示在网络中任意选取一节点,该节点的度恰好为k 的概率。

即∑=-=Ni ik k N k P 1)(1)(δ (2-6) 通常,一个节点的度越大,意味着这个节点属于网络中的关键节点,在某种意义上也越“重要”。

2.2.4 介数(betweenness )节点i 的介数定义为网络中所有的最短路径中,经过节点i 的数量。

用B i 表示。

即n m i n m,g g B n m n m n i m i ≠≠=∑ ,, (2-7)式中g mn 为节点m 与节点n 之间的最短路径数,g min 为节点m 与节点n 之间经过节点i的最短路径数。

节点的介数反映了该节点在网络中的影响力。

描述网络结构的特征量还有很多,这里就不一一介绍,在使用到它们的地方再给出详细的说明。

2.3 复杂网络的基本模型人们在对不同领域内的大量实际网络进行广泛的实证研究后发现:真实网络系统往往表现出小世界特性、无标度特性和高聚集特性。

为了解释这些现象,人们构造了各种各样的网络模型,以便从理论上揭示网络行为与网络结构之间的关系,进而考虑改善网络的行为。

下面介绍几类基本的网络模型。

2.3.1 规则网络(regular network)常见的规则网络有三种:全局耦合网络(globally coupled network)、最近邻耦合网络(nearest-neighbor coupled network)和星型网络模型(star coupled network),如图2-3所示。

图2-3 三种典型的规则网络(a) 全局耦合网络(b) 最近邻耦合网络(c) 星型网络图2-3(a)所示为一个含有N个节点的全局耦合网络。

网络中共有N(N-1)/2条边,其平均路径长度L=1(最小),簇系数C=1(最大)。

度分布P(k)为以N-1为中心的δ函数。

模型的优点:能反映实际网络的小世界特性和大聚类特性。

模型的缺点:不能反映实际网络的稀疏特性。

因为一个具有N个节点的全局耦合网络的边的数目为O (N 2),而实际网络的边的数目一般是O (N )。

图2-3(b )所示为一个含有N 个节点的最近邻耦合网络。

网络中的每个节点只和它周围的邻居节点相连,其中每个节点都与它左右各K /2个邻居节点相连(K 为偶数)。

对于固定的K 值,网络的平均路径长度为:)(2∞→∞→≈N K N L (2-8) 对于较大的K 值,最近邻耦合网络的簇系数为:43)1(4)2(3≈--=K K C (2-9) 度分布P (k )为以K 为中心的δ函数。

模型的优点:能反映实际网络的大聚类特性和稀疏特性。

模型的缺点:不能反映实际网络的小世界特性。

图2-3(c )所示为一个具有N 个节点的星型网络。

网络有一个中心节点,其余N -1个节点都只与这个中心节点相连,且它们彼此之间不连接。

网络的平均路径长度:)(2)1()1(22∞→→---=N N N N L (2-10) 网络的簇系数为:)(11∞→→-=N NN C (2-11) 网络的度分布为:⎪⎪⎩⎪⎪⎨⎧-==-=其它 0)1()1(1)(11N K K K P N N (2-12) 规定:如果一个节点只有一个邻居,那么该节点的簇系数为1。

也有些文献规定只有一个邻居的节点的簇系数为0,若依此定义,则星型网络的簇系数为0。

模型的优点:能反映实际网络的小世界特性和稀疏特性。

模型的缺点:不能反映实际网络的大聚类特性。

2.3.2 ER 随机网络(random network )该模型由匈牙利数学家Ed ös 和Rényi 在上世纪50年代最先提出,所以被人们称为ER 随机网络模型。

ER 随机网络的构造有两种方法。

第一种方法:定义有标记的N 个节(网络中的节点总数),并且给出整个网络的边数n ,这些边的选取采用从所有可能的N (N -1)/2种情况中随机选取。

第二种方法:给定有标记的N 个节点,以一定的随机概率p 连接所有可能出现的N (N -1)/2种连接,假设最初有N 个孤立的节点,每对节点以随机概率p 进行连接。

如图2-4所示。

图2-4 ER 随机网络的演化示意图(a )p =0时,给定10个孤立节点;(b )~(c )p =0.1,0.15时,生成的随机图 ER 随机网络模型具有如下基本特性:(1)涌现或相变如果当N →∞时产生一个具有性质Q 的ER 随机图的概率为1,那么几乎每一个ER 随机图都具有性质Q 。

以连通性为例,若当连接概率p 达到某个临界值p c ∝(ln N )/N 时,整个网络连通起来,那么以概率p 生成的每一个网络几乎都是连通的,否则,当p 小于该临界值时,几乎每一个网络都是非连通的。

(2)度分布对于一个给定连接概率为p 的随机网络,若网络的节点数N 充分大,则网络的度分布接近泊松(Poission )分布,如图2-5所示。

〉〈----〉〈≈-=k k k N k k N e k k p p C k P !)1()(11 (2-13) 式中<k >=p (N -1)≈PN 表示ER 随机网络的平均度。

图2-5 ER 随机网络的度分布(取自文献[ ])(3)平均路径长度假定网络的平均路径长度为L ,从网络的一端走到网络的另一端,总步数大概为L 。

由于ER 随机网络的平均度为﹤k ﹥,对于任意一个节点,其一阶邻居的数目为﹤k ﹥,二阶邻居的数目为﹤k ﹥2,以此类推,当经过L 步后遍历了网络的所有节点,因此对于规模为N 的随机网络,有﹤k ﹥L =N 。

由此可以得到网络的平均路径长度为:〉〈==k N pN N L ln ln )ln(ln (2-14)由于ln N 的值随N 增长较慢,所以规模很大的ER 随机网络具有很小的平均路径长度,如图2-6所示。

图2-6 ER 随机网络的平均路径长度与网络规模的关系(取自文献[ ])(4)簇系数在ER 随机网络中,由于任何两个节点之间的连接概率p 都相等,所以ER 随机网络的聚类系数为:Nk p C 〉〈== (2-15) 可见,当网络规模N 固定时,簇系数随着网络节点平均度<k >的增加而增加,如图2-7所示。

当网络节点平均度<k >固定时,簇系数随着网络规模N 的增加而下降,如图2-8和所示。

显然,当N 较大时,ER 随机网络的簇系数很小。

图2-7 (N=104)ER随机网络的簇系数与连接概率的关系(取自文献[ ])图2-8 (p=0.0015)ER随机网络的簇系数与网络规模的关系(取自文献[ ])模型的优点:能反映实际网络的小世界特性。

模型的缺点:不能反映实际网络的大聚类特性。

2.3.3 小世界网络(small-world network)作为从完全规则网络向完全随机网络的过渡,美国学者Watts和Strogatz于1998年设计了一个具有小的平均路径长度和大的聚类系数的小世界网络模型(small-world network),简称WS小世界网络模型。

WS小世界网络模型的构造算法:(1)从规则网络开始:考虑一个含有N个节点的最近邻耦合网络,它们围成一个环,其中每一个节点都与它左右相邻的各K/2个节点相连,K是偶数。

相关文档
最新文档