人教备战中考数学压轴题专题旋转的经典综合题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、旋转真题与模拟题分类汇编(难题易错题)
1.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数;
(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.
【答案】(1)①详见解析;②60°.(2)IH=3FH;(3)EG2=AG2+CE2.
【解析】
【分析】
(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.
(2)IH=3FH.只要证明△IJF是等边三角形即可.
(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
∵四边形ABCD是矩形,
∴AD∥BC,OB=OD,
∴∠EDO=∠FBO,
在△DOE和△BOF中,
EDO FBO OD OB
EOD BOF ∠∠⎧⎪⎨⎪∠∠⎩
=== , ∴△DOE ≌△BOF ,
∴EO =OF ,∵OB =OD ,
∴四边形EBFD 是平行四边形,
∵EF ⊥BD ,OB =OD ,
∴EB =ED ,
∴四边形EBFD 是菱形.
②∵BE 平分∠ABD ,
∴∠ABE =∠EBD ,
∵EB =ED ,
∴∠EBD =∠EDB ,
∴∠ABD =2∠ADB ,
∵∠ABD +∠ADB =90°,
∴∠ADB =30°,∠ABD =60°,
∴∠ABE =∠EBO =∠OBF =30°,
∴∠EBF =60°.
(2)结论:IH
=3FH .
理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .
∵四边形EBFD 是菱形,∠B =60°,
∴EB =BF =ED ,DE ∥BF ,
∴∠JDH =∠FGH ,
在△DHJ 和△GHF 中,
DHG GHF DH GH
JDH FGH ∠∠⎧⎪⎨⎪∠∠⎩
=== , ∴△DHJ ≌△GHF ,
∴DJ =FG ,JH =HF ,
∴EJ =BG =EM =BI ,
∴BE =IM =BF ,
∵∠MEJ =∠B =60°,
∴△MEJ 是等边三角形,
∴MJ =EM =NI ,∠M =∠B =60°
在△BIF 和△MJI 中,
BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩
===,
∴△BIF ≌△MJI ,
∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,
∴IH ⊥JF ,
∵∠BFI +∠BIF =120°,
∴∠MIJ +∠BIF =120°,
∴∠JIF =60°,
∴△JIF 是等边三角形,
在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,
∴∠FIH =30°,
∴IH
=3FH .
(3)结论:EG 2=AG 2+CE 2.
理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,
∵∠FAD +∠DEF =90°,
∴AFED 四点共圆,
∴∠EDF =∠DAE =45°,∠ADC =90°,
∴∠ADF +∠EDC =45°,
∵∠ADF =∠CDM ,
∴∠CDM +∠CDE =45°=∠EDG ,
在△DEM 和△DEG 中,
DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩
=== , ∴△DEG ≌△DEM ,
∴GE =EM ,
∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,
∴∠ECM =90°
∴EC 2+CM 2=EM 2,
∵EG =EM ,AG =CM ,
∴GE 2=AG 2+CE 2.
【点睛】
考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.
2.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为
(4,m)(5≤m≤7),反比例函数y=16
x
(x>0)的图象交边AB于点D.
(1)用m的代数式表示BD的长;
(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD
①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;
②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.
【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5
【解析】
【分析】
(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;
(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣1
2
(m﹣8)2+24,即可
得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】
解:(1)∵四边形OABC是矩形,
∴AB⊥x轴上,
∵点B(4,m),
∴点D的横坐标为4,
∵点D在反比例函数y=16
x
上,
∴D(4,4),
∴BD=m﹣4;
(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),
∴S矩形OABC=4m,
由(1)知,D(4,4),
∴S△PBD=1
2(m﹣4)(m﹣4)=
1
2
(m﹣4)2,
∴S=S矩形OABC﹣S△PBD=4m﹣1
2(m﹣4)2=﹣
1
2
(m﹣8)2+24,
∴抛物线的对称轴为m=8,
∵a<0,5≤m≤7,
∴m=7时,S取到最大值;
②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,
∴∠DGP=∠PFE=90°,
∴∠DPG+∠PDG=90°,
由旋转知,PD=PE,∠DPE=90°,
∴∠DPG+∠EPF=90°,
∴∠PDG=∠EPF,
∴△PDG≌△EPF(AAS),
∴DG=PF,
∵DG=AF=m﹣4,
∴P(m,m﹣4),
∵点P在反比例函数y=16
x
,
∴m(m﹣4)=16,
∴m=2+25或m=2﹣25(舍).
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.
3.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将
点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y 轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.
(Ⅰ)当t=2时,求点M的坐标;
(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;
(Ⅲ)当t为何值时,BC+CA取得最小值.
【答案】(1)(1,2);(2)S=3
2
t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值
【解析】
试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;
(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=1
2
t,
AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;
(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.
试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M
是AB的中点,∴G是AO的中点,∴OG=1
2
OA=1,MG是△AOB的中位线,
∴MG=1
2OB=
1
2
×4=2,∴M(1,2);
(II)如图1,同理得:OG=AG=1
2
t.∵∠BAC=90°,
∴∠BAO+∠CAF=90°.∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF.∵∠MGA=∠AFC=90°,
MA=AC,∴△AMG≌△CAF,∴AG=CF=1
2
t,AF=MG=2,∴EC=4﹣
1
2
t,BE=OF=t+2,
∴S△BCE=1
2EC•BE=
1
2
(4﹣
1
2
t)(t+2)=﹣
1
4
t2+
3
2
t+4;
S△ABC=1
2
•AB•AC=
1
2
2
16t+2
1
16
2
t+
1
4
t2+4,∴S=S△BEC+S△ABC=
3
2
t+8.
当A 与O 重合,C 与F 重合,如图2,此时t =0,当C 与E 重合时,如图3,AG =EF ,即 12t =4,t =8,∴S 与t 之间的函数关系式为:S =32
t +8(0≤t ≤8); (III )如图1,易得△ABO ∽△CAF ,∴
AB AC =OB AF =OA FC =2,∴AF =2,CF =12t ,由勾股定理得:AC =22AF CF +=22122t +()=2144
t +,BC =22BE EC +=221242t t ++-
()()=21544t +(),∴BC +AC =( 5+1)2144
t +,∴当t =0时,BC +AC 有最小值.
点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.
4. 如图1,在Rt △ABC 中,∠ACB=90°,E 是边AC 上任意一点(点E 与点A ,C 不重合),以CE 为一直角边作Rt △ECD ,∠ECD=90°,连接BE ,AD .
(1)若CA=CB ,CE=CD
①猜想线段BE ,AD 之间的数量关系及所在直线的位置关系,直接写出结论; ②现将图1中的Rt △ECD 绕着点C 顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;
(2)若CA=8,CB=6,CE=3,CD=4,Rt △ECD 绕着点C 顺时针转锐角α,如图3,连接BD ,AE ,计算的值.
【答案】(1)①BE=AD,BE⊥AD;②见解析;(2)125.
【解析】
试题分析:根据三角形全等的判定与性质得出BE=AD,BE⊥AD;设BE与AC的交点为点F,BE与AD的交点为点G,根据∠ACB=∠ECD=90°得出∠ACD=∠BCE,然后结合AC=BC,CD=CE得出△ACD≌△BCE,则AD=BE,∠CAD=∠CBF,根据∠BFC=∠AFG,
∠BFC+∠CBE=90°得出∠AFG+∠CAD=90°,从而说明垂直;首先根据题意得出
△ACD∽△BCE,然后说明∠AGE=∠BGD=90°,最后根据直角三角形的勾股定理将所求的线段转化成已知的线段得出答案.
试题解析:(1)①解:BE=AD,BE⊥AD
②BE=AD,BE⊥AD仍然成立
证明:设BE与AC的交点为点F,BE与AD的交点为点G,如图1.
∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=BC CD=CE ∴△ACD≌△BCE
∴AD=BE ∠CAD=∠CBF ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°
∴∠AGF=90°∴BE⊥AD
(2)证明:设BE与AC的交点为点F,BE的延长线与AD的交点为点G,如图2.
∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=8,BC=6,CE=3,CD=4 ∴△ACD∽△BCE
∴∠CAD=∠CBE ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°
∴∠AGF=90°∴BE⊥AD ∴∠AGE=∠BGD=90°
∴,.∴.∵,,
∴
考点:三角形全等与相似、勾股定理.
5.如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结EO 并延长交BC的延长线于点F,则有S四边形EBCD=S△EBF.
(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.
(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,
0)、(6,3)、(,)、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.
【答案】(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小;(2)10.【解析】
试题分析:(1)当直线旋转到点P是MN的中点时S△MON最小,过点M作MG∥OB交EF 于G.由全等三角形的性质可以得出结论;
(2)①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N,由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大,S =S△OAD-S△MND.
四边形OANM
②如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,利用S
=S△OCT-S△MN T,进而得出答案.
四边形OCMN
试题解析:(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小.
如图2,过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,
可以得出当P是MN的中点时S四边形MOFG=S△MON.
∵S四边形MOFG<S△EOF,∴S△MON<S△EOF.
∴当点P是MN的中点时S△MON最小.
(2)分两种情况:
①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N.
延长OC、AB交于点D,易知AD = 6,S△OAD=18 .
由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大.
过点P、M分别作PP1⊥OA,MM1⊥OA,垂足分别为P1、M1.
由题意得M1P1=P1A = 2,从而OM1=MM1= 2.又P(4,2),B(6,3)
∴P1A=M1P1="O" M1=P1P=2,M1M=OM=2,可证四边形MM1P1P是正方形.
∴MN∥OA,∠MND=90°,NM=4,DN=4.求得S△MND=8.
∴.
② 如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N.
延长CB交x轴于T点,由B、C的坐标可得直线BC对应的函数关系式为 y =-x+9 .
则T点的坐标为(9,0).
∴S△OCT=×9×=.
由(1)的结论知:当PM=PN时,△MNT的面积最小,此时四边形OCMN的面积最大.
过点P、M点分别作PP1⊥OA,MM1⊥OA,垂足为P1,M1.
从而 NP1=P1M1,MM1=2PP1=4.
∴点M的横坐标为5,点P(4、2),P1M1= NP1= 1,TN =6.
∴S△MNT=×6×4=12,S四边形OCMN=S△OCT-S△MNT =-12=<10.
综上所述:截得四边形面积的最大值为10.
考点:1.线动旋转问题;2.正方形的判定和性质;3.图形面积求法;4.分类思想的应用.
6.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.
(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长;
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
【答案】(1)①②详见解析;③3﹣4;(2)13.
【解析】
试题分析:(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由
∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.
试题解析:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,
∴AB=AD,∠BAD=60°,
∴△ABD是等边三角形;
②由①得△ABD是等边三角形,
∴AB=BD,
∵△ABC绕点A顺时针方向旋转60°得到△ADE,
∴AC=AE,BC=DE,
又∵AC=BC,
∴EA=ED,
∴点B、E在AD的中垂线上,
∴BE是AD的中垂线,
∵点F在BE的延长线上,
∴BF⊥AD, AF=DF;
③由②知BF⊥AD,AF=DF,
∴AF=DF=3,
∵AE=AC=5,
∴EF=4,
∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,
∴BE=BF﹣EF=3﹣4;
(2)如图所示,
∵∠DAG=∠ACB,∠DAE=∠BAC,
∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,
又∵∠DAG+∠DAE+∠BAE=180°,
∴∠BAE=∠ABC,
∵AC=BC=AE,
∴∠BAC=∠ABC,
∴∠BAE=∠BAC,
∴AB⊥CE,且CH=HE=CE,
∵AC=BC,
∴AH=BH=AB=3,
则CE=2CH=8,BE=5,
∴BE+CE=13.
考点:三角形综合题.
7.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.
(1)求证:AC垂直平分EF;
(2)试判断△PDQ的形状,并加以证明;
(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.
【解析】
试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,
∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;
(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;
(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.
试题解析:(1)证明:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,
∵BE=DF,
∴CE=CF,
∴AC垂直平分EF;
(2)解:△PDQ是等腰直角三角形;理由如下:
∵点P是AF的中点,∠ADF=90°,
∴PD=AF=PA,
∴∠DAP=∠ADP,
∵AC垂直平分EF,
∴∠AQF=90°,
∴PQ=AF=PA,
∴∠PAQ=∠AQP,PD=PQ,
∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,
∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,
∴△PDQ是等腰直角三角形;
(3)成立;理由如下:
∵点P是AF的中点,∠ADF=90°,
∴PD=AF=PA,
∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,
∴CE=CF,∠FCQ=∠ECQ,
∴CQ⊥EF,∠AQF=90°,
∴PQ=AF=AP=PF,
∴PD=PQ=AP=PF,
∴点A 、F 、Q 、P 四点共圆,
∴∠DPQ=2∠DAQ=90°,
∴△PDQ 是等腰直角三角形.
考点:四边形综合题.
8.(1)发现
如图,点A 为线段BC 外一动点,且BC a =,AB b =.
填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)
(2)应用
点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .
①找出图中与BE 相等的线段,并说明理由;
②直接写出线段BE 长的最大值.
(3)拓展
如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.
【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)
【解析】
【分析】
(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出
△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;
(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为
22+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.
【详解】
解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,
∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ;
(2)①CD=BE ,
理由:∵△ABD 与△ACE 是等边三角形,
∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC ,
即∠CAD=∠EAB ,
在△CAD 与△EAB 中,
AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩
=== , ∴△CAD ≌△EAB ,
∴CD=BE ;
②∵线段BE 长的最大值=线段CD 的最大值,
由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,
∴最大值为BD+BC=AB+BC=4;
(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,
则△APN 是等腰直角三角形,
∴PN=PA=2,BN=AM ,
∵A 的坐标为(2,0),点B 的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM 长的最大值=线段BN 长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值,
最大值=AB+AN,
∵AN=2AP=22,
∴最大值为22+3;
如图2,过P作PE⊥x轴于E,
∵△APN是等腰直角三角形,
∴PE=AE=2,
∴OE=BO-AB-AE=5-3-2=2-2,
∴P(2-2,2).
【点睛】
考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.
9.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.
(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;
(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)
【答案】(1)∠BOC=70°;(2)存在,t=2,t=8或32;(3)1
2
或
37
2
.
【解析】【分析】
(1)由图可知∠BOC=∠AOB﹣∠AOC,∠AOC可利用角平分线及平角的定义求出.
(2)分OA平分∠COD,OC平分∠AOD,OD平分∠AOC三种情况分别进行讨论,建立关于t的方程,解方程即可.
(3)分别用含t的代数式表示出∠COD和∠BOD,再根据OC平分∠BOD建立方程解方程即可,注意分情况讨论.
【详解】
(1)解:∵∠COE=140°,
∴∠COD=180°﹣∠COE=40°,
又∵OA平分∠COD,
∴∠AOC=1
2
∠COD=20°,
∵∠AOB=90°,
∴∠BOC=90°﹣∠AOC=70°;
(2)存在
①当OA平分∠COD时,∠AOD=∠AOC,即10°t=20°,解得:t=2;
②当OC平分∠AOD时,∠AOC=∠DOC,即10°t﹣40°=40°,解得:t=8;
③当OD平分∠AOC时,∠AOD=∠COD,即360°﹣10°t=40°,解得:t=32;
综上所述:t=2,t=8或32;
(3)1
2
或
37
2
,理由如下:
设运动时间为t,则有
①当90+10t=2(40+15t)时,t=1 2
②当270﹣10t=2(320﹣15t)时,t=37 2
所以t的值为1
2
或
37
2
.
【点睛】
本题主要考查角平分线的定义以及图形的旋转,根据题意,找到两个角之间的等量关系建立方程并分情况讨论是解题的关键.
10.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.
【答案】(1)BE=DF;(2)四边形BC1DA是菱形.
【解析】
【分析】
(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,
∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF
(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,
∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.
【详解】
(1)解:BE=DF.理由如下:
∵AB=BC,
∴∠A=∠C,
∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,
∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,
在△ABE和△C1BF中
,
∴△ABE≌△C1BF,
∴BE=BF
(2)解:四边形BC1DA是菱形.理由如下:
∵AB=BC=2,∠ABC=120°,
∴∠A=∠C=30°,
∴∠A1=∠C1=30°,
∵∠ABA1=∠CBC1=30°,
∴∠ABA1=∠A1,∠CBC1=∠C,
∴A1C1∥AB,AC∥BC1,
∴四边形BC1DA是平行四边形.
又∵AB=BC1,
∴四边形BC1DA是菱形
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.。