LNG管路水击压力的Volterra级数滤波预测
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间的演化规律 F ( ・) , 通过系统演化规律进行 预测分析 , 即有
) = F ( x ( t) , x ( t +τ ), x(t +2 τ) , x ( T + t′
…, x [ t + ( m - 1 )τ]
( 2)
其中 , T = t + ( m - 1 ) τ , t′ 是前向时间步长 。 实践中 , 大量的非线性系统都可用 Volterra 级数描 述 。而相空间重构确定了级数滤波器的时间延迟及 具体阶数 。因此 , 可在相空间重构的基础上对水击 压力进行 Volterra 级数滤波预测 。
结论1螺杆转子对双螺杆泵系统的性能影响十分重要因此在转子的设计过程中需要详细分析压缩流体对螺杆的作用力选择合适的转子型线以减少输送过程中的回流现象并对螺杆转子及相关壳体部分的表面硬度与配合间隙作出合理的设计要般可取36个每个密封腔室的增压能力约为05mpa
— 26 —
石 油 机 械ຫໍສະໝຸດ 报 , 2002, 51 ( 11 ) : 2 452 ~2 458
3 王 妍, 徐 伟 , 曲继圣 1基于时间序列的相空间重构
算法及验证 (一 ) 1 山东大学学报 (工学版 ) , 2005,
35 ( 4 ) : 109 ~114 4 Kugium tzis D 1 State space reconstruction parameters in the a2 nalysis of chaotic tim e series - the role of the tim e w indow length1 Physica D , 1996, 95: 13 ~28 5 Kim 1 H S, Eykholt R , Salas J D 1Nonlinear dynam ics, de2 lay tim es, and embedding w indow s1 Physica D , 1999, 127: 48 ~60
i = 1
6
m
h1, i X ( n, i)
×
h2, 0 + h3, 0 +
m =1
6
m
h2, j X ( n, j) h3, k X ( n, k )
×
( 6)
m =1
6
m
分解之后 , 滤波器系数个数变为 3m + 3, 且展 开式具有同式 ( 5 ) 类似的形式 。另外 , 笔者采用
图 2 倾角 θ = 0 时水击压力预测与误差分析
时间 /
s 0 01312 01625 01938 11251 11564
压力 /
MPa 11000 11085 11055 11166 11232 11209
时间 /
s 11876 21189 21502 21184 31127 31440
压力 /
MPa 11356 11395 11394 11572 11577 11615
— 28 —
石 油 机 械
2006 年 第 34 卷 第 10 期
图 5 工况 Ⅱ 的水击压力变化过程
结 论
( 1 ) 利用相空间重构理论 , 只需很少的训练
图 3 倾角 θ = - 1143 ° 时水击压力预测与误差分析
21LNG管路水击压力的预测 LNG卸船管线是典型的泵 2 阀 压力管路 。当流
) = C (τ
根据 Takens定理 , 一维观测值构成的相空间 和系统原始状态变量的动力学行为等价 。在延迟坐 标下 , 重构相空间得到时间序列的时间延迟和嵌入 维数后 , 即可从一维时间序列中还原系统相空间的
3 国家自然科学基金资助项目 , 项目编号 : 50474034。
1
n -τ
×
2006 年 第 34 卷 第 10 期
n =τ
王海蓉等 : LNG管路水击压力的 Volterra级数滤波预测
— 27 —
i = 1
6
) - μ] [ x ( i) - μ] [ x ( ( i +τ
σ2
( 3)
改进的非线性归一化 LM S 自适应算法以实现快速 收敛 。滤波器结构如图 1。
μ— 式中 — — 时间序列的均值 ; σ— — — 时间序列的标准偏差 。 式 ( 3 ) 决定了 C (τ) 关于 τ的函数 , 当 C (τ ) 等于零或为初值的 ( 1 - 1 / e ) 倍时 , 对应的 时间即为时间延迟 。 ② 最小嵌入维数 : 给定相点的邻近点被映射到 重构相空间中时 , 应仍然被映射为重构相空间的邻 域 。如果嵌入维数过小 , 则拓扑结构不能保持 , 使 得给定相点的邻近点映射成为 m 维空间中别的点 的邻近点 , 这些被称为虚假邻点 。虚假邻点条件 [ 5, 6 ] 为
确预测水击的发生和压力值 。
m = 0m = 0m = 0
6 6 6
+∞
+∞
+∞
h3 ( m 1 , m 2 , m 3 ) × ( 5)
x ( n - m1 ) x ( n - m2 ) x ( n - m3 )
其中 , h0 、 h1 ( m 1 ) 、 h2 ( m 1 , m 2 ) 、 h3 ( m 1 , m 2 , m 3 ) 为
( t) ,系统的三阶 Volterra 级数展开式为 x ( n + 1) = F [ x ( n) ] = h0 +
[ 7, 8 ]
m =0
6
+∞
h1 ( m 1 ) x ( n - m ) +
m = 0m = 0
6 6
+∞
+∞
h2 ( m 1 , m 2 ) ×
x ( n - m1 ) x ( n - m2 ) +
21Volterra 级数滤波器 ( 1 ) 特征量的计算 特征量计算包括时间延
滤波器模型选定及实现结构
11 滤波器模型的选定
迟和最小嵌入维数 。 ① 自相关函数选取时间延迟 : 首先 , 选取压力 序列的维数和时间延迟 。如果 τ选取的太小 , 相空 间会存在冗余 。反之 τ 选取的太大 , 相空间会失去 必要的系统信息 。采用自相关函数确定时间延迟 :
Volterra级数核 。若直接用此式作为滤波器 , 则滤 2 3 波器系数总数为 1 + m + m + m 。随着记忆单元 m 的增大 , 滤波器系数的个数将按幂次数快速增加 。 因此 , 用带常数项的乘积耦合方式来实现非线性逼 [7] 近以减少滤波器个数 。分解并定义滤波器 :
y ( n) = h1, 0 +
CH I NA PETROLEUM MACH I N ERY
2006 年 第 34 卷 第 10 期
! 设计计算 #
LNG管路水击压力的 Volterra级数滤波预测
王海蓉 马晓茜
(华南理工大学电力学院 )
3
摘要 液化天然气管路水击的发生是一个有初始扰动参与的 、时变的过程 , 过程中管路系统 的沿程压力变化具有高度的非线性 。采用自相关函数法和虚假邻点法选取嵌入维数和时间延迟 , 在延迟坐标下重构压力时间序列的状态坐标 , 并运用 Volterra 级数滤波器对水击实验压力进行了 预测 。计算表明 , 基于时间序列的预测技术能准确预测水击的发生和压力变化值 。最后 , 运用上 述方法 , 对 LNG管输系统的水击过程中压力变化进行了预测分析 。 关键词 液化天然气管路 压力预测 相空间重构 Volterra滤波器 结构
0137 0142 143 130 4016 3410 10 10 016 016 1 052 1 159
样本就能还原非线性系统的特性及演化趋势 。 ( 2 ) 采用乘积耦合方式克服了 Volterra 滤波器 结构复杂和计算量大的缺点 , 有利于混沌系统的实 时预测 。同时 , 三阶 Volterra 自适应滤波器具有很 强的非线性逼近能力 , 预测精度高 。 ( 3 ) 虽然对于不同的混沌时间序列 , 可以选 择适当的数学模型并采用不同的预测方法 , 但 Vol2 terra 自适应滤波器的一个特点是便于硬件实现 。 而且 , 可以利用动力系统早期的实际监控数据实现 水击压力的短期预测 。 ( 4 ) LNG管输系统存在水击现象 。当流量突 变为零时 , 管路压力急剧增加 , 并超过设计的安全 压力 。根据美国 《液化天然气生产 、储存和处理 标准 》NFPA59, 日常装卸必须实行现场监测 , 避 免水击和其他不稳定情况的发生 。因此 , Volterra 级数滤波预测为 LNG安全控制提供了新的方法 。
Volterra自适应滤波器具有很强的预测精度 , 能准
[9]
( 4)
其中 , δ 为预先设定值 。嵌入维数取 m 时相空 m m 间中的相点矢量及邻点分别为 X i 和 X j 。当嵌入维 数从 m 增 加 到 m + 1 时 , 相 应 矢 量 相 点 分 别 为 X i + mτ和 X j + mτ。对相空间中的所有相点进行虚假邻 点判断 。当虚假邻点占相点数目的比例趋向于零 时 , m 值为重构相空间的最小嵌入维数 。 ( 2 ) 实现结构 x ( n ) 对应于 N 个数据信号 X
[ 2 ~4 ]
:
T …, x ( t + ( m - 1 )τ]
引 言
液化天然气 ( LNG ) 的运输不仅依赖于 LNG 槽车 、船 , 还需要一定的管路系统 。例如将船上的 LNG泵入岸上储槽的卸料管路 , 从储槽到汽化器 的管路等 。这些管路阀门启闭频繁 , 液体流速和动 量急剧变化 , 严重时会发生水击现象 。日常卸车操 作中的常见事故就是急冷和水击 。水击现象会使管 路破裂 , 造成泄漏或爆炸 , 严重危害人员安全和设 施的正常运行 。因此 , LNG 管路压力的监视和预 测必须引起工程人员的足够重视 。 基于时间序列的预测是处理这类问题的有效手 段 。利用 Takens定理 , 对管内压力时间序列进行 相空间重构 , 在拓扑变换的意义下恢复系统原有的 [1] 动力学特性 , 可以对系统的发展趋势作出预测 。 基于上述理论 , 笔者提出一种利用动力系统实际监 控数据进行压力预测的方法 。
X i+mτ - X j+mτ x
m i
图 1 三阶 Volterra滤波器的设计结构
LNG管路水击压力的预测
11 水击实验压力预测与校验
- x
m j
>δ
为了验证滤波器特性 , 先采用前人实验中的压 力数据用于分析 。实验 在简单管道中进行 , 管 道内径为 D = 100 mm , 壁厚 δ = 7 mm , 长 L = θ = 0、 θ= 24147 m 。管道倾角 θ , 对于 θ = - 1143 ° 、 + 1129 ° ,初始时刻保持管道内为恒定流 , 然后迅速 关闭阀门 , 数据采集仪通过应变仪将压力传感器和 位移计量测到的水击压力记录于计算机中 。取其中 1 /4 的数据作为准备数据 , 3 /4 的数据作为校核数 据 , 对水击压力进行预测 。两组数据的水击压力预 测值和误差分析见图 2, 3。 上述水击压力预测与实验结果的对比表明 : 除 个别点外 , 预测绝对误差小于 0105。因此 , 三阶
参 考 文 献
1 钱镜林 , 李富强 , 陈 斌等 1基于自组织法求解的 Vol2 terra滤波 器 应 用 于 洪 水 预 报 1 浙 江 大 学 学 报 (工 学
采用 LNG管路的仿真实验数据作为时间序列 , 工况 I的部分压力数据如表 2 所示 。
表 2 工况 Ⅰ 的仿真实验中管路压力变化情况
时间 /
s 31753 41065 41378 41691 51003 51316
压力 /
MPa 11812 11785 11879 21078 21025 21189
版 ) , 2005, 39 ( 1 ) : 160 ~164
2 杨绍清 , 贾传荧 1两种实用的相空间重构方法 1 物理学
经过计算 2 组序列的嵌入维数和时间延迟均为 3 和 1。其压力变化过程预测如图 4 和 5。
), x(t +2 τ) , X ( t) = [ x ( t) , x ( t +τ ( 1)
其中 , X ( t) 表示 t时刻系统的动力学状态 ; τ 为时间延迟 ; m 为嵌入空间维数 。对于具有 N 个 数据点的信号 x ( t) , 在 m 维相空间中重构成 M =
N (m - 1 ) τ 个状态点 。状态点构成系统状态随
速突然变为零时 , 选取 2 装卸管路作为对象 , 研究 其压力变化过程 。管路的工况条件见表 1。
表 1 LNG管路工况条件
密度 / 工 管内温 管径 / 流速 / 管内压 水击波波 况 ( kg・m - 3 ) 度 / K cm (m ・ s - 1 ) 力 /MPa 速 / (m ・ s - 1 ) Ⅰ Ⅱ