仪器分析[第十章原子吸收光谱分析法]山东大学期末考试知识点复习
仪器分析-光谱分析法概论(第十章)
三个主要过程:(1)能源提供能量;(2)能量与被测物
质相互作用;(3)产生被检测信号。
第一节
电磁辐射及其物质的相互作用
一、电磁辐射和电磁波谱
1. 波动性(干涉、衍射、反射和折射) 用波长(nm)、波数(cm-1)和频率(Hz)表示。 =c/ = 1 / = /c
波长是在波的传播路线上具有相同振动相位的相邻两点间的线性距
光学分析法光谱分析法非光谱分析法原子光谱分析法分子光谱分析法原子吸收光谱原子发射光谱原子荧光光谱x射线荧光光谱折射法圆二色性法x射线衍射法干涉法旋光法紫外光谱法红外光谱法分子荧光光谱法分子磷光光谱法核磁共振波谱法光谱分析法吸收光谱法发射光谱法原子光谱法分子光谱法原子发射原子吸收原子荧光x射线荧光原子吸收紫外可见红外可见核磁共振紫外可见红外可见分子荧光分子磷光核磁共振化学发光原子发射原子荧光分子荧光分子磷光x射线荧光化学发光第三节光谱分析仪器光学分析法三个基本过程
原 子 发 射
原 子 吸 收
原 子 荧 光
X 射 线 荧 光
紫 外 可 见
红 外 可 见
分 子 荧 光
分 子 磷 光
核 磁 共 振
化 学 发 光
原子光谱法 光谱分析法 吸收光谱法 原 子 吸 收 紫 外 可 见 红 外 可 见 核 磁 共 振
分子光谱法
发射光谱法
原 子 发 射
原 子 荧 光
分 子 荧 光
离;波数是每厘米长度中波的数目; 频率是每秒内的波动次数。
※ 频率与波长成反比, 即波长越长, 频率越低, 波数越小
2. 微粒性(光电效应、光的吸收和发射) 用每个光子具有的能量E作为表征。 E = h =h c / = h c h (普朗克常数) , h=6.6262×10-34J•s ※ 光量子的能量(E)与波长成反比, 而与频率(或波数) 成正比.
仪器分析知识点总结大全
仪器分析知识点总结大全仪器分析是化学分析的重要分支,它利用特殊的仪器对物质进行定性、定量和结构分析。
以下是对常见仪器分析方法的知识点总结。
一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的一种方法。
其原理是:当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。
原子吸收光谱仪主要由光源、原子化器、分光系统和检测系统组成。
优点:选择性好、灵敏度高、分析范围广、精密度好。
局限性:多元素同时测定有困难、对复杂样品分析干扰较严重。
(二)原子发射光谱法(AES)原子发射光谱法是依据原子或离子在一定条件下受激而发射出特征光谱来进行元素定性和定量分析的方法。
原理是:当原子或离子受到热能或电能激发时,核外电子会从基态跃迁到激发态,处于激发态的电子不稳定,会迅速返回基态,并以光的形式释放出能量,产生发射光谱。
其仪器包括激发光源、分光系统和检测系统。
优点:可同时测定多种元素、分析速度快、选择性好。
缺点:精密度较差、检测限较高。
(三)紫外可见分光光度法(UVVis)该方法是基于分子的紫外可见吸收光谱进行分析的。
原理是:分子中的价电子在不同能级之间跃迁,吸收特定波长的光,从而产生吸收光谱。
仪器主要由光源、单色器、吸收池、检测器和信号显示系统组成。
应用广泛,可用于定量分析、定性分析以及化合物结构研究。
(四)红外吸收光谱法(IR)红外吸收光谱法是利用物质对红外光区电磁辐射的选择性吸收来进行结构分析和定量分析的一种方法。
原理是:分子的振动和转动能级跃迁产生红外吸收。
仪器包括红外光源、样品室、单色器、检测器和记录仪。
常用于有机化合物的结构鉴定。
二、电化学分析法(一)电位分析法通过测量电极电位来确定物质浓度的方法。
包括直接电位法和电位滴定法。
仪器分析原子吸收光谱分析
∫ I =
e 0
I0e-KLd
∫ A = lg
e 0
I0
d
∫e 0
I0e-KLd
第14页,本讲稿共55页
对锐线光源,可以认为Kν= b×K0 为常数:
A
=
lg 1 e-bK0L
=
lg
eK0Lb
=
0.4343K0Lb
Under normal operation condition for AAS, line profile is mainly determined by Doppler broadening, hence,
这以公式表明:积分吸收值与单位原子蒸汽中吸收辐 射的基态原子数呈简单的线性关系,这是原子吸收光谱分析
法的重要理论依据。
第10页,本讲稿共55页
前面公式中: e为电子电荷;m为电子质量;c为光速;N0
为单位体积内基态原子数;f 振子强度,即能
被入射辐射激发的每个原子的平均电子数,它正 比于原子对特定波长辐射的吸收几率。
若能测定积分吸收,则可求出原子浓度。 但是,测定谱线宽度仅为10-3nm的积分吸收, 需要分辨率非常高的色散仪器,技术上很难实现。 所以,1955年瓦尔西提出采用锐线光源来解决 求积分吸收值的难题。参见下图:
第11页,本讲稿共55页
第12页,本讲稿共55页
由图可见,在使用锐线光源时,光源发射线半宽度 很小,并且发射线与吸收线的中心频率一致。这时发射 线的轮廓可看作一个很窄的矩形,即峰值吸收系数K 在
一、原子吸收线和原子发射线
A
B
A 产生吸收光谱
B 产生发射光谱
E3
E0 基态能级
E1、E2、E3、激发态能级
E2
仪器分析复习资料
绪论1、分子光谱:分子从一种能态改变到另一种能态时的吸收或发射光谱。
2、原子光谱:由气态原子中的电子在能量变化时所发射或吸收的一系列波长的光所组成的光谱。
3、连续光谱:由连续光组成的光谱。
4、原子吸收光谱法:根据特定物质基态原子蒸气对特征辐射的吸收来对元素进行定量分析的方法。
判断题1)不同物质在产生能级跃迁的频率相同。
错2)太阳光是复合光,其他光是单色光。
错3)不同物质其组成不同,结构不同,其特征光谱不同,可根据其特征光谱判断物质的结构。
对4)基态时能量为零,是零点能。
错5、原子由高能态向低能态跃迁,以光辐射多余的能量建立的光谱分析方法属于(原子发射光谱分析法)。
6、波长小于10nm,能量大的原子光谱离子性明显,称为(能谱),由此建立的分析方法为(能谱光能分析)。
7、依光栅的(衍射和干涉)作用可色散分光。
8、原子光谱和分子光谱的比较:原子光谱是线性光谱;分子光谱是带状光谱。
9、原子吸收光谱和原子发射光谱的比较:原子吸收光谱是由低能态跃迁到高能态辐射的特征光谱;原子发射光谱是由高能态返回低能态时辐射的特征光谱。
10、复合光和单色光的区别:复合光是包含多种波长或频率的光;单色光是仅有一种波长或频率的光。
11、利用棱镜或光栅对复合光分光可获得单色光12、紫外可见分光光度计的组成:光源、单色器、样品室、检测器、显示器(熟悉绪论中十三种光分析法)原子发射光谱分析法1、发射光谱中的共振线:激发态返回到基态时的发射的谱线。
2、灵敏线:最易激发的能级所产生的谱线3、分析线:复杂元素的谱线可多至数条,只选择其中几条特征线检验,称为分析线。
4、分析线对:内标法中,待测元素的分析线与加入内标元素的分析线组成的线对。
5、内标元素和分析线对的选择条件:.1)内标元素可以选择基体元素,或另外加入,含量固定;2)内标元素与待测元素具有相近的蒸发特性;3)分析线对应匹配,同为原子线或离子线,且激发电位相近(谱线靠近),“匀称线对”;4)强度相差不大,无相邻谱线干扰,无自吸或自吸小。
《仪器分析》第十章光学分析法导论
λ1 λ2 λ3
θ1
b
等边型棱镜的色散
θ2
λ1
λ2
λ3
棱镜对相邻波长的光的色散能力可以用棱镜的角色散率 来衡量,即以折射角θ作为波长的函数而改变的速率:dθ/dλ
d d dn d dn d
dθ/dn是指θ棱镜材料折射率n的变化,dn/dλ代表折射率随着 波长的变化。前者取决于棱镜的几何形状,后者就是棱镜材 料的色散率。
子 子子 射
发
吸荧
线 荧
射 收光 光
原子光谱法
吸收光谱法
原紫红核 子外外磁 吸可可共 收见见振
光谱分析法
紫红分分核化 外外子子磁学 可可荧磷共发 见见光光振光
分子光谱法
发射光谱法
原原分分 X 化
子子子子 射 学
发
荧
荧
磷
线 荧
发
射光光光 光 光
电磁波谱区及常用光学分析方法
光谱区域 γ射线 X射线 光学区
ni=c/vi 因为光传播的速度与频率有关,而c是常数,因此折射率是随 着频率改变而改变的,即波长不同的光的折射率不同。
当光束从一种介质到另一种介质时,由于两个介质的 密度不同使得光束在二介质中的传播速度不同,并且方向 也发生改变的现象成为折射。折射由斯涅耳(Snell)定律 表示:
入射
反射
i1 r1 1
5、光学方析法的应用
光学分析法是仪器分析中种类最多的一大类分析方法, 目前已达几十种之多,应用范围十分广泛:工农业生产、 国防、医药卫生、生物、地质矿产、环境保护等各领域, 几乎所有需要分析测试的领域,都有可能用到光学分析方
6、光学分析仪器的组成
(1)光源 (2)波长选择器 (3)样品池 (4)检测器 (5)信号处理器及读出装置
仪器分析教程知识点总结
仪器分析教程知识点总结一、光谱分析1. 原子吸收光谱法原子吸收光谱法是一种常用的分析技术,主要用于测定金属元素的含量。
其原理是通过测量金属元素的特征吸收线强度来定量分析样品中金属元素的含量。
在进行原子吸收光谱法实验时,需要掌握标准曲线法、内标法等定量分析方法,以及样品的预处理和稀释方法。
2. 紫外-可见吸收光谱法紫外-可见吸收光谱法是用于测定有机化合物和无机化合物的含量和结构的方法。
通过测量样品在紫外-可见光区域的吸收强度,可以获得样品的吸收光谱图,从而分析样品的成分和结构。
在进行紫外-可见吸收光谱法实验时,需要掌握分光光度计的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。
3. 红外光谱法红外光谱法是用于测定有机化合物和无机化合物的结构和功能基团的方法。
通过测量样品在红外光区域的吸收强度,可以获得样品的红外光谱图,从而分析样品的结构和功能基团。
在进行红外光谱法实验时,需要掌握红外光谱仪的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。
二、色谱分析1. 气相色谱法气相色谱法是用于分离和检测样品中有机化合物的方法。
通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。
在进行气相色谱法实验时,需要掌握气相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。
2. 液相色谱法液相色谱法是用于分离和检测样品中有机化合物和无机化合物的方法。
通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。
在进行液相色谱法实验时,需要掌握液相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。
三、质谱分析质谱分析是用于确定样品中有机分子和核素的相对分子质量和结构的方法。
通过测量样品离子的质荷比,可以获得样品的质谱图,从而确认样品的分子质量和结构。
在进行质谱分析实验时,需要掌握质谱仪的操作方法、样品的离子化和碎裂方法,以及质谱图的解释和质谱定性分析方法。
仪器分析原子吸收光谱法
仪器分析原子吸收光谱法原子吸收光谱法是一种常用的仪器分析技术,用于测定物质中特定金属元素的含量。
该方法基于原子在特定波长的光下吸收特定能量的现象,通过测量所吸收的光的强度,可以确定样品中目标金属元素的浓度。
原子吸收光谱法主要包括石墨炉原子吸收光谱法(Graphite Furnace Atomic Absorption Spectroscopy, GF-AAS)和火焰原子吸收光谱法(Flame Atomic Absorption Spectroscopy, FAAS)。
两种方法的原理基本相同,只是在光源和样品的处理上有所不同。
在GF-AAS中,样品首先转化为气态原子,并通过石墨炉中的加热将其浓缩。
然后,通过光源产生的特定波长的光照射样品,在特定波长的光作用下,样品中的目标金属元素发生原子态到激发态的跃迁,吸收特定的能量。
通过测量光源透射光的强度变化,可以得到样品中目标金属元素的浓度。
在FAAS中,样品通过喷射到火焰中所产生的高温环境下转化为气态原子。
然后,通过特定波长的光照射样品,样品中的目标金属元素吸收特定能量,发生原子态到激发态的跃迁。
同样,通过测量光源透射光的强度变化,可以测定样品中目标金属元素的浓度。
原子吸收光谱法具有以下优点:1. 灵敏度高:原子吸收光谱法可以测定微量金属元素的含量,其灵敏度在ppb(亿分之一)到ppm(百万分之一)的水平上。
2.选择性好:由于每种金属元素吸收特定波长的光,因此不同金属元素之间相互干扰较小。
通过选择不同的光源波长,可以测定多种金属元素的含量。
3.准确性高:原子吸收光谱法经过多年的发展,仪器的准确性和重复性得到大幅提高。
同时,该方法具有较低的标准偏差和高的精密度。
4.快速分析:原子吸收光谱法具有快速分析的特点,一个样品一般只需几分钟即可完成分析,适用于大批量样品的分析。
除了优点之外1.需要样品前处理:样品的前处理会影响到分析结果的准确性和检测灵敏度。
例如,在GF-AAS中,样品需要进行湿氧化处理,其中可能会引入外源性污染物。
仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习
仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习————————————————————————————————作者:————————————————————————————————日期:第十章原子吸收光谱分析法1.共振线与元素的特征谱线基态→第一激发态,吸收一定频率的辐射能量,产生共振吸收线(简称共振线);吸收光谱。
激发态→基态,发射出一定频率的辐射,产生共振吸收线(也简称共振线);发射光谱。
元素的特征谱线:(1)各种元素的原子结构和外层电子排布不同,基态→第一激发态:跃迁吸收能量不同——具有特征性。
(2)各种元素的基态→第一激发态,最易发生,吸收最强,最灵敏线。
特征谱线。
(3)利用特征谱线可以进行定量分析。
2.吸收峰形状原子结构较分子结构简单,理论上应产生线状光谱吸收线。
实际上用特征吸收频率左右范围的辐射光照射时,获得一峰形吸收(具有一定宽度)。
由 It =Ie-Kvb透射光强度It 和吸收系数及辐射频率有关。
以Kv与v作图得图10一1所示的具有一定宽度的吸收峰。
3.表征吸收线轮廓(峰)的参数(峰值频率):最大吸收系数对应的频率或波长;中心频率v中心波长:最大吸收系数对应的频率或波长λ(单位为nm);半宽度:△v0B4.吸收峰变宽原因(1)自然宽度在没有外界影响下,谱线仍具有一定的宽度称为自然宽度。
它与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。
不同谱线有不同的自然宽度,多数情况下约为10-5nm数量级。
多普勒效应:一个运动着的原子发出的光, (2)多普勒变宽(温度变宽)△v如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。
(3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)△v由于原子相互碰撞使能L量发生稍微变化。
劳伦兹变宽:待测原子和其他原子碰撞。
赫鲁兹马克变宽:同种原子碰撞。
(4)自吸变宽空心阴极灯光源发射的共振线被灯内同种基态原子所吸收产生自吸现象,灯电流越大,自吸现象越严重,造成谱线变宽。
山东大学期末考试复习水分析化学气相色谱法和原子吸收光谱法山东大学期末考试知识点复习(良心出品必属精品
第八章 气相色谱法和原子吸收光谱法一、气相色谱法 (一)气相色谱法概述色谱法是一种分离技术,该技术应用于分析化学中,就是色谱分析。
它的分析原 理是使混合物中各组分在两相间进行分配,其中静止不动的一相称固定相,另一携 带混合物流过此固定相的流体称作流动相。
当流动相中所含混合物经过固定相时, 就会与固定相发生作用。
由于各组分在性质和结构上的差异,与固定相发生作用的 大小、强弱也有差异。
因此在同一推动力作用下,不同组分在固定相中的滞留时间 的长短不同,从而按先后次序从固定相中流过。
这种借助物质在两相间分配的原理 而使混合物中各组分分离的技术,称为色谱分离技术或色谱法(对称色层法,层析法) 1 .色谱法分类色谱法从不同的角度出发,有多种分类法 (1)按流动相的物态分类气相色谱:流动相是气体的色谱。
液相色谱:流动相是液体的色谱。
按两相状态色谱分为四类:⑵ 按固定相的性质分类柱色谱(填充柱色谱、毛细管色谱)、纸色谱(又叫纸层析)、薄层色谱(又叫薄板层 析)。
2 .气相色谱特点(1) 优点:分离效能高、高选择性、高灵敏性、分析速度性、应用广泛。
(2) 局限性1)定性时需要标准样品。
2) 样品要有一定的挥发性。
3) 强极性的大分子不稳定化合物不能直接分析,但对部分高分子或生物大分子可 用裂解色谱法,為逊f 气—固色谱(GSC ) 气相色叫气_液色谱(GLQ注*样催(液_固色谱(LSC ) 液相色叫液_液色谱(LLC )分析其裂解产物。
4)一般不能分析无机物,但部分无机物可转化为金属卤代物,金属螯合物等再进行分析。
(二)气相色谱法的基本原理气一固色谱分析中的固定相是一种具有多孔性及表面积较大的吸附剂颗粒。
被测物质中各组分的分离是基于各组分在吸附剂上的吸附能力不同。
试样由载气携带进入色谱柱,被测组分在吸附剂表面进行反复的物理吸附、脱附过程。
较难被吸附的组分先流出色谱柱,容易被吸附的组分后流出色谱柱。
气一液色谱分析中的固定相是在化学隋性的固体微粒(此固体是用来支持固定液的,称为担体)表面,涂上一层高沸点有机化合物液膜,这种高沸点有机化合物称为固定液。
仪器分析知识点总结
1、光分析法:基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法;光分析法的三个基本过程:(1)能源提供能量;(2)能量与被测物之间的相互作用;(3)产生信号。
光分析法的基本特点:(1)所有光分析法均包含三个基本过程;(2)选择性测量,不涉及混合物分离(不同于色谱分析);(3)涉及大量光学元器件。
光谱仪器通常包括五个基本单元:光源;单色器;样品;检测器;显示与数据处理;2、原子发射光谱分析法:以火焰、电弧、等离子炬等作为光源,使气态原子的外层电子受激发射出特征光谱进行定量分析的方法。
原子发射光谱分析法的特点:(1)可多元素同时检测各元素同时发射各自的特征光谱;(2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪);(3)选择性高各元素具有不同的特征光谱;(4)检出限较低10~0.1μg⋅g-1(一般光源);ng⋅g-1(ICP)(5)准确度较高5%~10% (一般光源);<1% (ICP) ;(6)ICP-AES性能优越线性范围4~6数量级,可测高、中、低不同含量试样;缺点:非金属元素不能检测或灵敏度低。
3、原子吸收光谱分析法:利用特殊光源发射出待测元素的共振线,并将溶液中离子转变成气态原子后,测定气态原子对共振线吸收而进行的定量分析方法。
特点:(1) 检出限低,10-10~10-14 g;(2) 准确度高,1%~5%;(3) 选择性高,一般情况下共存元素不干扰;(4) 应用广,可测定70多个元素(各种样品中);局限性:难熔元素、非金属元素测定困难、不能同时多元素测量4、多普勒效应:一个运动着的原子发出的光,如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。
5、原子荧光分析法:气态原子吸收特征波长的辐射后,外层电子从基态或低能态跃迁到高能态,在10-8s后跃回基态或低能态时,发射出与吸收波长相同或不同的荧光辐射,在与光源成90度的方向上,测定荧光强度进行定量分析的方法。
仪器分析复习资料
1,原子吸收光谱法的原理,原子吸收光谱仪由哪几部分组成以及每部分的作用。
原理:原子吸收光谱法是基于气态原子外层的电子对共振线的吸收,气态的基态原子数与物质的含量成正比,故可进行定量分析。
共振线:将电子从基态跃迁到最低能量激发态(第一激发态)所产生的吸收谱线称为共振吸收线;将电子从第一激发态跃迁回基态发射出与吸收辐射频率相同的谱线称为共振发射线,两者均称为共振线。
组成部分:A锐线光源:能够发射被测元素共振谱线。
B原子化器:将试液蒸发干燥并使待测元素转变成气态的基态原子,使待测试样中元素原子化的方法有火焰法和非火焰法。
C:单色器:防止原子化器发射的非待测元素的特征谱线进入检测器,同时也可以避免因透射光太强而引起光电倍增管的疲劳。
D:检测系统:将待测光信号转换成电信号,经检波放大后显示结果。
2,原子吸收光谱法中常用的光源是什么?原子化器有哪些?常用的光源:空心阴极管原子化器分为火焰原子化器,其常用的的为预混合型火焰原子化器;无火焰原子化器,其常用的为:高温石墨炉原子化器。
3,原子吸收光谱法进行定量分析的依据是什么?常用的定量分析方法有哪些?依据:气态的基态原子数与物质的含量成正比。
定量分析方法:校正曲线法和标准加入法。
4,电位分析的原理,测量装置。
电分析化学:根据物质在溶液中的电化学性质及其变化来进行分析的方法,是以电导,电位,电流和电荷等电参量与被测物含量之间的关系作为计量基础的。
电位分析法:是利用指示电极电位与溶液中相应离子活度的关系来测定物质含量的一种电分析化学方法。
测量装置:A电位(pH)计B工作电池,由参比电极、指示电极、被测试液组成C磁力搅拌器(附磁力搅拌子)5,什么叫参比电极,工作电极,辅助电极?各类电极常用有哪些,各举两种。
参比电极:在测量过程中,其电位基本不发生变化的电极称参比电极。
银-氯化银电极,甘汞电极。
辅助电极:此电极所发生的电化学反应并非测示或研究所需要的,电极仅作为电子传递的场所以便和工作电极组成电流回路,这种电极称为辅助电极或对电极。
第十章 原子吸收光谱法
二、原子化系统
作用是将试样中待测元素转变成原子蒸气。 1.火焰原子化法 (1)雾化器:作用是将试样溶液雾化。当助
燃气高速通过时,在毛细管外壁与喷嘴口构 成的环形间隙中,形成负压区,将试样溶液 吸入,并被高速气流分散成气溶胶,在出口 与撞击球碰撞,进一步分散成微米级的细雾。 (2)混合室:作用是将未被细微化的较大雾 滴在混合室内凝结为液珠,沿室壁流入泄漏 管排走;并让气溶胶在室内与燃气充分混匀。
第十章 原子吸收光谱法
§10-1 §10-2 §10-3 §10-4 §10-5 §10-6
试题
概述 原子吸收法的基本原理 原子吸收分光光度计 定量分析方法 干扰及其抑制方法 灵敏度与检出限
1
§10-1 概述
一、 原子吸收光谱法
原子吸收光谱是利用待测元素的原子蒸 气中基态原子对特征电磁辐射(共振线)的吸 收来测定的。
式中ν0为谱线中心频率;M 为吸光原子的相对 原子质量;T 为绝对温度。 ΔνD约10-3数量
级,是谱线变宽的主要原因。 3.碰撞变宽(压力变宽) 由于原子相互碰撞使能量发生轻微变化。
劳伦兹变宽ΔνL :待测原子和其他原子碰撞引
起的谱线变宽。
ΔνL约10-3数量级,是碰撞变宽的主要因素。
10
赫鲁兹马克变宽ΔνH :同种原子碰撞引起的
29
二、标准加入法
取若干份体积相同的试液(cX),依次按比 例加入不同量的待测物的标准溶液(cO), 定容后浓度依次为:cX、cX+cO、cX+2cO、 cX+3cO、cX+4cO,分别测得吸光度为:A0、 A1、A2、A3、A4。以A对浓度c做图得一直 线,图中cX点即待测溶液浓度。
30
注意: 1.本法只能消除基体效应带来的干扰,不能消
原子吸收光谱分析复习知识点
原子吸收光谱分析复习知识点1.原子吸收光谱分析的基本原理为:*M hv M →+,这里的hv 一定是待测元素的特征辐射,M 和M*都是原子。
2.原子吸收测定的对象是占原子总数中绝大多数的基态原子,而原子发射测定的是占原子总数中很少量的激发态原子,因而原子吸收的灵敏度要远远高于原子发射。
3. P230页表征吸收线轮廓的特征值是中心频率和半宽度。
4. P230页以及231页谱线的展宽主要受多普勒变宽和压力变宽中的劳伦兹变宽的影响。
多普勒变宽、劳伦兹变宽以及赫鲁兹马克变宽的定义。
(注:如果只有一个选项就是只受多普勒变宽的影响)。
5. P232页原子吸收中为何不能采用连续光源?6. P233页何为锐线光源?7. P234页峰值吸收代替积分吸收的两个条件(见图8-6)。
8. P236页定量分析的基本公式Kc A =(式8-15)。
9. P236页原子吸收光谱仪与普通的分光光度计的不同点有三个。
锐线光源、单色器位置、特殊样品池即原子化系统。
10. P237页光源的作用。
P238页常用的光源为空心阴极灯,只有一个操作参数即为灯电流。
11. P238页原子化系统的作用及分类:火焰原子化以及无火焰原子化。
12.P241页火焰的三种类型:贫燃(氧化性火焰)、富燃(还原性火焰)以及化学计量比火焰。
13. P243页石墨炉原子化过程分为干燥、灰化、原子化、净化四步。
14. P246页单色器的作用。
15. P249页定量的方法:标准曲线以及标准加入法(参见公用邮箱的练习题)。
P250页(2)。
16. P251页主要的干扰有光谱干扰、物理干扰以及化学干扰。
P254页氘灯背景校正的原理。
P258页化学干扰的定义。
消除化学干扰加入的四剂:消电离剂、释放剂、保护剂以及缓冲剂,对应课本举出的例子复习。
17. P263页检出限的计算公式(式8-23),其他仪器方法的检出限计算公式类似,只是改变其中的测定物理量,原子吸收中测定的物理量是吸光度A 。
仪器分析期末考试复习题 名词解释+简答题
仪器分析1.生色团:能吸收紫外、可见光的基团或结构系统定义为生色团2.助色团:助色团是指带有非键电子对的基团,如-OH、 -OR、 -NHR、-SH、- Cl、-Br、-I等,它们本身不能吸收大于200nm的光,但是当它们与生色团相连时,会使生色团的吸收峰向长波方向移动,并且增加其吸光度。
3.红移:向长波方向移动4.蓝移:向短波方向移动5.激发电位:原子的外层电子由低能级激发到高能级时所需要的能量称为激发电位.。
6.共振线:由电子激发态与电子基态能级之间的跃迁所产生的谱线7.自吸效应:激发态原子发出的辐射被其基态原子所吸收,从而使谱线强度下降的效应。
8.灵敏度:仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。
9.参比电极:测定过程中其电极电位保持恒定不变。
10.检测极限D:以特定的分析方法,以适当的置信水平被检出的最低浓度或最小量11.分离度R:相邻两组分色谱峰保留值之差与两组分色谱峰峰底宽度总和之比。
1.光谱分析法:1.原子光谱1.原子发射光谱:由三部分构成: AES光源:电弧,火花,ICP 、分光、检测发射光谱定量分析关系式为:I = a c b 或者 log I = b log c + log a为什么选铁谱?(1)谱线多:在210~660nm范围内有数千条谱线;(2)谱线间距离分配均匀:容易对比,适用面广;(3)定位准确:已准确测量了铁谱每一条谱线的波长。
2.原子吸收光谱:标准曲线法和标准加入法(求坐标轴的CX)空心阴极灯用空气-乙炔火焰;原子化器用空气-乙炔火焰2.分子光谱紫外吸收光谱不饱和脂肪族化合物Π-Π *跃迁(不饱和基团)共轭体系愈大,π→π*跃迁产生的吸收带波长愈长。
乙烯的吸收带位于162nm,丁二烯为217nm,1,3,5-己三烯的吸收带红移至258nmn→π*跃迁(含杂原子的不饱和基团)是四种跃迁中所需能量最小的,它所对应的吸收带位于200~400nm 的近紫外区在n→π*跃迁中:溶剂极性增加,吸收带蓝移。
仪器分析期末复习
1-绪论1.现代仪器分析法有何特点?测定对象和化学分析法有何不同?①灵敏度高/所用样品量少、分析快速效率高、选择性好、用途广、自动化程度高,满足特殊要求,但准确度相对误差大,仪器价格、维修成本高。
②仪器分析:灵敏度高,适合于半微量、微量、痕量组分分析;化学分析:准确度高,适用于常量组分(>0.1g)分析。
2-光分析法1.光谱分析法如何分类?产生光谱的物质类型:原子光谱、分子光谱、固体光谱产生光谱的方式:发射光谱、吸收光谱、散射光谱按光谱的性质和形状:线光谱、带光谱2.什么是光的吸收定律?数学表达式?朗伯-比尔定律:在一定浓度范围内,物质的吸光度A与吸光试样的浓度c和厚度L的乘积成正比。
A = KcL3.原子光谱和分子光谱有何不同?①原子光谱是一条条彼此分立的线光谱。
由处于稀薄气体状态的原子产生,相互之间作用力小。
原子没有振动和转动能级,所以光谱产生主要由电子能级跃迁所致。
②分子光谱是一定频率范围的电磁辐射组成的带状光谱。
由处于气态或溶液中的分子产生,分子光谱的三个层次:转动光谱、振动光谱、电子光谱。
光谱仪器一般包括光源、单色器、样品容器、检测器件、读出装置。
在光学分析法中,可见分子光谱采用钨灯做光源。
1.名词解释激发能:原子从基态跃迁到发射该谱线的激发态所需要的能量。
电离能:使原子电离所需要的最低能量。
原子线:原子外层电子的能级跃迁所产生的谱线。
离子线:离子的外层电子受激发后所产生的谱线。
共振线:原子发射所有谱线中,电子由高能态跃迁回基态时所发射的谱线。
灵敏线:原子光谱线中,凡具有一定强度、能标记某元素存在的特征谱线。
最后线:将溶液不断稀释,原子光谱线减少;当元素浓度减少到最低限度时,仍能够出现的谱线。
(最灵敏,最后消失)分析线:用来进行定性或定量分析的特征谱线。
2.常用的激发源有哪几种,各有何特点?简述ICP形成原理及特点。
①直流电弧:绝对灵敏度高,辐射光强大,背景小,但电弧游移不定,稳定性、再现性差。
原子吸收光谱法提纲重点笔记
原子吸收光谱法提纲重点笔记基本原理1.原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,利用气态原子可以吸收一定波长的光辐射,利用电热能使原子中外层的电子从基态跃迁到激发态的现象而建立的。
能够进行定性、半定量、定量分析。
2.光线范围:紫外光和可见光3.测定方法:标准曲线法、标准加入法4.特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:A=KC式中K为常数;C为试样浓度;K包含了所有的常数。
此式就是原子吸收光谱法进行定量分析的理论基础5.原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。
原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。
中心波长由原子能级决定。
6.影响原子吸收谱线轮廓的两个主要因素:1、多普勒变宽。
多普勒宽度是由于原子热运动引起的。
从一个运动着的原子发出的光,如果运动方向离开观测者,则在观测者看来,其频率较静止原子所发的光的频率低,红移;反之,如原子向着观测者运动,则其频率较静止原子发出的光的频率为高,紫移。
这就是多普勒效应。
原子吸收分析中,对于火焰和石墨炉原子吸收池,气态原子处于无序热运动中,相对于检测器而言,各发光原子有着不同的运动分量,即使每个原子发出的光是频率相同的单色光,但检测器所接受的光则是频率略有不同的光,于是引起谱线的变宽。
2、碰撞变宽。
谱线宽度仅与激发态原子的平均寿命有关,平均寿命越长,则谱线宽度越窄。
原子之间相互碰撞导致激发态原子平均寿命缩短,引起谱线变宽。
碰撞变宽分为两种。
赫鲁兹马克变宽:指被测元素激发态原子与基态原子相互碰撞引起的变宽,称为共振变宽,又称压力变宽。
当蒸气压力达到0.1mmHg时,共振变宽效应则明显地表现出来。
洛伦茨变宽:指被测元素原子与其它元素的原子相互碰撞引起的变宽,称为洛伦茨变宽。
洛伦茨变宽随原子区内原子蒸气压力增大和温度升高而增大。
(完整版)仪器分析重点知识点整理
仪器分析重点知识点整理一,名词解释。
吸收光谱:指物质对相应辐射能的选择性吸收而产生的光谱吸光度(A):是指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的以10为底的对数A=abc =lg(I0/It)透光率(T):透射光强度与入射光强度之比T=I0/It摩尔吸光系数(ε):物质对某波长的光的吸收能力的量度,(如浓度c以摩尔浓度(mol/L)表示则A=εbc)物理意义:溶液浓度为1mol/L,液层厚度为1cm时的吸光度百分吸光系数(E1cm1%):物质对某波长的光的吸收能力的量度,(如浓度c以质量百分浓度(g/100ml),则A=E1cm1%bc)物理意义:溶液浓度为1g/100ml,液层厚度为1cm时的吸光度发色团:有机化合物分子结构中含有π→π*或n→π*跃迁的基团,能在紫外可见光范围内产生吸收助色团:含有非键电子的杂原子饱和基团,本身不能吸收波长大于200nm的辐射,但与发色团或饱和烃相连时,能使该发色团或饱和烃的吸收峰向长波移动,并使吸收强度增加的基团红移(长移):由取代基或溶剂效应等引起的吸收峰向长波长方向移动的现象蓝移(短移):由取代基或溶剂效应等引起的吸收峰向短波长方向移动的现象浓色效应(增色效应):使化合物吸收强度增加的效应淡色效应(减色效应):使化合物吸收强度减弱的效应吸收带:紫外-可见光谱为带状光谱,故将紫外-可见光谱中吸收峰称为吸收带R带:Radikal(基团) ,是由n →π*跃迁引起的吸收带K带:Konjugation(共轭作用),是由共轭双键中π→π*跃迁引起的吸收带B带:benzenoid(苯的),是由苯等芳香族化合物的骨架伸缩振动与苯环状共轭系统叠加的π→π*跃迁引起的吸收带,芳香族化合物特征吸收带E带:也是芳香族化合物特征吸收带,分为E1、E2紫外吸收曲线(紫外吸收光谱):最大吸收波长λmax:吸收曲线上的吸收峰所对应的波长最小吸收波长λmin:吸收曲线上的吸收谷所对应的波长末端吸收:吸收曲线上短波端只呈现强吸收而不成峰形的部分试剂空白:指在相同条件下只是不加入试样溶液,而依次加入各种试剂和溶液所得到的空白溶液试样空白:指在与显色相同条件下取相同量试样溶液,只是不加显色剂所制备的空白溶液溶剂空白;指在测定入射波长下,溶液中只有被测组分对光有吸收,而显色剂或其他组分对光没有吸收或有少许吸收,但所引起的测定误差在允许范围内,此时可用溶剂作为空白溶液荧光:物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态时所发射出的光分子荧光:?荧光效率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比多普勒变宽:由于原子的无规则热运动而引起的谱线变宽,用ΔνD表示谱线轮廓:原子光谱理论上产生线性光谱,吸收线应是很尖锐的,但由于种种原因造成谱线具有一定的宽度,一定的形状,即谱线轮廓半宽度(Δν):是指峰高一半(K0/2)时所对应的频率范围峰值吸收系数:吸收线中心频率所对应的峰值吸收系数?共振吸收线:原子的最外层电子从基态跃到第一激发态所产生的吸收谱线,最灵敏的谱线内标法:选择样品中不含有的纯物质作为对照物质(内标)加入待测样品溶液中,以待测组分和内标物的响应信号对比,测定待测组分含量的方法外标法:用待测组分的纯品作标准品,在相同条件下以标准品和样品中待测组分的响应信号相比较进行定量的方法背景干扰:主要是原子化过程中所产生的连续光谱干扰,前面光谱干扰中已详细介绍,它主要包括分子吸收、光的散射及折射等,是光谱干扰的主要原因物理干扰:指试样在转移、蒸发和原子化过程中,由于试样任何物理特性(如密度、粘度、表面张力)的变化而引起的原子吸收强度下降的效应光谱干扰:由于分析元素的吸收线与其他吸收线或辐射不能完全分离所引起的干扰原子吸收光谱:?保护剂:作用于与被测元素生成更稳定的配合物,防止被测元素与干扰组分反应释放剂:作用于与干扰组分形成更稳定或更难发挥的化合物,以使被测元素释放出来红外线:波长为0.76-500um的电磁波红外光谱:又称分子振动转动光谱,属分子吸收光谱。
《仪器分析》期末复习题及答案
《仪器分析》期末复习题及答案一.选择题1.在原子吸收光谱分析中,若组分较复杂且被测组分含量较低时,为了简便准确的进行分析,最好选择何种方法进行分析?( )A. 工作曲线法B. 内标法C. 标准加入法D. 间接测定法2.原子吸收法测定钙时,加入EDTA是为了消除下述哪种物质的干扰:( )A. 盐酸B. 磷酸C. 钠D. 镁3.在原子吸收分析中,如怀疑存在化学干扰,例如采取下列一些补救措施,指出哪种措施不适当?( )A. 加入释放剂B. 加入保护剂C. 提高火焰温度D. 改变光谱通带4.原子吸收光谱法测定试样中的钾元素含量,通常需要加入适量的钠盐,这里钠盐被称为( )。
A. 释放剂B. 缓冲剂C. 消电离剂D. 保护剂5.在原子吸收光谱法分析中,能使吸光度值增加而产生正误差的干扰因素是( )。
A. 物理干扰B. 化学干扰C. 电离干扰D. 背景干扰6.石墨炉原子化的升温程序如下:( )。
A. 灰化、干燥、原子化和净化B. 干燥、灰化、净化和原子化C. 干燥、灰化、原子化和净化D. 灰化、干燥、净化和原子化7.原子吸收风光光度分析中原子化器的主要作用是( )。
A. 将试样中的待测元素转化为气态的基态原子B. 将试样中的待测元素转化为激发态原子C. 将试样中的待测元素转化为中性分子D. 将试样中的待测元素转化为离子8.空心阴极灯的主要操作参数是( )。
A. 灯电流B. 灯电压C. 阴极温度D. 内充气体的压力9.原子吸收分析对光源进行调制,主要是为了消除( )。
A. 光源透射光的干扰B. 原子化器火焰的干扰C. 背景干扰D. 物理干扰10.原子吸收分光光度计中常用的检测器是( )。
A. 光电池B. 光电管C. 光电倍增管D. 感光板11.在原子吸收法中,能够导致谱线峰值产生位移和轮廓不对称的变宽应是( )。
A. 热变宽B. 压力变宽C. 自吸变宽D. 场致变宽12.产生原子吸收光谱线的多普勒变宽的原因是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章原子吸收光谱分析法1.共振线与元素的特征谱线基态→第一激发态,吸收一定频率的辐射能量,产生共振吸收线(简称共振线);吸收光谱。
激发态→基态,发射出一定频率的辐射,产生共振吸收线(也简称共振线);发射光谱。
元素的特征谱线:(1)各种元素的原子结构和外层电子排布不同,基态→第一激发态:跃迁吸收能量不同——具有特征性。
(2)各种元素的基态→第一激发态,最易发生,吸收最强,最灵敏线。
特征谱线。
(3)利用特征谱线可以进行定量分析。
2.吸收峰形状原子结构较分子结构简单,理论上应产生线状光谱吸收线。
实际上用特征吸收频率左右范围的辐射光照射时,获得一峰形吸收(具有一定宽度)。
由 It =Ie-Kvb透射光强度It 和吸收系数及辐射频率有关。
以Kv与v作图得图10一1所示的具有一定宽度的吸收峰。
3.表征吸收线轮廓(峰)的参数(峰值频率):最大吸收系数对应的频率或波长;中心频率v中心波长:最大吸收系数对应的频率或波长λ(单位为nm);半宽度:△v0B4.吸收峰变宽原因(1)自然宽度在没有外界影响下,谱线仍具有一定的宽度称为自然宽度。
它与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。
不同谱线有不同的自然宽度,多数情况下约为10-5nm数量级。
多普勒效应:一个运动着的原子发出的光, (2)多普勒变宽(温度变宽)△v如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。
(3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)△v由于原子相互碰撞使能L量发生稍微变化。
劳伦兹变宽:待测原子和其他原子碰撞。
赫鲁兹马克变宽:同种原子碰撞。
(4)自吸变宽空心阴极灯光源发射的共振线被灯内同种基态原子所吸收产生自吸现象,灯电流越大,自吸现象越严重,造成谱线变宽。
(5)场致变宽场致变宽是指外界电场、带电粒子、离子形成的电场及磁场的作用使谱线变宽的现象,但一般影响较小。
为主。
在一般分析条件下△V5.积分吸收与峰值吸收光谱通带0.2 nm,而原子吸收线的半宽度10-3nm,如图10—2所示。
若用一般光源照射时,吸收光的强度变化仅为0.5%。
灵敏度极差。
若将原子蒸气吸收的全部能量,即谱线下所围面积测量出(积分吸收),则是一种绝对测量方法,但现在的分光装置无法实现。
6.基态原子数与原子化温度原子吸收分光光度法是利用待测元素原子蒸气中基态原子对该元素的共振线的吸收来进行测定的。
在原子化器的一定火焰温度下,当达到热力学平衡时,原子蒸气中激发态原子数(Nj ) 与基态原子数(N)之比服从玻耳兹曼(Boltzmann)分布定律:7.吸收系数与峰值吸收系数吸收系数kλ:随吸收波长改变的常数。
峰值吸收系数K:吸收峰最大处的吸收系数。
峰值吸收系数K的表达式为峰值吸收系数k与单位体积原子蒸气中待测元素的原子浓度成正比。
8.用峰值吸收系数k0代替kλ的条件由于无法测定积分吸收,采用锐线光源后,人们考虑利用吸收峰最大处的峰值吸收进行定量分析。
用峰值吸收系数k0代替kλ的条件:①光源发射的中心波长与吸收线的中心波长相一致;②发射线的△v1/2小于吸收线的△v1/2;用k0代替kλ。
,可得式中k'在一定实验条件下是常数,因此通过测定吸光度即可以求出待测元素的浓度。
9.原子吸收分光光度计的主要组成部分与结构流程原子吸收分光光度计基本上由光源、原子化器、分光系统和检测系统组成。
10.锐线光源与空心阴极灯原子吸收光谱分析法中必须使用锐线光源,即光源发射的中心波长与吸收线的中心波长相一致,发射线的△v1/2小于吸收线的△v1/2;常用的锐线光源为空心阴极灯。
空心阴极灯的阴极为一空心金属管,内壁衬或熔有待测元素的金属,阳极为钨、镍或钛等金属,灯内充有一定压力的惰性气体。
当两电极间施加适当电压时,电子将从空心阴极内壁流向阳极,与充入的惰性气体碰撞而使之电离,产生正电荷,其在电场作用下,向阴极内壁猛烈轰击,使阴极表面的金属原子溅射出来,溅射出来的金属原子再与电子、惰性气体原子及离子发生撞碰而被激发,于是阴极产生的辉光中便出现了阴极物质的特征光谱。
用不同待测元素作阴极材料,可获得相应元素的特征光谱。
空心阴极灯的辐射强度与灯的工作电流有关,但灯电流太大时,热变宽和自蚀现象增强,反而使谱线强度减弱,对测定不利。
空心阴极灯具有辐射光强度大,稳定,谱线窄,灯容易更换等优点,但每测一种元素需更换相应的灯。
11.原子化装置类型原子化器有火焰原子化器和无火焰原子化器两种。
12.火焰原子化器与原子化过程火焰原子化器由两部分组成:雾化器和燃烧器。
其中雾化器的作用是使试液雾化。
雾化器的性能对测定的精密度、灵敏度和化学干扰等产生显著影响。
燃烧器的作用是利用火焰加热、释放的能量使试样原子化。
·火焰类型化学计量火焰:温度高,干扰少,稳定,背景低,常用。
富燃火焰:还原性火焰,燃烧不完全,测定较易形成难熔氧化物的元素M0、Cr和稀土元素等。
贫燃火焰:火焰温度低,氧化性气氛,适用于碱金属测定·火焰原子化器的火焰温度选择①保证待测元素充分分解为基态原子的前提下,尽量采用低温火焰;②火焰温度越高,产生的热激发态原子越多;③火焰温度取决于燃气与助燃气类型,常用空气一乙炔,最高温度2 600 K,能检测35种元素。
13.无火焰原子化器的特点与原子化过程无火焰原子化器主要有石墨炉电热原子化器、氢化物原子化法及冷原子原子化法等方法。
无火焰原子化器的原子化效率和灵敏度都比火焰原子化器高得多。
目前使用最广泛的是石墨炉原子化器,它包括石墨管、炉体和电源三大部分。
试样在石墨管中加热,使其原子化。
石墨炉电热原子化过程:原子化过程分为干燥、灰化(去除基体)、原子化、净化(去除残渣)四个阶段,待测元素在高温下生成基态原子。
石墨炉电热原子化过程的重复性较火焰法差。
测定As、Sb、Bi、Sn、Ge、Se、Pb和Ti等元素时常用氢化物原子化方法,原子化温度700~900℃,其原理是在酸性介质中,待测化合物与强还原剂硼氢化钠反应生成气态氢化物。
例AsCl3 + 4NaBH4+ HCl + 8H2O===AsH3+4NaCl+4HBO2+13 H2将待测试样在专门的氢化物生成器中产生氢化物,送人原子化器中使之分解成基态原子。
这种方法具有原子化温度低,灵敏度高(对砷、硒可达10-9g),基体干扰和化学干扰小。
各种试样中Hg元素的测量多采用冷原子化法,即在室温下将试样中的汞离子用SnCl2或盐酸羟胺完全还原为金属汞后,用气流将汞蒸气带人具有石英窗的气体测量管中进行吸光度测定。
该方法灵敏度、准确度较高(可达l0-8g汞)。
14.狭缝宽度与通带单色器的分辨率和光强度决定于狭缝宽度。
在原子吸收分析中,狭缝宽度由通带来表示,通带是指光线通过出射狭缝的谱带宽度。
其表达式为 W=15.原子吸收分光光度法实验条件的选择①分析线;②狭缝宽度;③空心阴极灯工作电流;④原子化条件的确定;⑤检测进样量。
16.原子吸收分光光度法的干扰类型原子吸收分光光度法的干扰主要有光谱干扰、物理干扰、化学干扰和背景干扰。
·光谱干扰光谱干扰主要来自光谱通带由多条吸收线参与吸收或光源发射的非吸收的多重线产生干扰和样品池本身的分子发射或待测元素本身的发射线的影响。
·物理干扰物理干扰是指试样和标准溶液物理性质(黏度、表面张力等)的差别所产生的干扰。
物理干扰出现在试样在转移、蒸发过程中,主要影响试样喷入火焰的速度、雾化效率和雾滴大小等。
使喷雾效率下降,致使出现在火焰原子化器中的原子浓度减小,导致测定误差。
可通过控制试液与标准溶液的组成尽量一致的方法来消除。
·化学干扰化学干扰是指在溶液或火焰气体中发生对待测元素有影响的化学反应,导致参与吸收的基态原子数减少。
背景干扰是一种非原子性吸收,多指光散射、分子吸收和火焰吸收。
化学干扰效应的消除方法有多种,常用的有加入缓冲剂、保护剂和稀释剂等试剂或采用预先分离的方法。
17.灵敏度与特征浓度(质量分数)灵敏度(S):指能产生1%光吸收或0.004 4吸光度所需要的被测定元素溶液的质量浓度(特征浓度)式中,D为检测限,A为吸光度,σ为噪声水平,c为待测元素的浓度,V为待测溶液的用量。
19.原子吸收分光光度法定量分析方法原子吸收分光光度法的定量分析常用的方法有标准曲线法、标准加入法及内标法(加入内标元素制作A/A一c工作曲线)。
20.原子荧光的产生与类型依据激发与发射过程的不同,原子荧光可分为共振荧光、非共振荧光、敏化荧光和多光子荧光四种类型。
若高能态和低能态均属激发态,由这种过程产生的荧光称为激发态荧光。
若激发过程先涉及辐射激发,随后再热激发,由这种过程产生的荧光称为热助荧光。
所有类型中,共振荧光强度最大,最为有用,其次是非共振荧光。
21.荧光猝灭与荧光量子效率产生荧光的过程有多种类型,同时也存在着非辐射去激发的现象。
当受激发原子与其他原子碰撞,能量以热或其他非荧光发射方式给出后回到基态,产生非荧光去激发过程,使荧光减弱或完全不发生的现象称为荧光猝灭。
发射荧光的光量子数Ft 与吸收的光量子数Fa的比值定义为荧光量子效率,通常荧光量子效率小于1。
22.待测原子浓度与荧光的强度当光源强度稳定、辐射光平行、自吸可忽略,发射荧光的强度,,正比于基态原子对特定频率吸收光的吸收强度Ia。
If =φIa在理想情况下If=φI·A·=上式即为原子荧光定量的基础。
23.原子荧光光谱分析的特点与应用原子荧光光谱法具有检出限低、灵敏度高、谱线简单、干扰小、线性范围宽(可达3~5个数量级)及选择性极佳,不需要基体分离可直接测定等特点,20多种元素的检出限优于原子吸收光谱法,特别是采用激光作为激发光源及冷原子法测定,性能更加突出,同时也易实现多元素同时测定,提高工作效率。
不足之处是存在荧光猝灭效应及散射光干扰等问题。
原子荧光光谱法在食品卫生、生物样品及环境监测等方面有较重要的应用。