2020-2021初中数学四边形知识点总复习含答案(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021初中数学四边形知识点总复习含答案(2)
一、选择题
1.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()
A.1
4
B.
1
6
C.
2
6
D.
3
10
【答案】B
【解析】
【分析】
过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平
行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=1
2 x,
CF=x.再由锐角三角函数定义作答即可.
【详解】
解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,
∴BC=AD,
设AB=2x,则BC=x.
如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,
∴四边形BOCE是平行四边形,
∵四边形ABCD是矩形,
∴OB=OC,
∴四边形BOCE是菱形.
∴OE与BC垂直平分,
∴EF=1
2
AD=
1
2
x,OE∥AB,
∴四边形AOEB是平行四边形,∴OE=AB=2x,
∴CF=1
2
OE=x.
∴tan∠EDC=EF
DF

1
2
2
x
x x

1
6

故选:B.
【点睛】
本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.
2.已知,如图,在ABC V 中,90ACB ∠=︒,30A ∠=︒,求证:12
BC AB =
.在证明该结论时,需添加辅助线,则作法不正确的是( )
A .延长BC 至点D ,使CD BC =,连接AD
B .在ACB ∠中作BCE B ∠=∠,CE 交AB 于点E
C .取AB 的中点P ,连接CP
D .作ACB ∠的平分线CM ,交AB 于点M
【答案】D
【解析】
【分析】 分别根据各选项的要求进行证明,推出正确结论,则问题可解.
【详解】
解:选项A : 如图,
由辅助线可知,ABC ADC ≅V ;,
则有AB=AD ,再由90ACB ∠=︒,
由30BAC ∠=︒,则60B ∠=︒,
∴ABD △是等边三角形
∴1122
BC DB AB ==
故选项A 正确;
选项B:如图,
由辅助线可知,EBD △是等边三角形
则60BEC EAC ECA ∠=∠+∠=︒,BE=EC
∵30A ∠=︒
∴30ECA A ∠=∠=︒
∴AE=EC ∴12
BC AB =
故选项B 正确
选项C 如图,
有辅助线可知,CP 为直角三角形斜边上的中线
∴AP=CP=BP
∵30A ∠=︒
∴60B ∠=︒
∴PBC V 是等边三角形
∴12
BC BP AB ==
综上可知选项D 错误
故应选D
【点睛】 此题主要考查了全等三角形的判定,等边三角形的判定与性质的综合应用,根据条件选择正确的证明方法是解题的关键.
3.如图,已知AD 是三角形纸片ABC 的高,将纸片沿直线EF 折叠,使点A 与点D 重合,给出下列判断:
①EF 是ABC V 的中位线;
②DEF V 的周长等于ABC V 周长的一半:
③若四边形AEDF 是菱形,则AB AC =;
④若BAC ∠是直角,则四边形AEDF 是矩形.
其中正确的是( )
A .①②③
B .①②④
C .②④
D .①③④ 【答案】A
【解析】
【分析】
根据折叠可得EF 是AD 的垂直平分线,再加上条件AD 是三角形纸片ABC 的高可以证明EF ∥BC ,进而可得△AEF ∽△ABC ,从而得12AE AF AO AB AC AD ===,进而得到EF 是△ABC 的中位线;再根据三角形的中位线定理可判断出△AEF 的周长是△ABC 的一半,进而得到△DEF 的周长等于△ABC 周长的一半;根据三角形中位线定理可得AE=
12AB ,AF=12
AC ,若四边形AEDF 是菱形则AE=AF ,即可得到AB=AC .
【详解】
解:∵AD 是△ABC 的高,
∴AD ⊥BC ,
∴∠ADC=90°,
根据折叠可得:EF 是AD 的垂直平分线,
∴AO=DO=
12
AD ,AD ⊥EF , ∴∠AOF=90°,
∴∠AOF=∠ADC=90°,
∴EF ∥BC ,
∴△AEF ∽△ABC ,
12AE AF AO AB AC AD ===, ∴EF 是△ABC 的中位线,
故①正确; ∵EF 是△ABC 的中位线,
∴△AEF 的周长是△ABC 的一半,
根据折叠可得△AEF ≌△DEF ,
∴△DEF 的周长等于△ABC 周长的一半,
故②正确;
∵EF 是△ABC 的中位线,
∴AE=
12AB ,AF=12
AC , 若四边形AEDF 是菱形,
则AE=AF ,
∴AB=AC ,
故③正确; 根据折叠只能证明∠BAC=∠EDF=90°,
不能确定∠AED 和∠AFD 的度数,故④错误;
故选:A .
【点睛】
此题主要考查了图形的翻折变换,以及三角形中位线的性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
4.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )
A .5
B .2
C .52
D .5【答案】C
【解析】
【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.
【详解】
解:过点D 作DE BC ⊥于点E
由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .
AD BC a ∴== ∴12DE AD a =g 2DE ∴=
由图像得,当点F 从D 到B 时,用5s
5BD ∴=
Rt DBE V 中,
2222(5)21BE BD DE =-=-=
∵四边形ABCD 是菱形,
1EC a ∴=-,DC a =
DEC Rt △中,
2222(1)a a =+-
解得52
a =
故选:C .
【点睛】
本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.
5.如图,11,,33
AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )
A .60︒
B .80︒
C .90︒
D .100︒
【答案】B
【解析】
【分析】
延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得
60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.
【详解】
延长BC 、EF 交于点G
∵//AB EF
∴180ABG BGE +=︒∠∠
∵60FCD ∠=︒
∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠
2236012033
ABG EFC =︒---︒∠∠ ()223606012033
ABG BGE =︒--︒+-︒∠∠ 223604012033
ABG BGE =︒--︒--︒∠∠ ()22003
ABG BGE =︒-+∠∠ 22001803
=︒-⨯︒ 80=︒
故答案为:B .
【点睛】
本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.
6.如图 ,矩形 ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点 M ,CN ⊥AN 于点 N .则 DM +CN 的值为(用含 a 的代数式表示)( )
A .a
B .45 a
C .22a
D .3a 【答案】C
【解析】
【分析】 根据“AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N”得∠MDC=∠NCD=45°,cos45°=DM CN DE CE
= ,所以DM+CN=CDcos45°;再根据矩形ABCD ,AB=CD=a ,DM+CN 的值即可求出.
【详解】
∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,
∴∠ADM=∠MDC=∠NCD=45°,
∴00cos 4545D CN
M
cos +=CD ,
在矩形ABCD 中,AB=CD=a ,
∴DM+CN=acos45°=
2a. 故选C.
【点睛】
此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =
7.如图,足球图片正中的黑色正五边形的内角和是( ).
A .180°
B .360°
C .540°
D .720°
【答案】C
【解析】
【分析】 根据多边形内角和公式2180()n -⨯︒即可求出结果.
【详解】
解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,
故选:C .
【点睛】
本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.
8.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )
A .12
B .1
C 3
D 31
【答案】D
【解析】
【分析】
分三种情形讨论①若以边BC 为底.②若以边PC 为底.③若以边PB 为底.分别求出PD 的最小值,即可判断.
【详解】
解:在菱形ABCD 中,
∵∠ABC=60°,AB=1,
∴△ABC ,△ACD 都是等边三角形,
①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P 与点A 重合时,PD 值最小,最小值为1;
②若以边PC 为底,∠PBC 为顶角时,以点B 为圆心,BC 长为半径作圆,与BD 相交于一点,则弧AC (除点C 外)上的所有点都满足△PBC 是等腰三角形,当点P 在BD 上时,PD 31
③若以边PB 为底,∠PCB 为顶角,以点C 为圆心,BC 为半径作圆,则弧BD 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点D 重合时,PD 最小,显然不满足题意,故此种情况不存在;
上所述,PD 的最小值为31
故选D .
【点睛】
本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
9.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH,若BE:EC=2:1,则线段CH 的长是( )
A .3
B .4
C .5
D .6
【答案】B
【解析】 试题分析:设CH =x , 因为BE :EC =2:1,BC =9,所以,EC =3, 由折叠知,EH =DH =9-x ,
在Rt △ECH 中,由勾股定理,得:222(9)3x x -=+,解得:x =4,即CH=4
考点:(1)图形的折叠;(2)勾股定理
10.如图,已知矩形ABCD 中,BC =2AB ,点E 在BC 边上,连接DE 、AE ,若EA 平分∠
BED
,则ABE CDE
S S V V 的值为( )
A 23-
B 233-
C 233-
D 23- 【答案】C
【解析】
【分析】
过点A 作AF ⊥DE 于F ,根据角平分线上的点到角的两边距离相等可得AF=AB ,利用全等三角形的判定和性质以及矩形的性质解答即可.
【详解】
解:如图,过点A 作AF ⊥DE 于F ,
在矩形ABCD 中,AB =CD ,
∵AE 平分∠BED ,
∴AF =AB ,
∵BC =2AB ,
∴BC =2AF ,
∴∠ADF =30°,
在△AFD 与△DCE 中
∵∠C=∠AFD=90°,
∠ADF=∠DEC,
AF=DC,,
∴△AFD ≌△DCE (AAS ),
∴△CDE 的面积=△AFD 的面积=2113AF DF AF 3AF 22⨯== ∵矩形ABCD 的面积=AB •BC =2AB 2,
∴2△ABE 的面积=矩形ABCD 的面积﹣2△CDE 的面积=(23AB 2,
∴△ABE 的面积=
(2232AB , ∴23
233233
ABE CDE S S -==V V , 故选:C .
【点睛】
本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB .
11.下列命题中是真命题的是( )
A .多边形的内角和为180°
B .矩形的对角线平分每一组对角
C .全等三角形的对应边相等
D .两条直线被第三条直线所截,同位角相等
【答案】C
【解析】
【分析】
根据多边形内角和公式可对A 进行判定;根据矩形的性质可对B 进行判定;根据全等三角形的性质可对C 进行判定;根据平行线的性质可对D 进行判定.
【详解】
A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,
B.矩形的对角线不一定平分每一组对角,故该选项是假命题,
C.全等三角形的对应边相等,故该选项是真命题,
D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,
故选:C .
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.
12.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为( )
A .29
B .34
C .52
D .41
【答案】D
【解析】 解:设△ABP 中AB 边上的高是h .∵S △PAB =
13S 矩形ABCD ,∴12 AB •h =13AB •AD ,∴h =23
AD =2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离.
在Rt △ABE 中,∵AB =5,AE =2+2=4,∴BE =
22AB AE + =2254+=41,即PA +PB 的
最小值为41.故选D .
13.如图所示,点E 是矩形ABCD 的边AD 延长线上的一点,且AD=DE ,连结BE 交CD 于
点O,连结AO,下列结论不正确的是()
A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC 【答案】A
【解析】
根据矩形的性质和全等三角形的性质找出全等三角形应用排它法求欠妥即可:
∵AD=DE,DO∥AB,∴OD为△ABE的中位线.∴OD=OC.
∵在Rt△AOD和Rt△EOD中,AD=DE,OD=OD,∴△AOD≌△EOD(HL).
∵在Rt△AOD和Rt△BOC中,AD=BC,OD=OC,∴△AOD≌△BOC(HL).
∴△BOC≌△EOD.
综上所述,B、C、D均正确.故选A.
14.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()
A.4 B.8 C.6 D.10
【答案】B
【解析】
【分析】
【详解】
解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,
AO=EO,∴AE=2AO=8,故选B.
【点睛】
本题考查角平分线的作图原理和平行四边形的性质.
15.下列说法中正确的是()
A.有一个角是直角的四边形是矩形
B.两条对角线互相垂直的四边形是菱形
C.两条对角线互相垂直平分的四边形是正方形
D.两条对角线相等的菱形是正方形
【答案】D
【解析】
【分析】
本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.
【详解】
A. 有一个角是直角的四边形是矩形,错误;
B. 两条对角线互相垂直的四边形是菱形,错误;
C. 两条对角线互相垂直平分的四边形是正方形,错误;
D. 两条对角线相等的菱形是正方形,正确.
故选D.
【点睛】
本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.
16.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )
A .1
B .2
C .32
D .85
【答案】C
【解析】
【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.
【详解】
解:在矩形ABCD 中,3,4AB BC ==,
∴∠B=90°, ∴22345AC =+=,
由折叠的性质,得AF=AB=3,BE=EF ,
∴CF=5-3=2,
在Rt △CEF 中,设BE=EF=x ,则CE=4x -,
由勾股定理,得:222
2(4)x x +=-,
解得:
3
2
x=;

3
2 BE=.
故选:C.
【点睛】
本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE的长度.
17.如图,将一个大平行四边形在一角剪去一个小平行四边形,如果用直尺画一条直线将其剩余部分分割成面积相等的两部分,这样的不同的直线一共可以画出()
A.1条B.2条C.3条D.4条
【答案】C
【解析】
【分析】
利用平行四边形的性质分割平行四边形即可.
【详解】
解:如图所示,这样的不同的直线一共可以画出三条,
故答案为:3.
【点睛】
本题考查平行四边形的性质,解题的关键是掌握平行四边形的中心对称性.
18.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD 于点F,若BF=12,AB=10,则AE的长为()
A.13 B.14 C.15 D.16
【答案】D
【解析】
先证明四边形ABEF 是平行四边形,再证明邻边相等即可得出四边形ABEF 是菱形,得出AE ⊥BF ,OA=OE ,OB=OF=12BF=6,由勾股定理求出OA ,即可得出AE 的长. 【详解】
如图所示:
∵四边形ABCD 是平行四边形,
∴AD ∥BC ,
∴∠DAE=∠AEB ,
∵∠BAD 的平分线交BC 于点E ,
∴∠DAE=∠BAE ,
∴∠BAE=∠BEA ,
∴AB=BE ,同理可得AB=AF ,
∴AF=BE ,
∴四边形ABEF 是平行四边形,
∵AB=AF ,
∴四边形ABEF 是菱形,
∴AE ⊥BF ,OA=OE ,OB=OF=
12BF=6, ∴OA=2222=106AB OB --=8,
∴AE=2OA=16.
故选D .
【点睛】
本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF 是菱形是解决问题的关键.
19.如图,在□ABCD 中,延长CD 到E ,使DE =CD ,连接BE 交AD 于点F ,交AC 于点G .下列结论中:①DE =DF ;②AG =GF ;③AF =DF ;④BG =GC ;⑤BF =EF ,其中正确的有( )
A .1个
B .2个
C .3个
D .4个
【解析】
【分析】
由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,即AB∥CE,
∴∠ABF=∠E,
∵DE=CD,
∴AB=DE,
在△ABF和△DEF中,

=
=
=
ABF E
AFB DFE AB DE
∠∠


∠∠




∴△ABF≌△DEF(AAS),
∴AF=DF,BF=EF;
可得③⑤正确,
故选:B.
【点睛】
此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
20.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点
为顶点画平行四边形,则第四个顶点不可能在().
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】C
【解析】
A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C。

相关文档
最新文档