第33节:选择题专练三(统计与概率)(九年级第二轮复习)

合集下载

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

九年级数学专题复习统计与概率

九年级数学专题复习统计与概率

中考总复习:统计与概率【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】【考点梳理】考点一、数据的收集及整理1.一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.2.调查收集数据的方法:普查与抽样调查.要点进阶:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想.(3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样. 3.数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.要点进阶:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.考点二.数据的分析1.基本概念:总体:把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本;样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数;极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.计算方差的公式:设一组数据是,是这组数据的平均数。

华师大版中考总复习精练精析33概率(2)含答案解析

华师大版中考总复习精练精析33概率(2)含答案解析

统计与概率——概率2一.选择题(共8小题)1.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于()A.B.C.D.2.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A.B.C.D.3.从1、2、3、4中任取两个不同的数,其乘积大于4的概率是()A.B.C.D.4.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.B.C.D.5.学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是()A.B.C.D.6.有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的机率为何?()A.B.C.D.7.一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A.B.C.D.8.一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是()A.B.C.D.二.填空题(共7小题)9.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是_________.10.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是_________.11.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是_________.12.有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为_________.13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是_________.14.在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为_________.15.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是_________.三.解答题(共9小题)16.在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同.小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图(树形图)法求小明两次摸出的球颜色不同的概率.17.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.18.第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,,2(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看.(1)请你直接写出按照爸爸的规则小明能看比赛的概率;(2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.19.同时抛掷两枚材质均匀的正方体骰子,(1)通过画树状图或列表,列举出所有向上点数之和的等可能结果;(2)求向上点数之和为8的概率P1;(3)求向上点数之和不超过5的概率P2.20.某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一个区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?21.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.22.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?23.把形状、大小、质地完全相同的4张卡片分别标上数字﹣1、﹣4、0、2,将这4张卡片放入不透明的盒子中搅匀.求下列事件的概率:(1)从中随机抽取一张卡片,卡片上的数字是负数;(2)先从盒子中随机抽取一张卡片不放回,再随机抽取一张,两张卡片上的数字之积为0(用列表法或树形图).24.在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.统计与概率——概率2参考答案与试题解析一.选择题(共8小题)1.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两个数的和是2的倍数或3的倍数情况,即可求出所求概率.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两个数的和是2的倍数或3的倍数情况有10种,则P==.故选:C.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.2.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A.B.C.D.考点:列表法与树状图法.专题:分类讨论.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号相同的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号相同的有4种情况,∴两次摸出的小球的标号相同的概率是:=.故选:C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3.从1、2、3、4中任取两个不同的数,其乘积大于4的概率是()A.B. C D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积大于4的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∴从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:=.故选:C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与征征和舟舟选到同一社团的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,征征和舟舟选到同一社团的有3种情况,∴征征和舟舟选到同一社团的概率是:=.故选:C.5.学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是()A.B.C.D.考点:列表法与树状图法.专题:常规题型.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲乙两人恰有一人参加此活动的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,甲乙两人恰有一人参加此活动的有8种情况,∴甲乙两人恰有一人参加此活动的概率是:=.故选:A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的机率为何?()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及组成的二位数为6的倍数的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵每次取一张且取后不放回共有6种可能情况,其中组成的二位数为6的倍数只有54,∴组成的二位数为6的倍数的机率为.故选:A.7.一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A.B.C.D.考点:列表法与树状图法.分析:列表得出所有等可能的情况数,找出这两个球上的两个数字之和为负数的情况数,即可求出所求的概率.解答:解:列表得:3 1 ﹣23 ﹣﹣﹣(1,3)(﹣2,3)1 (3,1)﹣﹣﹣(﹣2,1)﹣2 (3,﹣2)(1,﹣2)﹣﹣﹣所有等可能的情况有6种,其中两个数字之和为负数的情况有2种,则P==.故选:B.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两次摸出小球的号码之积为偶数的情况数,即可求出所求的概率.解答:解:列表如下:1 21 (1,1)(1,2)2 (2,1)(2,2)所有等可能的情况数有4种,两次摸出小球的号码之积为偶数的情况有3种,则P=.故选:D.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二.填空题(共7小题)9.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.考点:列表法与树状图法.专题:计算题.分析:先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.解答:解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为:.点评:本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.10.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是.考点:列表法与树状图法;三角形三边关系.专题:常规题型.分析:由从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;直接利用概率公式求解即可求得答案.解答:解:∵从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;∴能构成三角形的概率是:=.故答案为:.点评:此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.11.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是.考点:列表法与树状图法.专题:常规题型.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与通过一次“手心手背”游戏能决定甲打乒乓球的情况,再利用概率公式即可求得答案.解答:解:分别用A,B表示手心,手背.画树状图得:∵共有8种等可能的结果,通过一次“手心手背”游戏能决定甲打乒乓球的有4种情况,∴通过一次“手心手背”游戏能决定甲打乒乓球的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为.考点:列表法与树状图法.分析:根据题意画出树状图,得出所有的可能,进而求出两人同坐3号车的概率.解答:解:由题意可画出树状图:,所有的可能有9种,两人同坐3号车的概率为:.故答案为:.点评:此题主要考查了树状图法求概率,列举出所有可能是解题关键.13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是.考点:列表法与树状图法.分析:画出树状图,然后根据概率公式列式计算即可得解.解答:解:根据题意画出树状图如下:一共有20种情况,恰好是一男一女的有12种情况,所以,P(恰好是一男一女)==.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.14.在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两次摸取的小球标号都是1的情况数,即可求出所求的概率.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次摸取的小球标号都是1的情况有1种,则P=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.15.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是.考点:列表法与树状图法;平行四边形的判定.专题:计算题.分析:列表得出所有等可能的情况数,找出能判定四边形ABCD是平行四边形的情况数,即可求出所求的概率.解答:解:列表如下:1 2 3 41 ﹣﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣﹣所有等可能的情况有12种,其中能判定出四边形ABCD为平行四边形的情况有8种,分别为(2,1);(3,1);(1,2);(4,2);(1,3);(4,3);(2,4);(3,4),则P==.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.三.解答题(共9小题)16.在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同.小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图(树形图)法求小明两次摸出的球颜色不同的概率.考点:列表法与树状图法.专题:常规题型.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明两次摸出的球颜色不同的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,小明两次摸出的球颜色不同的有6种情况,∴小明两次摸出的球颜色不同的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.考点:列表法与树状图法;一次函数图象与系数的关系.专题:计算题.分析:(1)列表得出所有等可能的情况数即可;(2)找出满足一次函数y=kx+b的图象经过一、二、四象限的情况,即可求出所求的概率.解答:解:(1)列表如下:kb ﹣1 ﹣2 3﹣1 (﹣1,﹣1)(﹣2,﹣1)(3,﹣1)﹣2 (﹣1,﹣2)(﹣2,﹣2)(3,﹣2)3 (﹣1,3)(﹣2,3)(3,3)4 (﹣1,4)(﹣2,4)(3,4)所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18.第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,,2(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看.(1)请你直接写出按照爸爸的规则小明能看比赛的概率;(2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三个数中有理数有一个3,求出所求概率即可;(2)列表得出所有等可能的情况数,找出抽取的两数之积为有理数的情况数,即可求出所求的概率.解答:解:(1)按照爸爸的规则小明能看比赛的概率P=;(2)列表如下:3 23 9 3 63 3 42 6 4 8所有等可能的情况有9种,其中抽取的两数之积是有理数的情况有5种,则按照此规则小明看比赛的概率P=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.同时抛掷两枚材质均匀的正方体骰子,(1)通过画树状图或列表,列举出所有向上点数之和的等可能结果;(2)求向上点数之和为8的概率P1;(3)求向上点数之和不超过5的概率P2.考点:列表法与树状图法.专题:分类讨论.分析:(1)首先根据题意列出表格,然后由表格求得所有等可能的结果;(2)由(1)可求得向上点数之和为8的情况,再利用概率公式即可求得答案;(3)由(1)可求得向上点数之和不超过5的情况,再利用概率公式即可求得答案.解答:解:(1)列表得:6 7 8 9 10 11 125 6 7 8 9 10 114 5 6 7 8 9 103 4 5 6 7 8 92 3 4 5 6 7 81 2 3 4 5 6 71 2 3 4 5 6则共有36种等可能的结果;(2)∵向上点数之和为8的有5种情况,∴P1=;(3)∵向上点数之和不超过5的有10种情况,∴P2==.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.20.某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一个区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?考点:列表法与树状图法.专题:计算题.分析:(1)列表得出所有等可能的情况数,找出乘积为负数的情况数,即可求出所求的概率;(2)找出乘积为无理数的情况数,即可求出一等奖的概率.解答:解:列表如下:1.5 ﹣3 ﹣0 0 0 0 01 1.5 ﹣3 ﹣﹣1 ﹣1.5 3 ﹣所有等可能的情况有12种,(1)乘积结果为负数的情况有4种,则P(乘积结果为负数)==;(2)乘积是无理数的情况有2种,则P(乘积为无理数)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.考点:列表法与树状图法.分析:(1)利用树形图”或“列表法”即可求出两辆汽车行驶方向所有可能的结果;。

2023年人教版九年级中考数学专题复习:统计与概率专项训练

2023年人教版九年级中考数学专题复习:统计与概率专项训练

2022-2023学年人教版九年级中考专题复习统计与概率专项训练一、单选题1.小明参加“强国有我”主题演讲比赛,其演讲形象、内容、效果三项的成绩分别是70分、90分、80分,若将三项项分依次按2:4:4的比例确定最终成绩,则小明的最终比赛成绩为()A.70分B.80分C.82分D.90分2.数据1,2,3,4,……,19,20的平均数为a,则数据4,7,10,13,……,58,61的平均数为()A.a B.3a C.9a D.3a+13.某校学生会招募新会员,小刚同学的心理测试、笔试、面试得分分别为80分、90分、70分,若依次按照2:3:5的比例确定成绩,则小刚同学的最终成绩为()A.80B.78C.77D.824.某人5次射击成绩为7,x,10,8,7.若这组数据的平均数为8,则x的值为()A.7B.8C.9D.105.同时掷两个骰子,算点数之和.如果小芳选5、6、7、8、9五个数,而小明选2、3、4、10、11、12六个数,掷20次,()赢的可能性大.A.小芳B.小明C.机会均等D.无法判断6.将分别标有“郑”“州”“加”“油”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“加油”的概率是()A.18B.16C.14D.127.一个袋子中装有12个完全相同的小球,每个球上分别写有数字1~12.现在用摸球试验来模拟6人中有2人生肖相同的概率,在此过程中,下面有几种不同的观点,其中正确的是()A.摸出的球一定不能放回B.摸出的球必须要放回C.由于袋子中的球多于6个,因此摸出的球是否放回无所谓D.不能用摸球试验来模拟此事件8.下列说法不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中(每个抽屉中必须有球),其中一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书,正好是97页是确定性事件D.“经过有交通信号灯的路口,遇到红灯”是随机事件9.下列说法中正确的是()A.对绵远河段水质污染情况的调查,采用全面调查的方式B.中考期间一定会下雨是必然事件C.一个样本中包含的个体数目称为样本容量D.已知“1,2,3,4,5”这一组数据的方差为2,将这一组数据分别乘以3,则所得到的一组新数据的方差也为210.将只有颜色不同的7个白球和3个黑球放入不透明袋子中,一次性从袋中随机摸出a个球,则下列说法正确的是()A.若a=3,则摸到的球全是黑球的可能性很大B.若a=1,摸到红球是随机事件C.若a=1,记下颜色并放回,重复进行100次操作,一定会摸到70次白球D.若a=4,则摸出的球中有白球是必然事件11.剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是()12.徐州云龙山共九节,蜿蜒起伏,形似游龙,每节山的海拔如图所示.其中,海拔为中位数的是()A.第五节山B.第六节山C.第八节山D.第九节山二、填空题13.吴师傅从鱼塘中捕得同时放养的草鱼500尾,从中任选10尾,称得每尾鱼的质量(单位:kg)分别为2.5,2.6,2.4,2.6,2.3,2.4,2.2,2.7,2.8,2.5,则这500尾草鱼的总质量大约是kg.14.在学校举行的“幸福长丰,美丽家园”演讲比赛中,评委分别从演讲内容、演讲能力、演讲效果这三方面打分,小华这三项得分的成绩分别为88分,80分,85分,最后再按照5∶3∶2的得分比例计算最终得分,则小华的最终得分是分.15.如图所示,转盘被分成面积相等的8份,小强随机转动转盘一次,则指针指到奇数的概率是.16.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是.17.下列事件中,∶在商场购物,恰好碰见老同学;∶太阳绕着地球转;∶掷一枚正方体骰子,点数“4”朝上;∶13人中至少有2人的生日是同一个月.属于随机事件的个数是.18.小方在本学期的数学平时成绩、期中成绩、期末成绩分别是90分、80分、95分,若平时成绩、期中成绩、期末成绩在学期成绩所占的比例分别为30%,30%,40%,则小方在本学期的数学成绩是分.三、解答题19.在一个不透明的袋子里装有2个白球,3个黄球,每个球除颜色外均相同,现将同样除颜色外都相同的黄球和白球若干个(白球个数是黄球个数的2倍)放入袋中,搅匀,求后放入袋中的黄球的个数.后,若从袋中摸出一个球是白球的概率是1220.某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生,对他们一周的课外阅读时间进行了调整,井绘制出如下的统计图∶和图∶,根据相关信息,解答下列问题:(∶)本次接受随机抽样调查的学生人数为______,图∶中m的值为______;(∶)求本次调查获取的样本数据的众数、中位数和平均数;(∶)根据样本数据,估计该校一周的课外阅读时间大于6ℎ的学生人数.21.下图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则:同时转动两个转盘,当转盘停止后,若指针所指区域内的数字之和小于10,则小颖获胜;若指针所指区域内的数字之和等于10,则为平局;若指针所指区域内的数字之和大于10,则小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法求小颖获胜的概率.(2)该游戏规则是否公平?若公平,请说明理由;若不公平,请你设计出一种公平的游戏规则.22.某跳水训练基地为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的的统计图∶和图∶.请根据相关信息,解答下列问题:(1)本次调查的样本容量是,图∶中m的值为;(2)请把条形统计图补充完整;(3)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.23.暑假期间,某商场为了吸引顾客,对一次购物满500元的顾客可获得一次转转盘得奖券的机会.如图是一个可以自由转动的转盘(转盘被等分成10个扇形),转动转盘停止后,根据指针指向参照下表获得奖券(指针指向黄色区域不获奖,指向分界线时重转,直到指向某一扇形为止)颜色红蓝黑奖券金额(元)205080(1)甲顾客购物300元,他获得奖券的概率是___________;(2)乙顾客购物600元,并参与该活动,他获得20元和80元奖券的概率分别是多少?(3)为加大活动力度,现商场想调整获得20元奖券的概率为1,其余奖券获奖概率不变,2则需要将多少个黄色区域改为红色?24.某校开展“党在我心中”党史知识竞赛,竞赛得分为整数,林老师为了解竞赛情况,随机抽取了部分参赛学生的得分并进行整理,绘制成如下不完整的统计图表.(∶)成绩在70≤x<80这一组的是(单位:分):70 70 71 72 72 74 77 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)表中a=,b=.在这次试中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为.(2)这次测试成绩的平均数是76.6分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)在90≤x<100之间的四名同学有两位男生和两位女生,学校打算选派一位男生和一位女生参加市里举办的“航空航天知识”,请求出选中一男一女的概率.。

统计与概率初三练习题

统计与概率初三练习题

统计与概率初三练习题在初三学习统计与概率时,练习题是非常重要的一部分。

通过做题,我们可以巩固所学知识,提高解决问题的能力。

本文将提供一些统计与概率的初三练习题,并给出详细解析,希望对同学们的学习有所帮助。

一、统计题1. 某班有60名学生,他们的身高数据如下(单位:cm):155, 165, 160, 165, 155, 170, 160, 155, 170, 165, 160, 155, 155, 165, 160, 160, 155, 165, 160, 165, 170, 155, 165, 170, 165, 160, 155, 160, 170, 160, 155, 155, 165, 160, 160, 165, 155, 160, 170, 165, 160, 155, 155, 165, 160, 165, 160, 170, 155, 165, 160, 155, 160, 155, 170, 165, 155, 165, 160, 165请计算这60名学生的平均身高和中位数。

解析:要计算平均身高,只需要将所有学生的身高加起来,然后除以学生人数。

平均身高 = (155 + 165 + 160 + 165 + 155 + 170 + 160 + 155 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 160 + 155 + 165 + 160 + 165 + 170 + 155 + 165 + 170 + 165 + 160 + 155 + 160 + 170 + 160 + 155 + 155 + 165 + 160 + 160 + 165 + 155 + 160 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 165 + 160 + 170 + 155 + 165 + 160 + 155 + 160 + 155 + 170 + 165 + 155 + 165 + 160 + 165) / 60中位数是指将所有数据按照大小顺序排列,取中间的数。

2020中考复习第33课时数据的收集与整理

2020中考复习第33课时数据的收集与整理
图33-5
考点聚焦
请根据图中信息,解答下列问题: (1)该调查的样本容量为 50 ,a= 36 %,“第一版”对应扇形的圆心角为 108 °; (2)请你补全条形统计 (2) 第三版为12人 (3)若该校有1000名学生,请你估计全校学生中最喜欢“第一版”的人数.
图33-5
考点聚焦
请根据图中信息,解答下列问题: (3)若该校有1000名学生,请你估计全校学生中最喜欢“第一版”的人数. 解: (3)1550×1000=300(人). 答:估计全校学生中最喜欢“第 一版”的人数是 300 人.
图33-3
考点聚焦
解:(2)7~8月的电费=2400-300-240-350-280-330=900(元),补全的条形图如下:
考点聚焦
| 考向精练 | 1. [2018·徐州22题] 在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽 取本校部分学生进行调查,并绘制成部分统计图表如下:
类别 A B C D
图33-5
考点聚焦
3. [2016·徐州21题] 某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己 做错题的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调 查数据进行了整理,绘制成的部分统计图如图33-6.
图33-6
考点聚焦
请根据图中信息,解答下列问题: (1)该调查的样本容量为 ,a= %,b= %,“常常”对应扇形的圆心角为 ; (2)请你补全条形统计图; (3)若该校有3200名学生,估计其中“总是”对错题进行整理、分析、改正的学生 有多少名?
考点聚焦
[答案] 560 [解析]12÷0.12=100,20÷100=0.2,3÷100=0.03,即月均用水量在10<x≤15范围内的频率 为0.2,月均用水量在x>20范围内的频率为0.03,则月均用水量在5<x≤10范围内的频率为 1-0.12-0.2-0.07-0.03=0.58,补全表格如下:

九年级数学下册统计与概率练习题

九年级数学下册统计与概率练习题

九年级数学下册统计与概率练习题在九年级数学下册的统计与概率章节中,练习题是必不可少的部分。

通过练习题,学生可以巩固课堂所学的知识,提升解决实际问题的能力。

下面我们就来进行一些统计与概率的练习题。

1. 在一次班级考试中,30个学生的成绩如下:(表格)a) 请计算平均分。

b) 为了更直观地了解学生的成绩分布情况,请绘制频数分布直方图。

2. 为了了解一个地区的高温情况,我们随机选择了100个不同的日期进行观测,得到的高温数据如下:(表格)a) 请计算平均高温。

b) 请计算极差。

c) 请计算方差和标准差。

3. 根据一份问卷调查数据,统计了200位中学生的午餐喜好类型如下:(表格)a) 请计算各类类型占比。

b) 请计算众数。

4. 在一次抽奖活动中,有200人参与,每人购买了一张彩票。

其中头奖为iPhone手机,一等奖为平板电脑,二等奖为耳机,三等奖为笔记本电脑,其他为安慰奖。

a) 请计算中奖概率。

b) 如果想要获得头奖的概率为0.5%,请问需要多少人参与抽奖活动?c) 如果只会开出一个头奖,其他奖项不限数量,请问需要多少人参与抽奖活动,能够保证至少有一个人获得头奖?5. 一批产品的质量统计如下:(表格)a) 请计算不合格率。

b) 如果抽取20个产品进行质量检查,请问不合格的产品数大于3个的概率是多少?以上就是一些九年级数学下册统计与概率章节的练习题。

通过解答这些练习题,可以帮助同学们更好地理解和掌握统计与概率的知识,提高解决实际问题的能力。

希望同学们能够认真完成,并及时向老师请教不理解的地方。

加油!。

2021年中考数学九年级复习课时训练:《统计与概率》(三)

2021年中考数学九年级复习课时训练:《统计与概率》(三)

2021年中考数学九年级复习课时训练:《统计与概率》(三)1.当前,“低头族”已成为热门话题之一,小颖为了了解路边行人边走路边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在图书馆里看书的人发放问卷进行调查D.对在路边行走的路人随机发放问卷进行调查2.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解深圳市居民日平均用水量,采用全面调查方式D.了解深圳市每天的平均用电量,采用抽样调查方式3.为了了解某校3000名学生的体重情况,从中抽取了200名学生的体重,就这个问题来说,下面说法正确的是()A.3000 名学生是总体B.3000 名学生的体重是总体C.每个学生是个体D.200名学生是所抽取的一个样本4.学校需要了解学生眼睛患上近视的情况,下面抽取样本方式比较合适的是()A.从全校的每个班级中随机抽取几个学生作调查B.在低年级学生中随机抽取一个班级作调查C.在学校门口通过观察统计佩戴眼镜的人数D.从学校的男同学中随机抽取50名学生作调查5.某射击运动员在同一条件下的射击成绩如下表,则下列说法中正确的是()射击次数20 40 100 200 400 1000射中九环以上次数15 33 78 158 321 801 A.该运动员射击50次,至少有40次射中以上B.该运动员射击50次,最多有40次射中以上C.该运动员射击50次,都没有命中靶心D.估计该运动员“射中9环以上”的次数为400次时,他的射击次数为500次6.中国抗击疫情最宝贵的经验就是“早发现,早报告,早隔离,早治疗”.在这12个字中“早”字出现的频率是()A .B .C .D .7.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()50 100 150 200 500 800 1000抽取件数(件)合格频数48 98 144 193 489 784 981 A.12 B.24 C.1188 D.11768.某班级的一次数学考试成绩统计图如图,则下列说法错误的是()A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2D.得分及格(≥60)的有12人9.如图,是宜宾市某周内最高气温的折线统计图,关于这7天的日气温的说法,错误的是()A.最高气温是30℃B.最低气温是20℃C.出现频率最高的是28℃D.平均数是26℃10.为了解高校学生对5G移动通信网络的消费意愿,从在校大学生中随机抽取了1000人进行调查,下面是大学生用户分类情况统计表和大学生愿意为5G套餐多支付的费用情况统计图(例如,早期体验用户中愿意为5G套餐多支付10元的人数占所有早期体验用户的50%).用户分类人数A:早期体验用户(目前已260人升级为5G用户)B:中期跟随用户(一年内540人将升级为5G用户)C:后期用户(一年后才升200人级为5G用户)下列推断中,不合理的是()A.早期体验用户中,愿意为5G套餐多支付10元,20元,30元的人数依次递减B.后期用户中,愿意为5G套餐多支付20元的人数最多C.愿意为5G套餐多支付10元的用户中,中期跟随用户人数最多D.愿意为5G套餐多支付20元的用户中,后期用户人数最多11.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°12.党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为2020年全面建成小康社会的战略目标打下了坚实基础.以下是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.2017 2018 2019 年份人数地区东部300 147 47中部1112 181西部1634 916 323(以上数据来源于国家统计局)根据统计图表提供的信息,下面推断不正确的是()A.2018年中部地区农村贫困人口为597万人B.2017﹣2019年,农村贫困人口数量都是东部最少C.2016﹣2019年,农村贫困人口减少数量逐年增多D.2017﹣2019年,虽然西部农村贫困人口减少数量最多,但是相对于东、中部地区,它的降低率最低13.某商店根据今年6﹣10月份的销售额情况,制作了如下统计图.根据图中信息,可以判断相邻两个月销售额变化最大的是()A.6月到7月B.7月到8月C.8月到9月D.9月到10月14.下面说法正确的是()A.检测一批进口食品的质量应采用全面调查B.反映你本学年数学成绩的变化情况宜采用扇形统计图C.从5万名考生的成绩中抽取300名考生的成绩作为样本,样本容量是5万D.一组数据的样本容量是100,最大值是141,最小值是60,取组距为10,可分为9组15.如图,是某企业甲、乙两位员工的能力测试结果网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级,由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比,乙需要加强与他人的沟通和合作能力;④乙的综合评分比甲要高.其中合理的是()A.①③B.②④C.①②③D.①②③④16.一组数据10,9,10,12,9的平均数是()A.11 B.12 C.9 D.1017.某公司招聘职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名应聘者进行测试.测试结果如表(满分均为10分):应聘者/项目甲乙丙丁学历7 9 7 8经验8 8 9 8 工作态度9 7 9 8 如果将学历、经验和工作态度三项得分按1:2:2的比例确定各人的最终得分,并以此为依据确定录取者,那么()将被录取.A.甲B.乙C.丙D.丁18.如表是某校合唱团成员的年龄分布统计,则这组数据(年龄)的中位数是()年龄13 14 15 16频数 5 7﹣a13 aA.13 B.14 C.15 D.1619.数据4,3,2,1,3的众数是()A.1 B.2 C.3 D.420.某班抽取6名同学参加体能测试,成绩如下:90,80,90,80,60,80,下列表述错误的是()A.众数是80 B.中位数是80 C.平均数是80 D.极差是20 21.如表,记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差,要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()甲乙丙丁平均数(cm)376 350 376 350 方差x212.5 13.5 2.4 5.4 A.甲B.乙C.丙D.丁22.某市疾控中心在对10名某传染病确诊病人的流行病史的调查中发现,这10人的潜伏期分别为:5,5,5,7,7,8,8,9,11,14(单位:天),则下列关于这组潜伏期数据的说法中不正确的是()A.众数是5天B.中位数是7.5天C.平均数是7.9天D.标准差是2.5天23.为了解某校九年级学生跳远成绩的情况,随机抽取30名学生的跳远成绩(满分10分)绘制成下表:成绩/分 5 6 7 8 9 10人数/人x y 6 8 5 4 关于跳远成绩的统计量中,一定不随x,y的变化而变化的是()A.众数,中位数B.中位数,方差C.平均数,方差D.平均数,众数24.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;③13个人中至少有两个人的生日是在同一个月份;④射击运动员射击一次,命中靶心;⑤水中捞月;⑥冬去春来.其中是必然事件的有()A.1个B.2个C.3个D.4个25.已知一个不透明的袋子里有2个白球,3个黑球,1个红球.现从中任意取出一个球,()A.恰好是白球是必然事件B.恰好是黑球是不确定事件C.恰好是红球是不可能事件D.摸到白球、黑球、红球的可能性一样大参考答案1.解:A、对学校的同学发放问卷进行调查不具代表性、广泛性,故A不合理;B、对在路边行走的学生随机发放问卷进行调查不具代表性、广泛性,故B不合理;C、对在图书馆里看书的人发放问卷进行调查不具代表性、广泛性,故C不合理;D、对在路边行走的行人随机发放问卷进行调查具代表性、广泛性,故D合理;故选:D.2.解:A、日光灯管厂要检测一批灯管的使用寿命,应用抽样调查,故A错误;B、旅客上飞机前的安检,采用普查方式,故B错误;C、了解深圳市居民日平均用水量,采用抽样调查方式,故C错误;D、了解深圳市每天的平均用电量,采用抽样调查方式,故D正确.故选:D.3.解:A、3000名学生的体重是总体,故此选项错误;B、3000 名学生的体重是总体,正确;C、每个学生的体重是个体,故此选项错误;D、200名学生的体重是所抽取的一个样本,故此选项错误.故选:B.4.解:A、从全校的每个班级中随机抽取几个学生作调查适合抽样调查,故A符合题意;故选:A.5.解:从频率的波动情况可以发现频率稳定在0.8附近,所以这名运动员射击一次时“射中9环以上”的概率是0.8,可以估计该运动员“射中9环以上”的次数为400次时,他的射击次数为500次故选:D.6.解:在这12个字中“早”字出现的频率是:=,故选:D.7.解:1200×(1﹣)=27,27比较接近24,故选:B.8.解:A.得分在70~80分的人数最多,此选项正确;B.该班的总人数为4+12+14+8+2=40(人),此选项正确;C.人数最少的得分段的频数为2,此选项正确;D.得分及格(≥60)的有12+14+8+2=36人,此选项错误;故选:D.9.解:A.由折线统计图知最高气温是周六的气温,为30℃,此选项正确;B.由折线统计图知最低气温是周一的气温,为20℃,此选项正确;C.出现频率最高的是28℃,出现2次,此选项正确;D.平均数是=(℃),此选项错误;故选:D.10.解:早期体验用户:支付10元人数:260×50%=130,支付20元人数260×35%=91,支付30元人数260×15%=39,中期跟随用户:支付10元人数55%×540=297,支付20元人数540×40%=216,支付30元人数540×5%=27,后期用户:支付10元人数200×40%=80,支付20元人数200×56%=112,支付30元人数200×4%=8,A、早期体验用户中,愿意为5G套餐多支付10元,20元,30元的人数依次递减,说法正确,故此选项不合题意;B、后期用户中,愿意为5G套餐多支付20元的人数最多,说法正确,故此选项不合题意;C、愿意为5G套餐多支付10元的用户中,中期跟随用户人数最多,说法正确,故此选项不合题意;D、愿意为5G套餐多支付20元的用户中,后期用户人数最多,说法不正确,应为中期跟随用户最多,故此选项符合题意;故选:D.11.解:A.扇形统计图能反映各部分在总体中所占的百分比,此选项正确;B.每天阅读30分钟以上的居民家庭孩子超过50%,此选项正确;C.每天阅读1小时以上的居民家庭孩子占30%,此选项错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360°×(1﹣40%﹣20%﹣10%)=108°,此选项正确;故选:C.12.解:A、2018年中部地区农村贫困人口为:1660﹣147﹣916=597(万人).故A的说法正确;B、由统计表可知B选项说法正确;C、∵4335﹣3046=1289,3046﹣1660=1386,1660﹣551=1109,∴1109<1289<1386,故C不正确,D、∵≈0.843,≈0.837,≈0.802,∴0.802<0.837<0.843,∴D说法正确.∴只有C推断不正确.故选:C.13.解:6月到7月,营业额增加40﹣25=15万元,7月到8月,营业额增加48﹣40=8万元,8月到9月,营业额减少48﹣32=16万元,9月到10月,营业额增加43﹣32=11万元,因此营业额变化最大的是8月到9月,故选:C.14.解:A.检测一批进口食品的质量应采用抽样调查,故本选项错误;B.反映你本学年数学成绩的变化情况宜采用折线统计图,故本选项错误;C.从5万名考生的成绩中抽取300名考生的成绩作为样本,样本容量是300,故本选项错误;D.一组数据的样本容量是100,最大值是141,最小值是60,取组距为10,可分为9组,故本选项正确;故选:D.15.解:由图形可知:甲和乙的动手操作能力都是5分,即最高等级,故①合理;甲的探索学习的能力为1分,故缺少探索学习的能力是甲自身的不足,故②合理;甲与他人的沟通和合作能力为5分,乙与他人的沟通和合作能力为3分,故乙与他人的沟通和合作能力弱于甲,故③合理;甲的各项得分为5,5,4,4,1;乙的各项得分为5,5,4,4,3,乙的综合评分比甲要高2分,故④合理.综上,合理的选项有①②③④.故选:D.16.解:一组数据10,9,10,12,9的平均数是=10,故选:D.17.解:甲的平均得分为=8.2(分),乙的平均得分为=7.8(分),丙的平均得分为=8.6(分),丁的平均得分为=8.0(分),∴丙将被录取,故选:C.18.解:由表可知,年龄为14岁与年龄为16岁的频数和为7﹣a+a=7,则总人数为:5+7+13=25人,把这些数从小到大排列,则中位数是15岁,故选:C.19.解:在这组数据4,3,2,1,3中,3出现的次数最多,故数据4,3,2,1,3的众数是3,故选:C.20.解:A、这组数据的众数是80,故本选项正确;B、把这些数从小到大排列为60,80,80,80,90,90,则中位数是=80,故本选项正确;C、平均数是:(90+80+90+80+60+80)=80,故本选项正确;D、极差是90﹣60=30,故本选项错误;故选:D.21.解:∵乙和丁的平均数最小,∴从甲和丙中选择一人参加比赛,∵丙的方差最小,∴选择丙参赛;故选:C.22.解:A、∵数据中5出现3次,出现的次数最多,∴众数为5,此选项正确;B、把这些数据重新排列为5,5,5,7,7,8,8,9,11,14,则中位数为=7.5天,此选项正确;C、平均数为(5+5+5+7+7+8+8+9+11+14)=7.9,此选项正确;D、方差为×[3×(5﹣7.9)2+2×(7﹣7.9)2+2×(8﹣7.9)2+(9﹣7.9)2+(11﹣7.9)2+(14﹣7.9)2]≠2.5,此选项错误;故选:D.23.解:由于总共有30个人,且他们的分数互不相同,第15,16的成绩的平均数是中位数,其数值为8,与x,y的变化无关,由于总共有30个人,众数为8,与x,y的变化无关,故选:A.24.解:①掷一次骰子,向上一面的点数是3,是随机事件;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球,是不可能事件;③13个人中至少有两个人的生日是在同一个月份,是必然事件;④射击运动员射击一次,命中靶心,是随机事件;⑤水中捞月,是不可能事件;⑥冬去春来,是必然事件;故选:B.25.解:A、恰好是白球是随机事件,错误,不符合题意;B、恰好是黑球是不确定事件,正确,符合题意;C、恰好是红球是随机事件,错误,不符合题意;D、摸到白球、黑球、红球的可能性不一样大,不符合题意,故选:B.。

九年级数学下册统计与概率的概率计算练习题

九年级数学下册统计与概率的概率计算练习题

九年级数学下册统计与概率的概率计算练习题一、简介统计与概率是九年级数学下册的重要内容之一,概率计算练习题是提高学生在概率计算方面的能力和应用能力的有效方式。

本文将针对九年级数学下册统计与概率的概率计算练习题,进行详细的讲解和解答。

二、基础概念回顾在进行概率计算练习题之前,我们先来回顾一下统计与概率的基础概念。

1. 样本空间:指一个随机试验的所有可能的结果的集合。

2. 事件:指样本空间中的一个子集。

3. 概率:指某个事件在所有可能结果中出现的可能性大小。

4. 等可能事件:指每个事件发生的概率相等的事件。

三、概率计算练习题解答1. 例题1:某班级有30名男生和40名女生,从中随机选择一名学生,求选择的学生为男生的概率。

解答:首先,我们计算总体样本空间的大小,即男生和女生总共的人数:30 + 40 = 70。

接下来,我们计算选择的学生为男生的事件空间的大小,即男生的人数:30。

所以,选择的学生为男生的概率为:30/70 = 3/7。

2. 例题2:一副标准的扑克牌中共有52张牌,其中有4张Ace牌(A),从中随机选择一张牌,求选择的牌为Ace的概率。

解答:首先,我们计算总体样本空间的大小,即扑克牌的总张数:52。

接下来,我们计算选择的牌为Ace的事件空间的大小,即Ace牌的张数:4。

所以,选择的牌为Ace的概率为:4/52 = 1/13。

3. 例题3:一枚均匀的六面骰子被投掷一次,求投掷的结果是奇数的概率。

解答:首先,我们计算总体样本空间的大小,即六面骰子的可能结果个数:6。

接下来,我们计算投掷的结果是奇数的事件空间的大小,即奇数的可能结果个数:3(1、3、5)。

所以,投掷的结果是奇数的概率为:3/6 = 1/2。

四、概率计算练习题延伸除了以上的例题以外,还可以延伸一些概率计算练习题,帮助学生更好地理解和掌握概率计算的方法和技巧。

1. 组合问题:某公司有20名员工,其中有5名男性和15名女性,从中随机选择3名员工,求选择的员工全为女性的概率。

2024年初中数学统计与概率专项训练

2024年初中数学统计与概率专项训练

2024年初中数学统计与概率专项训练在初中数学的学习中,统计与概率是一个重要的组成部分。

它不仅能够帮助我们更好地理解和处理数据,还能培养我们的逻辑思维和分析问题的能力。

对于即将迎来 2024 年中考的同学们来说,进行专项训练是提高这部分知识掌握程度的关键。

首先,我们来了解一下统计的基本概念。

统计主要包括数据的收集、整理、描述和分析。

数据的收集可以通过调查、实验等方式进行。

比如,我们想了解班级同学的身高情况,就可以通过测量每个同学的身高来收集数据。

数据的整理则是将收集到的数据进行分类、排序等操作,使其更有条理。

比如,将同学们的身高按照从矮到高的顺序排列。

描述数据常用的方法有统计图和统计表。

统计图包括条形统计图、折线统计图和扇形统计图。

条形统计图能清楚地反映出各种数据的数量多少;折线统计图可以直观地展示数据的变化趋势;扇形统计图则能很好地呈现各部分在总体中所占的比例。

例如,要展示一个班级同学不同学科成绩的分布情况,使用条形统计图就能清晰地看出每个学科的成绩高低。

如果要观察某个同学一段时间内成绩的起伏变化,折线统计图就是最佳选择。

而想了解班级同学在各种兴趣爱好上的占比,扇形统计图会更合适。

在统计分析中,我们常常要计算一些统计量,比如平均数、中位数和众数。

平均数是所有数据的总和除以数据的个数,它能反映数据的平均水平。

中位数是将一组数据按照从小到大或从大到小的顺序排列后,位于中间位置的数,如果数据个数是奇数,中位数就是中间的那个数;如果数据个数是偶数,中位数则是中间两个数的平均值。

众数是一组数据中出现次数最多的数。

比如说,有一组数据:12、15、18、15、20、15、19,那么这组数据的平均数是(12 + 15 + 18 + 15 + 20 + 15 + 19)÷ 7 = 16。

中位数是 15,因为将这组数据从小到大排列为 12、15、15、15、18、19、20,中间的数是 15。

众数也是 15,因为 15 出现的次数最多。

【中考专题】2019年 九年级数学中考二轮 统计与概率 专题复习30题(含答案)

【中考专题】2019年 九年级数学中考二轮 统计与概率 专题复习30题(含答案)

2019年九年级数学中考二轮统计与概率专题复习1.我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?2.九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”知识竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:请解答下列问题:(1)完成频数分布表,a=___________,b=___________;(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩在90≤x<100范围内的学生有多少人?3.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书.学校组织学生会随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类.根据调查结果绘制了统计图(未完成).请根据图中信息,解答下列问题:(1)此次共调查了____________名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为____________度;(4)若该学校共有学生2 500人,估计该校喜欢“社科类”书籍的学生人数.4.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有____________人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是____________度;(4)已知该校共有学生3 600人,请根据调查结果估计该校喜欢健美操的学生人数.5.某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2 300名,请估计该校“不重视阅读数学教科书”的初中生人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?6.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a=____________,b=____________;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2 000名学生中评为“阅读之星”的有多少人?7.联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了下面的两个统计图.其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类B:能将垃圾放到规定的地方,但不会考虑垃圾的分类C:偶尔会将垃圾放到规定的地方D:随手乱扔垃圾根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全条形统计图;(2)如果该校共有师生2 400人,那么随手乱扔垃圾的约有多少人?8.为了解某县初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有名;(2)表中x,y和m所表示的数分别为:x= ,y= ,m= ;(3)请补全条形统计图;(4)根据抽样调查结果,请你估计该县5400名初中毕业生实验考查成绩为D类的学生人数.9.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有__________人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是__________度.(4)已知该校共有学生3 600人,请根据调查结果估计该校喜欢健美操的学生人数.10. “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对某小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7 名,8 名,10 名,12 名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有_______个班级;各班留守儿童人数的中位数是_______;并补全条形统计图;(2)若该镇所有小学共有65 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.11.为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如下表:然后做上记号再放回鱼塘中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点);(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).12.某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表:(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,则谁将被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3∶5∶2的权确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.13.为了倡导“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数、众数和中位数;(3)根据样本数据,估计市直机关500户家庭中月平均用水量不超过12吨的约有多少户?14.九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是____________;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.15.我市民营经济持续发展,城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工月平均收入随机抽样调查,将抽样的数据按“2 000元以内”、“2 000元~4 000元”、“4 000元~6 000元”和“6 000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有____________人,在扇形统计图中x的值为____________,表示“月平均收入在2 000元以内”的部分所对应扇形的圆心角的度数是____________;(2)将不完整的条形统计图补充完整,并估计我市城镇民营企业20万员工中,每月的收入在“2 000元~4 000元”的约多少人?(3)统计局根据抽样数据计算得到,2013年我市城镇民营企业员工月平均收入为4 872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?16.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?17.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是,并补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中C等级所对应的圆心角为°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.18.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试(1)在表中,a= ,b= ,c= ;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?19.参与我市教育资源倍增工程的学校有A、B两个校区,为了加强融合,两个校区的学生特举办了以“弘扬校园真善美,文名礼仪在我心”为主题的演讲比赛.两校区参赛人数相等,比赛结束后,按分数进行分类统计,共有7分、8分、9分、10分(满分10分)四个等级.依据统计数据绘制了如下尚不完整的统计图表.(1)根据图表信息可知两个校区参加的人数为人,并将图2的统计图补充完整;(2)经计算,B校区的平均分是8.3分,中位数是8分,请计算A校区的平均分、中位数,并从平均数和中位数的角度分析哪个校区成绩较好;(3)如果该学校要组织8人的代表队参加学区内的演讲团体赛,决定从这两个校区中的一所挑选参赛选手,请你分析,应选哪个小区?20.某商场在今年“十·一”国庆节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客李老师参加此次摸奖活动时中奖的概率.21.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.22.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.23.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.24.把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.25.为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.26. “学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树状图)表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.27.在一个不透明的盒子里,装有三个分别写有数字6, 2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.28.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.29.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?参考答案1.解:(1)这次抽取的样本容量为24÷20%=120;(2)C等级人数为120×30%=36(份),D等级人数为120﹣(24+48+36)=12(份),补全条形图如下:(3)750×=450(份),答:估计参赛作品达到B级以上(即A级和B级)有450份.2.(1)4,4;(2)略.(3)50(人).答:估计该校成绩在90≤x<100范围内的学生约有50人.3.解:(1)200;(2)图略.(3)126;(4)2 500×=300(人).答:估计该校喜欢“社科类”书籍的学生人数约为300人.4.(1)500;(2)A的人数:500-75-140-245=40(人),统计图2补充略.(3)54;(4)245÷500×100%=49%,3 600×49%=1 764(人).答:估计该校喜欢健美操的学生有1 764人.5.解:(1)由统计表可知,样本容量为57÷0.38=150,∴a=150×0.3=45,c=1-0.3-0.38-0.06=0.26,b=150×0.26=39.补全统计图略.(2)2 300×0.26=598(人).答:估计该校“不重视阅读数学教科书”的初中生人数约为598人.(3)①从该校初中生重视阅读数学教科书的人数比例来看,该校初中生对阅读数学教科书的重视程度不够,建议数学教师在课内外加强引导学生阅读数学教科书,逐步提高学生数学阅读能力,重视数学教材在数学学习过程中的作用.②考虑到样本具有的随机性、代表性和广泛性,要了解全省初中生阅读数学教科书的情况,抽样时要选择城市、乡镇不同层次的学校.6.解:(1)25,0.10;(2)阅读时间为6<t≤8的学生有25人,补全频数分布直方图略.(3)2 000×0.10=200(人).答:估计该校2 000名学生中评为“阅读之星”的有200人.7.解:(1)由统计图可知B种情况的有150人,占总人数的50%,所以调查的总人数为150÷50%=300(人).D种情况的人数为300-(150+30+90)=30(人),补全统计图略.(2)随手乱扔垃圾的人约为240(人).8.解:(1)60÷30%=200名;(2)x=200×50%=100,y=200×15%=30,m=1﹣95%=5%;(3)(4)5400×5%=270名.答:估计2011年该县5400名初中毕业生实验考查成绩为D类的学生人数为270名9.解:(1)500(2)A的人数:500-75-140-245=40,图略;(3)54(4)245÷500×100%=49%,3600×49%=1764(人).答:估计该校喜欢健美操的学生有1764人.10. (1) 16;9名;5个.(2) 解:错误!未找到引用源。

初三数学下册《统计与概率》书本练习题

初三数学下册《统计与概率》书本练习题

初三数学下册《统计与概率》练习题一、统计图1、三种统计图的特点条形统计图:能够清楚地表示出每个项目的具体数目折线统计图:能够清楚地反映事物的变化情况扇形统计图:能够清楚地表示出各部分在总体中所占的百分比2下图给出了两种品牌酒的价格变化情况,哪一种酒的价格增长较快这个图象给你的感觉一致吗为什么图象会给人这样的感觉为了较为直观地比较某两个统计量的变化速度,在绘制折线统计图时,应注意些什么?:3、如图所示,反映了某市居民1991年和2011年在饮食、教育、医疗及其他方面消费之间的比例状况.根据该图,王明同学认为1991年的饮食消费比2011年的多,你认为他的看法对吗为什么?4、下图反映了我国1999年全国图书、杂志和报纸的出版印张数条形统计图后,观察并思考以下几个问题:(1)直观地看这个条形统计图,1999年哪种出版物总印张数最多哪种出版物总印张数最少最多的是最少的几倍(2)实际上,最多的大约是最少的几倍图中所表示出来的直观情况与此相符吗(3)这个图为什么会给人造成这样的感觉(4)为了更直观、清楚地反映实际情况,上图应怎样的改动—二、加权平均数(中位数,众数,算术平均数)1、学校快餐店有2元、3元、4元三种价格的饭菜供师生选择(每人限购一份),下图是某月的销售情况统计图,该校师生购买饭菜费用的平均费用的平均数和众数分别是什么2、小波学习小组于2006年10月调查了某城市部分居民的家庭人口数,并绘出了下面的扇形统计图。

求部分居民家庭人口数的众数和平均数。

3、某厂生产A、B、C三种型号的电视机,2002年这三种型号电视机的销售额依次为10亿元、2亿元、3亿元,为了应对激烈的市场竞争,2003年该厂决定降低电视机的销售价格,A、B、C三种型号的电视机分别降价10%,30%,20%,因此,该厂宣称其产品平均降价20%,你认为该厂的说法正确吗如果不正确,你认为怎样表述才比较准确4.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图1),并规定:顾客每购买100元后的商品,就能获得一次转盘的机会。

最新北师大版九年级中考数学总复习统计与概率知识点+练习试题

最新北师大版九年级中考数学总复习统计与概率知识点+练习试题

九年级中考数学统计和概率知识点+练习试题统计和概率1、着教育信息化的发展,学生的学习方式日益增多.教师为了指导学生有幸效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有人;在扇形统计图中“D”选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若该校共有1200名学生,请你估计该校学生课外利用网络学习的时间在“A”选项的有多少人?2、八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算m=;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.3、中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a =________,b =___________,c =____________; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数; (4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.1、如图所示的几何体,其俯视图是( ) A . B . C . D .2、如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是( )A .B .C .D .3、如图所示的几何体,它的左视图是( )4、下面四个几何体:其中,俯视图是四边形的几何体个数是( ) A .1 B .2 C .3 D .4 814187652015105人数5、如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()。

2019-2020年九年级总复习(北师大版) 包考专题(三) 统计与概率

2019-2020年九年级总复习(北师大版) 包考专题(三) 统计与概率

2019-2020年九年级总复习(北师大版)包考专题(三) 统计与概率时间题号题型分值主要内容xx5,9,15选择题填空题均为3分调查方式,列表法与树状图法求概率,平均数和众数21解答题8分统计图的应用xx6,7,14选择题填空题均为3分众数,随机事件,平均数21解答题8分列表法与树状图法求概率,游戏的公平性xx4,7,15选择题填空题均为3分中位数,随机事件,平均数21解答题8分画树状图求概率9.4,9.4,9.5,9.2,则这5个分数的平均分为__9.4__分.根据加权平均数的计算公式列出算式,再进行计算即可.【例2】(xx·包头)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数时,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树状图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.转盘A转盘B 1 2 3 43 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)5 (1,5)(2,5)(3,5)(4,5)∵P(甲胜)=412=13(2)∵“和是4的倍数”的结果有3种,∴P(乙胜)=312=14,∵13≠14,即P(甲胜)≠P(乙胜),∴这个游戏规则对甲、乙双方不公平(1)根据题意列表或画出树状图,再根据概率公式求出甲胜的概率;(2)由(1)再求出乙胜的概率,与甲胜的概率进行比较,可得出游戏是否公平.真题热身 1.(xx·包头)下列调查中,调查方式选择正确的是( B ) A .为了了解1000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量,选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查 2.(xx·包头)在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是( B )A .7B .8C .9D .10 3.(xx·包头)一组数据按从小到大排列为2,4,8,x ,10,14.若这组数据的中位数为9,则这组数据的众数为( D )A .6B .8C .9D .10 4.(xx·聊城)下列说法中不正确的是( C )A .抛掷一枚硬币,硬币落地时正面朝上是随机事件B .把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C .任意打开七年级下册数学教科书,正好是97页是确定事件D .一个盒子中有白球m 个,红球6个,黑球n 个(每个球除了颜色外其余都相同),如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是65.(xx·徐州)抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率( B )A .大于12B .等于12C .小于12D .不能确定6.(xx·包头)某次射击训练中,一小组的成绩如表所示,已知该小组的平均成绩为8环,那么成绩为9环的人数是__3__.环 数 7 8 9 人 数 3 47.(xx·河南)2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是__13__.8.(xx·包头)某年级组织学生参加夏令营活动,本次夏令营活动分为甲、乙、丙三组进行,下面条形统计图和扇形统计图反映了学生参加夏令营活动的报名情况,请你根据图中的信息回答下列问题:(1)该年级报名参加本次活动的总人数为__60__人,报名参加乙组的人数为__12__人; (2)补全条形统计图中乙组的空缺部分;(3)根据实际情况,需从甲组抽调部分学生到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?解:(1)60,12(2)补图略 (3)设应从甲组抽调x 名学生到丙组,可得方程30+x =3(18-x ),解得x =6,则应从甲组抽调6名学生到丙组9.(xx·包头)有四张正面分别标有数字2,1,-3,-4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m ,再随机地摸取一张,将卡片上的数字记为n. (1)请画出树状图并写出(m ,n)所有可能的结果;(2)求所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三、四象限的概率.解:(1)画树状图:则(m ,n )共有12种等可能的结果:(2,1),(2,-3),(2,-4),(1,2),(1,-3),(1,-4),(-3,2),(-3,1),(-3,-4),(-4,2),(-4,1),(-4,-3) (2)∵所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三、四象限的有(-3,-4),(-4,-3),∴其概率P =212=16-----如有帮助请下载使用,万分感谢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

首页
末页
数学
考 点 突 破
9.下列事件为必然事件的是( D ) A.小王参加本次数学考试,成绩是150分 B.某射击运动员射靶一次,正中靶心 C.打开电视机,CCTV第一套节目正在播放新闻 D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球
【考点】随机事件. 【专题】计算题. 【分析】根据事件的分类的定义及分类对四个选项进行逐一分析即可. 【解答】解:A、小王参加本次数学考试,成绩是150分是随机事件,故A选项错误; B、某射击运动员射靶一次,正中靶心是随机事件,故B选项错误; C、打开电视机,CCTV第一套节目正在播放新闻是随机事件,故C选项错误. D、口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球是必然事件,故D选项 正确; 故选:D. 【点评】本题考查的是随机事件,即在一定条件下,可能发生也可能不发生的事件,称 为随机事件.
首页 某校2000名师生对我市“三创”工作(创国家园林城市、 国家卫生城市、全国文明城市)的知晓情况,从中随机抽取了100 名师生进行问卷调查,这项调查中的样本是( ) C A.2000名师生对“三创”工作的知晓情况 B.从中抽取的100名师生 C.从中抽取的100名师生对“三创“工作的知晓情况 D.100
首页 末页
数学
考 点 突 破
10.从:1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个 数,取出的数是3的倍数的概率是( B )
【考点】概率公式. 【分析】让是3的倍数的数的个数除以数的总个数即为所求的概率. 【解答】解:∵1、2、3、4、5、6、7、8、9、10这十个数中,3的倍数的有3、6 、9共3个数, ∴取出的数是3的倍数的概率是: . 故选B. 【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能 性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .
首页 末页
数学
考 点 突 破
6.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调 查,计算后发现这个月四个市场的价格平均值相同,方差分别为 S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4.二月份白菜价格最稳定的 市场是( B ) A.甲 B.乙 C.丙 D.丁
【考点】方差. 【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小 ,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即 可得出答案. 【解答】解:因为甲、乙、丙、丁四个市场的方差分别为S2甲=8.5,S2乙=2.5,S2丙= 10.1,S2丁=7.4, 乙的方差最小, 所以二月份白菜价格最稳定的市场是乙. 故选:B. 【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表 明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组 数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
第33节
选择题专练三(统计与概率)
课 前 预 习 考 点 梳 理
课 堂 精 讲
广 东 中 考
首页
末页
数学
考 点 突 破
1.下列调查中,须用普查的是( C ) A.了解某市学生的视力情况 B.了解某市中学生课外阅读的情况 C.了解某市百岁以上老人的健康情况 D.了解某市老年人参加晨练的情况
【考点】全面调查与抽样调查. 【专题】常规题型. 【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查 得到的调查结果比较近似,对各选项分析判断后利用排除法求解. 【解答】解:A、了解某市学生的视力情况,适合采用抽样调查,故本选项错误; B、了解某市中学生课外阅读的情况,适合采用抽样调查,故本选项错误; C、了解某市百岁以上老人的健康情况,人数比较少,适合采用普查,故本选项正确; D、了解某市老年人参加晨练的情况,老年人的标准没有限定,人群范围可能较大,适合 采用抽样调查,故本选项错误. 故选:C. 【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考 查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的 意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往 选用普查.
【考点】总体、个体、样本、样本容量. 【专题】压轴题. 【分析】根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本确定出 样本,然后即可选择答案. 【解答】解:根据样本的定义,这项调查中的样本是:从中抽取的100名师生对“三创“ 工作的知晓情况. 故选C. 【点评】本题考查了总体、个体、样本,是概念题,需要注意,不论总体还是样本都要 指明“考察的对象”,这也是此类题目最容易出错的地方.
首页
末页
数学
考 点 突 破
4.下列数据3,2,3,4,5,2,2的中位数是( C ) A.5 B.4 C.3 D.2
【考点】中位数. 【分析】求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平 均数为中位数. 【解答】解:题目中数据共有7个,把数据按从小到大的顺序排列为2,2,2,3,3,4, 5, 故中位数是按从小到大排列后第4个数是3, 故这组数据的中位数是3. 故选C. 【点评】本题属于基础题,考查了确定一组数据的中位数的能力.将一组数据从小到大 (或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组 数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来 确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两 位数的平均数.
首页 末页
数学
考 点 突 破
5.在体育课上,初三年级某班10名男生“引体向上”的成绩(单位 :次)分别是9,14,10,15,7,9,16,10,11,9,这组数据的 众数、中位数、平均数依次是( ) D A.10,8,11 B.10,8,9 C.9,8,11 D.9,10,11
【考点】众数;算术平均数;中位数. 【专题】应用题. 【分析】先把数据按大小排列,然后根据众数、中位数和平均数的定义求解. 【解答】解:从小到大排列此数据为:7,9,9,9,10,10,11,14,15,16, 数据9出现了三次最多为众数, 处在第5位、第6位的均为10, ∴10为中位数, 平均数为:(7+9+9+9+10+10+11+14+15+16)÷10=11, 故选D. 【点评】本题主要考查了确定一组数据的中位数和众数的能力,一些学生往往对这个概 念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺 序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为 所求,如果是偶数个则找中间两位数的平均数,难度适中.
首页
末页
数学
首页
末页
数学
首页
末页
数学
考 点 突 破
8.某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所 示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下 列说法不正确的是( D ) A.扇形甲的圆心角是72° B.学生的总人数是900人 C.丙地区的人数比乙地区的人数多180人 D.甲地区的人数比丙地区的人数少180人
首页 末页
数学
考 点 突 破
7.在体育达标测试中,某校初三5班第一小组六名同学一分钟跳绳成 绩如下:93,138,98,152,138,183;则这组数据的极差 是( C ) A.138 B.183 C.90 D.93
【考点】极差. 【分析】根据极差的定义,用最大值减最小值即可求得答案. 【解答】解:由题意可知,极差为183-93=90. 故选C. 【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法 是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致. ②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散 程度就显得不准确.
首页 末页
数学
考 点 突 破
3.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为 :12,13,13,14,12,13,15,13,则他们年龄的众数 为( B ) A.12 B.13 C.14 D.15
【考点】众数. 【分析】由于众数是一组实际中出现次数最多的数据,由此可以确定这组数据的众数. 【解答】解:依题意得13在这组数据中出现四次,次数最多, 故他们年龄的众数为13. 故选:B. 【点评】此题考查了众数的定义,注意众数是指一组数据中出现次数最多的数据,它反 映了一组数据的多数水平,一组数据的众数可能不是唯一的.
【考点】扇形统计图. 【专题】压轴题. 【分析】因为某校学生来自甲,乙,丙三个地区,其人数比为2:5:3,即甲区 的人数是总人数的 ,利用来自甲地区的为180人,即可求出三个地区的 总人数,进而求出丙地区的学生人数,分别判断即可.
首页
末页
数学
考 点 突 破
【解答】解:A.根据甲区的人数是总人数的 ,则扇形甲的圆心角 是: ×360°=72°,故此选项正确,不符合题意; B.学生的总人数是:180÷ =900人,故此选项正确,不符合题意; C.丙地区的人数为:900× =450,乙地区的人数为:900× =270,则丙地 区的人数比乙地区的人数多450-270=180人,故此选项正确,不符合题意; D.甲地区的人数比丙地区的人数少450-180=270人,故此选项错误. 故选:D. 【点评】此题主要考查了扇形图的应用,先求出总体的人数,再分别乘以各部分 所占的比例,即可求出各部分的具体人数是解题关键.
相关文档
最新文档