七年级数学试卷平面图形的认识(二)压轴解答题练习题(附答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学试卷平面图形的认识(二)压轴解答题练习题(附答案)
一、平面图形的认识(二)压轴解答题
1.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.
(1)如(图1),当AE⊥BC时,求证:DE∥AC
(2)若∠C=2∠B,∠BAD=x°(0<x<60)
①如(图2),当DE⊥BC时,求x的值.
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
2.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE 和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.
(1)如图①,已知∠ABE=50°,∠DCE=25°,则∠BEC = ________°;
(2)如图②,若∠BEC=140°,求∠BE1C的度数;
(3)猜想:若∠BEC=α度,则∠BE n C = ________ °.
3.如图,,,,点D,C,E在同一条直线上.
(1)完成下面的说理过程
∵,(已知)
∴,(垂直的定义).
∴ .
∴,(________).
∴ .(________)
又∠B=∠D,
∴∠B=∠BCE,
∴AB//CD. (________)
(2)若∠BAD=150°,求∠E的度数.
4.直线AB、CD被直线EF所截,AB∥CD,点P是平面内一动点。
(1)若点P在直线CD上,如图①,∠α=50°,则∠2=________°。
(2)若点P在直线AB、CD之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出证明;
(3)若点P在直线CD的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请作出判断并说明理由。
5.课题学习:平行线的“等角转化功能.
(1)问题情景:如图1,已知点是外一点,连接、,求的度数.
天天同学看过图形后立即想出:,请你补全他的推理过程.解:(1)如图1,过点作,∴ ________, ________.
又∵,∴ .
解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.
(2)问题迁移:如图2,,求的度数.
(3)方法运用:如图3,,点在的右侧,,点在的左侧,,平分,平分,、所在的直线交于点,点在与两条平行线之间,求的度数.
6.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.
小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一“猪蹄模型”.即
已知:如图1,,为、之间一点,连接,得到 .
求证:
小明笔记上写出的证明过程如下:
证明:过点作,
∴
∵,
∴
∴ .
∵
∴
请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.
(1)如图,若,,则 ________.
(2)如图,,平分,平分,,则________.
7.在中,为直线AC上一点,E为直线AB上一点,
(1)如图1,当D在AC上,E在AB上时,求证;
(2)如图2,当D在CA的延长线上,E在BA的延长线上时,点G在EF上,连接AG,且
,求证:
(3)如图3,在(2)的条件下,连接BG,当BG平分时,将沿着AG折至探究与的数量关系.
8.如图,在△ABC中,点E和点F在边BC上,连接AE,AF,使得∠EAC=∠ECA,∠BAE=2∠CAF.
(1)如图1,求证:∠BAF=∠BFA;
(2)如图2,在过点C且与AE平行的射线上取一点D,连接DE,若∠AED=∠B,求证:BE=CD;
9.如图1,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.
(1)求证:∠BAG=∠BGA;
(2)如图2,若∠ABG=50°,∠BCD的平分线交AD于点E、交射线GA于点F.求∠AFC 的度数;
(3)如图3,线段AG上有一点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线
AG上取一点M,使∠PBM=∠DCH,请直接写出的值.
10.已知,,点在射线上, .
(1)如图1,若,求的度数;
(2)把“ °”改为“ ”,射线沿射线平移,得到,其它条件不变(如图2所示),探究的数量关系;
(3)在(2)的条件下,作,垂足为,与的角平分线交于点,若,用含α的式子表示(直接写出答案).
11.已知直线AB//CD,P是两条直线之间一点,且AP⊥PC于P.
(1)如图1,求证:∠BAP+∠DCP=90°;
(2)如图2,CQ平分∠PCG,AH平分∠BAP,直线AH、CQ交于Q,求∠AQC的度数;
12.如图,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D连接AC,BD,CD.
(1)写出点C,D的坐标并求出四边形ABCD的面积.
(2)在x轴上是否存在一点E,使得的面积是面积的2倍?若存在,请求出E 的坐标;若不存在,请说明理由.
(3)若点F是直线BD上一个动点,连接FC,FO,当点F在直线BD上运动时,请直接写出与的数量关系.
【参考答案】***试卷处理标记,请不要删除
一、平面图形的认识(二)压轴解答题
1.(1)证明:∵∠BAC=90°,AE⊥BC,
∴∠CAF+∠BAF=90°,∠B+∠BAF=90°,
∴∠CAF=∠B,
由翻折可知,∠B=∠E,
∴∠CAF=∠E,
∴AC∥DE;
(2)解:①∵∠C=2∠B,∠C+∠B=90°,
∴∠C=60°,∠B=30°,
∵DE⊥BC,∠E=∠B=30°,
∴∠BFE=60°,
∵∠BFE=∠B+∠BAF,
∴∠BAF=30°,
由翻折可知,x=∠BAD=∠BAF=15°;
②∠BAD=x°,则∠FDE=(120﹣2x)°,∠DFE=(2x+30)°,
当∠EDF=∠DFE时,120﹣2x=2x+30,
解得,x=22.5,
当∠DFE=∠E=30°时,2x+30=30,
解得,x=0,
∵0<x<60,
∴不合题意,故舍去,
当∠EDF=∠E=30°,120﹣2x=30,
解得,x=45,
综上可知,存在这样的x的值,使得△DEF中有两个角相等,且x=22.5或45.
【解析】【分析】(1)根据折叠的性质得到∠B=∠E,根据平行线的判定定理证明;(2)①根据三角形内角和定理分别求出∠C=60°,∠B=30°,根据折叠的性质计算即可;②分∠EDF=∠DFE、∠DFE=∠E、∠EDF=∠E三种情况,列方程解答即可. 2.(1)75
(2)解:如图2,
∵∠ABE和∠DCE的平分线交点为E1,
∴由(1)可得,
∠BE1C=∠ABE1+∠DCE1= ∠ABE+ ∠DCE= ∠BEC;
∵∠BEC=140°,
∴∠BE1C=70°;
(3)
【解析】【解答】解:(1)如图①,过E作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠B=∠1,∠C=∠2,
∵∠BEC=∠1+∠2,
∴∠BEC=∠ABE+∠DCE=75°;
故答案为:75;
( 3 )如图2,
∵∠ABE1和∠DCE1的平分线交点为E2,
∴由(1)可得,
∠BE2C=∠ABE2+∠DCE2= ∠ABE1+ ∠DCE1= ∠CE1B= ∠BEC;
∵∠ABE2和∠DCE2的平分线,交点为E3,
∴∠BE3C=∠ABE3+∠DCE3= ∠ABE2+ ∠DCE2= ∠CE2B= ∠BEC;
…
以此类推,∠E n= ∠BEC,
∴当∠BEC=α度时,∠BE n C等于 °.
故答案为: .
【分析】(1)先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE=75°;(2)先根据∠ABE和
∠DCE的平分线交点为E1,运用(1)中的结论,得出∠BE1C=∠ABE1+∠DCE1= ∠ABE+ ∠DCE= ∠BEC;(3)根据∠ABE1和∠DCE1的平分线,交点为E2,得出∠BE2C= ∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C= ∠BEC;…据此得到规
律∠E n= ∠BEC,最后求得∠BE n C的度数.
3.(1)同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行(2)解:∵(已知)
∴
又∵∠BAD=150°,(已知)
∴
由(1)得AB//CD.
∴(两直线平行,内错角相等).
【解析】【分析】(1)结合图形,根据平行的性质和判定即可得到答案;
(2)根据题意首先求出∠BAE,再根据两直线平行,内错角相等即可得到答案.
4.(1)50
(2)解:∠a=∠1+∠2,
证明:过点P作PG∥AB∥CD,
∴PG∥CD,
∴∠2=∠3,∠1=∠4,
∴∠α=∠3+∠4=∠1+∠2;
(3)解:∠α=∠2-∠1,
证明:过点P作PG∥CD,
∵AB∥CD,
∴PG∥AB,
∴∠2=∠EPG,∠1=∠3,
∴∠α=∠EPG-∠3=∠2-∠1
【解析】【分析】(1)直接根据“两直线平行,内错角相等”写出答案;
(2)过点P作PG∥AB,根据“两直线平行,内错角相等”求解;
(3)过点P作PG∥CD,根据平行线的性质可得∠2=∠EPG,∠1=∠3,进而得到角的关系.
5.(1)∠EAB;∠DAC
(2)解:过C作CF∥AB,
∵AB∥DE,∴CF∥DE∥AB,
∴∠D=∠FCD,∠B=∠BCF,
∵∠BCF+∠BCD+∠DCF=360°,
∴∠B+∠BCD+∠D=360°,
(3)解:如图3,过点E作EF∥AB,
∵AB∥CD,∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,
∴∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°
∴∠BED=∠BEF+∠DEF=30°+35°=65°.
【解析】【解答】解:(1)根据平行线性质可得:因为,所以∠EAB,∠DAC;
【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D∠BCF+∠BCD+∠DCF;(2)过C作CF∥AB,根据平行线性质可得;(3)
如图3,过点E作EF∥AB,根据平行线性质和角平分线定义可得∠ABE= ∠ABC=30°,
∠CDE= ∠ADC=35°,故∠BED=∠BEF+∠DEF.
6.(1)240°
(2)51°
【解析】【解答】(1)解:作EM∥AB,FN∥CD,如图,
AB∥CD,
∴AB∥EM∥FN∥CD,
∴∠B=∠1,∠2=∠3,∠4+∠C=180°,
∴∠B+∠CFE+∠C=∠1+∠3+∠4+∠C=∠BEF+∠4+∠C=∠BEF +180°,
∵,
∴∠B+∠CFE+∠C=60°+180°=240°;(2)解:如图,分别过G、H作AB的平行线MN和RS,
∵平分,平分,
∴∠ABE= ∠ABG,∠SHC=∠DCF= ∠DCG,
∵AB∥CD,
∴AB∥CD∥RS∥MN,
∴∠RHB=∠ABE= ∠ABG,∠SHC=∠DCF= ∠DCG,∠NGB+∠ABG=∠MGC+∠DCG=180°,
∴∠BHC=180°-∠RHB-∠SHC=180°- (∠ABG+∠DCG),
∠BGC=180°-∠NGB-∠MGC=180°-(180°-∠ABG)-(180°-∠DCG)=∠ABG+∠DCG-180°,
∴∠BGC=360°-2∠BHC-180°=180°-2∠BHC,
又∵∠BGC=∠BHC+27°,
∴180°-2∠BHC=∠BHC+27°,
∴∠BHC =51°.
【分析】(1)作EM∥AB,FN∥CD,如图,根据平行线的性质得AB∥EM∥FN∥CD,所以∠B=∠1,∠2=∠3,∠4+∠C=180°,然后利用等量代换计算∠B+∠F+∠C;(2)分别过G、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABG和∠DCG 分别表示出∠H和∠G,从而可找到∠H和∠G的关系,结合条件可求得∠H.
7.(1)∵∠ADE=∠B,∠A=∠A,
且∠ADE+∠A+∠AED=180°,∠B+∠A+∠ACB=180°,
∴∠AED=∠ACB=90°,
∴DE⊥AB
(2)∵∠ADE=∠B,∠DAE=∠BAC,
∴∠AED=∠ACB=90°,
∴∠EAG+∠AGE=90°①,
∵∠EAG− ∠D=45°,
∴2∠EAG−∠D=90°②,
∵∠D+∠F=90°③,
∴②+③得:2∠EAG+∠F=180°④,
④−①×2得:∠F−2∠AGE=0°,
∴∠F=2∠AGE,
(3)如图3,
∵BG平分∠ABC,
∴∠ABG=∠ABC,
∵将△AGB沿着AG折至△AGH,
∴∠H=∠ABG=∠ABC,
∵∠ADE=∠B,
∴∠ADE=2∠H,且∠ADE=∠H+∠DGH,
∴∠H=∠DGH,
∴∠ADE=2∠DGH,
∵∠F+∠CDF=90°,
∴∠F+2∠HGD=90°.
【解析】【分析】(1)通过三角形内角和定理,可得∠AED=∠ACB=90°,可得结论;(2)由直角三角形的性质和三角形内角和定理可得∠EAG+∠AGE=90°①,∠D+∠F=90°③,且2∠EAG−∠D=90°②,可以组成方程组,可得结论;(3)由角平分线的性质和折叠的性质可得∠ADE=2∠H,由外角性质可得∠ADE=2∠DGH,由直角三角形的性质可得∠F+2∠HGD=90°.
8.(1)设,则,
∴,,
∴;
(2),
∴,,
又∵,∴,
∴,
∴;
【解析】【分析】(1)设,则,可得,,易证;(2)根据,,则有,,,利用AAS可证,则有.
9.(1)证明:∵AD∥BC,
∴∠GAD=∠BGA,
∵AG平分∠BAD,
∴∠BAG=∠GAD,
∴∠BAG=∠BGA
(2)解:①若点E在线段AD上,
∵CF平分∠BCD,∠BCD=90°,
∴∠GCF=45°,
∵AD∥BC,
∴∠AEF=∠GCF=45°,
∵∠ABC=50°,
∴∠DAB=180°﹣50°=130°,
∵AG平分∠BAD,
∴∠BAG=∠GAD=65°,
∴∠AFC=65°﹣45°=20°;
②若点E在DA的延长线上,如图4,
∵∠AGB=65°,∠BCF=45°,
∴∠AFC=∠CGF+∠BCF=115°+45°=160°
(3)的值是5或
根据平行线的性质、三角形的内角和定理和角平分线的定义分别表示出∠ABM和∠GBM,即可求出结论.
【解析】【解答】(3)解:有两种情况:
①当M在BP的下方时,如图5,
设∠ABC=4x,
∵∠ABP=3∠PBG,
∴∠ABP=3x,∠PBG=x,
∵AG∥CH,
∴∠BCH=∠AGB==90°﹣2x,
∵∠BCD=90°,
∴∠DCH=∠PBM=90°﹣(90°﹣2x)=2x,
∴∠ABM=∠ABP+∠PBM=3x+2x=5x,∠GBM=∠PBM-PBG=x
∴∠ABM:∠GBM=5x:x=5;
②当M在BP的上方时,如图6,
同理得:∠ABM=∠ABP﹣∠PBM=3x﹣2x=x,∠GBM=∠PBG+∠PBM=3x
∴∠ABM:∠GBM=x:3x=.
综上,的值是5或.
【分析】(1)根据平行线的性质可得∠GAD=∠BGA,然后根据角平分线的定义可得∠BAG=∠GAD,最后利用等量代换即可求出结论;(2)根据点E在线段AD上和点E在射线DA的延长线上分类讨论,根据画出对应的图形,然后根据角平分线的定义、平行线的性质和等量代换分别求出结论即可;(3)根据点M在BP下方和BP上方分类讨论,分别画出对应的图形,设∠ABC=4x,
10.(1)解:∵CD//OE,
∴∠AOE=∠OCD=120°,
∴∠BOE=360°-90°-120°=150°
(2)解:如图2,过O点作OF//CD,
∴CD//OE,
∴OF∥OE,
∴∠AOF=180°-∠OCD,∠BOF=∠EO'O=180°-∠BO'E,
∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO'E=360°-(∠OCD+∠BO'E)=120°,
∴∠OCD+∠BO'E=240°
(3)30°+
【解析】【解答】解:(3)如图,
∵CP是∠OCD的平分线,
∴∠OCP= ∠OCD,
∴∠CPO'=360°-90°-120°-∠OCP
=150°- ∠OCD
=150°- (240°-∠BO'E)
=30°+
【分析】(1)先求出到∠AOE的度数,再根据直角、周角的定义即可求解;
(2)过O点作OF//CD,根据平行线的判定和性质可得∠OCD、∠BO'E的数量关系;(3)根据四边形内角和为360°,再结合(2)的结论以及角平分线的定义即可解答. 11.(1)证明:过P作PQ∥AB,
∴∠BAP=∠APQ
∵AB//CD
∴PQ//CD
∴∠DCP=∠CPQ
∴∠BAP+∠DCP=∠APQ+∠CPQ=∠APC
又∵AP⊥PC于P
∴∠APC=90°
∴∠BAP+∠DCP=90°
(2)解:过Q作QM∥AB,
∵CQ平分∠PCG ,AH平分∠BAP,
设∠PCQ=∠QCG=a ,∠BAH=∠HAP=b,
∵QM∥AB,∠BAQ=180° b
∴∠BAQ=∠AQM=180°
又∵AB//CD,
∴MQ//CD,
∴∠CQM=180° a
∴∠AQC=(180° b)(180° a)=a b
又∵由(1)得∴∠BAP+∠DCP=90°
∵∠DCP=180° 2a ,∠BAP=2b
∴2b+180° 2a=90°
∴a b=45°
∴∠AQC=45°
【解析】【分析】(1)过P作PQ∥AB,根据平行线的判定定理得出PQ//CD,由平行线的性质,得到∠BAP=∠APQ,∠DCP=∠CPQ,结合AP⊥PC,即可得到答案;
(2)过Q作QM∥AB,由平行线的性质和角平分线的性质,得到角度之间的关系,即可得到答案.
12.(1)∵点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,
∴点C的坐标为(0,2),点D的坐标为(6,2);
四边形ABDC的面积=2×(4+2)=12;
(2)存在.
设点E的坐标为(x,0),
∵△DEC的面积是△DEB面积的2倍,
,解得x=1或x=7,
∴点E的坐标为(1,0)和(7,0);
(3)当点F在线段BD上,作FM∥AB,如图1,
∵MF∥AB,
∴∠2=∠FOB,
∵CD∥AB,
∴CD∥MF,
∴∠1=∠FCD,
∴∠OFC=∠1+∠2=∠FOB+∠FCD;
当点F在线段DB的延长线上,作FN∥AB,如图2,
∵FN∥AB,
∴∠NFO=∠FOB,
∵CD∥AB,
∴CD∥FN,
∴∠NFC=∠FCD,
∴∠OFC=∠NFC-∠NFO=∠FCD-∠FOB;
同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB-∠FCD.
【解析】【分析】(1)根据点平移的规律易得点C的坐标为(0,2),点D的坐标为(6,2);(2)设点E的坐标为(x,0),根据△DEC的面积是△DEB面积的2倍和三角
形面积公式得到,解得x=1或x=7,然后写出点E的坐标;(3)分类讨论:当点F在线段BD上,作FM∥AB,根据平行线的性质由MF∥AB得∠2=∠FOB,由CD∥AB得到CD∥MF,则∠1=∠FCD,所以∠OFC=∠FOB+∠FCD;同样得到当点F在线段DB的延长线上,∠OFC=∠FCD-∠FOB;当点F在线段BD的延长线上,得到∠OFC=∠FOB-∠FCD.。