生化理论3 核酸化学
生化名词解释
![生化名词解释](https://img.taocdn.com/s3/m/d78d75cd8bd63186bcebbc54.png)
生物化学名词解释第一章蛋白质化学1、别构效应:别构效应又称变构效应,当某些寡聚蛋白与别构效应剂发生作用时,可以通过蛋白质构象的变化来改变蛋白质的活性,这种改变可以是活性的增加或减少。
这里的别构效应剂可以是蛋白质本身的作用物也可以是作用物以外的物质。
2、蛋白质的变性作用:天然蛋白质分子受到某些物理、化学因素,如热、声、光、压、有机溶剂、酸、碱、脲、胍等的影响,生物活性丧失,溶解度下降,物理化学常数发生变化,这种过程称为蛋白质的变性作用。
蛋白质的变性作用的实质就是蛋白质分子中次级键的破坏,而引起的天然构象被破坏,使有序的结构变成无序的分子形式。
蛋白质的变性作用只是三维构象的改变,而不涉及一级结构的改变。
3、两性解离:氨基酸在水溶液中或在晶体状态时都以两性离子的形式存在,即,同一个氨基酸分子上带有能放出质子的正离子和能接受质子的负离子。
4、等电点:在某一pH环境下,氨基酸解离成阳性离子及阴性离子的趋势相等,所带净电荷为零,在电场中不运动。
此时,氨基酸所处环境的pH值称为该氨基酸的等电点(pI)。
第二章核酸化学1、DNA的解链(溶解)温度(Tm):DNA热变性呈现出协同性,同时伴随A260增大,吸光度增幅中点所对应的温度叫做链解(溶解)温度,用符号Tm表示,其值的大小与DNA中G+C碱基对含量呈正相关。
2、核酸的变性:指双螺旋区氢键断裂,空间结构破坏,形成单链。
核酸的变性并不涉及磷酸二酯键的断裂,所以它的一级结构(碱基顺序)保持不变。
3、核酸的复性:变性DNA在适当的条件下,又可以使两条彼此分开的链重新缔合成为双螺旋结构,这一过程称为复性。
4、增色效应:核酸变性或降解时光吸收值显著增加。
5、减色效应:当核酸复性后,光吸收值又回复到原有水平。
6、分子杂交:退火条件下,不同来源的DNA互补区形成氢键,或DNA单链和RNA链的互补区形成DNA-RNA杂合双链的过程。
7、退火:热变性DNA经过缓慢冷却后即可复性,称为退火。
生物化学作业参考答案
![生物化学作业参考答案](https://img.taocdn.com/s3/m/9ce3f453312b3169a451a447.png)
《生物化学》作业参考答案第一章绪论一、名词解释:1.生物化学:是运用化学的理论、方法和技术,研究生物体的化学组成、化学变化极其与生理功能相联系的一门学科。
二、问答题:1.为什么护理学专业学生要学习生物化学?答:生物化学在医学教育中起了承前启后的重要作用,与医学基础学科和临床医学、护理各学科都有着程度不同的联系。
从分子水平阐明疾病发生的机制、药理作用的原理以及体内的代谢过程等,都离不开生物化学的知识基础。
生物化学的基础知识和生化技术,为临床护理观察和护理诊断提供依据,对维持人类健康,预防疾病的发生和发展都起着重要作用。
第二章蛋白质化学一、名词解释:1.蛋白质的一级结构:蛋白质分子中氨基酸残基以肽键连接的排列顺序称为蛋白质的一级结构。
2.肽键:一分子氨基酸α-羧基与另一分子氨基酸α-氨基脱水缩合形成的酰胺键。
3.蛋白质的等电点(pI):在某一pH条件下,蛋白质解离成正负离子数量相等,静电荷为零,此时溶液的pH称为蛋白质的等电点。
4.蛋白质的呈色反应:指蛋白质分子中,肽键及某些氨基酸残基的化学基团可与某些化学试剂反应显色,这种现象称为蛋白质的呈色反应。
二、问答题:1.什么是蛋白质的变性?简述蛋白质的变性后的临床使用价值。
答:蛋白质的变性是指蛋白质在某些理化因素的作用下,严格的空间构象受到破坏,从而改变理化性质并失去生物活性的现象称为蛋白质的变性。
利用蛋白质变性原理在临床应用中有重要意义和实用价值,如:(1)利用酒精、加热煮沸、紫外线照射等方法来消毒灭菌;(2)口服大量牛奶抢救重金属中毒的病人;(3)临床检验中在稀醋酸作用下加热促进蛋白质在pI时凝固反应检查尿液中的蛋白质;(4)加热煮沸蛋白质食品,有利于蛋白酶的催化作用,促进蛋白质食品的消化吸收等。
2.简述蛋白质的二级结构的种类和α-螺旋的结构特征。
答:蛋白质二级结构的种类包括α-螺旋、β-折叠、β-转角和无规则卷曲四种。
α-螺旋主要特征是多肽链主链沿长轴方向旋转,一般为右手螺旋。
第5章核酸的化学 第二节 核酸的化学组成
![第5章核酸的化学 第二节 核酸的化学组成](https://img.taocdn.com/s3/m/9d7d588a294ac850ad02de80d4d8d15abe2300b4.png)
食品生物化学
二、核酸的水解产物
3.次黄嘌呤衍生物——次黄嘌呤核苷酸(IMP)
在肌肉组织中,腺嘌呤核苷酸循环过程中由AMP脱氨形成 次黄嘌呤核苷酸。
次黄嘌呤核苷酸在生物体内是合成腺嘌呤核苷酸和鸟嘌呤 核苷酸的关键物质,对生物的遗传有重要的功能。另外,它还 是一种很好的助鲜剂,有肉鲜味,与味精以不同比例混合制成 具有特殊风味的强力味精(见第九章第二节鲜味)。
2.腺苷衍生物——环腺苷酸(cAMP)
cAMP是由ATP经腺苷酸环化酶催化而成的。
食品生物化学
图5-7 环腺苷酸(cAMP)
食品生物化学
cAMP广泛存在于一切细胞中,浓度很低。它们的主要作 用不是作为能量的供体,而是在生物体内参与细胞内多种调节 功能,如它可调节细胞内催化糖和脂肪反应的一系列酶的活性, 也可以调节蛋白激酶的活性。一般把激素称为第一信使,而称 cAMP为“第二信使”。
核酸是一种聚合物,它的结构单位是核苷酸 。
核酸
核苷酸
磷酸
核苷
碱基
戊糖
(嘌呤碱和嘧Ch啶em碱Pa)st(e核r 糖或脱氧核糖)
图5-1 核酸的水解产物
食品生物化学
三、核酸水解产物的化学结构
1.戊糖
DNA和RNA的主要区别是所含戊糖不同,DNA分子中的戊 糖是β-D-2-脱氧核糖,而RNA分子中的戊糖是β-D-核糖 。
碱基 Ade Gua Cyt Ura
核酸的生化基础与检测原理(新冠肺炎核酸检测学习专家课堂)
![核酸的生化基础与检测原理(新冠肺炎核酸检测学习专家课堂)](https://img.taocdn.com/s3/m/e8242c7889eb172ded63b7cb.png)
核酸的生化基础与检测原理一核酸的生化基础与特性二PCR 技术三实时荧光PCR技术四其它核酸检测技术一核酸的生化基础与特性核酸可分为脱氧核糖核酸(DNA)和核糖核酸(RNA) 是由碱基(嘌呤和嘧啶)、戊糖和磷酸组成的高分子物质,是生物体的基本组成,其基本结构单位是核苷酸。
核酸戊糖 碱基磷酸 核苷核苷酸核酸核苷酸核酸是通过一个核苷酸的C3 ′-OH 与另一分子核苷酸的5 ′-磷酸基形成3 ′,5 ′-磷酸二酯键相连而成的链状聚合物。
5’3’5’3’核酸的一级结构∙由dAMP、dGMP、dCMP、dTMP四种脱氧核苷酸通过3´, 5´ -磷酸二酯键按一定顺序排列而成的高分子化合物。
∙一级结构的走向为5´→3´。
不同的DNA分子具有不同的核苷酸排列顺序,因此携带有不同的遗传信息。
碱基配对• DNA 复制•DNA 聚合酶催化• 双螺旋结构与核酸检测相关的理化特性1.紫外吸收•在核酸分子中嘌呤碱和嘧啶碱都含有共轭双键体系,在260 nm有吸收。
•核酸定性、定量、纯度测定的依据。
•根据A260/A280的比值判断核酸样品的纯度纯DNA:A260/A280=1.8纯RNA:A260/A280=2.0纯的核酸样品可根据260nm的光吸收值算出其含量260nm光吸收值为1相当于50μg/ml双螺旋DNA或相当于40μg/ml单链DNA或RNA或相当于20μg/ml寡核苷酸2. 核酸的水解•核酸含酸性的磷酸基团,又含弱碱性的碱基,为两性电解质,可发生两性解离。
大于4时,呈阴离子状态。
•核酸分子中的磷酸二酯键可在酸或碱性条件下水解切断。
•DNA和RNA对酸或碱的耐受程度有很大差别。
室温条件下,DNA在碱中变性,但不水解,RNA水解。
•在细胞内核酸分子受DNA酶作用。
•避免RNases的污染是在物理或化学因素作用下核酸双螺旋区的多聚核苷酸链间的氢键断裂,变成单链结构的过程。
3.DNA的变性能引起核酸变性的因素有:l 温度升高l 酸碱度改变、 pH(>11.3或<4.0)l 有机溶剂如甲醛和尿素、甲酰胺等l 低离子强度。
核酸化学ppt课件
![核酸化学ppt课件](https://img.taocdn.com/s3/m/fe4683662e60ddccda38376baf1ffc4ffe47e20c.png)
取代基
取代位置 核苷
m22 N
取代基的数目
取代基用下列小写英文字母表示 :
甲基m 甲硫基ms 异戊烯基i
乙酰基ac 羟基o或h
羧基c
氨基n 硫基s
注意:
含修饰核糖的核苷即2’-O-甲基核苷的表示方法,在 核苷符号的右下方注上一个小写m。
例: 2’-O-甲基腺苷 Am
(二)核苷酸(nucleotide, Nt)
第二节 核酸的组成
一 碱基(base):又称含氮碱
(1)嘧啶碱(pyrimidine, Py)
(2)嘌呤碱(purine, Pu)
其它嘌呤(核酸的代谢产物): 黄嘌呤、次黄嘌呤、尿酸等
(3)修饰碱基(modified base): 也称稀有碱基(minor base)
二、核苷、核苷酸
(一)核苷(nucleoside)
3.螺距为3.4 nm,含10个碱基 对(bp),相邻碱基对平面间 的距离为0.34 nm。螺旋直径为 2 nm。 氢键维持双螺旋的横向稳定。
碱基对平面几乎垂直螺旋轴,
碱基对平面间的疏水堆积力维 持螺旋的纵向稳定。
4.碱基在一条链 上的排列顺序不 受限制。遗传信 息由碱基序所携 带。 5.DNA构象有 多态性。
反向的两条多核苷酸链,右手螺旋。
与B-DNA不同点 :
(1)螺体宽而短,直径2.55nm;11个核苷酸一圈,螺距2.46nm。
(2)碱基的倾角大一些:倾角19º。
A-DNA:RNA分子中的双螺旋区;DNA-RNA杂交分子。 A-DNA和B-DNA之间可以相互转换,推测在转录时,DNA
分子发生B→A的转变。
1.DNA分子中核苷酸的连接方式
RNA
简写方法:线条式、文字式
生化名词解释
![生化名词解释](https://img.taocdn.com/s3/m/51052f00eff9aef8941e063d.png)
第一章核酸化学一、名词解释1、核苷:是由一个碱基和戊糖通过糖苷键连接的化合物。
2、核苷酸:是核苷与磷酸通过磷酸酯键结合形成的化合物,核酸的基本结构单位。
3、磷酸二酯键:是两个核苷酸分子核苷酸残基的两个羟基分别与同一磷酸基团形成的共价连接键。
4、核酸:由核苷酸或脱氧核苷酸通过3'-5'磷酸二酯键连接而成的大分子。
具有非常重要的生物功能,主要储存遗传物质和传递遗传信息。
5、核酸的一级核苷酸结构:是指DNA分子中各种脱氧核苷酸之间的连接方式和排列顺序。
6、DNA二级结构:是指构成DNA的多聚脱氧核苷酸链之间通过链间氢键卷曲而成的构象。
7、碱基互补规律:在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是A(腺嘌呤)一定与T (胸腺嘧啶)配对,G(鸟嘌呤)一定与C(胞嘧啶)配对,反之亦然。
碱基间的这种一一对应的关系叫做碱基互补配对原则。
8、环化核苷酸:是指单核苷酸中的磷酸基分别与戊糖的3'-OH及5'-OH形成的酯键,这种磷酸内酯的结构成为环化核苷酸。
9、Tm值:是指DNA热变形时,增色效应达到50%是的温度。
10、增色效应:DNA从双螺旋的双链结构变为单链的无规则的卷曲状态时,在260nm处的紫外光吸收值增加。
11、减色效应:是变形的核酸复性时,其在260nm处的紫外光吸收值降低甚至恢复到未变形时的水平。
12、分子杂交:是使单链DNA或RNA分子与具有互补碱基的另一DNA或RNA 片断结合成双链的技术。
第二章蛋白质化学一、名词解释1、构象:是指具有相同结构式和相同构型的分子在空间里可能的多种形态。
2、构型:是指具有相同分子式的立体结构体中取代基团在空间的相同取向。
3、肽平面:是指多肽链或蛋白质分子中,组成肽键的C、O、N、H4个原子与两个相邻的α—碳原子共处一个平面。
4、α—螺旋:蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。
高职护理生化题库261题-附答案(修改稿)
![高职护理生化题库261题-附答案(修改稿)](https://img.taocdn.com/s3/m/743f166e1eb91a37f1115c7a.png)
《生物化学》人民卫生出版社出版黄平主编第一章绪论一、选择题( B )1、下列物质中,人体含量最多的是A、维生素B、水C、蛋白质D、脂类( A )2、哪一年,我国首次人工合成了胰岛素A、1965年B、1962年C、1981年D、1964年( D )3、医学生学习生物化学以什么为研究对象A、生物B、动物C、病人D、人体二、名词解释4、生物化学答:是生命的化学,是一门在分子水平上研究生命现象和本质的科学。
第二章蛋白质化学一、单项选择题( C )5. 蛋白质中氮的含量占A.6.25%B.12%C.16%D.20%( B )6. 维持蛋白质二级结构稳定的主要化学键是A.二硫键B.氢键C.盐键D.范德华力( A )7. 变性蛋白质的哪些结构不发生改变A.一级结构B.二级结构C.三级结构D.三级以上的结构二、多选题(ABCD)8、维持蛋白质三级结构稳定的化学键有A、氢键B、盐键C、疏水键D、范德华力(ACD )9、下列属于碱性氨基酸的是A、赖氨酸B、天冬氨酸C、精氨酸D、组氨酸( AB )10、下列属于酸性氨基酸的是A、天冬氨酸B、谷氨酸C、苏氨酸D、亮氨酸(ABD )11、下列哪些氨基酸在中性溶液中显碱性A、赖氨酸B、精氨酸C、天冬氨酸D、组氨酸(ABCE)12、变性的蛋白质下列哪些不正确A、次级键不断裂B、空间结构不改变C、理化性质不改变D、生物活性丧失E、肽键断裂三、填空题。
13.蛋白质变性的本质是(空间结构)破坏,而不影响(一级结构)的破坏。
14.蛋白质分子的AA之间以(肽键)相连.15.蛋白质二级结构主要是(α-螺旋)和(β-折叠)结构.16.组成蛋白质的碱性AA有(赖AA)、(精AA)、(组AA),酸性AA有(天冬AA)和(谷AA)。
17.AA是组成(蛋白质)的基本单位.四、名词解释.18.肽键答:是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合脱去一分子水所形成的酰胺键。
19.蛋白质变性作用答:蛋白质在某些理化因素的作用下,其空间结构受到破坏,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性作用。
核酸-2江南大学食品学院生化课件第三章.
![核酸-2江南大学食品学院生化课件第三章.](https://img.taocdn.com/s3/m/45b7c3688e9951e79b8927e7.png)
RNA
复制
翻译
蛋白质
遗传信息传递的中心法则
二、核酸的组成
核酸 核苷酸
水
磷酸
核苷
解
戊糖
碱基
三、碱基
嘌呤:
腺嘌呤 (A)
鸟嘌呤 (G) 胞嘧啶 (C) 尿嘧啶 (U) 胸腺嘧啶 (T)
嘧啶:
O
NH
碱基
N N
脂键
N
N H
HN O N H
H2O 核苷键
O
磷酸 O P OH
OHCH2 O
第三章 核酸化学
( Nucleic Acids Chemistry )
• 第一节
概述
• 第二节 • 第三节 • 第四节
核酸的组成 核酸的结构 核酸及核苷酸的性质
一、核酸的类别
• 脱氧核糖核酸( DNA)
• 核糖核酸( RNA)
• 核糖体RNA • 信使RNA • 转运RNA
DNA
复制
转录 反转录
实际上, Tm是增色效应达到最大值的50% 时的温度。也就是说,DNA溶液的温度达 到Tm时,将有50%的DNA双链处于解链状态。
DNA的Tm一般为70~85℃。 Tm随DNA分子中G-C碱基对含量的增加而升 高。它也与溶液的离子强度有关,一般情 况下,离 子强度低,Tm值小。
2、DNA的复性∶ 变性的DNA在适当条件下,两条彼此分开的互补 单链又可以恢复碱基配对,重新成为双螺旋,这个 过程称为DNA的复性(DNA renaturation)。 复性后的DNA的某些理化性质和生物活性也可以 得到部分或全部恢复。如∶减色效应。 退火(annealing): 即DNA由单链复性变成双链结构的过程。来源 相同的DNA单链经退火后完全恢复双链结构,不同 源DNA之间、DNA和RNA之间退火后形成杂交分子。
核酸化学知识点总结
![核酸化学知识点总结](https://img.taocdn.com/s3/m/0a5ae78b59f5f61fb7360b4c2e3f5727a5e924ad.png)
核酸化学知识点总结一、核酸的化学结构1. 核酸的基本结构核酸是由核苷酸组成的,核苷酸又由碱基、糖和磷酸组成。
碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶包括胞嘧啶(C)和胸腺嘧啶(T)或尿嘧啶(U)。
糖分为核糖和脱氧核糖,其中RNA中的糖为核糖,DNA中的糖为脱氧核糖。
核苷酸是由碱基和糖组成的核苷,再与磷酸结合形成核苷酸。
2. 核酸的二级结构核酸的二级结构是指单条核酸链上碱基序列所具有的空间结构。
DNA分子具有双螺旋结构,由两条互补的DNA链通过氢键相互缠绕形成。
RNA分子没有固定的二级结构,但在一些情况下也可以形成双链结构。
3. 核酸的三级结构核酸的三级结构是指单条核酸链在立体空间上所呈现的结构。
DNA分子呈现出右旋的螺旋结构,RNA分子则可以形成各种复杂的结构。
4. 核酸的四级结构核酸的四级结构是指多条核酸链相互作用所形成的更为复杂的结构。
在一些特定情况下,核酸分子可以形成四级结构,并参与到一些生物学过程中。
二、核酸的功能1. 遗传信息的储存与传递核酸是生物体内遗传信息的携带者,DNA分子储存着生物体的遗传信息,RNA分子则在转录和翻译过程中参与到遗传信息的传递和表达中。
2. 蛋白质合成核酸通过转录和翻译的过程,参与到蛋白质的合成过程中。
DNA分子在转录过程中产生mRNA,mRNA再通过翻译过程将基因信息翻译成蛋白质。
3. 调节基因表达在一些生物学过程中,核酸可以通过转录调控、剪接调控和甲基化调控等方式来参与到基因的表达调节中。
4. 氧化磷酸化核酸分子参与到细胞内氧化磷酸化过程中,通过释放出磷酸来提供细胞内化学能量,并维持细胞内正常生理活动。
三、核酸的合成1. DNA的合成(DNA合成)DNA的合成是DNA聚合酶在DNA模板的引导下,将合适的脱氧核苷酸三磷酸酶与新合成的核甙核苷酸通过磷酸二酯键连接,使DNA链不断延长的过程。
DNA合成是细胞分裂前的准备工作,也是基因工程和分子生物学研究中的重要技术手段。
护理专科生物化学大纲
![护理专科生物化学大纲](https://img.taocdn.com/s3/m/489e8e725acfa1c7aa00ccdb.png)
生物化学教学大纲一、课程名称:生物化学(Biochemistry)。
二、教学对象:本大纲适用于医学护理专业三年制专科学生。
三、学分与学时:2.0学分。
总学时为44学时,其中理论32学时,实验12学时。
四、课程模块类别及课程属性:本课程为医学护理专科的专业基础课程模块必选课。
五、课程性质、任务和要求:生物化学是护理学教育中重要的一门专业基础课。
本课程的主要任务是介绍生物体(人体)内的物质组成、化学变化(代谢)及其调节,以及它们与机能的关系,从分子水平阐明生命现象的化学本质,在分子水平上认识病因,加深对其治疗原理的理解。
通过本课程的教学,要求学生熟悉和掌握基本的生化知识,了解生命过程中的化学变化规律及其生理功能的基本知识和基本理论,为认识健康及维持健康提供基本知识,并为了解疾病及有效治疗疾病提供理论基础。
六、教学重点:生物化学是研究生物体内物质的化学组成、结构及其代谢变化,研究生物大分子的结构、功能及其在遗传信息传递中的作用。
生物化学是基础医学与临床医学的桥梁,也是分子生物学与医学的桥梁学科。
教学内容以物质代谢和基因信息传递为主,以各物质结构、代谢(包括合成、分解代谢),基因信息传递、基因表达,代谢异常与临床疾病的关系为重点。
七、主要先修课程:系统解剖学及组织学与胚胎学。
八、教学目的要求和主要内容:第一章绪论【目的要求】1、掌握生物化学的概念。
2、熟悉生物化学学习的主要内容;为什么学习生物化学以及怎样学习生物化学。
3、了解生物化学与医学的关系。
【主要内容】讲授内容1、生物化学的含义2、生物化学学习的主要内容3、为什么学习生物化学4、怎样学习生物化学第二章蛋白质的化学【目的要求】1、掌握蛋白质的元素组成及特点,氨基酸的结构特点、分类及连接方式。
2、掌握蛋白质各级结构及维持各级结构稳定的作用力。
3、掌握蛋白质的两性电离和等电点、蛋白质变性。
4、熟悉蛋白质的胶体性质和其他性质。
5、了解氨基酸的分类。
【主要内容】●讲授内容1、概述:蛋白质的概念及生理功能。
《生物化学原理》张洪渊主编 课后习题及答案(一)
![《生物化学原理》张洪渊主编 课后习题及答案(一)](https://img.taocdn.com/s3/m/824a4f73f242336c1eb95e67.png)
www.khd课后a答w案.网com
1、如何理解水在生命世界中的重要性? 解答:
总体说来,水起着生命的介质和连续统一体的作用:水分子本身参于了许多生物化学过 程;水在生物体内的存在影响着生物分子之间的相互关系,包括物质的溶解性以及与水分子 间的行为关系。其中重要的一点是,由水分子解离产生的H+和OH-是生物化学反应的基础: 生物分子具有众多的可作为酸或碱的功能基团(例如氨基和羧基),这些分子影响液态(水) 介质的pH,同时,它们的结构特点以及反应性质也会受到环境pH的影响。
化学结构式。
10. 一种纯的含钼蛋白质,用 1cm 的比色杯测定其消光系数ε0.1%280。该蛋白质每毫升浓溶液
含有 10.56ugMo。1:50 稀释该浓溶液后 A280 为 0.375,计算该蛋白质的最小相对分子量
(Mo 的相对原子质量为 95.94)。
11. 1.0mg 某蛋白质样品进行氨基酸分析后得到 58.1ug 的亮氨酸和 36.2ug 的色氨酸计算该
2.每个氨基酸可解离基团的 pKa 在生化书中可以查到(也可根据酸碱滴定曲线确定), 氨基酸的净电荷为零时溶液的 pH(即等电点,pI)在滴定曲线上位于两个相应基团 pKa 之 间的中点,在这两个 pKa 点上,它们的净电荷分别是+0.5 和-0.5。因此:(1)根据谷氨酸
www.khd课后a答w案.网com
当然,自然界中也存在非水相的生命过程,但这些过程往往同水相的生命过程相互依存。 相对而言,完全脱离水而进行的自然发生的生物化学过程是非常少的。
2、如何理解细胞是生命活动的基本单位? 解答:
细胞是生命的单位,是唯一能展现生命特征的最小实体。细胞分为真核生物细胞和原核 生物细胞两种类型。细胞之所以是生命活动的基本单位,是由于其具有四个性质:(1)细胞 是构成有机体的基本单位;(2)细胞是代谢和功能的基本单位;(3)细胞是有机体生长、发 育的基础(基本要素);(4)细胞是遗传的基本单位。病毒虽然是无细胞生命,但其只有寄 居在宿主(细胞形态的生命)中才能进行生命活动。细胞的这种性质对于我们学习生物化学 很重要,在以后的学习中,我们会越来越深刻地认识到,生命的化学便是生活着的细胞中的 动态的事件集合,正如著名细胞生物学家 E. B. Wilson 的论断——“每一个生命科学的关键 都必需在细胞中寻找”。
生物化学习题及答案
![生物化学习题及答案](https://img.taocdn.com/s3/m/0634c22f2f60ddccda38a077.png)
生化测试一:蛋白质化学一、填空题1.氨基酸的结构通式为 H 3N CH C O OR -+a 。
2.氨基酸在等电点时,主要以 兼性/两性 离子形式存在,在pH>pI 的溶液中,大部分以阴 离子形式存在,在pH<pI 的溶液中,大部分以阳离子形式存在。
3.生理条件下(pH7.0左右),蛋白质分子中的Arg 侧链和 Lys__侧链几乎完全带正电荷,但 His 侧链带部分正电荷。
4.测定蛋白质紫外吸收的波长,一般在280nm ,要由于蛋白质中存在着Phe 、 Trp 、 Tyr 氨基酸残基侧链基团。
5.皮肤遇茚三酮试剂变成 蓝紫 色,是因为皮肤中含有 蛋白质 所致。
6.Lys 的pk 1(COOH-α)=2.18,pk 2(3H N +-α)=8.95,pk 3(3H N +-ε)=10.53,其pI 为 9.74 。
在pH=5.0的溶液中电泳,Lys 向 负 极移动。
7.实验室常用的甲醛滴定是利用氨基酸的氨基与中性甲醛反应,然后用碱(NaOH )来滴定 NH 3+/氨基 上放出的 H 。
8. 一个带负电荷的氨基酸可牢固地结合到阴离子交换树脂上,因此需要一种比原来缓冲液pH 值 小 和离子强度 高 的缓冲液,才能将此氨基酸洗脱下来。
9. 决定多肽或蛋白质分子空间构像能否稳定存在,以及以什么形式存在的主要因素是由 一级结构 来决定的。
10. 测定蛋白质中二硫键位置的经典方法是___对角线电泳 。
11. 从混合蛋白质中分离特定组分蛋白质的主要原理是根据它们之间的 溶解度 、 分子量/分子大小 、 带电性质 、 吸附性质 、 生物亲和力 。
12. 蛋白质多肽链主链构象的结构单元包括__α-螺旋__、_β-折叠__、__β-转角__等,维系蛋白质二级结构的主要作用力是__氢__键。
13. 蛋白质的α—螺旋结构中, 3.6 个氨基酸残基旋转一周,每个氨基酸沿纵轴上升的高度为 0.15 nm ,旋转 100 度。
生物化学(第三版)第十二章 核酸通论 核算的结构课后习题详细解答_ 复习重点
![生物化学(第三版)第十二章 核酸通论 核算的结构课后习题详细解答_ 复习重点](https://img.taocdn.com/s3/m/4fe774e4a98271fe900ef97f.png)
第十二章核酸通论提要1868年Miescher发现DNA。
Altmann继续Miescher的研究,于1889年建立从动物组织和酵母细胞制备不含蛋白质的核酸的方法。
RNA的研究开始于19世纪末,Hammars于1894年证明酵母核酸中的糖是戊糖。
核酸中的碱基大部分是由Kossel等所鉴定。
Levene对核酸的化学结构以及核酸中糖的鉴定作出了重要贡献,但是他的“四核苷酸假说”是错误的,在相当长的时间内阻碍了核酸的研究。
理论研究的重大发展往往首先从技术上的突破开始。
20世纪40年代新的核酸研究技术证明DNA 和RNA都是细胞重要组成成分,并且是特异的大分子。
其时,Chargaff等揭示了DNA的碱基配对规律。
最初是Astbury,随后Franklin和Wilkins用X射线衍射法研究DNA分子结构,得到清晰衍射图。
Watson和Crick在此基础上于1953年提出DNA双螺旋结构模型,说明了基因结构、信息和功能三者之间的关系,奠定了分子生物学基础。
DNA双螺旋结构模型得到广泛的实验支持。
Crick于1958年提出了“中心法则”。
DNA研究的成功带动了RNA研究出现一个新的高潮。
20世纪60年代Holley 测定了酵母丙氨酸tRNA的核苷酸序列;Nirenberg等被破译了遗传密码;阐明了3类DNA参与蛋白质生物合成的过程。
在DNA重组技术带动下生物技术获得迅猛发展。
将DNA充足技术用于改造生物机体的性状特征、改造基因、改造物种,统称之为基因工程或遗传工程。
与此同时出现了各种生物工程。
技术革命改变了分子生物学的面貌,并推动了生物技术产业的兴起。
在此背景下,RNA研究出现了第二个高潮,发现了一系列新的功能RNA,冲击了传统的观点。
人类基因组计划是生物学有史以来最伟大的科学工程。
这一计划准备用15年时间(1990-2005年),投资30亿美元,完成人类单倍体基因组DNA3×109bp全部序列的测定。
生化考试重点
![生化考试重点](https://img.taocdn.com/s3/m/ba0e606a58fafab069dc0211.png)
生物化学核酸化学1、核酸完全水解产物有磷酸、戊糖、碱基。
不完全水解产物有核苷酸、核苷、磷酸、戊糖、碱基。
2、碱基成对的依据(chargaff定则):(1)同一生物的不同组织的DNA碱基组成相同;不同生物来源的DNA碱基组成不同,表现在(A+T)/(G+C)比值的不同。
(2)双链DNA,[A]=[T],[G]=[C],[A+G]=[C]+[T]。
3、双螺旋结构模型的要点:(1)两条反向平行的多核苷酸链围绕同一中心轴相互缠绕形成右手双螺旋。
反向平行是指一条链是5’-3’端,则另一条链必为3’-5’端。
(2)磷酸与核糖彼此通过3’,5’-磷酸二酯键相连接位于双螺旋外侧,形成DNA分子的骨架。
碱基位于内侧。
碱基平面与螺旋轴基本垂直,糖环平面与螺旋轴基本平行。
(3)双螺旋的直径为2nm,沿中心轴每旋转一周有10个碱基对(bp),螺距为3.4nm。
两个相邻的碱基对之间相距的高度,即碱基堆积距离为0.34nm,两个脱氧核苷酸之间的夹角为36°。
(4)双螺旋结构上有二条螺形凹沟,较深的沟称大沟,较浅的称小沟。
大小沟的宽度、深度的变化是DNA活性调控的方式之一。
(5)两条脱氧核苷酸链依靠碱基互补原则进行配对。
彼此碱基之间靠A=T配对形成两个氢键、G=C配对形成三个氢键稳定结构。
(6)氢键、碱基堆积力、离子键——作用力。
4、DNA的双螺旋结构的意义:该模型揭示了DNA作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这是DNA复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础。
该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石。
5、tRNA的3’端有游离羟基(CCA--OH)6、高粘度:DNA的粘度比RNA的大得多。
当核酸溶液因受热或在其他因素作用下发生螺旋向线性过渡时,粘度会降低。
7、紫外吸收:由于核酸组分嘌呤和嘧啶具有强烈的紫外吸收性能,所以核酸也有强烈的紫外吸收,最大吸收值在260nm处。
生化过程性考核3-肝脏生化、蛋白质分解代谢、核酸化学及核苷酸代谢
![生化过程性考核3-肝脏生化、蛋白质分解代谢、核酸化学及核苷酸代谢](https://img.taocdn.com/s3/m/d6ebd46cfc4ffe473368abf1.png)
生化过程性考核3---肝脏生化、蛋白质分解代谢、核酸化学及核苷酸代谢一、单选题(共50题,100分)1、下列哪种物质不是生物转化作用的供体?A、 UDP-葡萄糖醛酸B、 乙酰辅酶AC、 PAPSD、 S-腺苷蛋氨酸E、 UDP-葡萄糖正确答案: E2、老年人服用氨基比林、保泰松药物后,药效强、副作用大的原因是:A、 经转化作用生成药效更强的衍生物B、 排泄能力差C、 生物转化能力差D、 重吸收增加E、 转变为其它有毒物质正确答案: B3、长期服用苯巴比妥类药物易产生耐药性的原因是:A、 加单氧酶体系活性增强B、 加双氧酶体系活性增强C、 肝细胞摄取量增加D、 肝脏分泌排出减少E、 95%的药物被肠道重吸收正确答案: A4、血浆中未结合胆红素约占胆红素总量的A、 3/4B、 1/3C、 3/5D、 4/5E、 2/3正确答案: D5、溶血性黄疸时下列哪种情况不出现?A、 血中未结合胆红素增加B、 粪胆素原增加C、 尿胆素原增加D、 尿液出现胆红素E、 粪便颜色加深正确答案: D6、随胆汁酸排入肠腔的胆红素几乎全是:A、 胆红素α区B、 胆红素-白蛋白C、 胆红素-Y-白蛋白D、 胆红素-Z-蛋白E、 葡萄糖醛酸胆红素正确答案: E7、结合胆红素与未结合胆红素的相同点是:A、 水溶性B、 与血浆蛋白的亲合力C、 尿中排泄D、 细胞膜通透性及毒性E、 以上均不是正确答案: E8、蜘蛛痣,经检查后诊断为:肝硬化(早期)。
问该患者出现蜘蛛痣的原因是:A、 对雄激素灭活障碍B、 对雌激素灭活障碍C、 对抗利尿激素灭活障碍D、 对脂溶性维生素的活化障碍E、 对水溶性维生素活化障碍正确答案: B9、下列哪种氨基酸能直接氧化脱氨基:A、 亮氨酸B、 缬氨酸C、 天冬氨酸D、 谷氨酸E、 丙氨酸正确答案: D10、体内氨的主要去路:A、 在肾脏以铵盐形式排出B、 在各组织合成酰胺C、 在肝脏形成尿素D、 再合成氨基酸E、 合成嘌呤,嘧啶正确答案: C11、在鸟氨酸循环中,哪种物质提供第二分子氨:A、 游离氨B、 天冬氨酸C、 天冬酰胺D、 谷氨酰胺E、 氨基甲酰磷酸正确答案: B12、体内合成1分子尿素需消耗几个高能磷酸键:A、 2个B、 3个C、 4个D、 1个E、 .5个正确答案: C13、对高血氨患者的错误处理是:A、 低蛋白饮食B、 静脉补充葡萄糖C、 静脉注入谷氨酸钠D、 口服抗生素抑制肠道细菌E、 使用碱性溶液(如肥皂水)灌肠正确答案: E14、联合脱氨基作用是:A、 氨基酸氧化酶与谷氨酸脱氢酶偶联B、 氨基酸氧化酶与转氨酶偶联C、 转氨酶与谷氨酸脱氢酶偶联D、 谷丙转氨酶与谷草转氨酶偶联E、 嘌呤核苷酸循环与鸟氨酸循环偶联 正确答案: C15、活性甲基的供体是:A、 S-腺苷蛋氨酸B、 同型半胱氨酸C、 半胱氨酸D、 磷酸E、 硫酸正确答案: A16、与氨基酸氧化脱氨基有关的维生素是:A、 维生素B1B、 维生素B2C、 维生素B6D、 维生素PPE、 维生素B12正确答案: D17、儿茶酚胺是由哪个氨基酸转化生成的:A、 谷氨酸B、 天冬氨酸C、 酪氨酸D、 色氨酸E、 谷氨酰胺正确答案: C18、蛋白质的营养价值的高低取决于:A、 氨基酸的种类B、 氨基酸的数量C、 蛋白质的来源D、 必需氨基酸的种类、数量和比例E、 蛋白质的含氮量正确答案: D19、下列哪一个不是一碳单位:A、 –CH2–B、 –CH3C、 CO2D、 –CHO正确答案: C20、孕妇及恢复期病人,常保持:A、 氮平衡B、 氮的总平衡C、 氮的负平衡D、 氮的正平衡E、 以上都不是正确答案: D21、下列哪种氨基酸在脑内代谢可产生γ-氨基丁酸:A、 天冬氨酸B、 谷氨酸C、 缬氨酸D、 亮氨酸E、 半胱氨酸正确答案: B22、血氨的最主要来源是:A、 蛋白质腐败作用产生的氨B、 氨基酸脱氨基作用产生的氨C、 体内胺类物质分解产生的氨D、 肾小管远端谷氨酰胺水解产生的氨E、 尿素在肠道中脲酶作用下产生的氨正确答案: B23、能生成酮体但不能生成糖的氨基酸是:A、 异亮氨酸B、 亮氨酸C、 酪氨酸D、 蛋氨酸E、 苏氨酸正确答案: B24、组氨酸脱羧酶的辅酶是:A、 NAD+B、 NADP+C、 磷酸吡哆醛D、 生物素正确答案: C25、苯丙酮酸尿症患者尿中排出大量苯丙酮酸,原因是体内缺乏:A、 酪氨酸转氨酶B、 磷酸吡哆醛C、 苯丙氨酸羟化酶D、 多巴脱羧酶E、 酪氨酸羟化酶正确答案: C26、体内氨的主要运输形式是:A、 谷氨酸B、 酪氨酸C、 谷氨酰胺D、 谷胱甘肽E、 天冬氨酸正确答案: C27、有关氮平衡正确的是:A、 每日摄入的氮量少于排出的氮量,为氮的负平衡B、 氮的总平衡多见于健康的孕妇C、 氮平衡实质上是表示每日氨基酸进出人体的量D、 氮的总平衡常见于儿童E、 氮的正平衡和氮的负平衡均可见于正常成人正确答案: A28、人体营养必需氨基酸的来源是:A、 在体内可由糖转变产生B、 在体内能由其他氨基酸转变生成C、 在体内不能合成,必需从食物获得D、 在体内可由脂肪酸转变生成E、 在体内可由固醇类物质转变生成正确答案: C29、关于蛋白质营养价值的错误说法是:A、 必需氨基酸的种类、含量和比例决定蛋白质的营养价值B、 大豆与玉米的混合食物,营养价值低于每个单一组分C、 一般来说,植物蛋白的营养价值不及动物蛋白的高D、 蛋白质的营养价值与其所含氨基酸的质和量都有关E、 一个健康成人每天至少食入30~50克蛋白质才能维持氮的总平衡 正确答案: B30、关于腐败作用叙述正确的是:A、 主要在大肠进行B、 是细菌对蛋白质或蛋白质消化产物的作用C、 主要是氨基酸脱羧基﹑脱氨基的分解作用D、 腐败作用产生的多是有害物质E、 以上都正确正确答案: E31、ALT活性最高的组织是:A、 心肌B、 脑C、 骨骼肌D、 肝E、 肾正确答案: D32、白化病是由于:A、 酪氨酸酶缺陷B、 二氢叶酸还原酶被抑制C、 苯丙氨酸羟化酶缺陷D、 胱硫醚合成酶缺陷E、 精氨酸代琥珀酸合成酶缺陷正确答案: A33、PAPS主要由下列哪一种氨基酸产生:A、 甲硫氨酸B、 半胱氨酸C、 苏氨酸D、 甘氨酸E、 谷氨酸正确答案: B34、毛发不着色,临床诊断为白化病,其发病的分子机制是:A、 谷氨酸脱氢酶缺陷B、 组氨酸脱羧酶缺陷C、 酪氨酸酶缺陷D、 苯丙氨酸脱氢酶缺陷E、 苯丙氨酸羟化酶缺陷正确答案: C35、患者,女,65岁,既往有冠心病史,劳累后突感胸闷,心前区疼痛,继而晕倒,心电图检查呈现心肌梗死波形,该患者血清中升高的酶为:A、 丙氨酸氨基转氨酶B、 天冬氨酸氨基转氨酶C、 谷氨酸脱氢酶D、 谷氨酸脱羧酶E、 组氨酸脱羧酶正确答案: B36、高血氨患者,谵语等意识障碍,对该患者的以下处理,正确的是:A、 静脉补充白蛋白B、 饮食中增加植物蛋白的含量C、 饮食中增加鸡蛋的含量D、 低蛋白高糖饮食正确答案: D37、DNA的二级结构形式主要是:A、 α-螺旋B、 β-片层C、 β-转角D、 双螺旋结构E、 超螺旋结构正确答案: D38、tRNA分子二级结构的特征是:A、 3’-端有多聚AB、 5’-端有CCAC、 有反密码子环D、 有氨基酸残基E、 尿嘧啶环正确答案: C39、DNA分子杂交的理论基础:A、 DNA变性后在一定条件下可复性B、 DNA的粘度大C、 不同来源的DNA链中某些区域不能建立碱基配对D、 DNA变性双链解开后,不能重新缔合E、 DNA的刚性和柔性正确答案: A40、关于核酶的叙述,正确的是:A、 唯一水解核酸的酶B、 位于细胞核内的酶C、 具有催化活性的核酸分子D、 有内切核酸酶和外切核酸酶两大类E、 核酶的本质是蛋白质正确答案: C41、稀有核苷酸在下列哪种核酸中最多:A、 mRNAB、 tRNAC、 rRNAD、 质粒DNAE、 线粒体DNA正确答案: B42、DNA受热变性时:A、 多核苷酸链水解成寡核苷酸链B、 在260nm波长处吸收值下降C、 碱基对以共价键连接D、 溶液黏度增加E、 出现增色效应正确答案: E43、最直接联系核苷酸合成与糖代谢的物质是:A、 葡萄糖B、 6-磷酸葡萄糖C、 1-磷酸葡萄糖D、 1,6-二磷酸葡萄糖E、 5-磷酸核糖正确答案: E44、氮杂丝氨酸干扰核苷酸合成,因为它是下列哪种化合物的类似物:A、 丝氨酸B、 甘氨酸C、 天冬氨酸D、 谷氨酸胺E、 天冬酰胺正确答案: D45、人体内嘌呤核苷酸分解代谢的主要终产物是:A、 尿素B、 肌酸C、 肌酸酐D、 尿酸E、 β–丙氨酸正确答案: D46、哺乳类动物体内直接催化生成尿酸的酶是:A、 尿酸氧化酶B、 黄嘌呤氧化酶C、 腺苷脱氨酶D、 鸟嘌呤脱氨酶E、 核苷酸酶正确答案: B47、别嘌呤醇治疗痛风的原因是 :A、 可抑制腺苷脱氨酶B、 可抑制鸟嘌呤脱氨酶C、 可抑制黄嘌呤脱羧酶D、 可抑制尿酸还原酶E、 可抑制黄嘌呤氧化酶正确答案: E48、dTMP合成的直接前体是:A、 dUMPB、 TMPC、 IDPD、 dUDPE、 dCMP正确答案: A49、踝关节疼痛,午夜后疼痛加重。
华师名词解释-生化
![华师名词解释-生化](https://img.taocdn.com/s3/m/df8263104431b90d6c85c79f.png)
只有一种或很少几种在能量上是有利的。
3、别构效应:多亚基蛋白质一般具有多个配体结合部位,结合在蛋白质分子的特定部位上的配体对该分子的其它部位所产生的影响(如改变亲和力或催化能力)称为别构效应。别构效应可分为同促效应和异促效应。
第九、十章 氨基酸代谢和核苷酸代谢
1、转氨基作用:是指在转氨酶的催化下,α-氨基酸的α-氨基转移到α-酮酸的酮基上,使酮酸生产相应的α-氨基酸,而原来的氨基酸失去氨基变成相应的α-酮酸。
2、嘌呤核苷酸的从头合成:嘌呤核苷酸的
合成是核糖与磷酸先合成磷酸核糖,然后逐步由谷氨酰胺、甘氨酸、一碳集团、CO 2及天
4、结构域: 蛋白质的三级结构常可区分成 1个和数个球状区域,折叠得较为紧密,各行其功能,称为结构域。
4、蛋白质的三级结构:蛋白质的三级结构指肽链在二级结构,超二级结构,结构域(对分子较大,由多个结构域的蛋白质而言)基础上形成的完整空间结构,一个三级结构单位通常由一条肽链组成,但也有一些三级结构单位是由经二硫键连接的多条肽链组成的,如胰岛素就是由两条肽链折叠成的 1个三级结构单位。
第十三章蛋白质的生物合成
1、遗传密码;DNA编码链或 mRNA上的核苷酸,以 3个为一组(三联体)决定 1个氨基酸的种类,称为三联体密码。mRNA的三联体密码是连续排列的,因此,mRNA的核苷酸序列可以决定蛋白质的一级结构。
2、摆动假说;mRNA上的密码子与tRNA上的反密码子相互辩认,大多数情况是遵从碱基配对规律的。但也可出现不严格的配对,这种现象就是遗传密码的摆动性,tRNA分子上有相当多的稀有碱基,例如次黄嘌呤(inosine,I)常出现于三联体反密码子的5′端第一位,它和 mRNA密码子第 3位的 A、C、U都可以配对。
生物化学讲义第二章核酸化学
![生物化学讲义第二章核酸化学](https://img.taocdn.com/s3/m/e1c17626ccbff121dd36836f.png)
核酸的结构与功能【目的和要求】1. 熟悉核酸的种类、分布和主要的生物学功能。
2.掌握核酸的化学组成、核苷酸的连接方式。
3.归纳区分两类核酸在化学组分上的异同点。
4.说出DNA二级结构的模型及其主要特点。
5.简述RNA分子组成和结构的特点。
6.简述三种RNA结构特点和主要功能。
7.了解核酸重要的理化特性及其在医学上的应用。
8.能说出生物体内重要的单核苷酸及其生化功能。
【本章重难点】1.核酸的种类、分布和生物学功能。
2.核酸的化学组成。
3.DNA和RNA的分子结构与功能。
4.核酸的变性、复性及杂交。
5.生物体内重要的单核苷酸。
学习内容第一节核酸的化学组成第二节 DNA的分子结构第三节 RNA的分子结构第四节核酸的理化性质第一节核酸的化学组成一、核酸(nucleic acid)的分类、分布与生物学功能分类分布生物学功能核糖核酸(RNA)细胞质参与蛋白质的生物合成5 % 蛋白质合成的直接模板tRNA 15 % 活化与转运AArRNA 80 % 充当装配机,提供场所脱氧核糖核酸(DNA ) 核内、染色质遗传的物质基础** 基因 —— DNA 分子中的功能片段(决定遗传特性的碱基序列)。
二、核酸的分子组成1.核酸的元素组成:C.H.O.N.和P ;代表元素P ,平均含量9~10%。
2.核酸的基本组成单位:核苷酸(nucleotide )1)核苷酸的组成戊糖、碱基:核苷、核苷酸:核苷酸链:3/,5/-磷酸二酯键;3/-羟基端,5/-磷酸基端水解 水解 磷酸 戊糖(戊糖、脱氧戊糖)核酸 核苷酸核苷 嘧啶(C.T.U )碱基嘌呤(A.G)2)核苷酸的结构与命名3)核苷酸的功用3.两类核酸在分子组成上的异同点第二节 DNA 的分子结构一、DNA 的一级结构组成DNA 分子的基本单位是四种脱氧核苷酸:dAMP 、dCMP 、dGMP 和dTMP1.DNA 的碱基组成规律:Chargaff 规则:①同一生物不同组织的DNA 样品,其碱基成分含量相同。
基础生物化学-核酸化学联系
![基础生物化学-核酸化学联系](https://img.taocdn.com/s3/m/4f52832baaea998fcc220e92.png)
第一章核酸化学或第一节核酸导言一、核酸的发现1868年,瑞士的科学家F.Miescher从外科绷带上的脓细胞的核中分离出一种富含磷元素的酸性化合物,称为“核素”(nuclein)。
1889年,Altman等人从酵母和动物的细胞核中制得了不含蛋白质的核酸,首次使用“核酸”(nucleic acid)一词。
二、核酸是遗传与变异的物质基础1944年O.t.Avery等人通过细菌转化实验(肺炎双球菌转化实验)证明核酸是遗传物质。
PPT部分如下:S球菌:有毒肺炎球菌,光滑、有夹膜。
R型球菌:无毒肺炎球菌,粗糙、无夹膜。
二、核酸的种类及分布核酸是生物体内的高分子化合物,包括DNA和RNA两大类。
1.脱氧核糖核酸(deoxyribonucleic acid, DNA)分布:原核生物:核质区、质粒。
真核生物:95%在细胞核、5%在线粒体和叶绿体。
功能:携带遗传信息,决定细胞和个体的基因型(genotype)。
2.核糖核酸(ribonucleic acid, RNA)分布:原核生物:细胞质真核生物: 75%在细胞质15%在线粒体和叶绿体10%在细胞核RNA种类:mRNA (信使RNA , messenger RNA):约占总RNA的5%,蛋白质合成模板。
rRNA(核糖体RNA,ribosoal RNA):约占总RNA的80%,核蛋白体组分。
原核生物核糖体中有三类rRNA:5S、16S、23S真核生物核糖体中有四类rRNA:5S、5.8S、18S、28StRNA(转移RNA,transfer RNA):约占总RNA的10%~15%,转运氨基酸。
hnRNA(核内不均一RNA):成熟mRNA的前体。
snRNA(核内小RNA):参与hnRNA的剪接、转运。
snoRNA(核仁小RNA):rRNA的加工、修饰。
scRNA(胞浆小RNA):蛋白质内质网定位合成的信号识别体的组分。
第二节核酸组成成分一.元素组成主要元素有C、H、O、N、P与蛋白质比较,核酸一般不含S,而P的含量较为稳定,占9-11%。
考研复习王镜岩生物化学之核酸化学
![考研复习王镜岩生物化学之核酸化学](https://img.taocdn.com/s3/m/7e7e541fdf80d4d8d15abe23482fb4daa58d1d1d.png)
2核酸化学1 考试大纲涉及王镜岩版生物化学第11、12、27章 + 分子生物学(一)核酸的结构与功能1生物大分子有四类:核酸、蛋白质、多糖和脂质。
最重要的生物大分子是DNA、RNA和蛋白质。
2核酸的研究史:(1)1868年,瑞士青年科学家F.Miescher由脓细胞分离得到细胞核,并从中提取出一种含磷酸很高的酸性物质,称为核素。
他又转向研究鲑鱼精子头部的物质,除了分离到酸性高含磷酸化合物外,还提取出一种碱性化合物称为鱼精蛋白。
Miescher被认为是细胞核化学的创始人和DNA的发现者。
(2)R.Altmann他发展了从酵母和动物组织中制备不含蛋白质的核酸的方法,核酸这个名称是由他在1889年最先提出来的。
(3)胸腺的细胞核特别大,酵母的细胞质很丰富,这是两种容易提取核酸的材料,因此这两种核酸也就研究的最多。
(4)核酸中的碱基大部分是由A.Kossel及其同事所鉴定的,1910年,因其在核酸化学研究中的成就而被授予诺贝尔医学奖,但他却认为决定染色体功能的是蛋白质,在获奖后转而研究染色体蛋白质。
(5)1953年Watson和Crick提出了DNA双螺旋结构模型。
(6)1956年A.Kornbery发现了DNA聚合酶可以在体外复制DNA。
(7)1958年,Crick总结了当时分子生物学的成果,提出了中心法则,即及遗传信息从DNA传到RNA,再传到蛋白质,一旦传递给蛋白质就不再传递。
(8)W.Arber最早发现细菌细胞中存在DNA限制性内切酶。
DNA重组技术的出现。
(9)1981年T.Cech发现四膜虫rRNA前体,能够通过自我剪切切除内含子,表明RNA也具有催化功能称为核酶。
(10)1983年R.Simons和T.Mizuno发现反义RNA,表明RNA具有调节作用。
(11)1986年W.Gilbert提出RNA世界的假说,这对DNA中心的观点是一次有力的冲击。
1987年,阐述了核糖体移码,说明遗传信息的解码也是可以改变的。
生物化学-生化知识点_核酸的物理化学性质
![生物化学-生化知识点_核酸的物理化学性质](https://img.taocdn.com/s3/m/c8252e0284868762caaed5e2.png)
7-3 核酸的物理化学性质上册P502一一一核酸的水解:所有糖苷键和磷酸酯键都能被水解。
一1一酸水解:糖苷键比磷酸二酯键易被水解,嘌呤碱糖苷键比嘧啶碱更易水解。
一2一碱水解:磷酸酯键易水解,RNA比DNA易水解,因为RNA核糖上有2‘-OH,水解过程见P502。
一3一酶水解:为水解磷酸二酯键的酶,专一水解核酸的为核酸酶。
1.核酸酶的分类:按底物专一性分为RNase(核糖核酸酶)和DNase(脱氧核糖核酸酶)。
按对底物作用方式分为内切酶(作用点在核糖核酸酶内部)和外切酶(作用点在末端)。
2.RNase:如牛胰核糖核酸酶(EC 2.7.7.16),内切酶,作用位点为嘧啶核苷(Py)-3‘-磷酸与其他核苷酸之间的连键。
3.限制性内切酶:为DNase。
剪裁DNA的工具,可用于核酸测序和基因工程。
在细菌中发现,目前已找到限制性内切酶数千种。
限制性内切酶往往与甲基化酶成对存在,自身酶作用位点的碱基被甲基化,内切酶不再降解,因而可识别和降解外源DNA。
断裂位点处常有二重旋转(轴)对称性(回文结构,正读反读相同),在特定位点两条链切断后形成粘末端或平末端。
限制性内切酶命名:如E. coRⅠ,第1个字母E(大写),为大肠杆菌(E.coli)属名的第一个字母,第2、3两个字母co(小写)为种名头两个字母,第4个字母R,表示菌株,最后一个罗马字为该细菌中已分离这一类酶的编号。
一一一核酸的酸碱性质:核苷和核苷酸都是兼性离子,碱基和磷酸基均能解离,见P505,具有酸碱性。
由于DNA酸碱变性,使酸碱滴定曲线不可逆。
一一一核酸的紫外吸收:嘌呤环与嘧啶环具有共轭双键,核苷和核酸的吸收波段在240~290nm,最大吸收值在260nm附近(蛋白质最大吸收值280nm)。
一1一可用于测样品纯度(测吸光度A):A260/A280比值,纯DNA应大于1.8,纯RNA应达到2.0,若样品混有杂蛋白,比值明显降低。
对于纯样品,从260nm的A值即可算出含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上的核苷酸数目可以变动;
2.含有修饰碱基和可变核苷酸,修饰碱基约为 10%。
tRNA的三级结构-倒 L型
前言
➢1869年,Miescher从细胞核中分离出“核素” 核酸
➢1930~40年,Kossel 和 Levene等确定核酸的组分后, 明确核酸的类别:
核
脱氧核糖核酸(DNA)
酸
核糖核酸(RNA)
前言
➢1944年,Avery 的“肺炎双球菌转化”实验: DNA是有机体的遗传物质
DNA
有荚膜,致病
O
N
N
N
NH
N H
N
N H
N
NH 2
(DNA,RNA)
3.1 核酸的组成成分
3.1.2 含氮碱 ➢嘧啶
尿嘧啶Uracil
O
胞嘧啶Cyt
NH 2
NH
N
4 53 62
1
胸腺嘧啶Thy
O
CH3
NH
N
O
N
O
H
H
N
O
H
RNA
DNA
3.1 核酸的组成成分
3.1.2 含氮碱
➢烯醇式与酮式互变
➢稀有碱基:
N
OH H
[教学目标]
1.掌握核酸的化学本质及DNA和RNA的结构和功能; 2.熟悉嘌呤、嘧啶、核苷、核苷酸在分子结构上的关系,
认识核酸在生物科学上的重要性及其实践意义; 3.了解核酸结构与其性质、功能的相互关系。
[教学重点] 本章重点介绍核苷酸的化学结构与性质,进
一步了解核酸的一级结构和二级结构,重点掌握DNA双螺旋 结构和tRNA的三叶草结构。分析比较核酸分子的组成和结 构上的特点,进而联系它们的性质和功能。
(2)碱基配对证据
Chargaff发现DNA中A与T、C与G的数目相等。后来 Pauling 和Corey发现A与T生成2个氢键、C与G生成3个氢键。
(3)DNA滴定曲线
3.3 DNA的二级结构
3.3.2 双螺旋结构模型的要点
2.0
(1)两条多核苷酸链反向平行螺旋前
nm
进。表面有一大沟和一小沟
(2)双螺旋每转一周有10个bp,螺 距3.4nm,直径2.0nm
核苷包括核糖核苷
脱氧核糖核苷
脱氧核糖核苷有 种?是哪 种?与核糖核苷有何区别?
NH2
OH
NH2
OH
N
N
N
N
N
N
CH3
NN HOCH2 O
HH
H2N N N HOCH2 O
HH
H
H
H
H
OH OH
OH OH
腺嘌呤核苷 鸟嘌呤核苷
HO N HOCH2 O
HH
HO N HOCH2 O
HH
H
H
H
H
OH OH
tRNA约占RNA总量的15%,主要作用是转运氨基酸用于
合成蛋白质。tRNA分子量为4S,1965年Holley 测定
AlatRNA一级结构,提出三叶草二级结构模型。
tRNA的二级结构——三叶草型
主要特征:
1.四臂四环:氨基酸臂:3′端有CCAOH的共 有结构;反密码子环:环上的反密码子与 mRNA相互作用; 二氢尿嘧啶(D)环:其上
A-DNA:75%相对湿度,与溶液中DNA-RNA杂交分子的构象相似, 推测转录时发生B→A。其碱基平面倾斜20°,螺距与每一转碱基对 数目都有变化。
Z-DNA:主链呈锯齿型左向盘绕,直径约1.8nm,螺距4.5nm,每 一转含12个bp,只有小沟。B-DNA与Z-DNA的相互转换可能和基 因的调控有关。
压缩倍数 7
6
40
5 (共8400)
包装
包装
包装
包装
染色体包装示意图
3.5 DNA和基因组
3.5.1 基因与基因组的慨念
基因------DNA分子中最小的功能单位。 基因组------生物体所含的全套遗传物质。 基因组学------研究基因组的结构、功能及表达产物的学科。
3.5.2 基因和细菌基因组的特点
• RNA分子中,部分区域也能形成双螺旋结构,不能形成双螺旋的部分, 则形成突环。这种结构可以形象地称为“发夹型”结构。
• 在RNA的双螺旋结构中,碱基的配对情况不象DNA中严格。G 除了可 以和C 配对外,也可以和U 配对。G-U 配对形成的氢键较弱。不同类 型的RNA, 其二级结构有明显的差异。
3.2 核酸的一级结构
5’-末端(P)
3’-末端(OH)
多核苷酸链
多脱氧核苷酸链
3.2 核酸的一级结构
5′-磷酸端(常用 P表示)---3′-羟基端(常用OH表示)----
多聚核苷酸的表示方式
TT
11’’ 33’’
33’’ OOHH
55’’
DNA
55’’ RNA
5′PdAPdCPdGPdTOH 3′ 5′ACGT 3′
HH
脱氧核糖核苷酸(dAMP)
3.1 核酸的组成成分
3.1.4 核苷酸 ➢核继苷续酸磷衍酸生化物
NH2
N
N
O
O
O
O- P~O- P~O- P
O-
O-
O-
NN OCH2 O
HH
H
H
~
OH OH 三磷酸腺苷 (ATAPM)P
核酸组成单位
ADP
游离核苷酸
ATP
(含两个“~”)
3.1 核酸的组成成分
3.1.4 核苷酸
3.4 DNA的高级结构
3.4.1 环状DNA的超螺旋结构
3.4 DNA的高级结构
3.4.2 真核生物染色体的结构
DNA双螺旋的进一步扭曲构成三级结构——超螺旋(染色体包装)
多级螺旋模型
DNA → 核小体 → 螺线管 →超螺线管 →染色单体 2nm 11nm 30nm 400nm 2-10μm
双螺旋 一级包装 二级包装 三级包装 四级包装
螺旋直径 螺距 每转碱基 (nm) (nm) 对数目
右 75%Na+ 右 92%Na + 右 46%Li + 左 人工合成
2.3 2.0 1.92 1.8
2.8
11
3.4
10
3.1
9.3
4.5
12
碱基对间 垂直距离 (nm)
0.255 0.34 0.33 0.37
碱基旋 转角度
32.7º 36º 38º -60º
C-DNA:44-46%相对湿度,螺距3.09nm,每转螺旋9.33个碱基对, 碱基对倾斜6°。可能是特定条件下B-DNA和A-DNA的转化中间物。
3.3 DNA的二级结构
3.3.4 DNA二级结构的其他类型
DNA的不同结构类型的各项参数
类型
ADNA BDNA CDNA ZDNA
旋转方向 结晶状态
小 沟
(3)主链(磷酸-脱氧核糖)在外侧,
侧链(碱基)在内侧。内侧链间碱基配
对相连。
大
(4)碱基配对有一定规律:A与T、形成
沟
2个氢键;G与C,形成3个氢键。
(5)两条链互为互补链
碱基配对
2.0 nm
小 沟
大 沟
3.3 DNA的二级结构
3.3.3 双螺旋的稳定因素 2.0 nm
(1)氢键(比较弱)——横向力
H
H
OH OH
H2N N N HOCH2 O
HH
H
H
OH OH
HO N HOCH2 O
HH
H
H
OH OH
HO N HOCH2 O
HH
H
H
OH OH
腺嘌呤核苷 鸟嘌呤核苷
胞嘧啶核苷
尿嘧啶核苷
Adenosine--A Guanosine--G Cytidine –C Uridine--U
5
OH
•假尿苷(ψ)(C5’—N1) •次黄苷(肌苷)I •黄嘌呤核苷 X •二氢尿嘧啶核苷 D(hu) •取代核苷的表示方式:7-甲基鸟苷m7G
(1)基因组较小 (2)大部分用于编码蛋白质 (3)存在操纵子结构
3.5.3 真核生物基因组的特点
(1)基因组较大 (2)不存在操纵子结构 (3)存在大量重复序列 (4)有断裂基因
3.6 RNA的结构与功能
RNA的一级结构-----RNA的高级结构------
• RNA是单链分子,因此,在RNA分子中,并不遵守碱基种类的数量比 例关系,即分子中的嘌呤碱基总数不一定等于嘧啶碱基的总数。
5’
HOCH2 O OH 4’ H H 1’
H 3’ 2’ H OH OH
H 3’ 2’ H OH H
D-核糖
D-2-脱氧核糖
3.1 核酸的组成成分
3.1.2 含氮碱
咪唑环
➢嘌呤
7 561
8 9
432
嘧啶环
腺嘌呤(Adenine)
(6-氨基嘌呤)
NH 2
鸟嘌呤(Guanine)
(2-氨基-6-氧嘌呤)
核酸有何重要生物学功能?
核酸是具有遗传功能的生物大分子,有 遗传大分子或信息大分子 之称,其中 DNA 是遗传信息的载体,是生物体 主要的 遗传物质; RNA 参与蛋白质的生物合成、RNA转录后的加工修饰、基因表达的调节及催化等。
3.1 核酸的组成成分
元素组成: C H O N P (9%-9.9%)
mRNA
原核 tRNA
rRNA
病毒:RNA病毒
前言
什么是核酸?
核酸是主要存在于 细胞核 中含 磷丰富呈 酸性的 物质,是 核蛋白 的成分之一, 是由核苷酸聚合而成的高聚物,是具有 遗传功能 的生物大分子。依其所含的 组成成分 的不同分为 DNA 和 RNA 两大类,RNA主要包括mRNA、rRNA和tRNA 三小类。