人教版中考数学压轴题 易错题自检题学能测试试卷
人教版中考数学压轴题 易错题难题专题强化试卷学能测试
一、中考数学压轴题1.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形).(1)当x = (s )时,PQ ⊥BC ;(2)当点M 落在AC 边上时,x = (s );(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3().(1)求抛物线的解析式及顶点M 坐标;(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,PDE ABMC 1S S 9=四边形. 3.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且2n -2n -,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.4.如图1,已知,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,连接AO 并延长交BC 于点H .(1)求外接圆⊙O 的半径;(2)如图2,点D 是AH 上(不与点A ,H 重合)的动点,以CD ,CB 为边,作平行四边形CDEB ,DE 分别交⊙O 于点N ,交AB 边于点M .①连接BN ,当BN ⊥DE 时,求AM 的值;②如图3,延长ED 交AC 于点F ,求证:NM ·NF=AM ·MB ;③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.5.如图,在等边ABC ∆中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接BE ,DE .(1)如图1,若310DE =,23BC =CE 的长;(2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且DF CD =,求证:12AB EF =;(3)在(2)的条件下,若45AED ∠=︒直接写出线段BD ,EF ,ED 的等量关系6.如图,在平面直角坐标中,点O 为坐标原点,ABC ∆的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.7.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示);(3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若12,(33)2ADH a S ==+,求sin GAB ∠的值.8.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.(1)求二次函数的关系式.(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标.(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.9.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.10.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+,32AB =,45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .问题探究(1)如图1,若30PBC ∠=︒,则AP 的长为__________.(2)如图2,请求出BPC △周长的最小值;(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;②请直接写出PMN 面积的最小值.11.平面直角坐标系中,点A 、B 分别在x 轴正半轴、y 轴正半轴上,AO =BO ,△ABO 的面积为8.(1)求点A 的坐标;(2)点C 、D 分别在x 轴负半轴、y 轴正半轴上(D 在B 点上方),AB ⊥CD 于E ,设点D 纵坐标为t ,△BCE 的面积为S ,求S 与t 的函数关系;(3)在(2)的条件下,点F 为BE 中点,连接OF 交BC 于G ,当∠FOB +∠DAE =45°时,求点E 坐标.12.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM .(Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标;(Ⅱ)连接BN ,当1DM =时,求ABN 的面积;(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案) 在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题. 小明:我是这样想的,延长MN 与x 轴交于P 点,于是出现了Rt NAP △.小雨:我和你想的不一样,我过点N 作y 轴的平行线,出现了两个Rt NAP △.13.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.14.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.15.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.16.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.17.在菱形ABCD 中,P 为直线DA 上的点,Q 为直线CD 上的点,分别连接PC ,PQ ,且PC PQ =.(1)若60B ∠=︒,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图①,易证:DQ PD AB +=(不需证明);(2)如图②,若∠B =120°,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图③,猜想线段DQ ,PD 和AB 之间有怎样的数量关系?请直接写出对图②,图③的猜想,并选择其中一种情况给予证明.18.如图,在平面直角坐标系中,Rt ABC △的斜边在AB 在x 轴上,点C 在y 轴上90ACB ∠=︒,OC 、OB 的长分别是一元二次方程2680x x -+=的两个根,且OC OB <.(1)求点A 的坐标;(2)D 是线段AB 上的一个动点(点D 不与点A ,B 重合),过点D 的直线l 与y 轴平行,直线l 交边AC 或边BC 于点P ,设点D 的横坐标为t ,线段DP 的长为d ,求d 关于t 的函数解析式;(3)在(2)的条件下,当12d =时,请你直接写出点P 的坐标.19.已知抛物线y=﹣x 2﹣2x+3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B .(1)求A ,B ,C 三点坐标;(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;(3)如图2,将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,点P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可).20.已知:矩形ABCD 内接于⊙O ,连接 BD ,点E 在⊙O 上,连接 BE 交 AD 于点F ,∠BDC+45°=∠BFD ,连接ED .(1)如图 1,求证:∠EBD=∠EDB ;(2)如图2,点G 是 AB 上一点,过点G 作 AB 的垂线分别交BE 和 BD 于点H 和点K ,若HK=BG+AF ,求证:AB=KG ;(3)如图 3,在(2)的条件下,⊙O 上有一点N ,连接 CN 分别交BD 和 AD 于10点 M 和点 P ,连接 OP ,∠APO=∠CPO ,若 MD=8,MC= 3,求线段 GB 的长.21.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积. 22.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 23.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P 、M 、N 、Q ,(1)如图①所示.当∠CNG =42°,求∠HMC 的度数.(写出证明过程)(2)将直尺向下平移至图 2 位置,使直尺的边缘通过点 C ,交 AB 于点 P ,直尺另一侧与三角形交于 N 、Q 两点。
中考数学中考数学压轴题 易错题难题自检题学能测试试题(1)
一、中考数学压轴题1.对于平面内的点M 和点N ,给出如下定义:点P 为平面内的一点,若点P 使得PMN 是以M ∠为顶角且M ∠小于90°的等腰三角形,则称点P 是点M 关于点N 的锐角等腰点P .如图,点P 是点M 关于点N 的锐角等腰点.在平面直角坐标系xOy 中,点O 是坐标原点.(1)已知点(2,0)A ,在点123(0,2),(1,3),(1,3)P P P -,4(2,2)P -中,是点O 关于点A 的锐角等腰点的是___________.(2)已知点(3,0)A ,点C 在直线2y x b =+上,若点C 是点O 关于点A 的锐角等腰点,求实数b 的取值范围.(3)点D 是x 轴上的动点,(,0),(2,0)D t E t -,点(,)F m n 是以D 为圆心,2为半径的圆上一个动点,且满足0n ≥.直线24y x =-+与x 轴和y 轴分别交于点H K ,,若线段HK 上存在点E 关于点F 的锐角等腰点,请直接写出t 的取值范围.2.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.3.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ;(2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ;(3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由.4.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.5.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”. (概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC 的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.105AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.6.已知.在Rt △OAB 中,∠OAB=90°,∠BOA=30°,OA=23,若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内,将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处.(1)求经过点O ,C ,A 三点的抛物线的解析式.(2)若点M 是抛物线上一点,且位于线段OC 的上方,连接MO 、MC ,问:点M 位于何处时三角形MOC 的面积最大?并求出三角形MOC 的最大面积.(3)抛物线上是否存在一点P ,使∠OAP=∠BOC ?若存在,请求出此时点P 的坐标;若不存在,请说明理由.7.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.8.如图1,已知,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,连接AO 并延长交BC 于点H .(1)求外接圆⊙O 的半径;(2)如图2,点D 是AH 上(不与点A ,H 重合)的动点,以CD ,CB 为边,作平行四边形CDEB ,DE 分别交⊙O 于点N ,交AB 边于点M .①连接BN ,当BN ⊥DE 时,求AM 的值;②如图3,延长ED 交AC 于点F ,求证:NM ·NF=AM ·MB ;③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.9.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N .(1)如图1,当α=60°时,求证:DM =BN ;(2)在上述旋转过程中,DN DM 的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积.10.如图,在平面直角坐标中,点O 为坐标原点,ABC 的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.11.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.12.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且m=2n -+2n -+4,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.13.附加题:在平面直角坐标系中,抛物线21y ax a=-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示); (3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围.14.在菱形ABCD 中,点P 是对角线BD 上一点,点M 在CB 的延长线上,且PC PM =, 连接PA .()1如图①,求证:PA PM =;()2如图②,连接,AM PM与AB交于点,120PC AM;∠=求证 =O ADC︒()3连接AM,当90∠=时,PC与AM的数量关系是ADC︒15.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),2,点 P 从点 O 出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.(1)求点B 的坐标;(2)设点P 的运动时间为点t 秒,△BDP 的面积为S,求S 与t 的函数关系式;(3)当点P 与点D 重合时,连接BP,点E 在线段AB 上,连接PE,当∠BPE=2∠OBP 时,求点E 的坐标.16.如图,直线y=﹣x+4与抛物线y=﹣12x2+bx+c交于A,B两点,点A在y轴上,点B在x轴上.(1)求抛物线的解析式;(2)在x轴下方的抛物线上存在一点P,使得∠ABP=90°,求出点P坐标;(3)点E是抛物线对称轴上一点,点F是抛物线上一点,是否存在点E和点F使得以点E,F,B,O为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.17.在菱形ABCD中,P为直线DA上的点,Q为直线CD上的点,分别连接PC,PQ,且PC PQ.(1)若60B ∠=︒,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图①,易证:DQ PD AB +=(不需证明);(2)如图②,若∠B =120°,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图③,猜想线段DQ ,PD 和AB 之间有怎样的数量关系?请直接写出对图②,图③的猜想,并选择其中一种情况给予证明.18.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.19.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.例如:当m =1时,函数y =(x +1)2+5关于点P (1,0)的相关函数为y =﹣(x ﹣3)2﹣5.(1)当m =0时①一次函数y =x ﹣1关于点P 的相关函数为 ;②点(12,﹣98)在二次函数y =﹣ax 2﹣ax +1(a ≠0)关于点P 的相关函数的图象上,求a 的值.(2)函数y =(x ﹣1)2+2关于点P 的相关函数y =﹣(x +3)2﹣2,则m = ; (3)当m ﹣1≤x ≤m +2时,函数y =x 2﹣mx ﹣12m 2关于点P (m ,0)的相关函数的最大值为6,求m 的值.20.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD =AO .点E 、F 为矩形边上的两个动点,且∠EOF =60°.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若∠OEB =75°,求证:DF =AE ;(2)如图2,当点E、F同时位于AB边上时,若∠OFB=75°,试说明AF与BE的数量关系;(3)如图3,当点E、F同时在AB边上运动时,将△OEF沿OE所在直线翻折至△OEP,取线段CB的中点Q.连接PQ,若AD=2a(a>0),则当PQ最短时,求PF之长.21.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.22.发现来源于探究.小亮进行数学探究活动,作边长为a的正方形ABCD和边长为b的正方形AEFG(a>b),开始时,点E在AB上,如图1.将正方形AEFG绕点A逆时针方向旋转.(1)如图2,小亮将正方形AEFG绕点A逆时针方向旋转,连接BE、DG,当点G恰好落在线段BE上时,小亮发现DG⊥BE,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG的长.(2)如图3,小亮旋转正方形AEFG,点E在DA的延长线上,连接BF、DF.当FG平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示). 23.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =+,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由. 24.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) . ① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.25.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N . ①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标; ②若NCB DBC ∠=∠,求点N 的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.E解析:(1)24P P ,;(2)353b -≤<;(3)6425t >≥-【解析】 【分析】(1)根据等腰锐角点的定义即得;(2)先确定极限位置:直线与圆相切于第四象限及直线过(0,3)时b 的值,进而确定范围;(3)分类讨论:E 点和F 点位于线段HK 左侧;E 点和F 点位于线段HK 右侧;利用一线三垂直模型及相似三角形的性质确定极限位置t 的值,进而确定范围. 【详解】(1)∵点P 是点O 关于点A 的锐角等腰点,(2,0)A ∴OA=OP=2 如下图:当1(0,2)P 时,OP 1=2,OP 1⊥OA ,不成立; 当(23P 时,过P 2作P 2M ⊥x 轴∴OM=1,P 23∴在2Rt P MO 中,22222OP OM P M =+= ∵290P OA ∠<︒ ∴点(23P 是点O 关于点A 的锐角等腰点;当(33P -时,390POA>︒∠ ∴点(33P -不是点O 关于点A 的锐角等腰点; 当42,2P 时,过P 4作P 4N ⊥x 轴∴2,P 42∴在4Rt P NO 中,22442OP ON P N =+=,445P ON =︒∠ ∴点42,2P 是点O 关于点A 的锐角等腰点.∴点O 关于点A 的锐角等腰点有(23P ,42,2P故答案为:24P P ,(2)以O 为圆心,OA=3为半径作圆,当直线2y x b =+与圆O 相切与第四象限时,切点即为点O 关于点A 的锐角等腰点,如下图点C .由题意,得:OB=-b ,OD=2b ∴在Rt DOB 中,225DB OD OB =+= ∵11122OD OB DB OC = ∴21532b =⨯ 解得:35b =-如上图:当直线2y x b =+过点E ()03,时,3b =,OE ⊥OA ∴要使在直线2y x b =+上存在点C 是点O 关于点A 的锐角等腰点,3b < 综上所述:353b -≤<时,直线2y x b =+上存在点C 是点O 关于点A 的锐角等腰点 . (3)如下图:当E F ,在直线左侧,4EF =时,过E 作EG HK ⊥ ∵90KOH EGH KHO GHE ==︒∠=∠∠∠, ∴H EGH KO ∽ ∴KO KHEG EH= ∵()()()()0420020K H D t E t -,,,,,,, ∴KO=4,KH=5EH=4-t ∴EG=8525425t-=∵要使线段HK 上存在点E 关于点F 的锐角等腰点,则4EG ≤ ∴85545t≤∴425t ≥-当E 点和F 点位于线段HK 右侧时,即:4t ≥时,如下图,过E 作EB ⊥EF ,过B 作BM ⊥x 轴,过点F 作FL ⊥x 轴当BE EF =时,F BME EL ≌ ∴BM EL =,ME FL =∵()F m n ,,()(),020D t E t -,,∴ME FL n ==,2BM EL m t ==-+ ∴2OM t n =-- ∴()22B t n m t ---+,将点()22B t n m t ---+,代入直线24y x =-+得:()2224m t t n -+=---+解得:62t n m =+-∴当62t n m <+-时,线段HK 上存在点E 关于点F 的锐角等腰点. ∵2m t ≥-,20n ≥≥∴62622212t n m t t <+-≤+⨯-+=-,即6t <综上所述:64t >≥-HK 上存在点E 关于点F 的锐角等腰点 【点睛】本题考查了等腰三角形的定义,全等三角形的判定及性质,切线的性质,相似三角形的判定及性质,圆的定义及一次函数,解题关键是将动点问题转化问各个状态,进而应用等量关系列出方程求解,得出极限状态的未知量的值,进而得出取值范围.2.B解析:(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】 【分析】()1根据题意将()D 2,3、()B 4,0-的坐标代入抛物线表达式,即可求解;()2由题意设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭,BMC1SMK OB 2=⋅⋅,即可求解; ()3由题意和如图所示可知,1tan QHN 2∠=,在RtQNH 中,QH m 6=+,QN OQ ===QN sin QHN QHm 6∠===+,进行分析计算即可求解. 【详解】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩, 则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭, 22BMC1113SMK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S∴有最大值,当bx 22a=-=-时, BMCS最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N ,过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -, 点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴, QHN OCA ∠∠∴=, 1tan QHN2∠∴=,则sin QHN ∠= 将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩,则直线AC 的表达式为:y 2x 2=-, 则点()H 2,6--,在Rt QNH 中,QH m 6=+,QN OQ ===QN sin QHNQHm 6∠===+, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--. 【点睛】本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是()3,核心是通过画图确定圆的位置,本题综合性较强.3.D解析:(1)证明见解析;(23)DG MG ,理由见解析. 【解析】 【分析】(1)连接MG 并延长交AB 于N 点,证明△ANM ≌△FGM 后得到MG=MN ,AN=CG ,进而得到BN=BG ,得到△ANG 为等腰直角三角形,即可证明MG=MB. (2)分两种情况画出图形再利用(1)中的思路结合勾股定理即可求解.(3)先画出图形,然后证明△ADG ≌△ABG ,得到DG=BG ,又△BMG 为等腰直角三角形,故而得到MG. 【详解】解:(1) 连接MG 并延长交AB 于N 点,如下图所示:∵GF ∥AN , ∴∠NAM=∠GFM 在△ANM 和△FGM 中∠∠=⎧⎪=⎨⎪∠=∠⎩BAM GFM AM FMNMA GMF ,∴△ANM ≌△FGM(ASA) ∴MG=MN ,CG=GF=AN ∴AB-AN=BC-CG ∴NB=GB∴△NBG 为等腰直角三角形 又M 是NG 的中点∴由直角三角形斜边上的中线等于斜边的一半知: 故有:MG=MB. (2)分类讨论:情况一:当B 、G 、F 三点在正方形ABCD 外同一直线上时延长MG 到N 点,并使得MG=MN ,连接AN ,BN∴∠∠=⎧⎪=⎨⎪=⎩MN MG AMN GMF AM FM ,∴△AMN ≌△FMG(SAS) ∴AN=GF=GC ,∠NAM=∠GFM ∴AN ∥GF∴∠NAB+∠ABG=180° 又∠ABC=90° ∴∠NAB+∠CBG=90°又在△BCG 中,∠BCG+∠CBG=90° ∴∠NAB=∠BCG∴在△ABN 中和△CBG 中:∠∠=⎧⎪=⎨⎪=⎩AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)∴BN=BG ,∠ABN=∠CBG ∴∠ABC=∠NBG=90°∴△NBG 是等腰直角三角形,且∠BGN=45° 在Rt △BCG 中,2222=534-=-=BG BC CG 过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形 ∴MH=BH=HG=12BG=2 在Rt △MFH 中,2222MF=2529+=+=MH HF 情况二:当B 、G 、F 三点在正方形ABCD 内同一直线上时 如下图所示,延长MG 到MN ,并使得MG=MN ,连接NA 、NB ,同情况一中证明思路,∠∠=⎧⎪=⎨⎪=⎩MN MG AMN GMF AM FM ,△AMN ≌△FMG(SAS)∴AN=GF=GC ,∠NAM=∠GFM∴AN ∥GF∴∠NAB=∠ABG又∠ABG+∠GBC=90°∠GBC+∠BIF=90°∴∠BIF=∠ABG又∠BIF=∠BCG ,∠ABC=∠NAB∴∠NAB=∠GCB∴在△ABN 中和△CBG 中:∠∠=⎧⎪=⎨⎪=⎩AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)∴BN=BG ,∠ABN=∠CBG∴∠ABC=∠NBG=90°∴△NBG 是等腰直角三角形,且∠BGN=45°在△BCG 中,2222=534-=-=BG BC CG过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形∴MH=BH=HG=12BG=2 ∴HF=HG-GF=2-1=1在Rt △MFH 中,2222MF=215+=+=MH HF故答案为:29或 5.(3)由题意作出图形如下所示:DG 、MG 的数量关系为:2,理由如下:∵G 点在AC 上∴∠DAG=∠BAG=45°在△ADG 和△ABG 中:∠∠=⎧⎪=⎨⎪=⎩AD AB DAG BAG AG AG ,∴△ADG ≌△BAG(SAS)∴DG=BG又由(2)中的证明过程可知:△MBG 为等腰直角三角形∴MG∴MG故答案为:MG.【点睛】本题考查了正方形的旋转、三角形的全等、勾股定理等知识,难度很大,关键是要能正确做出图形,利用数形结合的思想,熟练的使用正方形的性质是解题的关键.4.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.5.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)10AB BC =;(3)①5AD CD =. 【解析】【分析】 (1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论; (2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出AB BC的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到3CF DF =,则(23)35AC x =+=,即可求出DF的长度,然后得到CD 的长度; ②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AF AE EC=,然后求出CD 和AD 的长度,即可得到答案.【详解】解:(1)ABC 是“准黄金”三角形.理由:如图,过点A 作AD BC ⊥于点D ,∵12AC =,30ACB ∠=︒, ∴162AD AC ==. ∴:6:103:5AD BC ==. ∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.不防设3AE k =,5BC k =,∵点C 为ABD △的重心,∴:2:1BC CE =.∴52k CE =,152k BE =. ∴2215329(3)2k AB k ⎛⎫=+= ⎪⎝⎭. ∴329329:5210AB k k BC ==. (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3, ∵35AE BC =, ∴BC=5, ∵10AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=, ∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF ,∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°, ∴3CF x =, ∴(23)35AC x == 解得:65315DF x == ∴2125615CD DF ==②如图,过点A 作AE BC ⊥于点E ,则3AE =. ∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.∴5BC =. ∵105AB BC =, ∴10AB. ∴221BE AB AE =-=.∴6CE BE BC =+=,2236935AC CE AE =+=+=.分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,∴90B GC DFC '∠=∠=︒,3B G '=,5C B B C '==,则CG 4=.∵GCB FCD α'∠=∠=,∴AEC DFA ∽△△.∴::::3:4:5DF FC CD B G GC CB ''==.∴设3DF k =,4FC k =,5CD k =.∵12l l //,∴ACE CAD ∠=∠,且90AEC AFD ∠=∠=︒.∴AEC DFA ∽△△.∴DF AF AE EC =. ∴335436k k =,解得3510k =. ∴355CD k ==2222959595102AF DF AD ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=. ∴9352355AD CD === 【点睛】 本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.6.C解析:(1)y=﹣x 23;(2)33328⎛⎫ ⎪ ⎪⎝⎭,338;(3)存在,P(33,53)或(﹣3 3,﹣73)【解析】【分析】(1)根据折叠的性质可得OC=OA,∠BOC=∠BAO=30°,过点C作CD⊥OA于D,求出OD、CD,然后写出点C的坐标,再利用待定系数法求二次函数解析式解答;(2)求出直线OC的解析式,根据点M到OC的最大距离时,面积最大;平行于OC的直线与抛物线只有一个交点,利用根的判别式求出m的值,利用锐角三角函数的定义求解即可;(3)分两种情况求出直线AP与y轴的交点坐标,然后求出直线AP的解析式,与抛物线解析式联立求解即可得到点P的坐标.【详解】解:(1)∵Rt△OAB沿OB折叠后,点A落在第一象限内的点C处,∴OC=OA=23,∠BOC=∠BAO=30°,∴∠AOC=30°+30°=60°,过点C作CD⊥OA于D,则OD=1233 33,所以,顶点C33),设过点O,C,A抛物线的解析式为为y=ax2+bx,则223)33(23)230a ba b⎧=⎪⎨+=⎪⎩,解得:123 ab=-⎧⎪⎨=⎪⎩∴抛物线的解析式为y=﹣x23;(2)∵C33),∴直线OC的解析式为:y =,设点M 到OC 的最大距离时,平行于OC的直线解析式为y m =+,联立2y m y x ⎧=+⎪⎨=-+⎪⎩, 消掉未知数y并整理得,20x m +=,△=(2-4m=0,解得:m=34.∴2304x +=,∴x =; ∴点M 到OC 的最大距离=34×sin30°=313428⨯=;∵OC ==∴13288MOC S ∆=⨯⨯=; 此时,M ⎝⎭,最大面积为8; (3)∵∠OAP=∠BOC=∠BOA =30°,∴23=, ∴直线AP 与y 轴的交点坐标为(0,2)或(0,﹣2),当直线AP经过点(0)、(0,2)时,解析式为23y x =-+,联立22y x y x ⎧=-+⎪⎨=+⎪⎩,解得110x y ⎧=⎪⎨=⎪⎩2253x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以点P的坐标为(3,53),当直线AP经过点(23,0)、(0,﹣2)时,解析式为32 3y x=-,联立223323y x xy x⎧=-+⎪⎨=-⎪⎩解得1123xy⎧=⎪⎨=⎪⎩,223373xy⎧=-⎪⎪⎨⎪=-⎪⎩;所以点P的坐标为(3-,73-).综上所述,存在一点P(3,53)或(﹣3,﹣73),使∠OAP=∠BOA.【点睛】本题是二次函数综合题型,主要利用了折叠的性质,待定系数法求二次函数解析式,联立两函数解析式求交点的方法,(2)判断出点M到OC的距离最大是,平行于OC的直线与抛物线只有一个交点是解题的关键,(3)确定出直线AP的解析式是解题的关键.7.D解析:(1)6;(2)y=-3x+10(1≤x<103);(2)1769或32【解析】【分析】(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH ⊥BC∴△DHC 是等腰直角三角形∵四边形ABCD 是梯形,∠B=90°∴四边形ABHD 是矩形,∴DH=AB=8∴HC=8∴BH=BC -HC=6∴AD=6(2)如下图,过点P 作EF 的垂线,交EF 于点Q ,反向延长交BC 于点R ,DH 与EF 交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103 当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10 则当y=2时,x=4,即AE=4 ∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力.8.A解析:(1)O 半径为254;(2)①458AM =;②详见解析;③当1251017x <<时,有2220ND DM -<成立. 【解析】 【分析】(1)如下图,在Rt △ABH 中,先求得AH 的值,设OA=r ,在Rt △OBH 中,利用勾股定理可求得r 的长;(2)①如下图,在Rt BCN ,可求得BN 的长,然后在矩形NBHD 中,求得AD 的值,最后利用cos ∠MAD 求得AM ;②如下图,同过证AMN NFC △∽△可得结论;③如下图,通过转换,先得出222ND DM -=22AM MB DM ⋅这个等式,然后利用3sin 5DM MAD AM ∠==,设AM=x ,可得到关于x 的方程,进而求出x 的取值范围. 【详解】解:(1)如图1,连接OB ,∵AH 过圆心O ,∴AH BC ⊥, ∵AB AC =,∴162BH CH BC ===, 在Rt ABH △中,221068AH =-=,设半径OA OB r ==,则8OH r =-,在Rt OBH 中,222(8)6r r -+=, 解得254r =,即O 半径为254. (2)①如图2,连接CN在平行四边形CDEB 中,DE BC ∥,∴ENB NBC ∠=∠. ∵BN DE ⊥,即90ENB ∠=︒,∴90NBC ∠=︒. ∴CN 是O 的直径.2522CN r ==. ∴在Rt BCN 中,2272BN CN BC =-=. ∵四边形CDEB 是平行四边形,NB ⊥BH ,DH ⊥BH ∴四边形NBHD 是矩形, ∴72DH BN ==,6ND BH ==,∴79822AD AH DH =-=-=. ∴在Rt ADM △中,4cos 5AD AH MAD AM AB ∠===,∴458AM =, ②如图3,连接AN ,CN ,∵DE BC ∥,∴DNC NCB ∠=∠. ∵NAB NCB ∠=∠,∴NAB DNC ∠=∠.由DE BC ∥,AB AC =可得AMD ABC ACB AFD ∠=∠=∠=∠, ∴AMN NFC ∠=∠,AMAF =.∴AMN NFC △∽△,MB CF =. ∴NM NM AMCF MB NF==,即NM NF AM MB ⋅=⋅. ③∵AH BC ⊥,DE BC ∥,∴AD MF ⊥,∵AM AF =,∴MD DF =,∴222222ND DM ND DM DM -=--2()()ND DM ND DM DM =-+- 2NM NF DM =⋅-22AM MB DM =⋅.∵AM x =,∴10BM x =-,由3sin 5DM MAD AM ∠==,得35DM x =, ∴22223342(10)10525ND DM x x x x x ⎛⎫-=--=-+ ⎪⎝⎭.(010)x <<该函数图象的示意图如图4易求得点P 坐标为125,017⎛⎫⎪⎝⎭∴当1251017x <<时,有2220ND DM -<成立. 【点睛】本题考查几何图形的综合,解题过程中用到了勾股定理、相似、三角函数和平行四边形、圆的性质,解题关键是将这些知识点综合起来分析题干.9.A解析:(1)详见解析;(2)3DNDM =,是一个定值;(3)92【解析】 【分析】(1)利用ASA 证ADM DBN △≌△,从而得出DM BN =; (2)如下图,先证NDQ MDP △∽△,得出DN DQDM DP=,然后在Rt BDQ △,利用tan ∠B 得出DQ BQ 的值,最后得出DNDM的值; (3)如下图,先证点C 是EF 的中点,然后利用CD 平分EDF ∠可推导出四边形CGDH 为正方形,从而得出CHN CGM △≌△,进而得出面积. 【详解】解:(1)由题意,∵60α=︒,90EDF ∠=︒,∴30BDN ∠=︒,∴BDN A ∠=∠,B EDA ∠=∠, ∵点D 是斜边AB 的中点,∴AD BD =, ∴ADM DBN △≌△,∴DM BN =. (2)3DNDM=,是一个定值. 证明:如图1,作DP AC ⊥于点P ,DQ BC ⊥于点Q ,∴90NQD MPD ∠=∠=︒,又∵90MDN PDQ ∠=∠=︒,∴NDQ MDP ∠=∠, ∴NDQ MDP △∽△,∴DN DQDM DP=, 在Rt BDQ △中,60B ∠=︒,∴tan ∠B 3DQBQ==又由(1)可知:DP BQ =,∴3DQDP =, ∴3DNDM= (3)连接CD ,作CG DE ⊥于点G ,CH DF ⊥于点H ,。
人教版中考数学压轴题 易错题综合模拟测评学能测试试卷
一、中考数学压轴题1.已知:在平面直角坐标系中,抛物线223y ax ax a =--与x 轴交于点A ,B (点B 在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2.(1)如图1,求此抛物线的解析式;(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若728CG AG =,求点P 的坐标.2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3().(1)求抛物线的解析式及顶点M 坐标;(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,PDE ABMC 1S S 9=四边形. 3.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E是BD上方抛物线上的一点,连接AE交DB于点F,若AF=2EF,求出点E的坐标.(3)如图3,点M的坐标为(32,0),点P是对称轴左侧抛物线上的一点,连接MP,将MP沿MD折叠,若点P恰好落在抛物线的对称轴CE上,请求出点P的横坐标.4.如图,在梯形ABCD中,AD//BC,AB=CD=AD=5,cos45B ,点O是边BC上的动点,以OB为半径的O与射线BA和边BC分别交于点E和点M,联结AM,作∠CMN=∠BAM,射线MN与边AD、射线CD分别交于点F、N.(1)当点E为边AB的中点时,求DF的长;(2)分别联结AN、MD,当AN//MD时,求MN的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.5.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.6.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax =,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.7.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 8.如图,在平面直角坐标中,点O 为坐标原点,ABC ∆的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.9.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH . (1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.10.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C .(1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.11.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 3CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由. 12.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM . (Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标;(Ⅱ)连接BN ,当1DM =时,求ABN 的面积;(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案) 在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题. 小明:我是这样想的,延长MN 与x 轴交于P 点,于是出现了Rt NAP △.小雨:我和你想的不一样,我过点N 作y 轴的平行线,出现了两个Rt NAP △.13.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),AB=62,点 P 从点 O 出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.(1)求点 B 的坐标;(2)设点 P 的运动时间为点 t 秒,△BDP 的面积为 S ,求 S 与 t 的函数关系式;(3)当点 P 与点 D 重合时,连接 BP ,点 E 在线段 AB 上,连接 PE ,当∠BPE =2∠OBP 时, 求点 E 的坐标.14.(操作发现)如图1,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于45︒),旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF CD =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF .(1)请求出EAF ∠的度数?(2)DE 与EF 相等吗?请说明理由;(类比探究)如图2,ABC ∆为等边三角形,先将三角板中的60︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于30).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .(3)直接写出EAF ∠=_________度;(4)若1AE =,2BD =,求线段DE 的长度.15.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.16.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.17.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.18.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积. 19.我们知道,在等腰直角三角形中,底边与一边腰长比为2:1.如图1,90A ∠=︒,AB AC =,则2BC AB=.知识应用:(1)如图2,ADE ∆和ABC ∆均为等腰直角三角形,90DAE BAC ∠=∠=︒,D ,E ,C 三点共线,若2AD =,2BD =,求CD 的长. 知识外延:(2)如图3,正方形ABCD 中,BE 和BC 关于BG 对称,C 点的对应点为E 点,AE 交BG 的延长线于F 点,连接CF .①求证:GF EC =;②若2AE =,2CE =,求BF 的长.20.ABC 内接于O ,AB BC =,连接BO ;(1)如图1,连接CO 并延长交O 于点M ,连接AM ,求证://AM BO ;(2)如图2,延长BO 交AC 于点H ,点F 为BH 上一点,连接AF ,若AH HF AB BF =,求证:BAF HAF ∠=∠;(3)在(2)的条件下,如图3,点E 为AB 上一点,点D 为O 上一点,连接ED 、OE ,若CBD 3ABH 90∠+∠=︒,若OF 3=,FH 4=,13623EBD S ∆=,连接OE ,求线段OE 的长.21.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)当m=0时①一次函数y=x﹣1关于点P的相关函数为;②点(12,﹣98)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m=;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣12m2关于点P(m,0)的相关函数的最大值为6,求m的值.22.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.23.阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”:如图1.在△ABC中,如果AB>AC,那么∠ACB>∠ABC.证明如下:将AB沿△ABC的角平分线AD翻折(如图2),因为AB>AC,所以点B落在AC的延长线上的点B'处.于是,由∠ACB>∠B',∠ABC=∠B',可得∠ACB>∠ABC.(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”:如图3.在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M为正方形ABCD的边CD上一点(不含端点),连接AM并延长,交BC的延长线于点N.求证:AM+AN>2BD.24.如图1,以AB 为直径作⊙O ,点C 是直径AB 上方半圆上的一点,连结AC ,BC ,过点C 作∠ACB 的平分线交⊙O 于点D ,过点D 作AB 的平行线交CB 的延长线于点E .(1)如图1,连结AD ,求证:∠ADC =∠DEC .(2)若⊙O 的半径为5,求CA •CE 的最大值.(3)如图2,连结AE ,设tan ∠ABC =x ,tan ∠AEC =y ,①求y 关于x 的函数解析式; ②若CB BE =45,求y 的值. 25.如图,在ABC 中,90ABC ∠=︒,AB BC <,O 为AC 中点,点D 在BO 延长线上,CD BC =,AE BC ∥,CE CA =,AE 交BD 于点G .(1)若28DCE ∠=︒,求AOB ∠的度数;(2)求证:AG GE =;(3)设DC 交GE 于点M .①若3AB =,4BC =,求::AG GM ME 的值;②连结DE ,分别记ABG ,DGM ,DME 的面积为1S ,2S ,3S ,当AC DE 时,123::S S S = .(直接写出答案)【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.C解析:(1)21322y x x =--;(2)1m t =-;(3)933,28P ⎛⎫ ⎪⎝⎭ 【解析】【分析】(1)将抛物线解析式化为顶点式可得y=a (x-1)2-4a ,则C 点为(1,-4a ),再由-4a=-2即可求a 的值,进而确定函数解析式;(2)由已知分别求出点P 和点A 的坐标,可得AP 的直线解析式,求出D 点坐标则可求CD ;(3)设CD 与x 轴的交点为H ,连接BE ,由三角形中位线的性质可求BE=2(t-3)=2t-6;过点F 作FN ⊥BE 于点N ,过点P 作PM ⊥BE 交BE 的延长线于点M ,可证明Rt △PME ≌Rt △ENF (HL ),从而推导出∠EPF=∠EFP=45°;过点C 作CK ⊥CG 交PA 的延长线于点K ,连接AC 、BC ,能够进一步证明△ACK ≌△BCG (SAS ),得到∠KGB=90°;令AG=8m ,则CG=BG=6m ,过点G 作GL ⊥x 轴于点L ,在Rt △ABG 中,AG=10m=4,求出m 值,利用等积法可求G 点的坐标,再将G 点坐标代入3322t t y x --=+,求出t ,即可求出点P 坐标.【详解】解:(1)22223(23)(1)4y ax ax a a x x a x a =--=--=--,∴顶点C 的坐标为(1,4)a -,点C 的纵坐标为2-,42a ∴-=-,12a ∴=, 21322y x x ∴=--; (2)点P 的横坐标为t ,213(,)22P t t t ∴--, 21322y x x =--与x 轴的交点为(1,0)A -,(3,0)B , ∴设AP 的直线解析式为y kx b =+,则有201322k b kt b t t -+=⎧⎪⎨+=--⎪⎩,解得3232t k t b -⎧=⎪⎪⎨-⎪=⎪⎩, 3322t t y x --∴=+, //CD y 轴交AP 于点D ,(1,3)D t ∴-,321CD t t ∴=-+=-,1m t ∴=-;(3)如图:设CD 与x 轴的交点为H ,连接BE , CD 垂直平分AB ,ED AD =,//DH BE ∴,12DH BE =, BE x ∴⊥轴, 2(3)26BE t t ∴=-=-,过点F 作FN BE ⊥于点N ,过点P 作PM BE ⊥交BE 的延长线于点M , EF BF =,132EN BN BE t PM ∴===-=, EP FE =,Rt PME Rt ENF(HL)∴∆≅∆,MPE FEN ∴∠=∠,90FEN MEP MPE MEP ∴∠+∠=∠+∠=︒,90PEF ∴∠=︒,45EPF EFP ∴∠=∠=︒,过点C 作CK CG ⊥交PA 的延长线于点K ,连接AC 、BC ,90KCG ∴∠=︒,45K KGC ∴∠=∠=︒,CK CG ∴=,90AHC BHC ∠=∠=︒,2AH BH CH ===,45CAH ACH HBC HCB ∴∠=∠=∠=∠=︒,90ACB ∴∠=︒,AC CB =,90KCA ACG GCB ∴∠=︒-∠=∠,()ACK BCG SAS ∴∆≅∆,45BGC K AGC ∴∠=∠=∠=︒,AKBG =,90KGB ∴∠=︒, 令8AG m =,则CG =,CK CG =,90KCG ∠=︒,214KG CG m ∴==, 6BG AK KG AG m ∴==-=,过点G 作GL x ⊥轴于点L ,在Rt ABG ∆中,22104AB AG BG m =+==,25m ∴=, 165AG ∴=, 11861022ABG S m m m GL ∆=⨯⨯=⨯⨯, 4825GL ∴=, 22AL AG GL ∴=-,3925OL AL AO ∴=-=, 39(25G ∴,48)25, AG 的解析式为3322t t y x --=+, ∴483393252252t t --=⨯+, 92t ∴=, 9(2P ∴,33)8.【点睛】本题考查二次函数的综合题.熟练掌握二次函数的图象及性质,通过辅助线构造三角形全等,逐步求出G 点的坐标从而求出t 的值是解题的关键.2.C解析:(1)21y x 343=-+(),顶点M 3,4;(2)P 3,2();(3)1m =2,2m =1【解析】【分析】(1)由点C 的坐标,可求出c 的值,再把()A 3,0-、()B 33,0代入解析式,即可求出a 、b 的值,即可求出抛物线的解析式,将解析式化为顶点式,即可求出顶点M 的坐标;(2)因为A 、B 关于抛物线的对称轴对称,连接BC 与抛物线对称轴交于一点,即为所求点P ,设对称轴与x 轴交于点H ,证明PHB COB ∽,即可求出PH 的长,从而求出点P 的 坐标;(3)根据点A 、B 、M 、C 的坐标,可求出ABMC S 四边形,从而求出PDE S 3=,根据OC =3,OB =33,推出OCB ∠=60,因为DE //PC ,推出 ODE ∠=60,从而得到OD =3m -,()OE 33m =-,根据PDE DOE PDOE SS S =-四边形,列出关于m 的方程,解方程即可.【详解】(1)∵抛物线y =2ax bx c a 0++≠()过()A 3,0-、()B 33,0,()C 0,3三点, ∴c =3, ∴3a 3b 3027a 33b 30⎧-+=⎪⎨++=⎪⎩, 解得1a 323b 3⎧=-⎪⎪⎨⎪=⎪⎩. 故抛物线的解析式为()221231y x x 3x 3433=-++=--+, 故顶点M 为()3,4. (2)如图1,∵点A 、B 关于抛物线的对称轴对称,∴连接BC 与抛物线对称轴交于一点,即为所求点P .设对称轴与x 轴交于点H ,∵PH //y 轴,∴PHB COB ∽. ∴PH BH CO BO =. 由题意得BH =23,CO =3,BO =33, ∴PH 23333=, ∴PH =2.∴()P 3,2. (3)如图2,∵()A 3,0-、()B 33,0,()C 0,3,()M 3,4,∴ABMC S 四边形=()AOC MHB COHM 111S S S 3334342393222++=⨯⨯++⨯⨯=梯形. ∵ABMC S 四边形=PDE 9S, ∴PDE S 3=∵OC =3,OB =33∴OCB ∠=60.∵DE //PC ,∴ODE ∠=60. ∴OD =3m -,)OE 33m =-.∵PDOE S 四边形=))COE 133S333m 3m 2=⨯-=-, ∴PDE S =))2DOE PDOE 333S S 3m 3m -=--=四边形 23330m 33+<<(). ∴2333m m 322-+= 解得1m =2,2m =1.【点睛】此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和四边形面积求法等知识,熟练运用方程思想方法和转化思想是解题关键.3.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为118【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1, ∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+, ∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM 的解析式为y=-2x+3, ∴32OM =,3OD =, ∴tan ∠DMO=2, 如图,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.∵PQ ⊥MT ,∴∠TFG=∠TPF ,∴TG=2GF ,GF=2PG ,∴PT=25GF , ∵PF=QF ,∴△FGP ≌△FHQ ,∴FG=FH ,∴PT=45GH. 设点P (m ,-m²+2m+3),则T (m ,-2m+3),∴PT=m²-4m ,GH=1-m ,∴m²-4m=45(1-m ), 解得:111201m -=211201m +=(不合题意,舍去), ∴点P 11201- 【点睛】本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.4.D解析:(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ==== ∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中: ()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN ∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上 ∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.5.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.6.(1)212(02)16(25)x x y x x ⎧≤≤⎪=⎨≤≤⎪⎩;(2)220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)第2分钟末两颗弹珠速度相差最大,最大相差6米/分钟;(4)存在,理由详见解析【解析】【分析】(1)将(1,2)代入21y ax =,得2a =,从而得到212y x =,再代入2x =求出18y =,即可得到反比例函数解析式,即可得解;(2)当01x ≤≤时,第二颗弹珠未弹出,故第二颗弹珠的解析式为20y =;再分别根据(1)中的结论,即可求出当13x <≤和36x <≤时第二颗弹珠的解析式;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,则第2分钟末两颗弹珠速度相差最大,分别求出第2分钟末时两颗弹珠的速度,再相减即可的解;(4)第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟,第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.可以根据速度相等时列方程求得时刻.【详解】(1)当02x ≤≤时,将(1,2)代入21y ax =,得2a =,212y x ∴=,∵当2x =时,18y =,∴当25x ≤≤时,116y x=, 1y ∴与x 的函数关系式为212(02)16(25)x x y x x⎧≤≤⎪=⎨≤≤⎪⎩; (2)当01x ≤≤时,第二颗弹珠未弹出,∴第二颗弹珠的解析式为20y =;当13x <≤时,第二颗弹珠的解析式为222(1)y x =-;当36x <≤时,第二颗弹珠的解析式为2161y x =-; ∴2y 与x 的函数关系式为220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,∴第2分钟末两颗弹珠速度相差最大,∵第一颗弹珠的速度为2218222y x =⨯==米/分钟,第二颗弹珠的速度为2122(1)212y x =⨯==-米/分钟,∴两颗弹珠的速度最大相差8-2=6米/分钟;(4)存在,理由如下:第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟, 第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同. 这个时刻可以通过解方程2162(1)x x=-求得. 【点睛】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息,明确自变量的取值范围和图象所经过的点的坐标.7.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x =的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可;(3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为 12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m-=,即:n =-2m 或m =-2n , 当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=; 故答案为:0; (2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程 理由:∵点(,)p q 在反比例函数8y x =的图象上∴8q p=代入方程260px x q -+=得: 2860px x p -+= 解得:12x p =,24x p = ∵1212x x = ∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上, ∴抛物线的对称轴为:(1)(4)522t t x ++-== 又∵方程20ax bx c ++=是半等分根方程∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x += 所以153x =,2103x = 所以方程20ax bx c ++=的一个根为53得证. 【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答.8.A解析:(1)A (0,4),C (3,0);(2)S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩;(3)存在,满足条件的t 的值为3617或36,点Q 的坐标为162,17⎛⎫- ⎪⎝⎭或()2,16--. 【解析】【分析】(1)解方程组求出m ,n 即可解决问题.(2)分两种情形:如图1中,当0<t <4时,如图2中,当t >4时,根据S=12•BC•OP 求解即可.(3)分两种情形分别构建方程求解即可.【详解】解:(1)由725m n m n +=⎧⎨-=⎩, 解得:43m n =⎧⎨=⎩, ∴A (0,4),C (3,0);(2)如图1中,当0<t <4时,S=12•BC•OP=12×5×(4-t )=-52t+10. 如图2中,当t >4时,S=12•BC•OP=12×5×(t-4)=52t-10. 综上所述,S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩, (3)当04t <<时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯, 解得3617t =, 此时,363241717OP =-=, 32(0,)17P ∴, (4,0)B -,BQ ∴的中点Q 的坐标为162,17⎛⎫- ⎪⎝⎭, 当4t >时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯, 解得36t =,此时36432OP =-=,(0,32)P ∴-,(4,0)B -,BP ∴的中点Q 的坐标为(2,16)--.综上所述,满足条件的t 的值为3617或36.点Q 的坐标为16(2,)17-或(2,16)--. 【点睛】本题属于三角形综合题,考查了解方程组,三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 9.A解析:(1)详见解析;(2)y =(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====,根据勾股定理得到OF ===线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,。
人教版中考数学压轴题测试综合卷学能测试试题
一、中考数学压轴题1.对于平面内的点M 和点N ,给出如下定义:点P 为平面内的一点,若点P 使得PMN 是以M ∠为顶角且M ∠小于90°的等腰三角形,则称点P 是点M 关于点N 的锐角等腰点P .如图,点P 是点M 关于点N 的锐角等腰点.在平面直角坐标系xOy 中,点O 是坐标原点.(1)已知点(2,0)A ,在点123(0,2),(13),(13)P P P -,4(2,2)P -中,是点O 关于点A 的锐角等腰点的是___________.(2)已知点(3,0)A ,点C 在直线2y x b =+上,若点C 是点O 关于点A 的锐角等腰点,求实数b 的取值范围.(3)点D 是x 轴上的动点,(,0),(2,0)D t E t -,点(,)F m n 是以D 为圆心,2为半径的圆上一个动点,且满足0n ≥.直线24y x =-+与x 轴和y 轴分别交于点H K ,,若线段HK 上存在点E 关于点F 的锐角等腰点,请直接写出t 的取值范围.2.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.3.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题.(1)(课本习题)如图①,△ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE=CD . 求证:DB=DE(2)(尝试变式)如图②,△ABC 是等边三角形,D 是AC 边上任意一点,延长BC 至E ,使CE=AD .求证:DB=DE .(3)(拓展延伸)如图③,△ABC 是等边三角形,D 是AC 延长线上任意一点,延长BC 至E ,使CE=AD 请问DB 与DE 是否相等? 并证明你的结论.4.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N .(1)如图1,当α=60°时,求证:DM =BN ;(2)在上述旋转过程中,DN DM 的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积.5.如图,90EOF ∠=︒,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =,3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,矩形ABCD 也停止运动,设点P 的运动时间为()t s ,PDO △的面积为S . (1)分别写出点B 到OF 、OE 的距离(用含t 的代数式表示);(2)当点P 不与矩形ABCD 的顶点重合时,求S 与t 之间的函数关系式;(3)设点P 到BD 的距离为h ,当15h OD =时,求t 的值; (4)若在点P 出发的同时,点Q 从点B 以每秒43个单位长度的速度向终点A 运动,当点Q 停止运动时,点P 与矩形ABCD 也停止运动,设点A 关于PQ 的对称点为E ,当PQE 的一边与CDB △的一边平行时,直接写出线段OD 的长.6.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx+c 的图象与x 轴交于A (﹣3,0)、B (2,0)两点,与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)点E (m ,2)是直线AC 上方的抛物线上一点,连接EA 、EB 、EC ,EB 与y 轴交于D .①点F 是x 轴上一动点,连接EF ,当以A 、E 、F 为顶点的三角形与△BOD 相似时,求出线段EF 的长;②点G 为y 轴左侧抛物线上一点,过点G 作直线CE 的垂线,垂足为H ,若∠GCH =∠EBA ,请直接写出点H 的坐标.7.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC =-,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.8.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.9.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C =,9DEP S =,求sin APB ∠的最大值.10.如图,在正方形ABCD 中,DC=8,现将四边形BEGC 沿折痕EG(G ,E 分别在DC ,AB 边上)折叠,其顶点B ,C 分别落在边AD 上和边DC 的上部,其对应点设为F ,N 点,且FN 交DC 于M .特例体验:(1)当FD=AF 时,△FDM 的周长是多少?类比探究:(2)当FD≠AF≠0时,△FDM 的周长会发生变化吗?请证明你的猜想.拓展延伸:(3)同样在FD≠AF≠0的条件下,设AF 为x ,被折起部分(即:四边形FEGN)的面积为S ,试用含x 的代数式表示S ,并问:当x 为何值时,S=26?11.综合与探究:如图1,在平面直角坐标系xOy 中,四边形OABC 是边长为4的菱形,60C ︒∠=(1)把菱形OABC 先向右平移4个单位后,再向下平移()03m m <<个单位,得到菱形''''O A B C ,在向下平移的过程中,易知菱形''''O A B C 与菱形OABC 重叠部分的四边形'AEC F 为平行四边形,如图2.试探究:当m 为何值时,平行四边形'AEC F 为菱形:(2)如图,在()1的条件下,连接''',AC B O G 、为CE 的中点J 为EB 的中点,H 为AC 上一动点,I 为''B O 上一动点,连接,,,GH HI IJ 求GH HI IJ ++的最小值,并直接写出此时,H I 点的坐标.12.如图1,已知抛物线21833y x x c =--+与x 轴相交于A 、B 两点(B 点在A 点的左侧),与y 轴相交于C 点,且10AB =.(1)求这条抛物线的解析式;(2)如图2,D 点在x 轴上,且在A 点的右侧,E 点为抛物线上第二象限内的点,连接ED 交抛物线于第二象限内的另外一点F ,点E 到y 轴的距离与点F 到y 轴的距离之比为3:1,已知4tan 3BDE ∠=,求点E 的坐标; (3)如图3,在(2)的条件下,点G 由B 出发,沿x 轴负方向运动,连接EG ,点H 在线段EG 上,连接DH ,EDH EGB ∠=∠,过点E 作EK DH ⊥,与抛物线相交于点K ,若EK EG =,求点K 的坐标. 13.附加题:在平面直角坐标系中,抛物线21y ax a=-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示); (3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围.14.如图①,在ABC ∆中,90C ∠=︒,10,8AB BC ==.点,D E 分别是边,AC BC 上的动点,连接DE .设CD x =(0x >),BE y =,y 与x 之间的函数关系如图②所示.(1)求出图②中线段PQ 所在直线的函数表达式;(2)将DCE 沿DE 翻折,得DME .①点M 是否可以落在ABC ∆的某条角平分线上?如果可以,求出相应x 的值;如果不可以,说明理由;重叠部分面积的最大值及相应x的值.②直接写出....DME与ABC15.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),AB=62,点 P 从点 O 出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.(1)求点B 的坐标;(2)设点P 的运动时间为点t 秒,△BDP 的面积为S,求S 与t 的函数关系式;(3)当点P 与点D 重合时,连接BP,点E 在线段AB 上,连接PE,当∠BPE=2∠OBP 时,求点E 的坐标.16.已知:菱形ABCD,点E 在线段BC 上,连接DE,点F 在线段AB 上,连接CF、DF, CF 与DE 交于点G,将菱形ABCD 沿DF 翻折,点A 恰好落在点G 上.(1)求证:CD=CF;(2)设∠CED= x,∠DCF= y,求y 与x 的函数关系式;(不要求写出自变量的取值范围)(3)在(2)的条件下,当x=45°时,以CD 为底边作等腰△CDK,顶角顶点K 在菱形ABCD 的内部,连接GK,若GK∥CD,CD=4 时,求线段KG 的长.17.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m的最大值.18.已知AM//CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度数.19.在△ABC中∠B=45°,∠C=30°,点D为BC边上任意一点,连接AD,将线段AD绕A 顺时针旋转90°,得到线段AE,连接DE.(1)如图1,点E落在BA的延长线上时,∠EDC= (度)直接填空.(2)如图2,点D在运动过程中,DE⊥AC时,AB=4 ,求DE的值.(3)如图3,点F为线段DE中点,2a,求出动点D从B运动到C,点F经过的路径长度.20.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC ,∠CEF 时,∠ACE 与∠ADE 之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB ∥EF ,当∠ACD=90°时,∠BAC 、∠CDE 和∠DEF 之间又有怎样的数量关系?请你直接写出结果,不需要证明.21.如图1,Rt △ABC 中,点D ,E 分别为直角边AC ,BC 上的点,若满足AD 2+BE 2=DE 2,则称DE 为R △ABC 的“完美分割线”.显然,当DE 为△ABC 的中位线时,DE 是△ABC 的一条完美分割线.(1)如图1,AB =10,cos A =45,AD =3,若DE 为完美分割线,则BE 的长是 . (2)如图2,对AC 边上的点D ,在Rt △ABC 中的斜边AB 上取点P ,使得DP =DA ,过点P 画PE ⊥PD 交BC 于点E ,连结DE ,求证:DE 是直角△ABC 的完美分割线. (3)如图3,在Rt △ABC 中,AC =10,BC =5,DE 是其完美分割线,点P 是斜边AB 的中点,连结PD 、PE ,求cos ∠PDE 的值.22.如图,在等腰Rt △ABC 中,∠ACB=90°,AC=BC=8,点D 在△ABC 外,连接AD 、BD ,且∠ADB=90°,AB 、CD 相交于点E ,AB 、CD 的中点分别是点F 、G ,连接FG .(1)求AB 的长;(2)求证:2CD ;(3)若BD=6,求FG 的值.23.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =+,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.24.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.25.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式;(3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.E解析:(1)24P P ,;(2)353b -≤<;(3)6425t >≥-【解析】【分析】(1)根据等腰锐角点的定义即得;(2)先确定极限位置:直线与圆相切于第四象限及直线过(0,3)时b 的值,进而确定范围;(3)分类讨论:E 点和F 点位于线段HK 左侧;E 点和F 点位于线段HK 右侧;利用一线三垂直模型及相似三角形的性质确定极限位置t 的值,进而确定范围.【详解】(1)∵点P 是点O 关于点A 的锐角等腰点,(2,0)A∴OA=OP=2如下图:当1(0,2)P 时,OP 1=2,OP 1⊥OA ,不成立;当(23P 时,过P 2作P 2M ⊥x 轴∴OM=1,P 2M=3 ∴在2Rt P MO 中,22222OP OM P M =+= ∵290P OA ∠<︒ ∴点()21,3P 是点O 关于点A 的锐角等腰点; 当()31,3P -时,390POA >︒∠ ∴点()31,3P -不是点O 关于点A 的锐角等腰点; 当()42,2P -时,过P 4作P 4N ⊥x 轴 ∴ON=2,P 4N=2∴在4Rt P NO 中,22442OP ON P N =+=,445P ON =︒∠ ∴点()42,2P -是点O 关于点A 的锐角等腰点. ∴点O 关于点A 的锐角等腰点有()21,3P ,()42,2P - 故答案为:24P P , (2)以O 为圆心,OA=3为半径作圆,当直线2y x b =+与圆O 相切与第四象限时,切点即为点O 关于点A 的锐角等腰点,如下图点C .由题意,得:OB=-b ,OD=2b ∴在Rt DOB 中,225DB OD OB =+= ∵11122OD OB DB OC = ∴215322b b =-⨯解得:35b =- 如上图:当直线2y x b =+过点E ()03,时,3b =,OE ⊥OA ∴要使在直线2y x b =+上存在点C 是点O 关于点A 的锐角等腰点,3b <综上所述:353b -≤<时,直线2y x b =+上存在点C 是点O 关于点A 的锐角等腰点 .(3)如下图:当E F ,在直线左侧,4EF =时,过E 作EG HK ⊥∵90KOH EGH KHO GHE ==︒∠=∠∠∠,∴H EGH KO ∽∴KO KH EG EH= ∵()()()()0420020K H D t E t -,,,,,,, ∴KO=4,KH=25,EH=4-t∴EG=8525425t -⨯= ∵要使线段HK 上存在点E 关于点F 的锐角等腰点,则4EG ≤∴852545t -≤ ∴425t ≥-当E 点和F 点位于线段HK 右侧时,即:4t ≥时,如下图,过E 作EB ⊥EF ,过B 作BM ⊥x 轴,过点F 作FL ⊥x 轴当BE EF =时,F BME EL ≌∴BM EL =,ME FL =∵()F m n ,,()(),020D t E t -,,∴ME FL n ==,2BM EL m t ==-+∴2OM t n =--∴()22B t n m t ---+,将点()22B t n m t ---+,代入直线24y x =-+得:()2224m t t n -+=---+解得:62t n m =+-∴当62t n m <+-时,线段HK 上存在点E 关于点F 的锐角等腰点.∵2m t ≥-,20n ≥≥∴62622212t n m t t <+-≤+⨯-+=-,即6t < 综上所述:6425t >≥-HK 上存在点E 关于点F 的锐角等腰点【点睛】本题考查了等腰三角形的定义,全等三角形的判定及性质,切线的性质,相似三角形的判定及性质,圆的定义及一次函数,解题关键是将动点问题转化问各个状态,进而应用等量关系列出方程求解,得出极限状态的未知量的值,进而得出取值范围.2.A解析:(1) A (12,0) B (72,0);(2) ①23333y x =-+,②24316373999y x x =-+ 【解析】【分析】(1)根据抛物线的解析式可得对称轴为x =2,利用:3:4∆∆=ABC BCE S S 得出CA :CE =3:4,由△AOE ∽△AGC 可得13=AO AG ,进而求得OA 、OB 的长,即可求得点A 、点B 的坐标; (2)根据旋转的性质求出C 点坐标,利用C 点坐标和△AOE ∽△AGC 可求得E 点坐标,,分别利用待定系数法即可求得直线CE 和抛物线的解析式.【详解】解:(1)∵抛物线的解析式为24(0)=-+>y mx mx n m ,∴对称轴为直线422-=-=m x m, 如图,设对称轴与x 轴交于G ,则//CG y 轴,2OG =,∴△AOE ∽△AGC , ∴=AO AE AG AC, ∵:3:4ABC BCE S S =,∴CA :CE =3:4 ,则31AE AC =, ∴13==AO AE AG AC , ∴1142==OA OG ,3342==AG OG , 则23==AB AG ,72=+=OB OA AB , ∴A (12,0), B (72,0); (2)如图,设O 旋转后落在点Q 处,过点C 作CP y ⊥轴于点P ,由旋转的性质得:△BCO ≌△ACQ ,∴BO =AQ =72,CO =CQ , ∴OQ =222271()()2322=-=-=AQ AO ∵CP y ⊥轴, ∴132==OP OQ ∴点C 的坐标为(2,3)-,则3CG =由(1)得△AOE ∽△AGC ,13==OE AE CG AC , ∴33OE =,即点E 的坐标为3(0,3, ①设CE 的解析式为y kx b =+,分别代入C (2,3)-,E 3得: 2333k b b ⎧+=⎪⎨=⎪⎩,解得:233k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴CE 的解析式为233y =; ②将A (12,0),C (2,3)分别代入24y mx mx n =-+得:1204483mm n m m n ⎧-+=⎪⎨⎪-+=-⎩,解得:439739m n ⎧=⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为24316373y x x =-+ . 【点睛】本题考查了二次函数的综合、旋转的性质、相似三角形的性质和求一次函数的解析式,正确的理解题意,熟练运算“数形结合思想”是解题的关键. 3.D解析:(1)见详解;(2)见详解;(3)DB=DE 成立,证明见详解【解析】【分析】(1)由等边三角形的性质,得到∠CBD=30°,∠ACB=60°,由CD=CE ,则∠E=∠CDE=30°,得到∠E=∠CBD=30°,即可得到DB=DE ;(2)过点D 作DG ∥AB ,交BC 于点G ,证明△BDC ≌△EDG ,根据全等三角形的性质证明结论;(3)过点D 作DF ∥AB 交BE 于F ,由“SAS ”可证△BCD ≌△EFD ,可得DB=DE .【详解】证明:(1)∵△ABC 是等边三角形∴∠ABC=∠BCA=60°,∵点D 为线段AC 的中点,∴BD 平分∠ABC ,AD=CD ,∴∠CBD=30°,∵CD=CE ,∴∠CDE=∠CED ,又∵∠CDE+∠CED=∠BCD ,∴2∠CED=60°,∴∠CED=30°=∠CBD ,∴DB=DE ;(2)过点D 作DG ∥AB ,交BC 于点G ,如图,∴∠DGC=∠ABC=60°,又∠DCG=60°,∴△DGC 为等边三角形,∴DG=GC=CD ,∴BC-GC=AC-CD ,即AD=BG ,∵AD=CE ,∴BG=CE ,∴BC=GE ,在△BDC 和△EDG 中,60DC DG BCD EGD BC EG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDC ≌△EDG (SAS )∴BD=DE ;(3)DB=DE 成立,理由如下:过点D 作DF ∥AB 交BE 于F ,∴∠CDF=∠A ,∠CFD=∠ABC ,∵△ABC 是等边三角形∴∠ABC=∠BCA=∠A=60°,BC=AC=AB ,∴∠CDF=∠CFD=60°=∠ACB=∠DCF ,∴△CDF 为等边三角形∴CD=DF=CF ,又AD=CE ,∴AD-CD=CE-CF ,∴BC=AC=EF ,∵∠BCD=∠CFD+∠CDF=120°,∠DFE=∠FCD+∠FDC=120°,∴∠BCD=∠DFE ,且BC=EF ,CD=DF ,∴△BCD ≌△EFD (SAS )∴DB=DE .【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,以及平行线的性质,正确添加恰当辅助线构造全等三角形是本题的关键.4.A解析:(1)详见解析;(2)3DN DM =,是一个定值;(3)92【解析】【分析】 (1)利用ASA 证ADM DBN △≌△,从而得出DM BN =;(2)如下图,先证NDQ MDP △∽△,得出DN DQ DM DP =,然后在Rt BDQ △,利用tan ∠B 得出DQ BQ 的值,最后得出DN DM的值; (3)如下图,先证点C 是EF 的中点,然后利用CD 平分EDF ∠可推导出四边形CGDH 为正方形,从而得出CHN CGM △≌△,进而得出面积.【详解】解:(1)由题意,∵60α=︒,90EDF ∠=︒,∴30BDN ∠=︒,∴BDN A ∠=∠,B EDA ∠=∠,∵点D 是斜边AB 的中点,∴AD BD =,∴ADM DBN △≌△,∴DM BN =.(2)3DN DM=,是一个定值. 证明:如图1,作DP AC ⊥于点P ,DQ BC ⊥于点Q ,∴90NQD MPD ∠=∠=︒,又∵90MDN PDQ ∠=∠=︒,∴NDQ MDP ∠=∠,∴NDQ MDP △∽△,∴DN DQ DM DP=, 在Rt BDQ △中,60B ∠=︒,∴tan ∠B 3DQ BQ ==又由(1)可知:DP BQ =,∴3DQ DP =, ∴3DN DM= (3)连接CD ,作CG DE ⊥于点G ,CH DF ⊥于点H ,在Rt ABC 中,点D 是AB 的中点,∴132CD AB ==, ∵AB EF =,∴12CD EF =,∵90EDF ∠=︒,∴C 是EF 中点, ∴CD 平分EDF ∠,45CDE ∠=︒,∵CG DE ⊥,CH DF ⊥,∴CG CH =,∵90CGD CHD EDF ∠=∠=∠=︒,∴四边形CGDH 为正方形,90GCH ∠=︒,∴GCM HCN ∠=∠,∴CHN CGM △≌△,∴S 四边形CMDN S =正方形21922CGDH CD ==. 【点睛】本题综合考查了全等三角形和相似三角形的证明和性质,解题关键是找出两个全等(相似)三角形,根据三角形全等(相似)的性质推出结论. 5.B解析:(1)35t ,45t ;(2)当0<t <3时,224655S t t =--+;当3<t <7时,23391052S t t =+-;(3)75;(4)132,7713,477 【解析】【分析】(1)过点B 作x 轴垂线,利用相似三角形可求得; (2)分2种情况,一种是点P 在AD 上,另一种是点P 在CD 上,然后利用三角形面积公式可求得;(3)直接令15h OD =即可求出; (4)存在3种情况,第一种是:QP ∥BD ,第二种是EP ∥CD 或EQ ∥CB ,第三种是QE ∥BD ,分别按照几何性质分析求解.【详解】(1)如下图,过点B 作x 轴垂线,垂足为点M根据平移的特点,可得∠BOM=∠DBA∵∠BMO=∠DAB=90°,∴△BMO ∽△DAB∵AB=4,AD=BC=3∴BD=5 ∵BM OM BO DA BA BD ==,OB=t ∴BM=35t ,OM=45t (2)情况一:当0<t <3时,图形如下,过点P 作OD 的垂线,交OD 于点N∵∠NDP=∠BDA ,∠PND=∠BAD ,∴△PND ∽△BAD∵AP=t ,∴PD=3-t∵PN BA PD BD =,∴PN=()435t - 图中,OD=5+t ∴()()243124562555OBD t S t t t -=+=--+ 情况二:当3<t <7时,图形如下,过点P 作OD 的垂线,交OD 于点N图中,PD=t -3,OD=5+t同理,△PND ∽△BCD ,可得PN=()335t - ∴()()23313395251052OBD t S t t t -=+=-+- (3)情况一:当0<t <3时则h=PN=()435t - ∵15h OD =∴()43555t t -+= 解得:t=75情况二:当3<t <7时则h=PN=()335t - ∵15h OD =∴()33555t t -+= 解得:t=7(舍)(4)情况一:QP ∥BD ,图形如下由题意可得:BQ=43t ,AP=t ,则QA=4-43t ,DP=3-t ∵BD ∥QP∴QA PA QB PD= 代入得:4()2243t t =-解得:t=32∴OD=5+t=13 2情况二:如下图,EP∥CD(或EQ∥CB)∵点E是点A关于QP对称的点∴EP=PA,EQ=QA,QP=QP∴△APQ≌△EPQ∵EP∥CD,CD⊥AD∴EP⊥AD∴∠APQ=∠EPQ=45°∴△AQP是等腰直角三角形,AQ=PA∴4-43 tt=解得:t=12 7∴OD=5+t=47 7情况三:如下图,QE∥BD,延长QE交DA于点N∵△APQ≌△EPQ,∴∠QEP=∠QAP=90°∴△ENP是等腰直角三角形∵QN∥BD,∴∠NQA=∠DBA,∠A=∠A∴△QNA∽△BDA∵BQ=43t,AP=t,QA=4-43t,DP=3-t∴QN QA AN BD BA AD==∴QN=5-43t ,NA=3-t ∴EN=QN -QE=QN -QA=1-3t ,NP=NA -AP=3-2t ,EP=PA=t ∴在Rt △ENP 中,()2223213t t t ⎛⎫-+-= ⎪⎝⎭ 解得:t=1213或t=3(舍) ∴OD=5+t=7713 【点睛】本题考查动点问题,解题关键是利用相似将图形中各边用t 表示出来.6.E解析:(1)y =﹣21122x -x+3;(2)①EF 的长为2;②点H 的坐标为(﹣45,135)或(﹣445,99). 【解析】【分析】(1)用待定系数法求出函数解析式即可;(2)①得出EAB ODB ∠=∠,当时,当时,可求出的长;②(Ⅰ)求出直线CE 的解析式为132y x =+,得出APE EBA ∠=∠,则GCH APE EBA CHN MGH ∠=∠=∠=∠=∠,得出//GC PB ,由1tan tan tan 2AE EBA CHN MGH BE ∠=∠=∠==,设CN MG m ==,则2HN m =,12MH m =,则1212MH HN m m +=+=,解得,25m =,可求出H 点的坐标; (Ⅱ)过点H 作MN PB ⊥,过点C 作CN MH ⊥于点N ,过点G 作GM HM ⊥于点M ,证得GCH EBA HCN MHG ∠=∠=∠=∠,由(Ⅰ)知:1tan 2EBA ∠=,则1tan tan 2GM HG MHG GCH HM CH ∠==∠==,设MG a =,则2MH a =,证明HMG CNH ∆∆∽,则2NH a =,4CN a =,又(0,3)C ,得出(3,34)G a a --,代入211322y x x =--+中,得449CN =,可求出H 点坐标. 【详解】解:(1)将A (﹣3,0)、B (2,0)、C (0,3)代入y =ax2+bx+c 得,0930423a b c a b c c =-+⎧⎪=++⎨⎪=⎩, 解得:12123a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, ∴抛物线的解析式为:y =﹣21122x -x+3; (2)①将E (m ,2)代入y =﹣21122x -x+3中, 得﹣21122m -m+3=0,解得m =﹣2或1(舍去), ∴E (﹣2,2),∵A (﹣3,0)、B (2,0),∴AB =5,AE =5,BE =25,∴AB2=AE2+BE2,∴∠AEB =∠DOB =90°,∴∠EAB+∠EBA =∠ODB+∠EBA =90°,∴∠EAB =∠ODB ,(Ⅰ)当△FEA ∽△BOD 时,∴∠AEF =∠DOB =90°,∴F 与B 点重合,∴EF =BE =5(Ⅱ)当△EFA ∽△BOD 时,∴∠AFE=∠DOB=90°,∵E(﹣2,2),∴EF=2,故:EF的长为25或2;②点H的坐标为4(5-,13)5或44(9-,5)9,(Ⅰ)过点H作HN⊥CO于点N,过点G作GM⊥HN于点M,∴∠GMN=∠CNH=90°,又∠GHC=90°,∴∠CHN+∠GHM=∠MGH+∠GHM=90°,∴∠CHN=∠MGH,∵HN⊥CO,∠COP=90°,∴HN∥AB,∴∠CHN=∠APE=∠MGH,∵E(﹣2,2),C(0,3),∴直线CE的解析式为y=12x+3,∴P(﹣6,0),∴EP=EB=5∴∠APE=∠EBA,∵∠GCH=∠EBA,∴∠GCH =∠APE =∠EBA =∠CHN =∠MGH ,∴GC ∥PB ,又C (0,3),∴G 点的纵坐标为3,代入y =﹣21122x -x+3中,得:x =﹣1或0(舍去), ∴MN =1,∵∠AEB =90°,AE =5,BE =25,∴tan ∠EBA =tan ∠CHN =tan ∠MGH =12AE BE =, 设CN =MG =m ,则HN =2m ,MH =12m , ∴MH+HN =2m+12m =1, 解得,m =25, ∴H 点的橫坐标为﹣45,代入y =12x+3,得:y =135, ∴点H 的坐标为(﹣45,135). (Ⅱ)过点H 作MN ⊥PB ,过点C 作CN ⊥MH 于点N ,过点G 作GM ⊥HM 于点M ,∴CN ∥PB ,∴∠NCH =∠APE ,由(Ⅰ)知:∠APE =∠EBA ,则∠NCH =∠EBA ,∵∠GMN =∠CNH =90°,又∠GHC =90°,∴∠HCN+∠NHC =∠MHG+∠NHC =90°,∴∠HCN =∠MHG ,∵∠GCH =∠EBA ,∴∠GCH =∠EBA =∠HCN =∠MHG ,由(Ⅰ)知:APE EBA ∠=∠,则NCH EBA ∠=∠,90GMN CNH ∠=∠=︒,又90GHC ∠=︒,90HCN NHC MHG NHC ∴∠+∠=∠+∠=︒,HCN MHG ∴∠=∠,GCH EBA ∠=∠,GCH EBA HCN MHG ∴∠=∠=∠=∠,由(Ⅰ)知:1tan 2EBA ∠=, 则1tan tan 2GM HG MHG GCH HM CH ∠==∠==, 设MG a =,则2MH a =,NCH MHG ∠=∠,N M ∠=∠,HMG CNH ∴∆∆∽, ∴12MH MG HG CN NH CH ===, 2NH a ∴=,4CN a =,又(0,3)C ,(3,34)G a a ∴--,代入211322y x x =--+中,得,119a =或0(舍去), 449CN ∴=, H ∴点的橫坐标为449-,代入132y x =+,得,59y =. ∴点H 的坐标为445(,)99-. 综合以上可得点H 的坐标为4(5-,13)5或445(,)99-. 【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、两点间的距离公式、锐角三角函数、相似三角形的判定与性质及分类讨论思想的运用.7.A解析:(1)6;(2)3;(3)存在,6 【解析】【分析】(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.解直角三角形,求出∠ABA 1,得到旋转角即可解决问题;(2)由△BCE ∽△BA 2D 2,推出222A D CE n CB A B m ==,可得CE=2n m,由11A E EC =推出16A C EC =,推出A 1C=26n m •,推出BH=A 1C=26n m•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;先证明△FDG ∽△FME ,得到3FG F FM FE D ==,再结合已知条件和解直角三角形求出PM 和FM 的长度,即可得到PF 的最小值.【详解】解:(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.∴AD=HA 1=n=1,在Rt △A 1HB 中,∵BA 1=BA=m=2,∴BA 1=2HA 1,∴∠ABA 1=30°,∴旋转角为30°,∵22125+=∴D 到点D 1所经过路径的长度3055π⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC=, ∴16A C EC= ∴A 126n m, ∴BH=A 12226n m n m -=,∴42226nm nm-=⋅,∴m4﹣m2n2=6n4,∴2424 16n nm m-=•,∴33nm=(负根已舍去).(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;由(2)可知,3 BE nBG m==,∵四边形BEFG是矩形,∴33 FGFE=,∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE,∵DF⊥PF,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME,∴△FDG∽△FME,∴33FGFFM FED==,∵∠DFM=90°,tan3FDFMDFM∠==,∴∠FDM=60°,∠FMD=30°,∴3FM DM=;在矩形ABCD中,有33 ADAB=3=,则3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=AB =,∴DM=AN=BP=2,∴2FM DM ===∴6PF PM MF =+=【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.8.B解析:(1)213222y x x =-++;(2)3(,0)2;(3)存在;(0,2)N 或(3,2)N 或(2,3)--N 或(5,18)--N【解析】【分析】(1)由直线122y x =-+可得B 、C 两点的坐标,根据二次函数的对称轴求得A 点坐标,可设抛物线的解析式为(1)(4)y a x x =+-,将C 点坐标代入可求得a ,即可得抛物线的解析式;(2)根据绝对值的性质得出BM CM -的值最小时,点M 为BC 的垂直平分线与直线32x =的交点,求得BC 垂直平分线的解析式,联立直线32x =即可求得点M ; (3)分四种情况进行讨论,设出N 的坐标,根据相似三角形的对应边成比例的性质,求得N 的横坐标与纵坐标的关系,然后联立抛物线解析式即可求解.【详解】 解:∵直线122y x =-+与x 轴交于点B ,与y 轴交于点C , ∴当y =0时,即1022x =-+,解得:x =4,则点B 的坐标为(4,0),当x =0时,10222=-⨯+=y ,则点C 的坐标为(0,2),由二次函数的对称性可知:点A 与点B 关于直线32x =对称, ∴点A 的坐标为(1,0)-,∵抛物线与x 轴的交点为点(1,0),(4,0)A B -,∴可设抛物线的解析式为(1)(4)y a x x =+-,又∵抛物线过点(0,2)C ,∴2(01)(04)a =+-,解得:12a =-, ∴2113(1)(4)2222y x x x x =-+-=-++ ∴抛物线的解析式为213222y x x =-++; (2)如图1,连结CM 、BM ,作线段BC 的垂直平分线l 分别交BC 、直线32x =于点'、N M ,则N 为BC 中点;由绝对值的性质可得:0≥-BM CM ,∴当BM CM -的值最小时,即0=-BM CM ,则此时CM BM =,∴点M 为l 与直线32x =的交点,此时M 与'M 重合, 设l 的解析式为:y kx b =+,∵直线BC 的解析式为:122y x =-+,BC l ⊥ ∴112-⋅=-k ,解得:2k =,则l 的解析式可化为:2y x b =+, 由(4,0),(0,2)B C 得点N 的坐标为(2,1),将(2,1)N 代入2y x b =+得:14b =+,解得:3b =-,∴23y x =-, 将32x =代入23y x =-,得323=02=⨯-y ,即3'(,0)2M , ∴当BM CM -的值最小时,点M 的坐标为3(,0)2,(3)抛物线上存在点N ,使得以点、、B N H 为顶点的三角形与ABC 相似; ∵(1,0),(4,0),(0,2)-A B C∴1,4==OA OB ,2OC =,5AB =,∴2222125=+=+=AC OA OC ,22224225BC OB OC =+=+=, ∵22252025+=+==AC BC AB ,∴ABC 为直角三角形,90ACB ∠=︒,∵NH x ⊥轴,∴90∠=︒NHB ,则90∠=∠=︒NHB ACB ,如图2所示,分四种情况,点N 的坐标分别为1234、、、N N N N ,设点N 的坐标为(,)m n ,①当点1N 在x 轴的上方,要使11N BH ABC ,则11∠=∠N BH ABC ,则此时点1N 与点C 重合,则此时点1H 与点O 重合,则11≅N BH ABC ,满足题意,∴此时点1N 的坐标为(0,2);②当点2N 在x 轴的上方,要使22BN H ABC ,则2222==N H BC BH AC , ∴24=-n m,即28n m =-+,代入抛物线的解析式得: 21328222mm m ,化简得:27120m m , 解得:13m =,24m =(不符合题意,故舍去),将3m =代入抛物线解析式得:2n =,∴此时点2N 的坐标为(3,2);③当点3N 在x 轴的下方,要使33N BH ABC ,则3332==BH BC N H AC , ∴42-=-m n ,即42-=m n ,代入抛物线的解析式得: 24132222m m m ,化简得:2280m m --=, 解得:12m =-,24m =(不符合题意,故舍去),将2m =-代入抛物线解析式得:3n =-,∴此时点3N 的坐标为(2,3)--;④当点4N 在x 轴的下方,要使44BN H ABC ,则4442==N H BC BH AC , ∴24-=-n m,即28=-n m ,代入抛物线的解析式得: 21328222m m m ,化简得:2200m m , 解得:15m =-,24m =(不符合题意,故舍去),将5m =-代入抛物线解析式得:18n =-,∴此时点4N 的坐标为(5,18)--;综上所述,抛物线存在点N 的坐标为(0,2)或(3,2)或(2,3)--或(5,18)--使得以点、、B N H 为顶点的三角形与ABC 相似.【点睛】本题主要考查了一次函数与二次函数的性质、相似三角形的性质,运用数形结合与分类讨论的方法是解题的关键.9.B解析:(1)∠BPC <∠BAC ;(2)点P 坐标为(0);(3)sin ∠APB 的最大值为1.【解析】【分析】(1)如图,设PB与⊙O交于点D,连接CD,根据圆周角定理可得∠BDC=∠BAC,根据三角形外角性质可得∠BDC>∠BPC,进而可得答案;(2)如图,作过A、B两点的⊙C,与x轴相切于点P,连接AC、BC、PC,可知x轴正半轴上的点除P点外都在⊙C外,由(1)可得∠APB的度数最大,根据锐角的度数越大,余弦值越小可得点P即为所求,由AC=BC可得点C在AB的垂直平分线上,由A、B坐标可得点C纵坐标为3,根据切线的性质可得PC⊥x轴,可得PC=BC=3,设P(x,0),则P (x,3),根据两点间距离公式列方程求出x的值,即可得答案;(3)如图,过点B作BH⊥CD于H,过点A作AM⊥DE于M,延长AM至N,使MN= AM,过N作DE的平行线l,作FG⊥l于G,交DE于Q,以AB为直径作⊙F,交直线l于C 可得BH的长,可得AD的长,可求出P,由AB、CD的长可求出CH点长,根据tan2△ADE点面积,根据S△DEP=9可得△ADE与△DEP对应高的比为2:1,可得点P在直线l 上,根据等腰直角三角形点性质可求出FG的长,可得FG<AB,可知⊙F与直线l有两个交点,根据圆周角定理可得∠APB=90°,可得∠APB正弦的最大值.【详解】(1)如图,设PB与⊙O交于点D,连接CD,∵∠BAC和∠BDC是BC所对的圆周角,∴∠BAC=∠BDC,∵∠BDC是△PDC的外角,∴∠BDC>∠BPC,∴∠BPC<∠BAC.(2)如图,作过A、B两点的⊙C,与x轴相切于点P,连接AC、BC、PC,∵x轴正半轴上的点除P点外都在⊙C外,∴∠APB的度数最大,∵锐角的度数越大,余弦值越小,∴点P即为所求,∵AC=BC,∴点C在AB的垂直平分线上,∵A(0,2),B(0,4),∴点C点纵坐标为3,设点P坐标为(x,0),∵⊙C与x轴相切于点P,。
人教版中考数学压轴题测试综合卷学能测试
一、中考数学压轴题1.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P . (1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.2.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N . (1)如图1,当α=60°时,求证:DM =BN ; (2)在上述旋转过程中,DNDM的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积.3.如图,在平面直角坐标系中,Rt ABC ∆的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分BAC ∠交边BC 于点E ,经过点A D E 、、的圆的圆心F 恰好在y 轴上,⊙F 与y 里面相交于另一点G . (1)求证:BC 是⊙F 的切线 ;(2)若点A D 、的坐标分别为(0,1),(2,0)A D -,求⊙F 的半径及线段AC 的长; (3)试探究线段AG AD CD 、、三者之间满足的等量关系,并证明你的结论.4.如图,直线y=12x﹣2与x轴交于点B,与y轴交于点A,抛物线y=ax2﹣32x+c经过A,B两点,与x轴的另一交点为C.(1)求抛物线的解析式;(2)M为抛物线上一点,直线AM与x轴交于点N,当32MNAN时,求点M的坐标;(3)P为抛物线上的动点,连接AP,当∠PAB与△AOB的一个内角相等时,直接写出点P 的坐标.5.∠MON=90°,点A,B分别在OM、ON上运动(不与点O重合).(1)如图①,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=°(2)如图②,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D①若∠BAO=60°,则∠D=°.②随着点A,B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由.(3)如图③,延长MO至Q,延长BA至G,已知∠BAO,∠OAG的平分线与∠BOQ的平分线及其延长线相交于点E、F,在△AEF中,如果有一个角是另一个角的3倍,求∠ABO 的度数.6.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”. (1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________; ②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围; (2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.7.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 上以每秒32的速度匀速运动,在CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR 为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.8.平面直角坐标系中,点A 、B 分别在x 轴正半轴、y 轴正半轴上,AO =BO ,△ABO 的面积为8.(1)求点A 的坐标;(2)点C 、D 分别在x 轴负半轴、y 轴正半轴上(D 在B 点上方),AB ⊥CD 于E ,设点D 纵坐标为t ,△BCE 的面积为S ,求S 与t 的函数关系;(3)在(2)的条件下,点F 为BE 中点,连接OF 交BC 于G ,当∠FOB +∠DAE =45°时,求点E 坐标.9.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示) (2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)10.已知四边形ABCD 是正方形,点P 在直线BC 上,点G 在直线AD 上(P ,G 不与正方形顶点重合,且在CD 的同侧),PD =PG ,DF ⊥PG 于点H ,交直线AB 于点F ,将线段PG 绕点P 逆时针旋转90°得到线段PE ,连结EF .(1)如图1,当点P 与点G 分别在线段BC 与线段AD 上时. ①求证:DF =PG ;②若AB =3,PC =1,求四边形PEFD 的面积;(2)如图2,当点P 与点G 分别在线段BC 与线段AD 的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.11.已知:如图,四边形ABCD ,AB DC ,CB AB ⊥,16AB cm =,6BC cm =,8CD cm =,动点Q 从点D 开始沿DA 边匀速运动,运动速度为1/cm s ,动点P 从点A开始沿AB 边匀速运动,运动速度为2/cm s .点P 和点Q 同时出发,O 为四边形ABCD 的对角线的交点,连接 PO 并延长交CD 于M ,连接QM .设运动的时间为()t s ,08t <<.(1)当t 为何值时,PQBD ?(2)设五边形QPBCM 的面积为()2S cm,求S 与t 之间的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使PQM 的面积等于五边形面积的1115?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使点Q 在MP 的垂直平分线上?若存在,求出t 的值;若不存在,请说明理由.12.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且2n -2n -,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.13.如图,直线y=﹣x+4与抛物线y=﹣12x2+bx+c交于A,B两点,点A在y轴上,点B在x轴上.(1)求抛物线的解析式;(2)在x轴下方的抛物线上存在一点P,使得∠ABP=90°,求出点P坐标;(3)点E是抛物线对称轴上一点,点F是抛物线上一点,是否存在点E和点F使得以点E,F,B,O为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.14.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.15.AB是O直径,,C D分别是上下半圆上一点,且弧BC 弧BD,连接,AC BC,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度16.如图,在平面直角坐标系中,Rt ABC △的斜边在AB 在x 轴上,点C 在y 轴上90ACB ∠=︒,OC 、OB 的长分别是一元二次方程2680x x -+=的两个根,且OC OB <.(1)求点A 的坐标;(2)D 是线段AB 上的一个动点(点D 不与点A ,B 重合),过点D 的直线l 与y 轴平行,直线l 交边AC 或边BC 于点P ,设点D 的横坐标为t ,线段DP 的长为d ,求d 关于t 的函数解析式;(3)在(2)的条件下,当12d =时,请你直接写出点P 的坐标.17.已知:矩形ABCD 内接于⊙O ,连接 BD ,点E 在⊙O 上,连接 BE 交 AD 于点F ,∠BDC+45°=∠BFD ,连接ED . (1)如图 1,求证:∠EBD=∠EDB ;(2)如图2,点G 是 AB 上一点,过点G 作 AB 的垂线分别交BE 和 BD 于点H 和点K ,若HK=BG+AF ,求证:AB=KG ;(3)如图 3,在(2)的条件下,⊙O 上有一点N ,连接 CN 分别交BD 和 AD 10点 M 和点 P ,连接 OP ,∠APO=∠CPO ,若 MD=8,MC= 3,求线段 GB 的长.18.我们知道,在等腰直角三角形中,底边与一边腰长比为2:1.如图1,90A ∠=︒,AB AC =,则2BCAB=.知识应用:(1)如图2,ADE ∆和ABC ∆均为等腰直角三角形,90DAE BAC ∠=∠=︒,D ,E ,C 三点共线,若2AD =2BD =,求CD 的长.知识外延:(2)如图3,正方形ABCD 中,BE 和BC 关于BG 对称,C 点的对应点为E 点,AE 交BG 的延长线于F 点,连接CF . ①求证:GF EC =;②若2AE =,2CE =BF 的长.19.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.例如:当m =1时,函数y =(x +1)2+5关于点P (1,0)的相关函数为y =﹣(x ﹣3)2﹣5.(1)当m =0时①一次函数y =x ﹣1关于点P 的相关函数为 ; ②点(12,﹣98)在二次函数y =﹣ax 2﹣ax +1(a ≠0)关于点P 的相关函数的图象上,求a 的值.(2)函数y =(x ﹣1)2+2关于点P 的相关函数y =﹣(x +3)2﹣2,则m = ; (3)当m ﹣1≤x ≤m +2时,函数y =x 2﹣mx ﹣12m 2关于点P (m ,0)的相关函数的最大值为6,求m 的值.20.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD =AO .点E 、F 为矩形边上的两个动点,且∠EOF =60°.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若∠OEB =75°,求证:DF =AE ; (2)如图2,当点E 、F 同时位于AB 边上时,若∠OFB =75°,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将△OEF 沿OE 所在直线翻折至△OEP ,取线段CB 的中点Q .连接PQ ,若AD =2a (a >0),则当PQ 最短时,求PF 之长.21.已知菱形ABCD 中,∠ABC=60°,AB=4,点M 在BC 边上,过点M 作PM ∥AB 交对角线BD 于点P ,连接PC .(1)如图1,当BM=1时,求PC 的长;(2)如图2,设AM 与BD 交于点E ,当∠PCM=45°时,求证:BE DE =33+; (3)如图3,取PC 的中点Q ,连接MQ ,AQ . ①请探究AQ 和MQ 之间的数量关系,并写出探究过程;②△AMQ 的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.22.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值;(2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?23.如图1,以AB 为直径作⊙O ,点C 是直径AB 上方半圆上的一点,连结AC ,BC ,过点C 作∠ACB 的平分线交⊙O 于点D ,过点D 作AB 的平行线交CB 的延长线于点E .(1)如图1,连结AD ,求证:∠ADC =∠DEC . (2)若⊙O 的半径为5,求CA •CE 的最大值. (3)如图2,连结AE ,设tan ∠ABC =x ,tan ∠AEC =y , ①求y 关于x 的函数解析式; ②若CB BE =45,求y 的值. 24.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =+,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.25.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1)83;(2)3或43;(3)565x≤<【解析】【分析】(1)设BP=a,则PC=8-a,由△MBP~△DCP知MB BPDC CP=,代入计算可得;(2)分别求出⊙P与边CD相切时和⊙P与边AD相切时BP的长即可得;(3)①当PM=5时,⊙P经过点M,点C;②当⊙P经过点M、点D时,由PC2+DC2=BM2+PB2,可求得BP=7,继而知227465PM=+=.据此可得答案.【详解】(1)设BP=a,则PC=8-a,∵AB=8,M是AB中点,∴AM=BM=4,∵△MBP~△DCP,∴MB BPDC CP=,即488aa=-,解得83a=,故答案为:83.(2)如图1,当⊙P与边CD相切时,设PC=PM=x,在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8-x)2,∴x=5,∴PC=5,BP=BC-PC=8-5=3.如图2,当⊙P与边AD相切时,设切点为K ,连接PK ,则PK ⊥AD ,四边形PKDC 是矩形.∴PM=PK=CD=2BM ,∴BM=4,PM=8,在Rt △PBM 中,228443PB -==.综上所述,BP 的长为3或43.(3)如图1,当PM=5时,⊙P 经过点M ,点C ;如图3,当⊙P 经过点M 、点D 时,∵PC 2+DC 2=BM 2+PB 2,∴42+BP 2=(8-BP )2+82,∴BP=7, ∴227465PM =+=综上,565x ≤<【点睛】本题是圆的综合问题,主要考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.2.A解析:(1)详见解析;(2)3DN DM =3)92【解析】【分析】(1)利用ASA 证ADM DBN △≌△,从而得出DM BN =;(2)如下图,先证NDQ MDP △∽△,得出DN DQ DM DP =,然后在Rt BDQ △,利用tan ∠B 得出DQ BQ 的值,最后得出DN DM的值; (3)如下图,先证点C 是EF 的中点,然后利用CD 平分EDF ∠可推导出四边形CGDH 为正方形,从而得出CHN CGM △≌△,进而得出面积.【详解】解:(1)由题意,∵60α=︒,90EDF ∠=︒,∴30BDN ∠=︒,∴BDN A ∠=∠,B EDA ∠=∠,∵点D 是斜边AB 的中点,∴AD BD =,∴ADM DBN △≌△,∴DM BN =.(2)3DN DM=,是一个定值. 证明:如图1,作DP AC ⊥于点P ,DQ BC ⊥于点Q ,∴90NQD MPD ∠=∠=︒,又∵90MDN PDQ ∠=∠=︒,∴NDQ MDP ∠=∠,∴NDQ MDP △∽△,∴DN DQ DM DP=, 在Rt BDQ △中,60B ∠=︒,∴tan ∠B 3DQ BQ== 又由(1)可知:DP BQ =, ∴3DQ DP=, ∴3DN DM =. (3)连接CD ,作CG DE ⊥于点G ,CH DF ⊥于点H ,在Rt ABC 中,点D 是AB 的中点,∴132CD AB ==, ∵AB EF =,∴12CD EF =,∵90EDF ∠=︒,∴C 是EF 中点, ∴CD 平分EDF ∠,45CDE ∠=︒,∵CG DE ⊥,CH DF ⊥,∴CG CH =,∵90CGD CHD EDF ∠=∠=∠=︒,∴四边形CGDH 为正方形,90GCH ∠=︒,∴GCM HCN ∠=∠,∴CHN CGM △≌△,∴S 四边形CMDN S =正方形21922CGDH CD ==. 【点睛】本题综合考查了全等三角形和相似三角形的证明和性质,解题关键是找出两个全等(相似)三角形,根据三角形全等(相似)的性质推出结论. 3.E解析:(1)详见解析;(2)52r =,55AC +=;(3)2AG AD CD =+,理由详见解析.【解析】【分析】(1)连接EF ,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC ,得到FE ∥AC ,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD ,设⊙F 的半径为r ,根据勾股定理列出方程,解方程即可求出半径的长,证FEB ∆∽AOD ∆,求出BF 的长,再证BFE ∆∽BAC ∆,即可求出AC 的长;(3)过点F 作FR AC ⊥于点R ,得到四边形RCEF 是矩形,得到EF=RC=RD+CD ,根据垂径定理解答即可.【详解】(1)如图,连接EF ,∵AE 平分BAC ∠,FAE CAE ∴∠=∠,FA FE =,FAE FEA ∴∠=∠,FAE EAC ∴∠=∠,//FE AC ∴,90FEB C ∴∠=∠=︒,又E 为⊙F 上一点,BC ∴是⊙F 的切线;(2)如图,连接FD ,设⊙F 的半径为r ,∵点A D 、的坐标分别为(0,1),(2,0)A D -,1,2,1OA OD OF r ∴===-,5AD ∴=在Rt FOD ∆中,由勾股定理得,222FD OF OD =+,222(1)2r r ∴=-+, 解得52r =, 即⊙F 的半径为52, 90ODA OAD EBF OAD ∠+∠=∠+∠=︒,ODA EBF ∴∠=∠,90AOD FEB ∠=∠=︒,∴FEB ∆∽AOD ∆,EF BF OA DA ∴=,即2.515= 55BF ∴=, 555BA +∴=, //EF AC ,∴BFE ∆∽BAC ∆,EF BF AC BA ∴=,即55522555AC =+, 55AC +∴= (3)2AG AD CD =+.理由如下:如图,过点F 作FR AC ⊥于点R ,则∠FRC=90°,∵∠FEC=∠C=90°,∴四边形RCEF 为矩形,EF RC RD CD ∴==+,FR AD ⊥,AR RD ∴=,12EF RD CD AD CD ∴=+=+, 22AG EF AD CD ∴==+.【点睛】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握切线的判定定理是解题的关键.4.B解析:(1)y =12x 2﹣32x ﹣2;(2)点M 的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】(1)根据题意直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,则点A 、B 的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P(173,509);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.5.A解析:(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45°【解析】【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解;(2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解;②证明和推理过程同①的求解过程;(3)由(2)的证明求解思路,不难得出EAF∠=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO一定要小于90°,注意解得取舍.【详解】(1)()11801802118090180451352AEB EBA BAE OBA BAO∠=︒-∠-∠=︒-∠+∠=︒-⨯︒=︒-︒=︒(2)①如图所示AD与BO交于点E,()9060301180307521909030602180180756045OBA DBO NBC DEB OEA OAB D DBE DEB ∠=︒-︒=︒∠=∠=︒-︒=︒∠=∠=︒-∠=︒-︒=︒∠=︒-∠-∠=︒-︒-︒=︒②∠D 的度数不随A 、B 的移动而发生变化设BAD α∠=,因为AD 平分∠BAO ,所以2BAO α∠=,因为∠AOB=90°,所以180902ABN ABO AOB BAO α∠=︒-∠=∠+∠=+。
人教版中考数学压轴题 易错题自检题学能测试试题
一、中考数学压轴题1.如图,在平面直角坐标系中,Rt ABC△的斜边在AB在x轴上,点C在y轴上90ACB∠=︒,OC、OB的长分别是一元二次方程2680x x-+=的两个根,且OC OB<.(1)求点A的坐标;(2)D是线段AB上的一个动点(点D不与点A,B重合),过点D的直线l与y轴平行,直线l交边AC或边BC于点P,设点D的横坐标为t,线段DP的长为d,求d关于t的函数解析式;(3)在(2)的条件下,当12d=时,请你直接写出点P的坐标.2.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=1.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O 为坐标原点.①如图3,圆M 与y 轴相切原点O ,被x 轴截得的弦长OA =23,求圆M 的半径及圆心M 的斜坐标.②如图4,圆M 的圆心斜坐标为M (23,23),若圆上恰有两个点到y 轴的距离为1,则圆M 的半径r 的取值范围是 .3.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.(1)求直线AD 和BC 之间的距离;(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.4.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.5.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ;(2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ;(3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由.6.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”. (概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC 的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.10AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.7.如图1,已知,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,连接AO 并延长交BC 于点H .(1)求外接圆⊙O 的半径;(2)如图2,点D 是AH 上(不与点A ,H 重合)的动点,以CD ,CB 为边,作平行四边形CDEB ,DE 分别交⊙O 于点N ,交AB 边于点M .①连接BN ,当BN ⊥DE 时,求AM 的值;②如图3,延长ED 交AC 于点F ,求证:NM ·NF=AM ·MB ;③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.8.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 9.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;②若12,(33)2ADH a S ==+,求sin GAB ∠的值.10.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.11.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.12.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.13.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形).(1)当x = (s )时,PQ ⊥BC ;(2)当点M 落在AC 边上时,x = (s );(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.14.如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点(1)则m =_________;C 点坐标为___________;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由.(3)P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t =________时,四边形PBQC 的面积最大.15.已知抛物线2y ax bx c =++过点(6,0)A -,(2,0)B ,(0,3)C -.(1)求此抛物线的解析式;(2)若点H 是该抛物线第三象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且45GQA ∠=︒,求点Q 的坐标.16.如图,在长方形ABCD 中,AB =4cm ,BE =5cm ,点E 是AD 边上的一点,AE 、DE 分别长acm .bcm ,满足(a -3)2+|2a +b -9|=0.动点P 从B 点出发,以2cm/s 的速度沿B→C→D 运动,最终到达点D ,设运动时间为t s .(1)a =______cm ,b =______cm ;(2)t 为何值时,EP 把四边形BCDE 的周长平分?(3)另有一点Q 从点E 出发,按照E→D→C 的路径运动,且速度为1cm/s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,△BPQ 的面积等于6cm 2.17.如图,在⊙O 中,直径AB =10,tanA =33. (1)求弦AC 的长; (2)D 是AB 延长线上一点,且AB =kBD ,连接CD ,若CD 与⊙O 相切,求k 的值; (3)若动点P 以3cm/s 的速度从A 点出发,沿AB 方向运动,同时动点Q 以32cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为t (0<t <103),连结PQ .当t 为何值时,△BPQ 为Rt △?18.如图,在▱ABCD 中,对角线AC ⊥BC ,∠BAC =30°,BC =3AB 边的下方作射线AG ,使得∠BAG =30°,E 为线段DC 上一个动点,在射线AG 上取一点P ,连接BP ,使得∠EBP=60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,则AF=_____.19.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.20.在△ABC中∠B=45°,∠C=30°,点D为BC边上任意一点,连接AD,将线段AD绕A 顺时针旋转90°,得到线段AE,连接DE.(1)如图1,点E落在BA的延长线上时,∠EDC= (度)直接填空.(2)如图2,点D在运动过程中,DE⊥AC时,AB=4 ,求DE的值.(3)如图3,点F 为线段DE 中点,AB=2a ,求出动点D 从B 运动到C ,点F 经过的路径长度.21.如图1,以AB 为直径作⊙O ,点C 是直径AB 上方半圆上的一点,连结AC ,BC ,过点C 作∠ACB 的平分线交⊙O 于点D ,过点D 作AB 的平行线交CB 的延长线于点E .(1)如图1,连结AD ,求证:∠ADC =∠DEC .(2)若⊙O 的半径为5,求CA •CE 的最大值.(3)如图2,连结AE ,设tan ∠ABC =x ,tan ∠AEC =y ,①求y 关于x 的函数解析式;②若CB BE =45,求y 的值. 22.问题提出(1)如图1,已知三角形ABC ,请在BC 边上确定一点D ,使得AD 的值最小. 问题探究(2)如图2,在等腰ABC 中,AB AC =,点P 是AC 边上一动点,分别过点A ,点C 作线段BP 所在直线的垂线,垂足为点,D E ,若5,6AB BC ==,求线段BP 的取值范围,并求AD CE +的最大值.问题解决(3)如图3,正方形ABCD 是一块蔬菜种植基地,边长为3千米,四个顶点处都建有一个蔬菜采购点,根据运输需要,经过顶点A 处和BC 边的两个三等分点E F 、之间的某点P 建设一条向外运输的快速通道,其余三个采购点都修建垂直于快速通道的蔬菜输送轨道,分别为BB '、CC '、DD '.若你是此次项目设计的负责人,要使三条运输轨道的距离之和()BB CC DD '''++最小,你能不能按照要求进行规划,请通过计算说明.23.(操作发现)如图1,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于45︒),旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF CD =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF .(1)请求出EAF ∠的度数?(2)DE 与EF 相等吗?请说明理由;(类比探究)如图2,ABC ∆为等边三角形,先将三角板中的60︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于30).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .(3)直接写出EAF ∠=_________度;(4)若1AE =,2BD =,求线段DE 的长度.24.发现来源于探究.小亮进行数学探究活动,作边长为a 的正方形ABCD 和边长为b 的正方形AEFG (a>b ),开始时,点E 在AB 上,如图1.将正方形AEFG 绕点A 逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).25.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为(直接写出答案)【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.(1)(1,0)A -;(2)22(10)12(04)2t t d t t +-<⎧⎪=⎨-+<<⎪⎩;(3)3(4-,1)2或(13,2) 【解析】【分析】(1)由一元二次方程可求得OC 、OB 的长,利用AOC COB ∆∆∽可求得OA 的长,则可求得A 点坐标;(2)由A 、B 、C 的坐标可分别求得直线AB 、AC 的解析式,当点D 在线段OB 上时,则点P 在直线BC 上,则可表示出P 点坐标,从而可表示出PD 的长;当点D 在线段OA 上时,则点P 在直线AC 上,可表示出点P 的坐标,从而可表示出PD 的长,即可求得d 关于t 的函数解析式; (3)在(2)中所求的函数关系式中分别令12d =,分别求得相应的t 的值,即可求得P 点坐标.【详解】解:(1)解方程2680x x -+=可得2x =或4x =, OC 、OB 的长分别是一元二次方程2680x x -+=的两个根,且OC OB <, 2OC ∴=,4OB =, 90ACB ∠=︒,90ACO BCO ACO CAO ∴∠+∠=∠+∠=︒,CAO BCO ∴∠=∠,且AOC BOC ∠=∠,AOC COB ∴∆∆∽, ∴AO OC OC OB=,即224AO =,解得1AO =, (1,0)A ∴-;(2)由(1)可知(0,2)C ,(4,0)B ,(1,0)A -,设直线AC 解析式为y kx b =+,∴20b k b =⎧⎨-+=⎩,解得22b k =⎧⎨=⎩, ∴直线AC 解析式为22y x =+,同理可求得直线BC 解析式为122y x =-+, 当点D 在线段OA 上时,即10t -<时,则点P 在直线AC 上,P ∴点坐标为(,22)t t +,22d t ∴=+;当点D 在线段OB 上时,即04t <<时,则点P 在直线BC 上,P ∴点坐标为1(,2)2t t -+,122d t ∴=-+; 综上可知d 关于t 的函数关系式为22(10)12(04)2t t d t t +-<⎧⎪=⎨-+<<⎪⎩; (3)在22d t =+中,令12d =,可得1222t +=,解得34t =-, 3(4P ∴-,1)2; 在122d t =-+中,令12d =,可得11222t -+=,解得3t =, 1(3,)2P ∴; 综上可知当12d =时,P 点坐标为3(4-,1)2或(13,2). 【点睛】 本题为三角形和一次函数的综合应用,涉及一元二次方程、相似三角形的判定和性质、待定系数法、函数图象上点的坐标及分类讨论思想等知识.在(1)中利用相似三角形的性质求得OA 的长是解题的关键,在(2)中确定出P 点的位置是解题的关键,在(3)中代入函数解析式求t 即可,注意分两种情况.本题考查知识点较多,综合性较强,难度适中.2.B解析:(1)①(2,0),(1,2),(﹣1,2);②y=2x;③y=﹣22x+2;(2)①半径为2,M(4323,33);②2<r<4【解析】【分析】(1)①如图2−1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2−2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3−3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题;【详解】解:(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F.由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=2,∴A(2,0),B(1,2),C(﹣1,2),故答案为:A(2,0),B(1,2),C(﹣1,2).②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M.∵OD∥BE,OD∥PM,∴BE∥PM,∴BE OE PM OM,∴21y x=,∴y=2x.故答案为:y=2x.③如图2﹣3中,作QM∥OA交OD于M.222MQ DMOA DOx y∴=-∴=∴222y x=-+故答案为:y=﹣22x+2.(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=3∴OF=FA3∴FM=1,OM=2FM=2,∴圆M的半径为2∵MN∥y轴,∴MN⊥OM,∴MN233ON=2MN433,∴M4323,⎛⎫⎪ ⎪⎝⎭.②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=3∴△MKO是等边三角形,∴MN=3,当FN=1时,MF=3﹣1=2,当EN=1时,ME=3+1=4,观察图象可知当⊙M的半径r的取值范围为2<r<4.故答案为:2<r<4.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面斜坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.3.A解析:(1)12;(2)5s或373s;(3)163s或685s或72s【解析】【分析】(1)AD与BC之间的距离即AB的长,如下图,过点D作BC的垂线,交BC于点E,在RtDEC中可求得DE的长,即AB的长,即AD与BC间的距离;(2)四边形QDCP为平行四边形,只需QD=CP即可;(3)存在3大类情况,情况一:QP=PD,情况二:PD=QD,情况三:QP=QD,而每大类中,点P存在2种情况,一种为点P还未到达点C,另一种为点P从点C处返回.【详解】(1)如下图,过点D作BC的垂线,交BC于点E∵∠B=90°,AD ∥BC∴AB ⊥BC ,AB ⊥AD∴AB 的长即为AD 与BC 之间的距离∵AD=16,BC=21,∴EC=5∵DC=13∴在Rt DEC 中,DE=12同理,DE 的长也是AD 与BC 之间的距离∴AD 与BC 之间的距离为12(2)∵AD ∥BC∴只需QD=PC ,则四边形QDCP 是平行四边形QD=16-t ,PC=21-2t 或PC=2t -21∴16-t=21-2t 或16-t=2t -21解得:t=5s 或t=373s (3)情况一:QP=PD图形如下,过点P 作AD 的垂线,交AD 于点F∵PQ=PD ,PF ⊥QD ,∴QF=FD∵AF ∥BP ,AB ∥FP ,∠B=90°∴四边形ABPF 是矩形,∴AF=BP由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2t BP=2t 或BP=21-(2t -21)=42-2t∵AF=BP∴8+2t =2t 或8+2t =42-2t解得:t=163或t=685情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理QD=16-t ,PF=AB=12BP=2t 或21-(2t -21)=42-2t则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26∴在Rt PFD 中,()22212162PD t =+-或()22212226PD t =+-∵PD=QD ,∴22PD QD =∴()()22216t 12162t =+--或()()22216t 12226t =+--解得:2个方程都无解情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理:QD=16-t ,FP=12BP=2t 或BP=42-2tQF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t在Rt QFP 中,22212PQ t =+或()22212423PQ t =+- ∵PQ=QD ,∴22PQ QD =∴()22216t 12t =+-或()()22216t 12423t =+--第一个方程解得:t=72,第二个方程解得:无解 综上得:t=163或685或72 【点睛】本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q 运动的轨迹,得出BP 的长度.4.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==. 45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩解得16k b =-⎧⎨=⎩ ∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+,16362S AC DK t∴=⋅=-+()06t≤<;如下图,当点D在线段BC的延长线上时,6DK t=-,636S t∴=-()6t>.(3)如图,延长CE交AB于点R,连接DR交BF于点G,交y轴于点P.45BAO BCO∠=∠=︒,BA BC∴=.AO CO=,BO AC⊥EA EC∴=,EAC ECA∴∠=∠.ACR CAD∴∆≅∆.BAD BCR∴∠=∠.AR CD∴=.BR BD∴=.//RD AC∴.BH AD⊥,HBD BAD BCR∴∠=∠=∠.MB MC∴=,∠MRB MRB MBR∠=∠MR MB∴=.CM MR∴=.//RD AC,::1:1CF RG CM RM∴==.CF RG∴=.同理NF DG=.RD CN=.∵:7:12NF FC=.:7:12DG RG∴=.RP PD BP==,5tan19PG OFOBFBP OB∴==∠=6OB∴=,3019OF∴=,6OC=,8419CF∴=.7RD GN∴==.1ON∴=,72PD=.52OP OB BP∴=-=.(1,0)N∴-,75,22D⎛⎫⎪⎝⎭.设直线DN的解析式为y ax c=+,将N、D两点代入,7522a ca c-+=⎧⎪⎨+=⎪⎩解得5959 ac⎧=⎪⎪⎨⎪=⎪⎩∴直线DM的解析式为5599y x=+.【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.5.D解析:(1)证明见解析;(2)29或5;(3)DG=2MG,理由见解析.【解析】【分析】(1)连接MG并延长交AB于N点,证明△ANM≌△FGM后得到MG=MN,AN=CG,进而得到BN=BG,得到△ANG为等腰直角三角形,即可证明MG=MB.(2)分两种情况画出图形再利用(1)中的思路结合勾股定理即可求解.(3)先画出图形,然后证明△ADG≌△ABG,得到DG=BG,又△BMG为等腰直角三角形,故而得到DG=BG=2MG.【详解】解:(1) 连接MG并延长交AB于N点,如下图所示:∵GF∥AN,∴∠NAM=∠GFM在△ANM和△FGM中∠∠=⎧⎪=⎨⎪∠=∠⎩BAM GFMAM FMNMA GMF,∴△ANM≌△FGM(ASA)∴MG=MN,CG=GF=AN∴AB-AN=BC-CG∴NB=GB∴△NBG 为等腰直角三角形又M 是NG 的中点∴由直角三角形斜边上的中线等于斜边的一半知:故有:MG=MB.(2)分类讨论:情况一:当B 、G 、F 三点在正方形ABCD 外同一直线上时延长MG 到N 点,并使得MG=MN ,连接AN ,BN∴∠∠=⎧⎪=⎨⎪=⎩MN MG AMN GMF AM FM ,∴△AMN ≌△FMG(SAS)∴AN=GF=GC ,∠NAM=∠GFM∴AN ∥GF∴∠NAB+∠ABG=180°又∠ABC=90°∴∠NAB+∠CBG=90°又在△BCG 中,∠BCG+∠CBG=90°∴∠NAB=∠BCG∴在△ABN 中和△CBG 中:∠∠=⎧⎪=⎨⎪=⎩AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)∴BN=BG ,∠ABN=∠CBG∴∠ABC=∠NBG=90°∴△NBG 是等腰直角三角形,且∠BGN=45°在Rt △BCG 中,2222=534--=BG BC CG过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形∴MH=BH=HG=12BG=2在Rt△MFH中,2222MF=2529+=+=MH HF情况二:当B、G、F三点在正方形ABCD内同一直线上时如下图所示,延长MG到MN,并使得MG=MN,连接NA、NB,同情况一中证明思路,∠∠=⎧⎪=⎨⎪=⎩MN MGAMN GMFAM FM,△AMN≌△FMG(SAS)∴AN=GF=GC,∠NAM=∠GFM∴AN∥GF∴∠NAB=∠ABG又∠ABG+∠GBC=90°∠GBC+∠BIF=90°∴∠BIF=∠ABG又∠BIF=∠BCG,∠ABC=∠NAB∴∠NAB=∠GCB∴在△ABN中和△CBG中:∠∠=⎧⎪=⎨⎪=⎩AB BCNAB GCBAN CG,∴△ABN≌△CBG(SAS)∴BN=BG,∠ABN=∠CBG∴∠ABC=∠NBG=90°∴△NBG是等腰直角三角形,且∠BGN=45°在△BCG中,2222=534-=-=BG BC CG过M点作MH⊥BG于H点,∴△MHB为等腰直角三角形∴MH=BH=HG=12BG=2∴HF=HG-GF=2-1=1在Rt △MFH 中,2222MF=215+=+=MH HF 故答案为:29或 5.(3)由题意作出图形如下所示:DG 、MG 的数量关系为:2,理由如下:∵G 点在AC 上∴∠DAG=∠BAG=45°在△ADG 和△ABG 中:∠∠=⎧⎪=⎨⎪=⎩AD AB DAG BAG AG AG ,∴△ADG ≌△BAG(SAS)∴DG=BG又由(2)中的证明过程可知:△MBG 为等腰直角三角形∴2MG∴2MG 故答案为:2MG.【点睛】本题考查了正方形的旋转、三角形的全等、勾股定理等知识,难度很大,关键是要能正确做出图形,利用数形结合的思想,熟练的使用正方形的性质是解题的关键. 6.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)32910AB BC =;(3)①12561535AD CD =. 【解析】【分析】 (1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论;(2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出AB BC 的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到3CF DF =,则(23)35AC x =+=,即可求出DF 的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AF AE EC=,然后求出CD 和AD 的长度,即可得到答案.【详解】 解:(1)ABC 是“准黄金”三角形.理由:如图,过点A 作AD BC ⊥于点D ,∵12AC =,30ACB ∠=︒, ∴162AD AC ==. ∴:6:103:5AD BC ==. ∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.不防设3AE k =,5BC k =,∵点C 为ABD △的重心,∴:2:1BC CE =.∴52k CE =,152k BE =. ∴2215329(3)22k AB k k ⎛⎫=+= ⎪⎝⎭. ∴329329:5210AB k k BC ==.(3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3, ∵35AE BC =, ∴BC=5, ∵105AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=, ∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF ,∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°, ∴3CF x =, ∴(23)35AC x == 解得:65315DF x == ∴2125615CD DF ==②如图,过点A 作AE BC ⊥于点E ,则3AE =. ∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.∴5BC =. ∵10AB BC =, ∴10AB .∴221BEAB AE =-=.∴6CE BE BC =+=,2236935AC CE AE =+=+=.分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,∴90B GC DFC '∠=∠=︒,3B G '=,5C B B C '==,则CG 4=.∵GCB FCD α'∠=∠=,∴AEC DFA ∽△△. ∴::::3:4:5DF FC CD B G GC CB ''==.∴设3DF k =,4FC k =,5CD k =.∵12l l //, ∴ACE CAD ∠=∠,且90AEC AFD ∠=∠=︒.∴AEC DFA ∽△△.∴DF AF AE EC =. ∴335436k k =,解得3510k =. ∴3552CD k ==,2222959595102AF DF AD ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=. ∴93525355AD CD ===. 【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.7.A解析:(1)O 半径为254;(2)①458AM =;②详见解析;③当1251017x <<时,有2220ND DM -<成立.【解析】【分析】(1)如下图,在Rt △ABH 中,先求得AH 的值,设OA=r ,在Rt △OBH 中,利用勾股定理可求得r 的长;(2)①如下图,在Rt BCN ,可求得BN 的长,然后在矩形NBHD 中,求得AD 的值,最后利用cos ∠MAD 求得AM ;②如下图,同过证AMN NFC △∽△可得结论;③如下图,通过转换,先得出222ND DM -=22AM MB DM ⋅这个等式,然后利用3sin 5DM MAD AM ∠==,设AM=x ,可得到关于x 的方程,进而求出x 的取值范围. 【详解】 解:(1)如图1,连接OB ,∵AH 过圆心O ,∴AH BC ⊥,∵AB AC =,∴162BH CH BC ===, 在Rt ABH △中,221068AH =-=,设半径OA OB r ==,则8OH r =-,在Rt OBH 中,222(8)6r r -+=, 解得254r =,即O 半径为254. (2)①如图2,连接CN在平行四边形CDEB 中,DE BC ∥,∴ENB NBC ∠=∠.∵BN DE ⊥,即90ENB ∠=︒,∴90NBC ∠=︒.∴CN 是O 的直径.2522CN r ==.∴在Rt BCN 中,2272BN CN BC =-=. ∵四边形CDEB 是平行四边形,NB ⊥BH ,DH ⊥BH∴四边形NBHD 是矩形,∴72DH BN ==,6ND BH ==,∴79822AD AH DH =-=-=. ∴在Rt ADM △中,4cos 5AD AH MAD AM AB ∠===,∴458AM =, ②如图3,连接AN ,CN ,∵DE BC ∥,∴DNC NCB ∠=∠.∵NAB NCB ∠=∠,∴NAB DNC ∠=∠.由DE BC ∥,AB AC =可得AMD ABC ACB AFD ∠=∠=∠=∠,∴AMN NFC ∠=∠,AM AF =.∴AMN NFC △∽△,MB CF =.∴NM NM AM CF MB NF==,即NM NF AM MB ⋅=⋅. ③∵AH BC ⊥,DE BC ∥,∴AD MF ⊥,∵AM AF =,∴MD DF =,∴222222ND DM ND DM DM -=-- 2()()ND DM ND DM DM =-+-2NM NF DM =⋅-22AM MB DM =⋅.∵AM x =,∴10BM x =-,由3sin 5DM MAD AM ∠==,得35DM x =, ∴22223342(10)10525ND DM x x x x x ⎛⎫-=--=-+ ⎪⎝⎭.(010)x << 该函数图象的示意图如图4易求得点P 坐标为125,017⎛⎫⎪⎝⎭ ∴当1251017x <<时,有2220ND DM -<成立. 【点睛】本题考查几何图形的综合,解题过程中用到了勾股定理、相似、三角函数和平行四边形、圆的性质,解题关键是将这些知识点综合起来分析题干.8.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x =的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可; (3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为 12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m-=,即:n =-2m或m =-2n ,当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=; 故答案为:0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程理由:∵点(,)p q 在反比例函数8y x=的图象上 ∴8q p =代入方程260px x q -+=得: 2860px x p -+= 解得:12x p =,24x p = ∵1212x x = ∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上, ∴抛物线的对称轴为:(1)(4)522t t x ++-== 又∵方程20ax bx c ++=是半等分根方程∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x += 所以153x =,2103x = 所以方程20ax bx c ++=的一个根为53得证. 【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答. 9.E解析:(1)EF =,见解析;(2)7BK a =;(3)①AGH 是等边三角形,见解析;②1(62)4- 【解析】【分析】 (1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到3AE EC =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案; ②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=.AF CD ⊥,垂足为F , 1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 3AF a ∴=在Rt ABF 中,22BF AB AF =+,72BF a ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=.//AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,AF ∴=.1(32ADH S =, 11(322DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】。
人教版中考数学压轴题 易错题难题学能测试
一、中考数学压轴题1.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+,32AB =,45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .问题探究(1)如图1,若30PBC ∠=︒,则AP 的长为__________.(2)如图2,请求出BPC △周长的最小值;(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;②请直接写出PMN 面积的最小值.2.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM . (Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标;(Ⅱ)连接BN ,当1DM =时,求ABN 的面积;(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案) 在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题. 小明:我是这样想的,延长MN 与x 轴交于P 点,于是出现了Rt NAP △.小雨:我和你想的不一样,我过点N 作y 轴的平行线,出现了两个Rt NAP △.3.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3().(1)求抛物线的解析式及顶点M 坐标;(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,PDE ABMC 1S S 9=四边形. 4.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.5.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.6.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.7.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.8.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.9.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax =,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.10.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.11.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.(1)求二次函数的关系式.(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标.(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.12.如图1,在O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO ,AD AB =.(1)求证:2CAO CDB ∠=∠(2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE +=(3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长.13.综合与探究:如图1,在平面直角坐标系xOy 中,四边形OABC 是边长为4的菱形,60C ︒∠=(1)把菱形OABC 先向右平移4个单位后,再向下平移()03m m <<个单位,得到菱形''''O A B C ,在向下平移的过程中,易知菱形''''O A B C 与菱形OABC 重叠部分的四边形'AEC F 为平行四边形,如图2.试探究:当m 为何值时,平行四边形'AEC F 为菱形:(2)如图,在()1的条件下,连接''',AC B O G 、为CE 的中点J 为EB 的中点,H 为AC 上一动点,I 为''B O 上一动点,连接,,,GH HI IJ 求GH HI IJ ++的最小值,并直接写出此时,H I 点的坐标.14.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 15.小明研究了这样一道几何题:如图1,在ABC 中,把AB 绕点A 顺时针旋转()0180a a ︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180a β+=︒时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为AD =_______BC ;②如图3,当90BAC ∠=︒,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD ,90C ∠=︒,120A B ∠+∠=︒,123BC =,6CD =,63DA =,在四边形内部是否存在点P ,使PDC △与PAB △之间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由.16.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形).(1)当x = (s )时,PQ ⊥BC ;(2)当点M 落在AC 边上时,x = (s );(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.17.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.18.ABC 内接于O ,AB BC =,连接BO ;(1)如图1,连接CO 并延长交O 于点M ,连接AM ,求证://AM BO ;(2)如图2,延长BO 交AC 于点H ,点F 为BH 上一点,连接AF ,若AH HF AB BF =,求证:BAF HAF ∠=∠;(3)在(2)的条件下,如图3,点E 为AB 上一点,点D 为O 上一点,连接ED 、OE ,若CBD 3ABH 90∠+∠=︒,若OF 3=,FH 4=,13623EBD S ∆=,连接OE ,求线段OE 的长.19.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.20.如图,四边形AOBC是正方形,点C的坐标是(82,0).(1)正方形AOBC的边长为,点A的坐标是;(2)将正方形AOBC绕点O顺时针旋转45︒,点A,B,C旋转后的对应点为A',B',C',求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当OPQ△为等腰三角形时,求出t的值(直接写出结果即可).21.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.22.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.23.发现来源于探究.小亮进行数学探究活动,作边长为a 的正方形ABCD 和边长为b 的正方形AEFG (a>b ),开始时,点E 在AB 上,如图1.将正方形AEFG 绕点A 逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示). 24.如图,在ABC 中,35,7,tan 4AB BC B ===,动点P 从点A 出发,沿AB 以每秒53个单位长度的速度向终点B 运动,过P 作PQ BC ,交AC 于点Q ,以PQ PB 、为邻边作平行四边形PQDB ,同时以PQ 为边向下作正方形PQEF ,设点P 的运动时间为t 秒()0t >.(1)点A 到直线EF 的距离______________;(用含t 的代数式表示) (2)当点D 落在落在PF 上时,求t 的值;(3)设平行四边形PQDB 与正方形PQEF 重叠部分的面积为()0S S >,求S 与t 之间的函数关系式,并求出S 的最大值. (4)设:PDE APE S S m =△△,当112m 时,直接写出t 的取值范围.25.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N . ①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标; ②若NCB DBC ∠=∠,求点N 的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.B解析:(1)333-;(2)18;(3)①2716;②972625【解析】 【分析】(1)过点B 作BF ⊥AD ,交DA 的延长线于点F ,利用等腰直角三角形ABF 求得AF 和BF 的长,再利用Rt △PBF 求得PF 的长,进而得解;(2)作点B 关于直线AD 的对称点B',连接B'C ,交AD 于点P',连接BP',根据两点之间线段最短可知当B',P ,C 三点共线时,BPC △周长取得最小值,再利用勾股定理计算即可;(3)①②根据EM PB ⊥,EN PC ⊥可得点E 、M 、P 、N 在以PE 为直径的圆上,利用圆周角定理和直角三角形两锐角互余可证得△MPN ∽△CPB ,进而可知当MN 最大时,PMN 面积的最大,当MN 最小时,PMN 面积的最小,由圆的性质可知当MN 为直径时MN 最大,当MN ⊥PE 时,MN 最小,最后利用勾股定理、等积法和相似三角形的性质求解即可. 【详解】解:(1)如图,过点B 作BF ⊥AD ,交DA 的延长线于点F ,∵AD ∥BC ,∠ABC =45°, ∴∠FAB =∠ABC =45°, ∵BF ⊥AD ,∴在Rt △ABF 中,AF 2+BF 2=AB 2, ∵32AB = ∴AF =BF =22AB =23232⨯=, ∵AD ∥BC ,∠PBC =30°, ∴∠FPB =∠PBC =30°, ∵在Rt △PBF 中,tan ∠FPB =BFPF∴tan30°=333PF =, ∴33PF=∴333AP PF AF =-=-;(2)如图,作点B 关于直线AD 的对称点B',连接B'C ,交AD 于点P',连接BP',∵点B 与点B'关于直线AD 对称, ∴AD 垂直平分BB',BF =B'F =3, ∴P'B =P'B',BB'=6,∴当点P 在点P'时,PB+PC 取得最小值,最小值为B'C 的长,此时△BPC 的周长最小, 在Rt △BB'C 中,B'C =22226810'BB BC +=+=, ∴△BPC 的周长最小值为B'C +BC =10+8=18; (3)①∵EM PB ⊥,EN PC ⊥, ∴∠EMP =∠ENP =90°,∴点E 、M 、P 、N 在以PE 为直径的圆上,如图所示,则∠PMN =∠PEN , ∵PE BC ⊥,EN PC ⊥, ∴∠PEC =∠ENC =90°,∴∠PEN+∠NEC =∠NEC+∠PCB =90°, ∴∠PEN =∠PCB , ∴∠PMN =∠PCB , 又∵∠MPN =∠CPB , ∴△MPN ∽△CPB ,∴2PMN PCB S MN S BC ⎛⎫=⎪⎝⎭∵PE BC ⊥, ∴PE =3, ∴11831222PCBSBC PE ==⨯⨯= ∴2128PMNSMN ⎛⎫= ⎪⎝⎭∴当MN 取得最大值时,PMN 的面积取得最大值,当MN =PE =3时,23128PMN S⎛⎫= ⎪⎝⎭解得2716PMNS=即当MN =PE =3时,PMN 的面积最大,最大值为2716; ②由①可知,2128PMNSMN ⎛⎫= ⎪⎝⎭,∴当MN 取得最小值时,PMN 的面积取得最小值, 由垂径定理可知,当MN ⊥PE 时,MN 取得最小值,如图,当MN ⊥PE 时,则弧ME =弧NE ∴∠MPE =∠NPE , ∵PE BC ⊥, ∴∠PEB =∠PEC =90°, ∴△PEB ≌△PEC , ∴EB =EC =12BC =4, 在Rt △BEP 中,BP 2222435BE PE +=+=,∵1122BEPS BE PE BP ME == ∴1143522ME ⨯⨯=⨯ ∴125ME =,在Rt △PME中,PM 95== ∵1122PMESPM ME PE MH == ∴1912132552MH ⨯⨯=⨯ ∴3625MH =, ∴72225MN MH ==, ∴227292512825PMN S ⎛⎫ ⎪⎛⎫== ⎪ ⎪⎝⎭⎪⎝⎭,解得972625PMNS=, ∴PMN 面积的最小值为972625. 【点睛】本题考查了等腰直角三角形、特殊角的三角函数、相似三角形的判定及性质、勾股定理、垂径定理和圆周角定理等相关知识,有点难度,属中考压轴题,能够将第(3)问转化为利用圆的相关知识和相似三角形的性质解决是解决本题的关键.2.A解析:(I )30DAM ∠=︒,)M ;(II )245;(III )DF 的最大值为4. 【解析】 【分析】(Ⅰ)由折叠的性质得:△ANM ≌△ADM ,由角平分线结合得:∠BAM=∠MAN=∠NAB=30°,由特殊角的三角函数可求DM 的长,写出M 的坐标; (Ⅱ)如图2,作辅助线,构建直角三角形,设NQ=x ,则AQ=MQ=1+x ,在Rt △ANQ 中,由勾股定理列等式可得关于x 的方程:(x+1)2=32+x 2,求出x ,得出AB 是AQ 的45,即可得出△NAQ 和△NAB 的关系,得出结论;(III )如图3,过A 作AH ⊥BF 于H ,证明△ABH ∽△BFC ,得BH CFAH BC=,Rt △AHN 中,AH ≤AN=3,AB=4,可知:当点N 、H 重合(即AH=AN )时,AH 最大,BH 最小,CF 最小,DF 最大,此时点M 、F 重合,B 、N 、M 三点共线,如图4所示,求此时DF 的长即可. 【详解】 (I )如图()0,0A ,()4,0B ,()0,3D , 3AD ∴=,4AB =, 由折叠得:ANM ADM ≌△△, MAN DAM ∴∠=∠, AN 平分MAB ∠, MAN NAB ∴∠=∠,BAM MAN NAB ∴∠=∠=∠, 四边形ABCD 是矩形, 90DAB ∴∠=︒, 30DAM ∴∠=︒,3tan 3tan 3033DM AD DAM ∴=⋅∠=⨯︒=⨯=, 30DAM ∴∠=︒,()3,3M;(II )延长MN 交AB 的延长线于点Q ,四边形ABCD 是矩形,AB CD ∴∥,DMA MAQ ∴∠=∠,由折叠得:ANM ADM ≌△△,DMA AMQ ∴∠=∠,3AN AD ==,1MN MD ==, MAQ AMQ ∴∠=∠, MQ AQ ∴=,设NQ x =,则1AQ MQ x ==+,90ANM ∠=︒, 90ANQ ∴∠=︒,在Rt ANQ △中,由勾股定理得:222AQ AN NQ =+,()22213x x ∴+=+,解得:4x =,4NQ ∴=,5AQ =,4AB =,5AQ =,441412434552525NAB NAQ S S AN NQ ∴==⨯⋅=⨯⨯⨯=△△; (III )如图3,过A 作AH BF ⊥于H ,四边形ABCD 是矩形,AB CD ∴∥,90AHB BCF ∴∠=∠=︒, ABH BFC ∴∽△△, BH CF AH BC∴=, Rt AHN 中,3AH AN =≤,4AB =,∴当点N 、H 重合(即AH AN =)时,AH 最大,BH 最小,CF 最小,DF 最大,此时点M 、F 重合,B 、N 、M 三点共线,如图4所示,由折叠得:AD AH =,AD BC =, AH BC ∴=,在ABH 和BFC △中, HBA BFC ANB BCF AH BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABH BFC AAS ∴≌()△△, CF BH ∴=,由勾股定理得:BH ===CF ∴=,DF ∴的最大值为4DC CF -=【点睛】本题是四边形的综合题,考查了三角形全等和相似的性质和判定、折叠的性质、勾股定理、图形与坐标特点、特殊的三角函数值,熟练掌握折叠的性质是关键,注意图形与坐标特点,第II 问构建直角三角形,利用勾股定理列方程是关键.3.C解析:(1)21y x 43=-+(,顶点M4;(2)P 2);(3)1m =2,2m =1【解析】 【分析】(1)由点C 的坐标,可求出c的值,再把()A、()B 代入解析式,即可求出a 、b 的值,即可求出抛物线的解析式,将解析式化为顶点式,即可求出顶点M 的坐标;(2)因为A 、B 关于抛物线的对称轴对称,连接BC 与抛物线对称轴交于一点,即为所求点P ,设对称轴与x 轴交于点H ,证明PHB COB ∽,即可求出PH 的长,从而求出点P 的 坐标;(3)根据点A 、B 、M 、C 的坐标,可求出ABMC S 四边形,从而求出PDES=OC =3,OB=OCB ∠=60,因为DE //PC ,推出 ODE ∠=60,从而得到OD =3m -,)OE 3m =-,根据PDEDOE PDOE SS S=-四边形,列出关于m 的方程,解方程即可. 【详解】(1)∵抛物线y =2ax bx c a 0++≠()过()A、()B ,()C 0,3三点, ∴c =3,∴3a3b 3027a 33b 30⎧-+=⎪⎨++=⎪⎩, 解得1a 323b 3⎧=-⎪⎪⎨⎪=⎪⎩.故抛物线的解析式为()221231y x x 3x 34333=-++=--+,故顶点M 为()3,4.(2)如图1,∵点A 、B 关于抛物线的对称轴对称,∴连接BC 与抛物线对称轴交于一点,即为所求点P . 设对称轴与x 轴交于点H , ∵PH //y 轴, ∴PHB COB ∽. ∴PH BHCO BO=. 由题意得BH =23,CO =3,BO =33,∴PH 23333=, ∴PH =2. ∴()P3,2.(3)如图2,∵()A 3,0-、()B 33,0,()C 0,3,()M3,4,∴ABMC S 四边形=()AOC MHBCOHM 111SS S33344222++=⨯⨯++⨯⨯=梯形. ∵ABMC S 四边形=PDE9S ,∴PDES=∵OC =3,OB =∴OCB ∠=60. ∵DE //PC , ∴ODE ∠=60.∴OD =3m -,)OE 3m =-.∵PDOE S 四边形=))COE1S 33m 3m 22=⨯-=-,∴PDES=))2DOEPDOE S S3m 3m -=--=四边形20m +<<(.∴2+= 解得1m =2,2m =1. 【点睛】此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和四边形面积求法等知识,熟练运用方程思想方法和转化思想是解题关键.4.A解析:(1)详见解析;(2)详见解析;(3)15KG AK = 【解析】 【分析】(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG ∠+∠=︒,进而得到90AGH ∠=︒,即可证明AG HD ⊥;(2)连接AC 、AD 、CF ,根据同弧所对的圆周角相等,进行角度计算,得HFA HAF ∠=∠,进而得到HF HA =,再根据已知HC HF =,得到HC HA =; (3)在DH 上截取DT HC =,过点C 作CM HD ⊥于点M ,通过证明AHC ≌ATD 得到AH AT =,进而得到HG CH GD +=,再根据F 为DG 中点,得到GF DF =,通过勾股定理逆用,证明90HCF ∠=︒,再通过解ACE △得1tan 3CAB ∠=,解△CDH 得1tan 2CDF ∠=,求得OF 、OH ,逆用勾股定理证明90HOF ∠=︒,易求1tan 2KHG ∠=,1tan 3HAG ∠=,最后求得KGAK的值.【详解】(1)证明:如图,设HAG ∠为α,∵HAG BDC ∠=∠,∴HAG BDC α∠=∠=,∵CD AB ⊥,∴90BDC DBE ∠+∠=︒∴90DBE α∠=︒-,∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角,∴90AHG ABD α∠=∠=︒-,∴90AHG HAG ∠+∠=︒,∴18090AGH AHG HAG ∠=︒-∠-∠=︒∴AG HD ⊥(2)如图,连接AC 、AD 、CF ,∵AB 为直径,AB CD ⊥,∴CE DE =,∴AB 垂直平分CD ,∴AC AD =,FC FD =,∴ACD ADC ∠=∠,FCD FDC ∠=∠,∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠,设FCD FDC α∠=∠=,ACF ADF β∠=∠=,∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角,∴ADH ACH β∠=∠=,∴2HCF HCA ACF β∠=∠+∠=,∵HFC FCD FDC ∠=∠+∠,∴2HFC α∠=,∵HC HF =,∴HCF HFC ∠=∠,∴22αβ=,∴αβ=,∵AB 为直径,∴90ADB ∠=︒,∴90HDB β∠=︒-,∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角,∴90HAB HDB β∠=∠=︒-,∵AB CD ⊥,∴9090BFD αβ∠=︒-=︒-,∵9090HFA BFD αβ∠=∠=︒-=︒-,∴HFA HAF ∠=∠,∴HF HA =,∴HC HA =;(3)如图,在DH 上截取DT HC =,∵ADH ∠与ACH ∠同对弧AH 所对的圆周角,∴ADH ACH ∠=∠,∵AB 为直径,且AB CD ⊥∴AC =AD ,∴AC AD =,∴AHC ≌ATD ,∴AH AT =,∵AG HT ⊥,∴HG TG =,∴HG CH GT DT GD +=+=,设2HG k =,则4CH k =,GD 6k =,∵F 为DG 中点,∴3GF DF k ==,∴5HF HG GF k =+=,FD =CF =3k ,在HCF 中,由勾股定理逆定理得90HCF ∠=︒,过点C 作CM HD ⊥于点M ,由△HCF 面积,可求CM =125k ,∴95MF k =, ∴1tan 2CM CM CDF MD MF FD ∠===+, 解ACE △得1tan 3CAB ∠=, 易求OF ,OH ,由勾股定理逆定理得90HOF ∠=︒, 易求1tan 2KHG ∠=,1tan 3HAG ∠=, ∴15KG AK =. 【点睛】本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键.5.C解析:(1)112y x =-+;(2)1d t =-+;(3)65t -= 【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE 的解析式,再将点C 坐标代入即可求解;(2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,通过解直角三角形可证EDM ≌EAN ,ENH ≌EMG ,得到AN =DM ,HN =GM ,进而得到AH DG =,再根据CE 解析式求出D 点坐标,即可找出d 与t 之间的函数关系式;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,证四边形BGMT 与四边形HNMC 均为矩形,得MN MT =,再进一步证明ENH ≌EMG ,利用全等三角形的性质通过角度计算,得出△BML 为等腰三角形且BM BL =,再用含有t 的代数式表示BM ,最后在Rt △BMG 中利用勾股定理建立等式,求出t 的值.【详解】解:(1)∵CE ⊥AB ,∴设直线CE的解析式为:12 yx c=-+,把点C(2,0)代入上述解析式,得1c=,∴直线CD的解析式为:112y x=-+;(2)过点E作EM⊥y轴于点M,过点E作EN x⊥轴于点N,令26112y xy x=+⎧⎪⎨=-+⎪⎩,解得22xy=-⎧⎨=⎩,∴()2,2E-,易证EDM≌EAN,ENH≌EMG,∴AN=DM,HN=GM,∴AH DG=,由直线CE的解析式112y x=-+,可求点D(0,1)∴DG=1—t,∴1d t=-+;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,易证四边形BGMT与四边形HNMC均为矩形,由(2)问可知1tAH GD==-,则6tHC=-∴6t BG MT ==-,∴MN MT =,∵90KNM LTM ∠=∠=︒,∴ENH ≌EMG ,∴L NKM ∠=∠,设KMN α∠=,则KMB KMN α∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-,∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =, ∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中, 222BM BG GM =+,解得65t +=(不合题意舍去)或65t -=故,t =. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.6.B解析:(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】【分析】 ()1根据题意将()D 2,3、()B 4,0-的坐标代入抛物线表达式,即可求解;()2由题意设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭,BMC 1S MK OB 2=⋅⋅,即可求解; ()3由题意和如图所示可知,1tan QHN 2∠=,在RtQNH 中,QH m 6=+,222QN OQ (2)m m 4==-+=+,2QN m 4sin QHN QHm 65∠+===+,进行分析计算即可求解.【详解】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩, 则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭, 22BMC 1113S MK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S ∴有最大值,当b x 22a=-=-时, BMC S 最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N , 过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -,点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴,QHN OCA ∠∠∴=,1tan QHN 2∠∴=,则sin QHN 5∠= 将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩, 则直线AC 的表达式为:y 2x 2=-,则点()H 2,6--, 在Rt QNH 中,QH m 6=+,222QN OQ (2)m m 4==-+=+2QN m 4sin QHN QH 5∠+===, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--.【点睛】本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是()3,核心是通过画图确定圆的位置,本题综合性较强.7.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为118【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1, ∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+, ∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM 的解析式为y=-2x+3, ∴32OM =,3OD =, ∴tan ∠DMO=2, 如图,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.∵PQ ⊥MT ,∴∠TFG=∠TPF ,∴TG=2GF ,GF=2PG ,∴PT=25GF , ∵PF=QF ,∴△FGP ≌△FHQ ,∴FG=FH ,∴PT=45GH. 设点P (m ,-m²+2m+3),则T (m ,-2m+3),∴PT=m²-4m ,GH=1-m ,∴m²-4m=45(1-m ), 解得:111201m -=211201m +=(不合题意,舍去), ∴点P 11201- 【点睛】本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.8.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”; (3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.。
人教版中考数学压轴题 易错题测试综合卷检测试卷
一、中考数学压轴题1.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.2.如图1,平面直角坐标系xoy 中,A (-4,3),反比例函数(0)k y k x=<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长;②若折叠后点D 落在矩形ABOC 内(不包括边界),求线段CE 长度的取值范围. (2)若折叠后,△ABD 是等腰三角形,请直接写出此时点D 的坐标.3.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.4.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.5.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.6.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=1.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=3,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(33y轴的距离为1,则圆M的半径r的取值范围是.7.如图,在梯形ABCD中,AD//BC,AB=CD=AD=5,cos45B ,点O是边BC上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.8.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若12,(33)2ADH a S ==+,求sin GAB ∠的值.9.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.10.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.(1)求二次函数的关系式.(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标.(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.11.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N .①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标;②若NCB DBC ∠=∠,求点N 的坐标.12.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM .(Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标;DM 时,求ABN的面积;(Ⅱ)连接BN,当1(Ⅲ)当射线BN交线段CD于点F时,求DF的最大值.(直接写出答案)在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题.△.小明:我是这样想的,延长MN与x轴交于P点,于是出现了Rt NAP△.小雨:我和你想的不一样,我过点N作y轴的平行线,出现了两个Rt NAP13.已知:菱形ABCD,点E 在线段BC 上,连接DE,点F 在线段AB 上,连接CF、DF, CF 与DE 交于点G,将菱形ABCD 沿DF 翻折,点A 恰好落在点G 上.(1)求证:CD=CF;(2)设∠CED= x,∠DCF= y,求y 与x 的函数关系式;(不要求写出自变量的取值范围)(3)在(2)的条件下,当x=45°时,以CD 为底边作等腰△CDK,顶角顶点K 在菱形ABCD 的内部,连接GK,若GK∥CD,CD=4 时,求线段KG 的长.14.已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.15.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.16.在菱形ABCD 中,P 为直线DA 上的点,Q 为直线CD 上的点,分别连接PC ,PQ ,且PC PQ =.(1)若60B ∠=︒,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图①,易证:DQ PD AB +=(不需证明);(2)如图②,若∠B =120°,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图③,猜想线段DQ ,PD 和AB 之间有怎样的数量关系?请直接写出对图②,图③的猜想,并选择其中一种情况给予证明.17.如图,在平面直角坐标系中,矩形ABCD 的顶点,A D 在坐标轴上,两点的坐标分别是点()0,,A m 点(),0,D m 且m 满足:322m m -+62=边AB 与x 轴交于点,E 点F 是边AD 上一动点,连接FB ,分别与x 轴,y 轴交于点,P 点,H 且FD BE =.(1)求m 的值;(2)若45,APF ∠=︒求证:AHF HFA ∠=∠;(3)若点F 的纵坐标为,n 则线段HF 的长为 .(用含n 的代数式表示)18.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点0(3)A ,,点()0, 3B ,点(0,0)O(I)过边OB 上的动点D (点D 不与点B ,O 重合)作DE OB ⊥交AB 于点E ,沿着DE 折叠该纸片,点B 落在射线BO 上的点F 处.①如图,当D 为OB 中点时,求E 点的坐标;②连接AF ,当AEF ∆为直角三角形时,求E 点坐标:(Ⅱ) P 是AB 边上的动点(点 P 不与点B 重合),将AOP ∆沿OP 所在的直线折叠,得到'A OP ∆,连接'BA ,当'BA 取得最小值时,求P 点坐标(直接写出结果即可).19.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.20.如图,在▱ABCD 中,对角线AC ⊥BC ,∠BAC =30°,BC =23,在AB 边的下方作射线AG ,使得∠BAG =30°,E 为线段DC 上一个动点,在射线AG 上取一点P ,连接BP ,使得∠EBP =60°,连接EP 交AC 于点F ,在点E 的运动过程中,当∠BPE =60°时,则AF =_____.21.如图,在矩形ABCD 中,点E 为BC 的中点,连接AE ,过点D 作DF AE ⊥于点F ,过点C 作CN DF ⊥于点N ,延长CN 交AD 于点M .(1)求证:AM MD =(2)连接CF ,并延长CF 交AB 于G①若2AB =,求CF 的长度;②探究当AB AD为何值时,点G 恰好为AB 的中点.22.如图1,以AB 为直径作⊙O ,点C 是直径AB 上方半圆上的一点,连结AC ,BC ,过点C 作∠ACB 的平分线交⊙O 于点D ,过点D 作AB 的平行线交CB 的延长线于点E .(1)如图1,连结AD ,求证:∠ADC =∠DEC .(2)若⊙O 的半径为5,求CA •CE 的最大值.(3)如图2,连结AE ,设tan ∠ABC =x ,tan ∠AEC =y ,①求y 关于x 的函数解析式; ②若CB BE =45,求y 的值. 23.如图1,在平面直角坐标系中,O 是坐标原点,矩形OACB 的顶点A 、B 分别在x 轴和y 轴上,已知OA=5,OB=3,点D 的坐标是(0,1),点P 从点B 出发以每秒1个单位的速度沿折线BCA 的方向运动,当点P 与点A 重合时,运动停止,设运动的时间为t 秒.(1)点P 运动到与点C 重合时,求直线DP 的函数解析式;(2)求△OPD 的面积S 关于t 的函数解析式,并写出对应t 的取值范围;(3)点P 在运动过程中,是否存在某些位置使△ADP 是不以DP 为底边的等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.24.如图①,在ABC ∆中,90C ∠=︒,10,8AB BC ==.点,D E 分别是边,AC BC 上的动点,连接DE .设CD x =(0x >),BE y =,y 与x 之间的函数关系如图②所示.(1)求出图②中线段PQ所在直线的函数表达式;(2)将DCE沿DE翻折,得DME.①点M是否可以落在ABC∆的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;②直接写出....DME与ABC∆重叠部分面积的最大值及相应x的值.25.如图,一张半径为3cm的圆形纸片,点O为圆心,将该圆形纸片沿直线l折叠,直线l交O于A B、两点.(1)若折叠后的圆弧恰好经过点O,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB的长度.(2)已知M是O一点,1cmOM=.①若折叠后的圆弧经过点M,则线段AB长度的取值范围是________.②若折叠后的圆弧与直线OM相切于点M,则线段AB的长度为_________cm.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.A解析:(1)149,212⎛⎫⎪⎝⎭;(2)257t=;(3)存在,见解析【解析】【分析】(1)已知抛物线的2点,代入可直接求解;(2)根据A 、B 的坐标,得出AD 、AB 的长,通过推导可证ABCQDB ∆∆,利用相似得到的比例线段即可求得DQ 、PD 的长,从而得出t ; (3)根据轴对称的最短路径先作C 关于对称轴的对称点,即点A ,连接AO 与对称轴的交点即为点M .【详解】(1)抛物线()240y ax bx a =++≠与x 轴交于()()3,0,4,0A C -两点 164409340a b a b ++=⎧∴⎨-+=⎩ 解这个方程组,得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为211433y x x =-++ 221111494333212y x x x ⎛⎫=-++=--+ ⎪⎝⎭ ∴这条抛物线的顶点坐标为149,212⎛⎫ ⎪⎝⎭(2)点,A C 的坐标为()()3,0,4,0- 3,4AO OC ∴==7AC AO OC ∴=+=抛物线211433y x x =-++与轴交于点B ∴点B 的坐标为()0,44OB ∴=5AB ∴=5AB AB ∴==2DC AC AD ∴=-=连接QD=AD ABABD ADB ∴∠=∠线段PQ 被BD 垂直平分DP DQ ∴=DPQ DQP ∴∠=∠PDB QDB ∴∠=∠ABD QDB ∴∠=∠//AB DQ ∴ABCQDB ∴∆∆ DQ CD AB CA ∴= 257DQ ∴= 107DQ ∴= 107PD ∴= 257AP AD PD ∴=-= 257t ∴= (3)存在连接AQ 交对称轴于M ,此时MQ+MC 为最小,过点Q 作QN ⊥x 轴于点N∵DQ∥AB,∴∠QDN=∠BACsin∠QDN=sin∠BAC=OB QN AB DQ=∴41057QN =,∴QN=87设直线BC的解析式为:y=kx+b将点B(0,4)和点C(4,0)代入可求得:k=-1,b=4∴直线BC的解析式为:y=-x+4当y=87时,x=207∴Q(207,87)同理可得:AQ的解析式为:y=824 4141x+当x=12时,y=2841∴M(12,2841)【点睛】本题考查二次函数的综合,在求解最短距离时,解题关键是利用对称,将要求解的2段线段转化为1条线段,从而求出点M.2.E解析:(1)①EC=2;②748CE<<;(2)点D的坐标为233(,)82-或113(,)55-【解析】【分析】(1)①根据A(-4,3)和反比例函数图象上点的特征可得E、F的坐标,从而可表示出AE、AF并求得43=AEAF,从而证得△AEF∽△ACB,利用相似三角形的性质的折叠的性质可推出12EC AC=,即可求得结果;②当D在BO上时,由折叠的性质和同角的余角相等证得△AEF∽△BAD,设AF=x,利用勾股定理可列出方程,解之得AF的长,进而求出AE、CE的长,即可得出CE的取值范围;(2)由△ABD是等腰三角形,可得AD BD=或AD AB=,分情况进行求解即可.【详解】解:(1)①由题意得(,3)3kE,(4,)4--kF,∵k0<,则3=-kEC,4=-kFB,∴43=+kAE,34=+kAF,∴14(12)433133(12)44++===++kkAEkAF k,∵由A(-4,3)得:4,3AC AB==,∴43=ACAB,∴AE ACAF AB=,又∵∠A=∠A,∴△AEF∽△ACB,∴∠AEF=∠ACB,∴EF∥CB,如图2,连接AD交EF于点H,由折叠的性质得:AH=DH,∵D 在BC 上, ∴1==AE AH EC DH,则AE EC =, ∴122==EC AC ; ②由折叠得EF 垂直平分AD ,∴90AHE =︒∠,则90∠+∠=︒EAH AEF ,又∵90∠+∠=∠=︒BAD EAH BAC ,∴∠=∠BAD AEF ,如图,当D 落在BO 上时,∵90∠=∠=︒EAF ABD ,∴△AEF ∽△BAD ,∴=AE AF AB BD ,则43==AB AE BD AF , ∴4393344=÷=⨯=BD AB , 设AF =x ,则FB =3-x ,FD=AF =x ,在Rt △BDF 中,由勾股定理得:222FB BD FD +=,即2229(3)4⎛⎫-+= ⎪⎝⎭x x ,解得:7532=x , ∴7532=AF , ∴44752533328==⨯=AE AF , ∴2574488=-=-=CE AE , ∴748CE <<,即折叠后点D 落在矩形ABOC 内(不包括边界),CE 的取值范围为748CE <<; (2)∵△ABD 是等腰三角形,显然AB AD ≠,∴AD BD =或AD AB =,①当AD BD =时,BAD ABD ∠=∠,由(1)得:∠=∠BAD AEF ,∴∠=∠ABD AEF ,如图,过点D 作//DG x 轴分别交AB 、y 轴于点M 、N ,则DM AB ⊥,4==MN AC ,∴90∠=∠=︒BMD EAF ,1322==BM AB , ∴△AEF ∽△MBD ,∴=AE AF MB MD ,则43==MB AE MD AF , ∴43393248=÷=⨯=MD MB , ∴923488=-=-=DN MN MD , ∴点D 的坐标为233(,)82-; ②当AD AB =时,如图,过点D 作//DG x 轴分别交AB 、y 轴于点M 、N ,则3AD AB ==,DM AB ⊥,4==MN AC ,∴90∠=∠=︒AMD EAF ,由(1)得∠=∠BAD AEF ,∴△AEF ∽△MAD ,∴=AE AF AM MD ,则43==AM AE MD AF ,设4=AM a ,则3=MD a ,在Rt △MAD 中,由勾股定理得:222+=AM MD AD ,即222(4)(3)3+=a a ,解得:35a =, ∴125=AM ,95=MD , ∴123355=-=-=BM AB AM ,911455=-=-=DN MN MD , ∴点D 的坐标为113(,)55-; 综上所述,若折叠后,△ABD 是等腰三角形,点D 的坐标为233(,)82-或113(,)55-. 【点睛】本题考查了反比例函数与几何综合、相似三角形的判定与性质综合、等腰三角形的判定与性质,解题的关系是熟悉反比例函数图象上点的特征和熟练掌握相似三角形的判定与性质.3.A解析:(1)详见解析;(2)详见解析;(3)15KG AK = 【解析】【分析】(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG ∠+∠=︒,进而得到90AGH ∠=︒,即可证明AG HD ⊥;(2)连接AC 、AD 、CF ,根据同弧所对的圆周角相等,进行角度计算,得HFA HAF ∠=∠,进而得到HF HA =,再根据已知HC HF =,得到HC HA =; (3)在DH 上截取DT HC =,过点C 作CM HD ⊥于点M ,通过证明AHC ≌ATD 得到AH AT =,进而得到HG CH GD +=,再根据F 为DG 中点,得到GF DF =,通过勾股定理逆用,证明90HCF ∠=︒,再通过解ACE △得1tan 3CAB ∠=,解△CDH 得1tan 2CDF ∠=,求得OF 、OH ,逆用勾股定理证明90HOF ∠=︒,易求1tan 2KHG ∠=,1tan 3HAG ∠=,最后求得KG AK 的值. 【详解】(1)证明:如图,设HAG ∠为α,∵HAG BDC ∠=∠,∴HAG BDC α∠=∠=,∵CD AB ⊥,∴90BDC DBE ∠+∠=︒∴90DBE α∠=︒-,∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角, ∴90AHG ABD α∠=∠=︒-,∴90AHG HAG ∠+∠=︒,∴18090AGH AHG HAG ∠=︒-∠-∠=︒∴AG HD ⊥(2)如图,连接AC 、AD 、CF ,∵AB 为直径,AB CD ⊥,∴CE DE =,∴AB 垂直平分CD ,∴AC AD =,FC FD =,∴ACD ADC ∠=∠,FCD FDC ∠=∠,∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠, 设FCD FDC α∠=∠=,ACF ADF β∠=∠=, ∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角, ∴ADH ACH β∠=∠=,∴2HCF HCA ACF β∠=∠+∠=,∵HFC FCD FDC ∠=∠+∠,∴2HFC α∠=,∵HC HF =,∴HCF HFC ∠=∠,∴22αβ=,∴αβ=,∵AB 为直径,∴90ADB ∠=︒,∴90HDB β∠=︒-,∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角, ∴90HAB HDB β∠=∠=︒-,∵AB CD ⊥,∴9090BFD αβ∠=︒-=︒-,∵9090HFA BFD αβ∠=∠=︒-=︒-, ∴HFA HAF ∠=∠,∴HF HA =,∴HC HA =;(3)如图,在DH 上截取DT HC =,∵ADH ∠与ACH ∠同对弧AH 所对的圆周角, ∴ADH ACH ∠=∠,∵AB 为直径,且AB CD ⊥∴AC =AD ,∴AC AD =,∴AHC ≌ATD ,∴AH AT =,∵AG HT ⊥,∴HG TG =,∴HG CH GT DT GD +=+=,设2HG k =,则4CH k =,GD 6k =, ∵F 为DG 中点,∴3GF DF k ==,∴5HF HG GF k =+=,FD =CF =3k ,在HCF 中,由勾股定理逆定理得90HCF ∠=︒,过点C 作CM HD ⊥于点M ,由△HCF 面积,可求CM =125k ,∴95MF k =, ∴1tan 2CM CM CDF MD MF FD ∠===+, 解ACE △得1tan 3CAB ∠=, 易求OF ,OH ,由勾股定理逆定理得90HOF ∠=︒, 易求1tan 2KHG ∠=,1tan 3HAG ∠=, ∴15KG AK =. 【点睛】本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键.4.C解析:(1)112y x =-+;(2)1d t =-+;(3)65t -= 【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE 的解析式,再将点C 坐标代入即可求解;(2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,通过解直角三角形可证EDM ≌EAN ,ENH ≌EMG ,得到AN =DM ,HN =GM ,进而得到AH DG =,再根据CE 解析式求出D 点坐标,即可找出d 与t 之间的函数关系式;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,证四边形BGMT 与四边形HNMC 均为矩形,得MN MT =,再进一步证明ENH ≌EMG ,利用全等三角形的性质通过角度计算,得出△BML 为等腰三角形且BM BL =,再用含有t 的代数式表示BM ,最后在Rt △BMG 中利用勾股定理建立等式,求出t 的值.【详解】解:(1)∵CE ⊥AB ,∴设直线CE 的解析式为:12y x c =-+, 把点C (2,0)代入上述解析式,得1c =,∴直线CD的解析式为:11 2y x=-+;(2)过点E作EM⊥y轴于点M,过点E作EN x⊥轴于点N,令26112y xy x=+⎧⎪⎨=-+⎪⎩,解得22xy=-⎧⎨=⎩,∴()2,2E-,易证EDM≌EAN,ENH≌EMG,∴AN=DM,HN=GM,∴AH DG=,由直线CE的解析式112y x=-+,可求点D(0,1)∴DG=1—t,∴1d t=-+;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,易证四边形BGMT与四边形HNMC均为矩形,由(2)问可知1tAH GD==-,则6tHC=-∴6tBG MT==-,∴MN MT=,∵90KNM LTM∠=∠=︒,∴ENH ≌EMG ,∴L NKM ∠=∠,设KMN α∠=,则KMB KMN α∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-,∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =, ∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中, 222BM BG GM =+,解得65t +=(不合题意舍去)或65t -=故,65t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.5.B解析:(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】【分析】 ()1根据题意将()D 2,3、()B 4,0-的坐标代入抛物线表达式,即可求解;()2由题意设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭,BMC 1S MK OB 2=⋅⋅,即可求解;()3由题意和如图所示可知,1tan QHN 2∠=,在Rt QNH中,QH m 6=+,222QN OQ (2)m m 4==-+=+,2QN m 4sin QHN QH m 65∠+===+,进行分析计算即可求解.【详解】 解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩, 则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭, 22BMC 1113S MK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S∴有最大值, 当b x 22a=-=-时,BMC S 最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N , 过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -,点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴,QHN OCA ∠∠∴=,1tan QHN 2∠∴=,则sin QHN 5∠= 将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩, 则直线AC 的表达式为:y 2x 2=-,则点()H 2,6--, 在Rt QNH 中,QH m 6=+,222QN OQ (2)m m 4==-+=+2QN m 4sin QHN QH5∠+===, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--.【点睛】本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是()3,核心是通过画图确定圆的位置,本题综合性较强.6.B解析:(1)①(2,0),(1,2),(﹣1,2);②y=2x;③y=﹣22x+2;(2)①半径为2,M(4323,33);②2<r<4【解析】【分析】(1)①如图2−1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2−2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3−3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题;【详解】解:(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F.由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=2,∴A(2,0),B(1,2),C(﹣1,2),故答案为:A(2,0),B(1,2),C(﹣1,2).②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M.∵OD∥BE,OD∥PM,∴BE∥PM,∴BE OE PM OM,∴21y x=,∴y=2x.故答案为:y=2x.③如图2﹣3中,作QM∥OA交OD于M.222MQ DMOA DOx y∴=-∴=∴222y x=-+故答案为:y=﹣22x+2.(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=3∴OF=FA3∴FM=1,OM=2FM=2,∴圆M的半径为2∵MN∥y轴,∴MN⊥OM,∴MN233ON=2MN433,∴M 4323,⎛⎫ ⎪ ⎪⎝⎭. ②如图4中,连接OM ,作MK ∥x 轴交y 轴于K ,作MN ⊥OK 于N 交⊙M 于E 、F .∵MK ∥x 轴,ω=120°,∴∠MKO =60°,∵MK =OK =3∴△MKO 是等边三角形,∴MN =3,当FN =1时,MF =3﹣1=2,当EN =1时,ME =3+1=4,观察图象可知当⊙M 的半径r 的取值范围为2<r <4.故答案为:2<r <4.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面斜坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.7.D解析:(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】 (1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】 (1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ==== ∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中: ()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠ ∴CMN OBE ∠=∠∴//MF AB ∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠ ∴AMB CNM ∠=∠ 又∵AMB MAD ∠=∠ ∴MAD CNM ∠=∠ 又∵AFM NFD ∠=∠ ∴AFM NFD ∆~∆ ∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN ∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒= ∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切 设圆N 半径为R ,圆O 半径为r ∴'=NO R r NO -=∴N 在'OO 的中垂线上 ∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒ ∴A 点在圆上 ∴54cos 5AB B BM BM === 解得:254BM =O 的半径长为258【点睛】本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.8.E解析:(1)EF =,见解析;(2)7BK a =;(3)①AGH 是等边三角形,见解析;②14【解析】 【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到AE =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BKFB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到1DH =,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案. 【详解】解:(1)EF =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=, 120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形, EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠=在Rt AEC ∆中,tan ECEAC AE∠=3AE EC ∴=, 3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==,ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=. AF CD ⊥,垂足为F ,1,902CF DF a BAF AFD ︒∴==∠=∠= 在RtADF 中,sin AFADF AD∠=, 3AF ∴=在Rt ABF 中,22BF AB AF =+7BF ∴=AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆, AB BK FB BA ∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形. 理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=, 120ABG ︒∴∠=.//AB CD ,60BCH ABC ︒∴∠=∠=, 120ACH ︒∴∠=ABG ACH ∴∠=∠, 又BG CH =, ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=, 60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形; ②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,3AF ∴=. 1(33)2ADHS=, 113(33)22DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形, 45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M . 在Rt CMH 中,sin CMCHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CMMAC AC∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠,1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.9.A解析:(1)①(1,2),(2.5,0)A C ;②23m ≤;(2)最小值为2. 【解析】 【分析】(1)①根据“特征点”的定义判断即可;②如图2中,当⊙W 1与直线y =−x +2相切时,1(2W ,当⊙W 2与直线y =−x +3相切时,2(3W +,结合图象,⊙W 与图中阴影部分有交点时,⊙W 上存在满足条件的特征点.(2)特征点的图象是由原点向外扩大,当与反比例函数的图象第一次有交点时,1x x+的值最小(如图3中). 【详解】解:(1)①∵1+2=3,1+3=4,2.5+0=2.5, 又∵2≤a ≤3, ∴A ,C 是特征点,故答案为:(1,2),(2.5,0)A C ; ②如图1,∵2≤a ≤3,∴直线y =−x +2和直线y =−x +3之间的区域(包括两直线)上的点都为“特征点”, 直线y =−x +2和直线y =−x +3分别与x 轴的交点为(2,0)P ,(3,0)Q ,当⊙W 1与直线y =−x +2相切时,设切点为M ,此时2OP =,1MW MP ⊥,145MPW ∠=︒,则1MPW 为等腰直角三角形, ∵⊙W 1半径为1,即11MW =,∴12PW =1122OW OP PW =-=- ∴1(22,0)W ,当⊙W 2与直线y =−x +3相切时,设切点为N ,此时3OQ =,2NW NQ ⊥,245NQW ∠=︒,则2NQW 为等腰直角三角形, 同理得:22QW =,则2232OW OQ QW =+=+, ∴2(32,0)W +,观察图象可知满足条件的m 取值范围为:2232m ≤ (2)根据0x >,在第一象限画出1y x=的图象, ∴在此坐标系中图象上的点就是1x x ⎛⎫⎪⎝⎭,,∵特征点满足x y a +=(x ≥0,a 为常数), ∴在此图象上对应的就是1x a x+=, ∴将特征点的图象由原点向外扩大,当与反比例函数1y x =的图象第一次有交点时,1x x+出现最小值, 如图2,由x >0可将1x a x+=整理得:210x ax -+=, ∴2()40a ∆=--=,解得:12a =,22a =-(舍去),∴2a =,∴12Z x x =+=,即()10Z x x x=+>的最小值为2.【点睛】本题属于反比例函数综合题,考查了直线与圆的位置关系,反比例函数的性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考压轴题.10.B解析:(1)2y x 2x 3=-++;(2)①23S m m =-+,13m ≤≤;②P (32,3); (3)3,32⎛⎫ ⎪⎝⎭或(332,122)-+- 【解析】 【分析】(1)将点B 、C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式等,由PD ⊥x 轴且OD=m 知P (m ,-2m+6),即可用含m 的代数式表示出S ;②在和①的情况下,将S 和m 的关系式化为顶点式,由二次函数的图象和性质即可写出点P 的坐标;(3)分情况讨论,当∠CPD=90°时,推出PD=CO=3,则点P 的纵坐标为3,即可求出点P 的坐标;当∠PCD=90°时,证∠PDC=∠OCD ,由锐角三角函数可求出m 的值,即可写出点P 的坐标;当∠PDC=90°时,不存在点P . 【详解】解:(1)将()3,0B ,()0,3C 代入2y x bx c =-++,得0=-9+3b 33c +⎧⎨=⎩,解得23b c =⎧⎨=⎩,∴二次函数的解析式为2y x 2x 3=-++; (2)①∵()222314y x x x =-++=--+ ∴顶点M (1,4),将直线BM 的解析式设为y kx b =+, 将点()3,0B ,M (1,4)代入, 可得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为26y x =-+, 如图∵PD ⊥x 轴且OD=m ,∴P (m ,-2m+6), ∴211(26)322PCDS SPD OD m m m m ==⋅=-+=-+, 即23S m m =-+,∵点P 为线段MB 上一个动点且()3,0B ,M (1,4), ∴13m ≤≤; ②22393()24S m m m =-+=--+, ∴当32m =时,S 取最大值94, ∴P (32,3); (3)存在,理由如下: 如图,当∠CPD=90°时,90COD ODP CPD,∴四边形CODP 为矩形, ∵PD=CO=3,将3y =代入直线26y x =-+, 得32x =, ∴P 3,32⎛⎫ ⎪⎝⎭;如图,当∠PCD=90°时,∵OC=3,OD=m , 22229CD OC OD m ,//PD OCPDCOCD ,cos cos PDCOCD ,DC OCPD DC∴=, 2DC PD OC ∴=⋅,293(26)m m,解得1332m (舍去),1332m =-+∴(332,1262)P -+-; 当∠PDC=90°时, ∵PD ⊥x 轴,∴不存在点P ;综上所述,点P 的坐标为3,32⎛⎫ ⎪⎝⎭或(3-+-. 【点睛】本题考查了待定系数法求函数解析式,函数的思乡曲求极值以及直角三角形的存在性与动点结合等,解题的关键是注意分类讨论思想在解题过程中的运用.11.A解析:(1)(1,4)D ;(2)158(,)33M ,274(,)33M ;(3)N 的坐标为57(,)24. 【解析】 【分析】(1)将点A 坐标代入函数关系式可得a 与b 的方程,再根据顶点D 的横坐标为1可得另一个关于a 和b 的方程,联立方程组求解即可得到a 和b 的值,进而求得抛物线的函数关系式,再将顶点D 的横坐标代入即可求得点D 坐标;(2)①如图,取DB 得三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,通过证相似三角形可得点M 的横纵坐标与点B 、D 的横纵坐标之间的数量关系,进而得解;(3)取线段BC 的中点G ,连接GM ,由中点坐标可得33(,)22G ,根据等腰三角形的三线合一可得GM ⊥BC ,在根据两条直线互相垂直可求得:GM l y x =,与:26BD l y x =-+联立方程组可求得点M 的坐标,再由(2,2),(0,3)M C 利用待定系数法可得1:32CM l y x =-+,最后将132y x =-+与2y x 2x 3=-++联立方程组即可求得点N 的坐标. 【详解】解:(1)将(1,0)A -代入23y ax bx =++可得03a b =-+①∵顶点D 的横坐标为1,∴12ba-=,即2b a =-② 联立①②解得1,2a b =-=∴2y x 2x 3=-++ 当1x =时,4y =(1,4)D ∴(2)由(1)得2y x 2x 3=-++ 当y=0时,x 1=-1,x 2=3, ∴B (3,0),即BO=3,如图,取DB 的三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x。
人教版中考数学压轴题学能测试
一、中考数学压轴题1.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.2.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.3.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax =,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.4.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 5.如图,在平面直角坐标中,点O 为坐标原点,ABC ∆的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.6.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.7.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.8.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N .①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标;②若NCB DBC ∠=∠,求点N 的坐标.9.综合与探究:如图1,在平面直角坐标系xOy 中,四边形OABC 是边长为4的菱形,60C ︒∠=(1)把菱形OABC 先向右平移4个单位后,再向下平移()03m m <<个单位,得到菱形''''O A B C ,在向下平移的过程中,易知菱形''''O A B C 与菱形OABC 重叠部分的四边形'AEC F 为平行四边形,如图2.试探究:当m 为何值时,平行四边形'AEC F 为菱形:(2)如图,在()1的条件下,连接''',AC B O G 、为CE 的中点J 为EB 的中点,H 为AC 上一动点,I 为''B O 上一动点,连接,,,GH HI IJ 求GH HI IJ ++的最小值,并直接写出此时,H I 点的坐标.10.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于AB 、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .11.已知:菱形 ABCD ,点 E 在线段 BC 上,连接 DE ,点 F 在线段 AB 上,连接 CF 、DF , CF 与 DE 交于点 G ,将菱形 ABCD 沿 DF 翻折,点 A 恰好落在点 G 上.(1)求证:CD=CF ;(2)设∠CED = x ,∠DCF = y ,求 y 与 x 的函数关系式;(不要求写出自变量的取值范围) (3)在(2)的条件下,当 x =45°时,以 CD 为底边作等腰△CDK ,顶角顶点 K 在菱形 ABCD 的内部,连接 GK ,若 GK ∥CD ,CD =4 时,求线段 KG 的长.12.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.13.在Rt ABC ∆中,6AB =,90B ∠=︒,8BC =,点P 从A 出发沿AC 方向在运动速度为3个单位/秒,点Q 从C 出发向点B 运动,速度为1个单位/秒,P 、Q 同时出发,点Q 到点B 时两点同时停止运动.(1)点P 在线段AC 上运动,过P 作DP PQ ⊥交边AB 于D ,2t =时,求PD PQ 的值; (2)运动t 秒后,90BPQ ∠=︒,求此时t 的值;(3)t =________时,AQ QP =. 14.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.15.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值;(2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?16.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.17.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示);②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).18.如图,在等腰Rt △ABC 中,∠ACB=90°,AC=BC=8,点D 在△ABC 外,连接AD 、BD ,且∠ADB=90°,AB 、CD 相交于点E ,AB 、CD 的中点分别是点F 、G ,连接FG .(1)求AB 的长;(2)求证:2CD ;(3)若BD=6,求FG 的值.19.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0x y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0x y =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A’的坐标是 ,点B’的坐标是 ;(2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.20.如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点(1)则m =_________;C 点坐标为___________;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由.(3)P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t =________时,四边形PBQC 的面积最大.21.已知,抛物线212y x bx c =++与y 轴交于点()0,4C -与x 轴交于点A ,B ,且B 点的坐标为()2,0.(1)求该抛物线的解析式.(2)如图1,若点P 是线段AB 上的一动点,过点P 作//PE AC ,交BC 于E ,连接CP ,求PCE ∆面积的最大值.=+与线段AC交于点M,与线段BC交于点N,是否存在(3)如图2,若直线y x m∆为直角三角形,若存在,请求出m的值;若不存在,请说明理M,N,使得OMN由.22.问题一:如图①,已知AC=160km,甲,乙两人分别从相距30km的A,B两地同时出发到C地.若甲的速度为80km/h,乙的速度为60km/h,设乙行驶时间为x(h),两车之间距离为y(km).(1)当甲追上乙时,x=.(2)请用x的代数式表示y.问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?23.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题: (1)ACE ∠=___________度; (2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线ACBD 、相交于点E,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.24.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,100.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 25.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由; (3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.B解析:(1)3;(2)M 在线段BF 的中点时,AH BN =.理由见详解;(3)BD CH AH =+,理由见详解 【解析】 【分析】(1)根据已知条件可得出30BAE BDA ∠=∠=︒,有2,2AB BE DB AB ==,即可求出DE 的值;(2)M 在线段BF 的中点,根据等腰直角三角形的三线合一以及已知以及证明BNM AHM ≅即可;(3)BD CH AH =+,由第2问可知AH BN =,再求出DN CH =即可,证明AND FHC ≅可得出DN CH =. 【详解】解:(1)∵AE BD ⊥, 30BAE ∠=︒,1BE = ∴22AB BE == ,60ABE ∠=︒ ∵90BAF ∠=︒∴30BDA ∠=︒ ∴24BD AB ==∴413DE BD BE =-=-=;(2)当点M 在线段BF 的中点时,AH BN =.理由如下: ∵ABF 为等腰直角三角形,点M 在线段BF 的中点 ∴AM BF ⊥,AM BM =, 90NMB HMA ∠=∠=︒ ∵AE BD ⊥∴ENM NBM ENM MAH ∠+∠=∠+∠ ∴NBM MAH ∠=∠ ∴BNM AHM ≅ ∴AH BN =;(3)BD CH AH =+,理由如下: ∵BNM AHM ≅ ∴NM HM = ∵AM FM = ∴FH AN = ∵DF AC = ∴AD FC =∵45HFA NAD ∠=∠=︒ ∴AND FHC ≅ ∴DN CH = ∵AH BN =∴BN DN AH CH +=+ 即BD CH AH =+. 【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定及性质、三角形内角和定理、直角三角形的性质等多个知识点,此题综合性较强,但难度不大,只要仔细分析题目,理清数量关系便不难解决.2.C解析:(1)112y x =-+;(2)1d t =-+;(3)65t -= 【解析】 【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE 的解析式,再将点C 坐标代入即可求解;(2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,通过解直角三角形可证EDM ≌EAN ,ENH ≌EMG ,得到AN =DM ,HN =GM ,进而得到AH DG =,再根据CE 解析式求出D 点坐标,即可找出d 与t 之间的函数关系式;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,证四边形BGMT 与四边形HNMC 均为矩形,得MN MT =,再进一步证明ENH ≌EMG ,利用全等三角形的性质通过角度计算,得出△BML为等腰三角形且BM BL=,再用含有t的代数式表示BM,最后在Rt△BMG中利用勾股定理建立等式,求出t的值.【详解】解:(1)∵CE⊥AB,∴设直线CE的解析式为:1 2y x c=-+,把点C(2,0)代入上述解析式,得1c=,∴直线CD的解析式为:112y x=-+;(2)过点E作EM⊥y轴于点M,过点E作EN x⊥轴于点N,令26112y xy x=+⎧⎪⎨=-+⎪⎩,解得22xy=-⎧⎨=⎩,∴()2,2E-,易证EDM≌EAN,ENH≌EMG,∴AN=DM,HN=GM,∴AH DG=,由直线CE的解析式112y x=-+,可求点D(0,1)∴DG=1—t,∴1d t=-+;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,易证四边形BGMT 与四边形HNMC 均为矩形, 由(2)问可知1t AH GD ==-,则6t HC =- ∴6t BG MT ==-, ∴MN MT =,∵90KNM LTM ∠=∠=︒, ∴ENH ≌EMG , ∴L NKM ∠=∠,设KMN α∠=,则KMB KMN α∠=∠=, ∴90NKM α∠=︒-, ∴90NKM L α∠=∠=︒-, ∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-, ∴BM BL =, ∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中,222BM BG GM =+,解得64215t +=(不合题意舍去)或64215t -= 故,6215t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.3.(1)212(02)16(25)x x y x x ⎧≤≤⎪=⎨≤≤⎪⎩;(2)220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)第2分钟末两颗弹珠速度相差最大,最大相差6米/分钟;(4)存在,理由详见解析 【解析】 【分析】(1)将(1,2)代入21y ax =,得2a =,从而得到212y x =,再代入2x =求出18y =,即可得到反比例函数解析式,即可得解;(2)当01x ≤≤时,第二颗弹珠未弹出,故第二颗弹珠的解析式为20y =;再分别根据(1)中的结论,即可求出当13x <≤和36x <≤时第二颗弹珠的解析式;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,则第2分钟末两颗弹珠速度相差最大,分别求出第2分钟末时两颗弹珠的速度,再相减即可的解;(4)第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟,第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.可以根据速度相等时列方程求得时刻. 【详解】(1)当02x ≤≤时,将(1,2)代入21y ax =,得2a =,212y x ∴=,∵当2x =时,18y =, ∴当25x ≤≤时,116y x=, 1y ∴与x 的函数关系式为212(02)16(25)x x y x x⎧≤≤⎪=⎨≤≤⎪⎩;(2)当01x ≤≤时,第二颗弹珠未弹出, ∴第二颗弹珠的解析式为20y =;当13x <≤时,第二颗弹珠的解析式为222(1)y x =-;当36x <≤时,第二颗弹珠的解析式为2161y x =-;∴2y 与x 的函数关系式为220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大, ∴第2分钟末两颗弹珠速度相差最大,∵第一颗弹珠的速度为2218222y x =⨯==米/分钟, 第二颗弹珠的速度为2122(1)212y x =⨯==-米/分钟,∴两颗弹珠的速度最大相差8-2=6米/分钟; (4)存在,理由如下:第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟, 第二颗弹珠的速度由2米/分逐步上升到8米/分, 故在此期间必定存在一时刻,两颗弹珠的速度相同. 这个时刻可以通过解方程2162(1)x x=-求得. 【点睛】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息,明确自变量的取值范围和图象所经过的点的坐标.4.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】 【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2nm-=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x=的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可;(3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2nm-=,即:n =-2m 或m =-2n ,当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=;故答案为:0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程理由:∵点(,)p q 在反比例函数8y x=的图象上∴8q p=代入方程260px x q -+=得:2860px x p-+= 解得:12x p=,24x p =∵1212x x =∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,∴抛物线的对称轴为:(1)(4)522t t x ++-==又∵方程20ax bx c ++=是半等分根方程 ∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x += 所以153x =,2103x =所以方程20ax bx c ++=的一个根为53得证.【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答.5.A解析:(1)A (0,4),C (3,0);(2)S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩;(3)存在,满足条件的t 的值为3617或36,点Q 的坐标为162,17⎛⎫- ⎪⎝⎭或()2,16--.【解析】 【分析】(1)解方程组求出m ,n 即可解决问题.(2)分两种情形:如图1中,当0<t <4时,如图2中,当t >4时,根据S=12•BC•OP 求解即可.(3)分两种情形分别构建方程求解即可. 【详解】解:(1)由725m n m n +=⎧⎨-=⎩,解得:43m n =⎧⎨=⎩, ∴A (0,4),C (3,0); (2)如图1中,当0<t <4时,S=12•BC•OP=12×5×(4-t )=-52t+10. 如图2中,当t >4时,S=12•BC•OP=12×5×(t-4)=52t-10. 综上所述,S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩, (3)当04t <<时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯, 解得3617t =, 此时,363241717OP =-=, 32(0,)17P ∴, (4,0)B -,BQ ∴的中点Q 的坐标为162,17⎛⎫- ⎪⎝⎭, 当4t >时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯, 解得36t =,此时36432OP =-=,(0,32)P ∴-,(4,0)B -,BP ∴的中点Q 的坐标为(2,16)--.综上所述,满足条件的t 的值为3617或36.点Q 的坐标为16(2,)17-或(2,16)--. 【点睛】本题属于三角形综合题,考查了解方程组,三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 6.F解析:(1)28AD <<;(2)见详解;(3)EF BE DF =+,理由见详解【解析】【分析】(1)根据旋转的性质可证明ADC EDB ≅,6,AC BE AD ED ===,在ABE △中根据三角形三边关系即可得出答案;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,可得出CF BM =,根据垂直平分线的性质可得出EF EM =,利用三角形三边关系即可得出结论;(3)延长AB 至N ,使BN=DF ,连接CN ,可得NBC D ∠=∠,证明NBC FDC ≅,得出,CN CF NCB FCD =∠=∠,利用角的和差关系可推出50ECN ECF ∠=︒=,再证明NCE FCE ≅,得出EN EF =,即可得出结论.【详解】解:(1)∵,,AD ED CD BD ADC BDE ==∠=∠∴ADC EDB ≅∴6,AC BE AD ED ===在ABE △中根据三角形三边关系可得出:AB BE AE AB BE -<<+,即4216AD <<∴28AD <<故答案为:28AD <<;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,同(1)可得出CF BM =,∵,FD MD FD DE =⊥∴EF EM =在BEM △中,BE BM EM +>∴BE CF EF +>;(3)EF BE DF =+,理由如下:延长AB 至N ,使BN=DF ,连接CN ,∵180,180ABC D ABC NBC ∠+∠=︒∠+∠=︒∴NBC D ∠=∠∴NBC FDC ≅∴,CF CN NCB FCD =∠=∠∵100,50BCD FCE ∠=︒∠=︒∴50ECN ECF ∠=︒=∴NCE FCE ≅(SAS )∴EN EF =∴EF EN BE BN BE DF ==+=+∴EF BE DF =+.【点睛】本题考查的知识点有旋转的性质、全等三角形的判定及性质、线段垂直平分线的性质、三角形三边关系、角的和差等,解答此题的关键是作出辅助线,构造出与图①中结构相关的图形.此题结构精巧,考查范围广,综合性强.7.A解析:(1)详见解析;(2)y =(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====,根据勾股定理得到OF ===线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x , ∴()222222248OF FN ON x x x =+=-+=-+∴248EF y x x =-+ ∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴)24804x x y x x-+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴2421482x xxPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴224242()xAE E Q-===∴43x =, ∴BF=2或43. 【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.8.A解析:(1)(1,4)D ;(2)158(,)33M ,274(,)33M ;(3)N 的坐标为57(,)24.【解析】【分析】(1)将点A 坐标代入函数关系式可得a 与b 的方程,再根据顶点D 的横坐标为1可得另一个关于a 和b 的方程,联立方程组求解即可得到a 和b 的值,进而求得抛物线的函数关系式,再将顶点D 的横坐标代入即可求得点D 坐标;(2)①如图,取DB 得三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,通过证相似三角形可得点M 的横纵坐标与点B 、D 的横纵坐标之间的数量关系,进而得解;(3)取线段BC 的中点G ,连接GM ,由中点坐标可得33(,)22G ,根据等腰三角形的三线合一可得GM ⊥BC ,在根据两条直线互相垂直可求得:GM l y x =,与:26BD l y x =-+联立方程组可求得点M 的坐标,再由(2,2),(0,3)M C 利用待定系数法可得1:32CM l y x =-+,最后将132y x =-+与2y x 2x 3=-++联立方程组即可求得点N 的坐标.【详解】解:(1)将(1,0)A -代入23y ax bx =++可得03a b =-+①∵顶点D 的横坐标为1, ∴12b a-=,即2b a =-② 联立①②解得1,2a b =-= ∴2y x 2x 3=-++当1x =时,4y =(1,4)D ∴(2)由(1)得2y x 2x 3=-++当y=0时,x 1=-1,x 2=3,∴B (3,0),即BO=3,如图,取DB 的三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,则可得△DGM 1∽△DHM 2∽△DEB ,△BQM 2∽△BPM 1∽△BED ,且相似比为1:2:3, ∴12833M D y y == 115()33M D B D x x x x =+-= 158(,)33M ∴ 同理可得:274(,)33M∴点M 的坐标为:158(,)33M ,274(,)33M (3)NCB DBC ∠=∠CM MB ∴=取线段BC 的中点G ,作直线GM ,∵点B (3,0),点C (0,3)∴中点G 的坐标为33(,)22∵CM MB =,点G 为线段BC 的中点,∴GM ⊥BC ,∴设直线GM 为y=x+m 将33(,)22G 代入得m=0,∴:GM l y x =①设直线BD 为y=kx+n将,B D 坐标代入得k=-2,n=6,∴:26BD l y x =-+② 联立①②可得22x y =⎧⎨=⎩∴(2,2)M设直线MC 为y=k 2x+n 2将(2,2),(0,3)M C 坐标代入得k 2=12-,n 2=3, ∴1:32CM l y x =-+③联立③与2y x 2x 3=-++可得5274x y ⎧=⎪⎪⎨⎪=⎪⎩∴57(,)24N故N 的坐标为57(,)24.【点睛】本题考查了一次函数与二次函数的综合应用以及相似三角形的判定及性质的应用,能够根据题意做出正确的辅助线,利用数形结合思想进行转化是解决本题的关键. 9.H解析:(1)3;(2)最短距离为:21,H(914,13314),I(275,235) 【解析】【分析】(1)根据菱形性质,得到A 、B 、C 、O 四点坐标,然后根据平移得到对应点坐标,故可求得C E '和C F '的长,令它们相等可得m 的值;(2)点G 作以C A '为对称轴的点G ',交C F '于点G ',点J 作以O B ''为对称轴的点J ',交A B ''于点J ',G J ''与C A '、A B ''的交点便是点H 、I ;先利用对称的性质,求解得出点G '、J '的坐标,然后利用代入系数法求得线段对应函数解析式,最后联立方程得到点H 、I 的坐标.【详解】(1)如下图,CB 与y 轴交于点M ,过点C 作x 轴的垂线,交x 轴于点N∵在菱形ABCO 中,∠C=60°,菱形边长为4∴在Rt △COM 中,CM=2,3∴O(0,0),A(4,0),B(2,3,C(-2,3∵将菱形OABC 先向右平移4个单位后,再向下平移() 03m m <<个单位,得到菱形''''O A B C∴O '(4,-m),A '(8,-m),B '(6,3m -),C '(2,3m -)∴直线AB 的解析式为:y=343x +∵点E 的纵坐标为:23m -,代入解析式得:x=323m +∴E(32m +,23m -) 同理,F(34m -,0) ∵四边形AE C F '是菱形 ∴E F C C '=' E 33C m '= ∵C '(2,23m -),F(343m -,0) ∴NF=32m -,∴23F 4C m =-' ∴3234m m =- 解得:m=3(2)如下图,点G 作以C A '为对称轴的点G ',交C F '于点G ',过点C '作x 轴的垂线,交过点G '作y 轴的垂线于点K ,同样作点J '和点Q3C '(23),E(33∵点G 是C E '的中点,∴12C G '=∴12C G ''=,∴14G K '=,3C K '=∴G '(94,33) 同理,J 32B J B '''==∴34J Q '=,334QB '= ∴J '(274,3) ∴22279333214444G J ⎛⎫⎛⎫=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭'' ∴最短距离为:21根据点A 、C '可得直线A C '的解析式为:353y x =-+ 根据点O '、B '可得直线O B ''的解析式为:353y x =-根据点G '、J '可得直线G J ''的解析式为:339y x =+ 联立G J ''和A C '得:x=914,y=13314,∴H(914,13314) 联立G J ''和O B ''得:x=275,y=23,∴I(275,23) 【点睛】本题考查了菱形的性质、一次函数与平面直角坐标系,在第(2)问中,解题关键是利用对称找出最短距离对应的点.10.A解析:(1)图见解析,33cm ;(2)①25cm 42cm AB ≤≤;②26【解析】【分析】(1)连接AO ,直线l 垂直平分PO .13cm 22OH PO ==,在Rt △AHO 中即可求解; (2)①分两种情况求解;②过O 作弦AB 的垂直与圆交于点D ,与弧AB 交于点C ,与AB 交于点E ,过M 作OM 的垂线,两条垂线的交点为O',连接AO ,得到OO'垂直平分AB ,O'为弧ABM 所在圆的圆心,10cm OO '=,在Rt △ADO 中即可求解;【详解】(1)如图,直线l 为所求,连接AO .∵点P 与点O 关于直线l 对称,∴直线l 垂直平分PO . ∴13cm 22OH PO ==. 在Rt AHO ∆中,∵222AH HO AO +=, ∴2233cm 2AH AO HO =-=. 在O 中,∵PO AB ⊥,PO 为半径, ∴233cm AB AH ==.(2)如图1:∵弧AB 翻折与M 重合,OM=1,∴DM=1,在Rt△ADO 中,AO=3,DO=2,∴5AD =;如图2:∵弧AB 翻折与M 重合,OM=1,∴MD=2,DO=1,在Rt△ADO 中,AO=3,∴22AD =∴2542AB ≤≤故答案为2542AB ≤≤(3)如图3:过O 作弦AB 的垂线与圆O 交于点C ,与AB 交于点D ,连接OM ,过点M 作OM 的垂线,两条垂线的交点为O',连接AO ,∴OO'垂直平分AB,O'为弧ABM所在圆的圆心,∵折叠后的圆弧与直线OM相切于点M,∴MO'=3,CO=EO',在Rt△OO'M中,OM=1,∴'10OO=,在Rt△ADO中,10DO=AO=3,∴26 AD=,∴26AB=26【点睛】本题考查圆的翻折,垂径定理,圆的切线,解直角三角形;熟练用垂径定理,在直角三角形中求边,分类讨论折叠的情况是解题的关键.11.D解析:(1)见解析;(2)y=1603x+;(2)232【解析】【分析】(1)根据翻折的性质得△DFG≌△DFA,从而推导得出∠FDC=∠DFG,进而得到CF=DC;(2)在等腰△DGC和等腰△CFD中,可用y表示出∠GDC、∠FDC的值,从而求出∠ADF,根据∠ADE=∠DEC,得出y与x的关系式;(3)先证△KCD是等腰直角三角形,根据CD的长得到KC的值,然后再△KGC中求得KG 的值.【详解】(1)∵将菱形ABCD沿DF翻折,点A恰好落在点G上∴△DFG≌△DFA,∠AFD=∠FDC∴∠AFD=∠DFG∴∠FDC=∠DFG∴CF=DC;(2)∵AD=DG=DC=FC,∠DCF=y∴在△DGC中,∠DGC=y,∠GDC=180-2y在△CFD 中,∠CFD=∠CDF=902y - ∴∠FDG=∠FDC -∠GDC=3902y - ∴∠ADF=∠FDG=3902y -,∴∠ADE=3y -180 ∵AD ∥BC∴∠ADE=∠DEC ,即3y -180=x化简得:y=1603x +; (3)如下图,过点K 作CD 的垂线,交CD 于点I ,延长KG 交BC 于点L ,过点C 作GL 的垂线,交GL 于点Q ,过点C 作GD 的垂线,交GD 于点N ,∵x=45°,∴y=75°,∠ADE=x=45°∴∠DGC=∠DCG=75°,∴∠NDC=30°,∴∠ADC=45°+30°=75°,∵四边形ABCD 是菱形,∴∠B=75°,∵KG ∥DC ,∴KG ∥AB ,∠KGD=∠NDC=30°,∴∠GLC=∠B=75°,∠KGC=30°+75°=105°,∴∠LGC=75°,∴∠CGL=∠CGN ,∴GC 是∠LGN 的角平分线,∴CQ=CN ,∵CD=4,∠CDE=30°,∴在Rt △CND 中,CN=2,∴CQ=2,。
人教版中考数学压轴题专项训练学能测试
一、中考数学压轴题1.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.2.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.3.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.(1)求直线AD 和BC 之间的距离;(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.4.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC 的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.105AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.5.已知.在Rt △OAB 中,∠OAB=90°,∠BOA=30°,3O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内,将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处.(1)求经过点O ,C ,A 三点的抛物线的解析式.(2)若点M 是抛物线上一点,且位于线段OC 的上方,连接MO 、MC ,问:点M 位于何处时三角形MOC 的面积最大?并求出三角形MOC 的最大面积.(3)抛物线上是否存在一点P ,使∠OAP=∠BOC ?若存在,请求出此时点P 的坐标;若不存在,请说明理由.6.如图,在等边ABC ∆中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接BE ,DE .(1)如图1,若310DE =,23BC =,求CE 的长;(2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且DF CD =,求证:12AB EF =;(3)在(2)的条件下,若45AED ∠=︒直接写出线段BD ,EF ,ED 的等量关系7.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.8.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.9.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.(1)求二次函数的关系式.(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标.(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.10.对于平面内的点M 和点N ,给出如下定义:点P 为平面内的一点,若点P 使得PMN 是以M ∠为顶角且M ∠小于90°的等腰三角形,则称点P 是点M 关于点N 的锐角等腰点P .如图,点P 是点M 关于点N 的锐角等腰点.在平面直角坐标系xOy 中,点O 是坐标原点.(1)已知点(2,0)A ,在点123(0,2),(13),(13)P P P -,4(2,2)P -中,是点O 关于点A 的锐角等腰点的是___________.(2)已知点(3,0)A ,点C 在直线2y x b =+上,若点C 是点O 关于点A 的锐角等腰点,求实数b 的取值范围.(3)点D 是x 轴上的动点,(,0),(2,0)D t E t -,点(,)F m n 是以D 为圆心,2为半径的圆上一个动点,且满足0n ≥.直线24y x =-+与x 轴和y 轴分别交于点H K ,,若线段HK 上存在点E 关于点F 的锐角等腰点,请直接写出t 的取值范围.11.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)12.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3().(1)求抛物线的解析式及顶点M 坐标;(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,PDE ABMC 1S S 9=四边形. 13.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.14.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 15.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.16.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.17.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点0(3)A ,,点()0, 3B ,点(0,0)O(I)过边OB 上的动点D (点D 不与点B ,O 重合)作DE OB ⊥交AB 于点E ,沿着DE 折叠该纸片,点B 落在射线BO 上的点F 处.①如图,当D 为OB 中点时,求E 点的坐标;②连接AF ,当AEF ∆为直角三角形时,求E 点坐标:(Ⅱ) P 是AB 边上的动点(点 P 不与点B 重合),将AOP ∆沿OP 所在的直线折叠,得到'A OP ∆,连接'BA ,当'BA 取得最小值时,求P 点坐标(直接写出结果即可).18.我们知道,在等腰直角三角形中,底边与一边腰长比为2:1.如图1,90A ∠=︒,AB AC =,则2BC AB=.知识应用:(1)如图2,ADE ∆和ABC ∆均为等腰直角三角形,90DAE BAC ∠=∠=︒,D ,E ,C 三点共线,若2AD =2BD =,求CD 的长. 知识外延:(2)如图3,正方形ABCD 中,BE 和BC 关于BG 对称,C 点的对应点为E 点,AE 交BG 的延长线于F 点,连接CF .①求证:GF EC =;②若2AE =,2CE =,求BF 的长.19.如图,在▱ABCD 中,对角线AC ⊥BC ,∠BAC =30°,BC =23,在AB 边的下方作射线AG ,使得∠BAG =30°,E 为线段DC 上一个动点,在射线AG 上取一点P ,连接BP ,使得∠EBP =60°,连接EP 交AC 于点F ,在点E 的运动过程中,当∠BPE =60°时,则AF =_____.20.阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”:如图1.在△ABC 中,如果AB >AC ,那么∠ACB >∠ABC .证明如下:将AB 沿△ABC 的角平分线AD 翻折(如图2),因为AB >AC ,所以点B 落在AC 的延长线上的点B '处.于是,由∠ACB >∠B ',∠ABC =∠B ',可得∠ACB >∠ABC .(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”:如图3.在△ABC 中,如果∠ACB >∠ABC ,那么AB >AC .小明的思路是:沿BC 的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M 为正方形ABCD 的边CD 上一点(不含端点),连接AM 并延长,交BC 的延长线于点N .求证:AM +AN >2BD .21.问题提出(1)如图1,已知三角形ABC ,请在BC 边上确定一点D ,使得AD 的值最小. 问题探究(2)如图2,在等腰ABC 中,AB AC =,点P 是AC 边上一动点,分别过点A ,点C 作线段BP 所在直线的垂线,垂足为点,D E ,若5,6AB BC ==,求线段BP 的取值范围,并求AD CE +的最大值.问题解决(3)如图3,正方形ABCD 是一块蔬菜种植基地,边长为3千米,四个顶点处都建有一个蔬菜采购点,根据运输需要,经过顶点A 处和BC 边的两个三等分点E F 、之间的某点P 建设一条向外运输的快速通道,其余三个采购点都修建垂直于快速通道的蔬菜输送轨道,分别为BB '、CC '、DD '.若你是此次项目设计的负责人,要使三条运输轨道的距离之和()BB CC DD '''++最小,你能不能按照要求进行规划,请通过计算说明.22.如图,平行四边形ABCD 中,AB ⊥AC ,AB =2,AC =4.对角线AC 、BD 相交于点O ,将直线AC 绕点O 顺时针旋转α°(0°<α<180°),分别交直线BC 、AD 于点E 、F .(1)当α=_____°时,四边形ABEF 是平行四边形;(2)在旋转的过程中,从A 、B 、C 、D 、E 、F 中任意4个点为顶点构造四边形, ①当α=_______°时,构造的四边形是菱形;②若构造的四边形是矩形,求该矩形的两边长.23.已知,抛物线212y x bx c =++与y 轴交于点()0,4C -与x 轴交于点A ,B ,且B 点的坐标为()2,0.(1)求该抛物线的解析式.(2)如图1,若点P 是线段AB 上的一动点,过点P 作//PE AC ,交BC 于E ,连接CP ,求PCE ∆面积的最大值.(3)如图2,若直线y x m =+与线段AC 交于点M ,与线段BC 交于点N ,是否存在M ,N ,使得OMN ∆为直角三角形,若存在,请求出m 的值;若不存在,请说明理由.24.在平面直角坐标系xOy 中,点A 为x 轴上的动点,点B 为x 轴上方的动点,连接OA ,OB ,AB .(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点P ,请直接写出P ∠的度数;(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=︒,求OAB OCB∠∠;(3)如图3,当点B 在第一象限内,点P 是AOB ∆内一点,点M ,N 分别是线段OA ,OB 上一点,满足:1902APB AOB ∠=︒+∠,PM PN =,180ONP OMP ∠+∠=︒.以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;④AM BN AB +=.正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过25.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于AB 、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.A解析:(1)2135442y x x =--,33y x 42=+ ;(2)① 存在,点P 的坐标是(2,-3)和(4,32-);②231848555m x x =-++ , m 的最大值是15. 【解析】【分析】 (1)将点A 和点B 的坐标代入抛物线的解析式可求得b 、c 的值,然后可求得抛物线的解析式,将点A 的坐标代入直线的解析式可求得k 的值,从而可求得直线的解析式; (2)①将2135442y x x =--与33y x 42=+联立,可求得点158,2D ⎛⎫ ⎪⎝⎭,然后再求得点30,2C ⎛⎫ ⎪⎝⎭则6CE =,设点P 的坐标为2135,442x x x ⎛⎫-- ⎪⎝⎭,则M 的坐标是33,42x x ⎛⎫+ ⎪⎝⎭.然后可得到PM 的长与x 的函数关系式,然后依据PM CE =,可求得x 的值,从而可得到点P 的坐标;②在Rt CDE ∆中,依据勾股定理可知:10DC =,则CDE ∆的周长是24,接下来,证明PMN CDE ∆∆∽,依据相似三角形的周长比等于相似比可得到m 与x 的函数关系式,最后利用配方法可求得m 的最大值.解:(1)214y x bx c =++经过点A 和点B , ∴12052b c c -+=⎧⎪⎨=⎪⎩, 解得3452b c ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为2135442y x x =--, 直线32y kx =+经过点(2,0)A -, 3202k ∴-+=,解得:34k =. ∴直线的解析式为33y x 42=+; (2)①将2135442y x x =--与33y x 42=+联立,解得2x =-或8x =, 将8x =代入33y x 42=+得:152y =, 158,2D ⎛⎫∴ ⎪⎝⎭, 将0x =代入33y x 42=+得:32y =, 30,2C ⎛⎫∴ ⎪⎝⎭, 6CE ∴=,设点P 的坐标为2135,442x x x ⎛⎫-- ⎪⎝⎭,则M 的坐标是33,42x x ⎛⎫+ ⎪⎝⎭, 点P 在直线AD 的下方,22331351344244242PM x x x x x ⎛⎫⎛⎫∴=+---=-++ ⎪ ⎪⎝⎭⎝⎭, 四边形PMEC 为平行四边形,PM CE ∴=,2134642x x ∴-++=,解得2x =或4x =, 当2x =时,3y =-,当4x =时,32y =-,∴当点P 的坐标为()2,3-或34,2⎛⎫- ⎪⎝⎭时,四边形PMEC 为平行四边形; ②在Rt CDE ∆中,8DE =,6CE =,依据勾股定理可知:10DC =, CDE ∴∆的周长是24,//PM y 轴,PMN DCE ∴∠=∠,又90PNM DEC ∠=∠=︒,PMN CDE ∴∆∆∽, ∴PMN CDE l PM l DC ∆∆=,即2134422410x x m -++=, 化简整理得:231848555m x x =-++, 配方得:23(3)155m x =--+, ∴当3x =时,m 有最大值,m 的最大是15.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数、一次函数的解析式,平行四边形的性质、相似三角形的性质和判定,依据相似三角形的周长比等于相似比列出m 与x 的函数关系式是解题的关键.2.A解析:(1) A (12,0) B (72,0);(2)①y x =+,②2999y x x =-+ 【解析】【分析】(1)根据抛物线的解析式可得对称轴为x =2,利用:3:4∆∆=ABC BCE S S 得出CA :CE =3:4,由△AOE ∽△AGC 可得13=AO AG ,进而求得OA 、OB 的长,即可求得点A 、点B 的坐标; (2)根据旋转的性质求出C 点坐标,利用C 点坐标和△AOE ∽△AGC 可求得E 点坐标,,分别利用待定系数法即可求得直线CE 和抛物线的解析式.【详解】解:(1)∵抛物线的解析式为24(0)=-+>y mx mx n m , ∴对称轴为直线422-=-=m x m, 如图,设对称轴与x 轴交于G ,则//CG y 轴,2OG =,∴△AOE ∽△AGC , ∴=AO AE AG AC , ∵:3:4ABC BCE S S =,∴CA :CE =3:4 ,则31AE AC =, ∴13==AO AE AG AC , ∴1142==OA OG ,3342==AG OG , 则23==AB AG ,72=+=OB OA AB , ∴A (12,0), B (72,0); (2)如图,设O 旋转后落在点Q 处,过点C 作CP y ⊥轴于点P ,由旋转的性质得:△BCO ≌△ACQ ,∴BO =AQ =72,CO =CQ , ∴OQ==== ∵CP y ⊥轴,∴12==OP OQ ∴点C的坐标为(2,,则CG =由(1)得△AOE ∽△AGC ,13==OE AE CG AC ,∴3OE =,即点E的坐标为(0,3, ①设CE 的解析式为y kx b =+,分别代入C (2,,E 得:23k b b ⎧+=⎪⎨=⎪⎩,解得:k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴CE的解析式为33y x =-+; ②将A (12,0),C (2,分别代入24y mx mx n =-+得:120448m m n m m n ⎧-+=⎪⎨⎪-+=⎩,解得:99m n ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为2999y x x =-+. 【点睛】本题考查了二次函数的综合、旋转的性质、相似三角形的性质和求一次函数的解析式,正确的理解题意,熟练运算“数形结合思想”是解题的关键. 3.A解析:(1)12;(2)5s 或373s ;(3)163s 或685s 或72s 【解析】【分析】(1)AD 与BC 之间的距离即AB 的长,如下图,过点D 作BC 的垂线,交BC 于点E ,在RtDEC中可求得DE的长,即AB的长,即AD与BC间的距离;(2)四边形QDCP为平行四边形,只需QD=CP即可;(3)存在3大类情况,情况一:QP=PD,情况二:PD=QD,情况三:QP=QD,而每大类中,点P存在2种情况,一种为点P还未到达点C,另一种为点P从点C处返回.【详解】(1)如下图,过点D作BC的垂线,交BC于点E∵∠B=90°,AD∥BC∴AB⊥BC,AB⊥AD∴AB的长即为AD与BC之间的距离∵AD=16,BC=21,∴EC=5∵DC=13∴在Rt DEC中,DE=12同理,DE的长也是AD与BC之间的距离∴AD与BC之间的距离为12(2)∵AD∥BC∴只需QD=PC,则四边形QDCP是平行四边形QD=16-t,PC=21-2t或PC=2t-21∴16-t=21-2t或16-t=2t-21解得:t=5s或t=37 3s(3)情况一:QP=PD图形如下,过点P作AD的垂线,交AD于点F∵PQ=PD,PF⊥QD,∴QF=FD∵AF∥BP,AB∥FP,∠B=90°∴四边形ABPF是矩形,∴AF=BP由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2t BP=2t 或BP=21-(2t -21)=42-2t∵AF=BP∴8+2t =2t 或8+2t =42-2t 解得:t=163或t=685情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理QD=16-t ,PF=AB=12BP=2t 或21-(2t -21)=42-2t则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26∴在Rt PFD 中,()22212162PD t =+-或()22212226PD t =+-∵PD=QD ,∴22PD QD =∴()()22216t 12162t =+--或()()22216t 12226t =+--解得:2个方程都无解情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理:QD=16-t ,FP=12BP=2t 或BP=42-2tQF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t在Rt QFP 中,22212PQ t =+或()22212423PQ t =+- ∵PQ=QD ,∴22PQ QD =∴()22216t 12t =+-或()()22216t 12423t =+--第一个方程解得:t=72,第二个方程解得:无解 综上得:t=163或685或72 【点睛】 本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q 运动的轨迹,得出BP 的长度.4.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)AB BC =3)①5AD CD =. 【解析】【分析】 (1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论; (2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出AB BC的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到CF =,则(2AC x =+=DF 的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AF AE EC=,然后求出CD 和AD 的长度,即可得到答案.【详解】解:(1)ABC 是“准黄金”三角形.理由:如图,过点A 作AD BC ⊥于点D ,∵12AC =,30ACB ∠=︒, ∴162AD AC ==. ∴:6:103:5AD BC ==. ∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.不防设3AE k =,5BC k =,∵点C 为ABD △的重心,∴:2:1BC CE =. ∴52k CE =,152kBE =. ∴2215329(3)22k AB k k ⎛⎫=+= ⎪⎝⎭. ∴329329:5AB k k BC ==.(3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3,∵35AE BC =,∴BC=5,∵10AB BC =,∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=,∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF ,∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°, ∴3CF x =, ∴(23)35AC x =+=,解得:65315DF x ==-∴2125615CD DF ==-.②如图,过点A 作AE BC ⊥于点E ,则3AE =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.∴5BC =.∵105AB BC =, ∴10AB. ∴221BE AB AE =-=.∴6CE BE BC =+=,2236935AC CE AE =+=+=.分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,∴90B GC DFC '∠=∠=︒,3B G '=,5C B B C '==,则CG 4=.∵GCB FCD α'∠=∠=,∴AEC DFA ∽△△.∴::::3:4:5DF FC CD B G GC CB ''==.∴设3DF k =,4FC k =,5CD k =.∵12l l //,∴ACE CAD ∠=∠,且90AEC AFD ∠=∠=︒.∴AEC DFA ∽△△. ∴DF AF AE EC =.∴33k =,解得k =∴5CD k ==92AD ===.∴95AD CD ===. 【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.5.C解析:(1)y=﹣x 2;(2)28⎛⎫ ⎪ ⎪⎝⎭3)存在,53)或(﹣3,﹣73) 【解析】【分析】(1)根据折叠的性质可得OC=OA ,∠BOC=∠BAO=30°,过点C 作CD ⊥OA 于D ,求出OD 、CD ,然后写出点C 的坐标,再利用待定系数法求二次函数解析式解答;(2)求出直线OC 的解析式,根据点M 到OC 的最大距离时,面积最大;平行于OC 的直线与抛物线只有一个交点,利用根的判别式求出m 的值,利用锐角三角函数的定义求解即可;(3)分两种情况求出直线AP 与y 轴的交点坐标,然后求出直线AP 的解析式,与抛物线解析式联立求解即可得到点P 的坐标.【详解】解:(1)∵Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处,∴BOC=∠BAO=30°,∴∠AOC=30°+30°=60°,过点C 作CD ⊥OA 于D ,则OD=1233 33, 所以,顶点C 33),设过点O ,C ,A 抛物线的解析式为为y=ax 2+bx , 则223)33(23)230a b a b ⎧=⎪⎨+=⎪⎩, 解得:123a b =-⎧⎪⎨=⎪⎩∴抛物线的解析式为y=﹣x 23;(2)∵C 33),∴直线OC 的解析式为:3y x =,设点M 到OC 的最大距离时,平行于OC 的直线解析式为3y x m =+, 联立233y x m y x x⎧=+⎪⎨=-+⎪⎩, 消掉未知数y 并整理得,230x x m +=,△=(3-2-4m=0,解得:m=34. ∴23304x x +=, ∴3x =; ∴点M 到OC 的最大距离=34×sin30°=313428⨯=;∵OC==∴13288MOCS∆=⨯⨯=;此时,M⎝⎭,最大面积为8;(3)∵∠OAP=∠BOC=∠BOA =30°,∴23=,∴直线AP与y轴的交点坐标为(0,2)或(0,﹣2),当直线AP经过点(0)、(0,2)时,解析式为2y x=+,联立22y xy x⎧=-+⎪⎨=+⎪⎩,解得11xy⎧=⎪⎨=⎪⎩2253xy⎧=⎪⎪⎨⎪=⎪⎩.所以点P的坐标为(3,53),当直线AP经过点(0)、(0,﹣2)时,解析式为2y x=-,联立223y xy x⎧=-+⎪⎨=-⎪⎩解得11xy⎧=⎪⎨=⎪⎩22373xy⎧=-⎪⎪⎨⎪=-⎪⎩;所以点P的坐标为(73-).综上所述,存在一点P,5373),使∠OAP=∠BOA.【点睛】本题是二次函数综合题型,主要利用了折叠的性质,待定系数法求二次函数解析式,联立两函数解析式求交点的方法,(2)判断出点M到OC的距离最大是,平行于OC的直线与抛物线只有一个交点是解题的关键,(3)确定出直线AP 的解析式是解题的关键.6.B解析:(1)93CE =-;(2)详见解析;(3)612BD DE EF =- 【解析】【分析】(1)过点B 作BH AC ⊥于点H ,分别求出BH ,BE ,根据勾股定理问题得解; (2)如图在FE 上取一点G ,使FG AC =,连接DG ,先证明()ACD GFD SAS ∆∆≌,再证明()ECB DGE AAS ∆∆≌,问题得证;(3)过点D 作AE 的垂线,构造出一个30,60︒,90︒的三角形和一个等腰直角三角形,借助(2)的结论,设222EF AB AC x ===,2ED y =,通过解两个直角三角形,代换x 和y 的关系,得出结论.【详解】解:(1)如图,过点B 作BH AC ⊥于点H ,在等边ABC ∆中∵23BC =∴3AH HC ==,223BH BC CH =-=, ∵点E 在BD 的垂直平分线上, ∴310BE DE == ,在Rt BHE ∆中229EH BE BH =-=∴93CE EH HC =-=-(2)如图在FE 上取一点G ,使FG AC =,连接DG∵DF CD =∴FCD CFD ∠=∠∴ACD EFD ∠=∠在ACD ∆和GFD ∆中,DF CD ACD EFD FG AC =⎧⎪∠=∠⎨⎪=⎩∴()ACD GFD SAS ∆∆≌∴AD DG =∴60A DGA ∠=∠=︒∴60A DGA ADG ∠=∠=∠=︒设EBD EDB α∠=∠=∴120CBE α∠=︒-在ADE ∆中∴18060120AED αα∠=︒-︒-=︒-∴120AED CBE α∠=∠=︒-在ECB ∆和DGE ∆中120AED CBE ECB ECD EB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()ECB DGE AAS ∆∆≌∴BC GE =∴AB AC BC GE FG ====12AB EF =(3)如图,设222EF AB AC x ===,DP=y ,过点DP ⊥AE ,垂足为P ,∵∠AED=45°, ∠A=60°, ∴2sin sin 45DP y ED AED ===∠︒,23sin sin 603DP y AD A ===∠︒,∴2=y DE , ∴BD=AD-AB =2323216122y x DE EF DE EF -=-=-, 故答案为:612BD DE EF =-. 【点睛】本题涉及知识点较多,设计新颖,综合性强,难度较大,根据题意添加适当辅助线,构造直角三角形或构造全等是解题关键.7.A解析:(1)()1,1E -;(2)1312m -≤≤-或0131m ≤≤3)639t ≤≤.【解析】【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可.【详解】(1)()1,2D -到线段BC 的距离为2, 22(12)(20)1332DC =--+-=⨯ ∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,22(12)(10)103EC =--+-=>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,22(02)(20)2232FC =-+-=<⨯∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点;(2)设直线l 上“倍增点”的横坐标为m ,当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=, 得1131m =+,2131m =-当点在O 内部时,22224(2)3(44(2))m m m m ++-+≥--+-+解得:m≥0或m ≤-2∴直线l 上“倍增点”的橫坐标的取值范围为1312m -≤≤-或0131m ≤≤+;(3)如图所示,当点G(1,0)为T "倍增点"时,T(9,0),此时T 的横坐标为最大值,当点H(0,1)为T “倍增点”时,则T(63,此时T 的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t -≤≤.【点睛】在正确理解点A 是图形M 的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.8.A解析:(1)145;(2)2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩;(3)t 的值为477或727.【解析】【分析】(1)如下图,根据4tan 3A =,可得出PN 与AP 的关系,从而求出t 的值; (2)如下图,存在2种情况,一种是点M 在△ABC 内,另一种是点M 在△ABC 外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM 所在的直线将△ABC 的面积平分,另一种是QN 所在的直线将△ABC 的面积平分. 【详解】(1)如图1,点N 在AC 上 图1由题意可知:PD=DQ=t ,AP=7-t∴PN=PQ=2t∵4tan 3A =∴43NP AP =,即2473t t =- 解得:t=145 (2)①如图2,图2四边形PQMN 是正方形,90BQM ∴∠=︒,45B ∠=︒,BQ MQ ∴=,即72t t -=解得73t =, 故当0t <≤73时,22(2)4S t t ==; ②如图3,图390BQF ∠=︒,45B ∠=︒,7BQ FQ t ∴==-,45BFQ MFE ∠=∠=︒,则37MF MQ QF t =-=-,90M ∠=︒,37ME MF t ∴==-, 则2221149(2)(37)21222S t t t t =--=-+-71435t ⎛⎫<< ⎪⎝⎭; 综上,2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩. (3)如下图,过点C 作AB 的垂线,交AB 于点G图4∵4tan 3A = ∴设CG=4x ,则AG=3x∵∠B=45°∴△CBG 是等腰直角三角形∴GB=GC=4x∵AB=14∴3x+4x=14,解得:x=2∴1148562ABC S== ∴1282ABCS = 情况一:PM 所在的直线平分△ABC 的面积,如下图,PM 与BC 交于点E图5则28PBES=∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵1282PBES PE PB==∴PE=PB=214∴PB=47∵PB=AB-PA=14-(7-t)=7+t∴7+t=47t=477-情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,28AFQS=∵四边形PQMN是正方形,∴∠EQH=45°∴△FHQ是等腰直角三角形∵4 tan3A=∴设FH=4y,则AH=3y,HQ=FH=4y,∴AQ=7y∴174282AFQS y y==,解得:2∵AQ=AB-QB=14-(7-t)=7+t ∴2解得:7∴综上得:t 的值为7或7.【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.9.B解析:(1)2y x 2x 3=-++;(2)①23S m m =-+,13m ≤≤;②P (32,3);(3)3,32⎛⎫ ⎪⎝⎭或(3-+-【解析】【分析】(1)将点B 、C 的坐标代入2y x bx c =-++即可; (2)①求出顶点坐标,直线MB 的解析式等,由PD ⊥x 轴且OD=m 知P (m ,-2m+6),即可用含m 的代数式表示出S ;②在和①的情况下,将S 和m 的关系式化为顶点式,由二次函数的图象和性质即可写出点P 的坐标;(3)分情况讨论,当∠CPD=90°时,推出PD=CO=3,则点P 的纵坐标为3,即可求出点P 的坐标;当∠PCD=90°时,证∠PDC=∠OCD ,由锐角三角函数可求出m 的值,即可写出点P 的坐标;当∠PDC=90°时,不存在点P .【详解】解:(1)将()3,0B ,()0,3C 代入2y x bx c =-++,得0=-9+3b 33c +⎧⎨=⎩, 解得23b c =⎧⎨=⎩, ∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =-++=--+∴顶点M (1,4),将直线BM 的解析式设为y kx b =+,将点()3,0B ,M (1,4)代入, 可得304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为26y x =-+,如图∵PD ⊥x 轴且OD=m ,∴P (m ,-2m+6), ∴211(26)322PCD S S PD OD m m m m ==⋅=-+=-+, 即23S m m =-+,∵点P 为线段MB 上一个动点且()3,0B ,M (1,4),∴13m ≤≤;②22393()24S m m m =-+=--+, ∴当32m =时,S 取最大值94, ∴P (32,3); (3)存在,理由如下:如图,当∠CPD=90°时,90COD ODP CPD ,∴四边形CODP 为矩形,∵PD=CO=3,将3y =代入直线26y x =-+,得32x =, ∴P 3,32⎛⎫ ⎪⎝⎭;如图,当∠PCD=90°时,∵OC=3,OD=m ,22229CD OC OD m , //PD OC PDCOCD , cos cos PDC OCD ,DC OC PD DC∴=, 2DC PD OC ∴=⋅,293(26)m m , 解得1332m (舍去),1332m =-+∴(332,1262)P -+-;当∠PDC=90°时,∵PD ⊥x 轴,∴不存在点P ;综上所述,点P 的坐标为3,32⎛⎫ ⎪⎝⎭或(32,1262)-+-.【点睛】本题考查了待定系数法求函数解析式,函数的思乡曲求极值以及直角三角形的存在性与动点结合等,解题的关键是注意分类讨论思想在解题过程中的运用. 10.E解析:(1)24P P ,;(2)353b -≤<;(3)6425t >≥-【解析】【分析】(1)根据等腰锐角点的定义即得;(2)先确定极限位置:直线与圆相切于第四象限及直线过(0,3)时b 的值,进而确定范围;(3)分类讨论:E 点和F 点位于线段HK 左侧;E 点和F 点位于线段HK 右侧;利用一线三垂直模型及相似三角形的性质确定极限位置t 的值,进而确定范围.【详解】(1)∵点P 是点O 关于点A 的锐角等腰点,(2,0)A∴OA=OP=2如下图:当1(0,2)P 时,OP 1=2,OP 1⊥OA ,不成立; 当(23P 时,过P 2作P 2M ⊥x 轴 ∴OM=1,P 23∴在2Rt P MO 中,22222OP OM P M =+= ∵290P OA ∠<︒ ∴点(23P 是点O 关于点A 的锐角等腰点; 当(33P -时,390POA >︒∠ ∴点(33P -不是点O 关于点A 的锐角等腰点; 当42,2P 时,过P 4作P 4N ⊥x 轴 ∴2,P 42∴在4Rt P NO 中,22442OP ON P N =+=,445P ON =︒∠ ∴点42,2P 是点O 关于点A 的锐角等腰点. ∴点O 关于点A 的锐角等腰点有(23P ,42,2P。
人教版中考数学压轴题综合模拟测评学能测试试卷
一、中考数学压轴题1.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.2.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点M 、N 在x 轴和y 轴上所对应的数分别叫做P 点的x 坐标和y 坐标,有序实数对(x ,y )称为点P 的斜坐标,记为P (x ,y )(1)如图2,ω=45°,矩形OABC 中的一边OA 在x 轴上,BC 与y 轴交于点D , OA =2,OC =1.①点A 、B 、C 在此斜坐标系内的坐标分别为A ,B ,C .②设点P (x ,y )在经过O 、B 两点的直线上,则y 与x 之间满足的关系为 . ③设点Q (x ,y )在经过A 、D 两点的直线上,则y 与x 之间满足的关系为 . (2)若ω=120°,O 为坐标原点.①如图3,圆M 与y 轴相切原点O ,被x 轴截得的弦长OA =23,求圆M 的半径及圆心M 的斜坐标.②如图4,圆M 的圆心斜坐标为M (23,23),若圆上恰有两个点到y 轴的距离为1,则圆M 的半径r 的取值范围是 .3.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.4.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.5.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.10AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.6.如图,矩形ABCD 中,AB =8,BC =12,E 是BC 边的中点,点P 在线段AD 上,过P 作PF ⊥AE 于F ,设PA =x .(1)求证:△PFA ∽△ABE ;(2)当点P 在线段AD 上运动时,是否存在实数x ,使得以点P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,请说明理由;(3)探究:当以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点时,请直接写出DP 满足的条件: .7.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax ,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.8.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.9.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若12,(33)2ADH a S ==+,求sin GAB ∠的值.10.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.11.对于平面直角坐标系xOy 中的图形W 1和图形W 2.给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N ,(点M 于点N 可以重合)使得AM=2BN ,则称图形W 1和图形W 2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(0,3),点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .①线段OP 的最小值为_______,最大值为_______;线段CP 的取值范直范围是_____; ②在点O ,点C 中,点____________与线段DE 满足限距关系;(2)如图2,⊙O 的半径为1,直线3y x b =+(b>0)与x 轴、y 轴分别交于点F ,G .若线段FG 与⊙O 满足限距关系,求b 的取值范围;(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.12.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.13.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.14.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 15.如图,直线y =﹣x+4与抛物线y =﹣12x 2+bx+c 交于A ,B 两点,点A 在y 轴上,点B 在x 轴上.(1)求抛物线的解析式;(2)在x 轴下方的抛物线上存在一点P ,使得∠ABP =90°,求出点P 坐标;(3)点E 是抛物线对称轴上一点,点F 是抛物线上一点,是否存在点E 和点F 使得以点E ,F ,B ,O 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.16.在平面直角坐标系中,直线4(0)3y x b b =-+>交x 轴于点A ,交y 轴于点B ,10AB =.(1)如图1,求b 的值;(2)如图2,经过点B 的直线(4)(40)y n x b n =++-<<与直线y nx =交于点C ,与x 轴交于点R ,//CD OA ,交AB 于点D ,设线段CD 长为d ,求d 与n 的函数关系式; (3)如图3,在(2)的条件下,点F 在第四象限,CF 交OA 于点E ,45AEF ∠=︒,点P 在第一象限,PH OA ⊥,点N 在x 轴上,点M 在PH 上,MN 交PE 于点G ,PH EN =,过点E 作EQ CF ⊥,交PH 于点Q , 32==EQ EF PM ,∠=∠OBR HNM ,BC CR =,点G 的坐标为1927,55⎛⎫ ⎪⎝⎭,连接FN ,求EFN 的面积.17.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.18.在菱形ABCD 中,P 为直线DA 上的点,Q 为直线CD 上的点,分别连接PC ,PQ ,且PC PQ =.(1)若60B ∠=︒,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图①,易证:DQ PD AB +=(不需证明);(2)如图②,若∠B =120°,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图③,猜想线段DQ ,PD 和AB 之间有怎样的数量关系?请直接写出对图②,图③的猜想,并选择其中一种情况给予证明.19.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积. 20.如图,平面直角坐标系中,抛物线228y ax ax a =--与x 轴交于B 、C 两点(点B 在点C 右侧),与y 轴交于点A ,连接AB ,5AB =(1)求抛物线的解析式;(2)点P 在第二象限的抛物线上,连接PB 交y 轴于D ,取PB 的中点E ,过点E 作EH x ⊥轴于点H ,连接DH ,设点P 的横坐标为t .ODH 的面积为S ,求S 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,作PF y ⊥轴于F ,连接CP 、CD ,CP CD =,点S 为PF 上一点,连接BS 交y 轴于点T ,连接BF 并延长交抛物线于点R .SBC FBO 45∠+∠=︒,在射线CS 上取点Q.连接QF ,QF RF =,求直线TQ 的解析式.21.如图,四边形AOBC 是正方形,点C 的坐标是(82,0).(1)正方形AOBC 的边长为 ,点A 的坐标是 ;(2)将正方形AOBC 绕点O 顺时针旋转45︒,点A ,B ,C 旋转后的对应点为A ',B ',C ',求点A '的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P 从点O 出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q 从点O 出发,沿折线OBCA 方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当OPQ △为等腰三角形时,求出t 的值(直接写出结果即可).22.如图1,以AB 为直径作⊙O ,点C 是直径AB 上方半圆上的一点,连结AC ,BC ,过点C 作∠ACB 的平分线交⊙O 于点D ,过点D 作AB 的平行线交CB 的延长线于点E .(1)如图1,连结AD,求证:∠ADC=∠DEC.(2)若⊙O的半径为5,求CA•CE的最大值.(3)如图2,连结AE,设tan∠ABC=x,tan∠AEC=y,①求y关于x的函数解析式;②若CBBE=45,求y的值.23.如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为R△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC的一条完美分割线.(1)如图1,AB=10,cos A=45,AD=3,若DE为完美分割线,则BE的长是.(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P 画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB的中点,连结PD、PE,求cos∠PDE的值.24.在菱形ABCD中,点P是对角线BD上一点,点M在CB的延长线上,且PC PM=,连接PA.()1如图①,求证:PA PM=;()2如图②,连接,AM PM 与AB 交于点,120O ADC ︒∠=求证 =PC AM ;()3连接AM ,当 90ADC ︒∠=时,PC 与AM 的数量关系是25.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C =,9DEP S =,求sin APB ∠的最大值.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.A解析:(1)证明见解析;(2)67FM =;(3)kBC DF kBE =+. 【解析】【分析】(1)连接AC ,根据题意判定平行四边形ABCD 为菱形,△ABC 为等边三角形,然后利用AAS 定理判定△BCE ≌△ACF ,从而得出BE=AF ,使问题得解;(2)连接AC ,过点M 作MN ⊥CF ,由含30°直角三角形的性质求得122BE BC ==,323CE CF BE ===CN=x ,则3MN x =,然后利用平行判定△FMN ∽△FBC ,根据相似三角形的性质求得126355MN FN ==,,然后利用勾股定理求解即可;(3)连接AC ,过点A 作AK ⊥BC ,在DA 上截取DH=CD ,根据有一个角是60°的等腰三角形是等边三角形判定△HCD 是等边三角形,然后根据AA 定理判定△BCE ∽△FCH ,根据相似三角形的性质求得HF CM CD AB k BE BC BC BC====,即HF=kBE ,从而使问题得解. 【详解】解:(1)连接AC因为在平行四边形ABCD 中,60B ∠=︒,AB BC =∴平行四边形ABCD 为菱形,△ABC 为等边三角形∴AC=BC ,∠B=∠BAC=∠DAC=∠ACB=60°,又∵60ECF ∠=︒ ∴∠ACE+∠BCE=∠ACE+∠ACF∴∠BCE=∠ACF∴△BCE ≌△ACF∴BE=AF∴AB=AE+BE=AE AF BC +=(2)连接AC ,过点M 作MN ⊥CF由(1)已证,△ABC 为等边三角形,△BCE ≌△ACF∵E 为AB 的中点∴CE ⊥AB∴在Rt △BCE 中,∠BCE=30° ∴122BE BC ==,323CE CF BE ===由题意60ECF ∠=︒,∴∠BCF=90°在Rt △AMCN 中,∠CMN=30° 设CN=x ,则3MN x =∵MN ⊥CF∴MN ∥BC∴△FMN ∽△FBC∴MN FN BC FC =,323423x =解得:435x = ∴126355MN FN ==, 在Rt △FMN 中,22126367()()555FM =+=(3)由题意可知,在平行四边形ABCD 中,∠B=∠D=60°,AB CD kBC ==连接AC ,过点A 作AK ⊥BC ,在DA 上截取DH=CD∵DH=CD ,∠B=∠D=60°∴△HCD 是等边三角形∴∠HCD=60°又∵∠ECF=60°∴∠BCE+∠ECH=∠FCH+∠ECH∴∠BCE =∠FCH∴△BCE ∽△FCH∴HF CM CD AB k BE BC BC BC====,即HF=kBE ∴CD=DF+HF=DF+ kBE又∵AB CD kBC ==∴kBC DF kBE =+【点睛】本题考查平行四边形的性质,菱形的判定与性质,等边三角形的判定和性质以及相似三角形的判定和性质,有一定综合性,正确添加辅助线是解题关键.2.B解析:(1)①(2,0),(12),(﹣12y 2x ;③y =﹣2x 2;(2)①半径为2,M(4323,33);②2<r<4【解析】【分析】(1)①如图2−1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2−2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3−3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题;【详解】解:(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F.由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=2,∴A(2,0),B(1,2),C(﹣1,2),故答案为:A(2,0),B(1,2),C(﹣1,2).②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M.∵OD∥BE,OD∥PM,∴BE∥PM,∴BE OE PM OM=,∴21y x=,∴y2x.故答案为:y=2x . ③如图2﹣3中,作QM ∥OA 交OD 于M .222MQ DM OA DOx y ∴=-∴= ∴222y x =-+ 故答案为:y =﹣22x +2. (2)①如图3中,作MF ⊥OA 于F ,作MN ∥y 轴交OA 于N .∵ω=120°,OM ⊥y 轴,∴∠MOA =30°,∵MF ⊥OA ,OA =3∴OF =FA 3∴FM =1,OM =2FM =2,∴圆M 的半径为2∵MN ∥y 轴,∴MN ⊥OM ,∴MN 233ON =2MN 433, ∴M 4323,33⎛⎫ ⎪ ⎪⎝⎭. ②如图4中,连接OM ,作MK ∥x 轴交y 轴于K ,作MN ⊥OK 于N 交⊙M 于E 、F .∵MK ∥x 轴,ω=120°,∴∠MKO =60°,∵MK =OK =3∴△MKO 是等边三角形,∴MN =3,当FN =1时,MF =3﹣1=2,当EN =1时,ME =3+1=4,观察图象可知当⊙M 的半径r 的取值范围为2<r <4.故答案为:2<r <4.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面斜坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.3.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为11201-【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】 (1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+, 即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1,∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+, ∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM的解析式为y=kx+b,过点D(0,3),M(3 2,0),可得,323k bb⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM的解析式为y=-2x+3,∴32OM=,3OD=,∴tan∠DMO=2,如图,过点P作PT∥y轴交直线DM于点T,过点F作直线GH⊥y轴交PT于点G,交直线CE于点H.∵PQ⊥MT,∴∠TFG=∠TPF,∴TG=2GF,GF=2PG,∴PT=25GF,∵PF=QF,∴△FGP≌△FHQ,∴FG=FH,∴PT=45GH.设点P(m,-m²+2m+3),则T(m,-2m+3),∴PT=m²-4m,GH=1-m,∴m²-4m=45(1-m),解得:111201m-=211201m+=(不合题意,舍去),∴点P11201-【点睛】本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.4.D解析:(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ==== ∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中:()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r === ∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN ∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上 ∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.5.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)32910AB BC =;(3)①125615355AD CD =. 【解析】【分析】 (1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论; (2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出AB BC 的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到3CF DF =,则(23)35AC x =+=,即可求出DF 的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AF AE EC=,然后求出CD 和AD 的长度,即可得到答案.【详解】 解:(1)ABC 是“准黄金”三角形.理由:如图,过点A 作AD BC ⊥于点D ,∵12AC =,30ACB ∠=︒,∴162AD AC ==.∴:6:103:5AD BC ==.∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.不防设3AE k =,5BC k =,∵点C 为ABD △的重心,∴:2:1BC CE =.∴52kCE =,152kBE =.∴2215329(3)22k AB k k ⎛⎫=+= ⎪⎝⎭.∴329329:5210ABk k BC ==.(3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3, ∵35AE BC =, ∴BC=5, ∵10AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=, ∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF ,∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°, ∴3CF x =, ∴(23)35AC x == 解得:65315DF x == ∴2125615CD DF ==②如图,过点A 作AE BC ⊥于点E ,则3AE =. ∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.∴5BC =. ∵105AB BC =, ∴10AB. ∴221BE AB AE =-=.∴6CE BE BC =+=,2236935AC CE AE =+=+=.分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,∴90B GC DFC '∠=∠=︒,3B G '=,5C B B C '==,则CG 4=.∵GCB FCD α'∠=∠=,∴AEC DFA ∽△△.∴::::3:4:5DF FC CD B G GC CB ''==.∴设3DF k =,4FC k =,5CD k =.∵12l l //,∴ACE CAD ∠=∠,且90AEC AFD ∠=∠=︒.∴AEC DFA ∽△△.∴DF AF AE EC =. ∴335436k k =,解得3510k =. ∴355CD k ==2222959595102AF DF AD ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=. ∴9352355AD CD === 【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.6.D解析:(1)见解析;(2)存在,满足条件的x 的值为6或253;(3)DP =485或10<DP ≤12【解析】【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB 时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围,从而得出DP的范围.【详解】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=90°=∠ABE,∴△PFA∽△ABE.(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴PA=EB=6,即x=6.②如图2,若△PFE∽△ABE,则∠PEF=∠AEB,∵AD∥BC∴∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE =PA .∵PF ⊥AE ,∴点F 为AE 的中点,Rt △ABE 中,AB =8,BE =6,∴AE =22AB BE +=2286+=10,∴EF =152AE =, ∵△PFE ∽△ABE ,∴PE EF AE BE =, ∴5106x =, ∴PE =253, ∴满足条件的x 的值为6或253. (3)如图3,当⊙D 与AE 相切时,设切点为G ,连接DG ,∵AP =x ,∴PD ═DG =12﹣x ,∵∠DAG =∠AEB ,∠AGD =∠B =90°,∴△AGD ∽△EBA ,∴AD DG AE AB =, ∴1212108x -=, ∴x =125, ∴12481255DP =-=, 当⊙D 过点E 时,如图4,⊙D 与线段有两个公共点,连接DE ,此时PD =DE =10,故答案为:DP =485或10<DP ≤12. 【点睛】本题考查动点问题,动点在不同地方时,得到的图形是不同的,解题关键是确定动点运动过程中,有几种对应的图形,然后再根据图形性质分析求解. 7.(1)212(02)16(25)x x y x x ⎧≤≤⎪=⎨≤≤⎪⎩;(2)220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)第2分钟末两颗弹珠速度相差最大,最大相差6米/分钟;(4)存在,理由详见解析【解析】【分析】(1)将(1,2)代入21y ax =,得2a =,从而得到212y x =,再代入2x =求出18y =,即可得到反比例函数解析式,即可得解;(2)当01x ≤≤时,第二颗弹珠未弹出,故第二颗弹珠的解析式为20y =;再分别根据(1)中的结论,即可求出当13x <≤和36x <≤时第二颗弹珠的解析式;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,则第2分钟末两颗弹珠速度相差最大,分别求出第2分钟末时两颗弹珠的速度,再相减即可的解;(4)第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟,第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.可以根据速度相等时列方程求得时刻.【详解】(1)当02x ≤≤时,将(1,2)代入21y ax =,得2a =,212y x ∴=,∵当2x =时,18y =,∴当25x ≤≤时,116y x=, 1y ∴与x 的函数关系式为212(02)16(25)x x y x x⎧≤≤⎪=⎨≤≤⎪⎩;(2)当01x ≤≤时,第二颗弹珠未弹出,∴第二颗弹珠的解析式为20y =;当13x <≤时,第二颗弹珠的解析式为222(1)y x =-;当36x <≤时,第二颗弹珠的解析式为2161y x =-; ∴2y 与x 的函数关系式为220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,∴第2分钟末两颗弹珠速度相差最大,∵第一颗弹珠的速度为2218222y x =⨯==米/分钟,第二颗弹珠的速度为2122(1)212y x =⨯==-米/分钟,∴两颗弹珠的速度最大相差8-2=6米/分钟;(4)存在,理由如下:第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟, 第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同. 这个时刻可以通过解方程2162(1)x x=-求得. 【点睛】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息,明确自变量的取值范围和图象所经过的点的坐标. 8.F解析:(1)28AD <<;(2)见详解;(3)EF BE DF =+,理由见详解【解析】【分析】(1)根据旋转的性质可证明ADC EDB ≅,6,AC BE AD ED ===,在ABE △中根据三角形三边关系即可得出答案;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,可得出CF BM =,根据垂直平分线的性质可得出EF EM =,利用三角形三边关系即可得出结论;(3)延长AB 至N ,使BN=DF ,连接CN ,可得NBC D ∠=∠,证明NBC FDC ≅,得出,CN CF NCB FCD =∠=∠,利用角的和差关系可推出50ECN ECF ∠=︒=,再证明NCE FCE ≅,得出EN EF =,即可得出结论.【详解】解:(1)∵,,AD ED CD BD ADC BDE ==∠=∠∴ADC EDB ≅∴6,AC BE AD ED ===在ABE △中根据三角形三边关系可得出:AB BE AE AB BE -<<+,即4216AD <<∴28AD <<故答案为:28AD <<;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,同(1)可得出CF BM =,∵,FD MD FD DE =⊥∴EF EM =在BEM △中,BE BM EM +>∴BE CF EF +>;(3)EF BE DF =+,理由如下:延长AB 至N ,使BN=DF ,连接CN ,∵180,180ABC D ABC NBC ∠+∠=︒∠+∠=︒∴NBC D ∠=∠∴NBC FDC ≅∴,CF CN NCB FCD =∠=∠∵100,50BCD FCE ∠=︒∠=︒∴50ECN ECF ∠=︒=∴NCE FCE ≅(SAS )∴EN EF =∴EF EN BE BN BE DF ==+=+∴EF BE DF =+.【点睛】本题考查的知识点有旋转的性质、全等三角形的判定及性质、线段垂直平分线的性质、三角形三边关系、角的和差等,解答此题的关键是作出辅助线,构造出与图①中结构相关的图形.此题结构精巧,考查范围广,综合性强.9.E解析:(1)3EF EC =,见解析;(2)277BK a =;(3)①AGH 是等边三角形,见解析;②1(62)4- 【解析】【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到3AE EC =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=. AF CD ⊥,垂足为F ,1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 3AF ∴=在Rt ABF 中,22BF AB AF =+7BF ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=,277BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC . ,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=.//AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,3AF ∴=.1(33)2ADH S =, 113(33)22DH ∴⨯=, 31DH ∴=31CH DH CD ∴=-=,3HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.10.B解析:(1)12;(2)3)【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,。
人教版中考数学压轴题 易错题测试综合卷学能测试试卷
一、中考数学压轴题1.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.2.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.3.如图,90EOF ∠=︒,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =,3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,矩形ABCD 也停止运动,设点P 的运动时间为()t s ,PDO △的面积为S . (1)分别写出点B 到OF 、OE 的距离(用含t 的代数式表示);(2)当点P 不与矩形ABCD 的顶点重合时,求S 与t 之间的函数关系式;(3)设点P 到BD 的距离为h ,当15h OD =时,求t 的值; (4)若在点P 出发的同时,点Q 从点B 以每秒43个单位长度的速度向终点A 运动,当点Q 停止运动时,点P 与矩形ABCD 也停止运动,设点A 关于PQ 的对称点为E ,当PQE 的一边与CDB △的一边平行时,直接写出线段OD 的长.4.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围. 5.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.6.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.(1)求二次函数的关系式.(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标.(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.7.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式;(3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)8.(1)如图①,在Rt ABC 中,90C ∠=︒,13AB =,5BC =,则tan A 的值是_______.(2)如图②,在正方形ABCD 中,5AB =,点E 是平面上一动点,且2BE =,连接CE ,在CE 上方作正方形EFGC ,求线段CF 的最大值.问题解决:(3)如图③,O 半径为6,在Rt ABC 中,90B ∠=︒,点, A B 在O 上,点C 在O 内,且3tan 4A =.当点A 在圆上运动时,求线段OC 的最小值.9.已知四边形ABCD 是正方形,点P 在直线BC 上,点G 在直线AD 上(P ,G 不与正方形顶点重合,且在CD 的同侧),PD =PG ,DF ⊥PG 于点H ,交直线AB 于点F ,将线段PG 绕点P 逆时针旋转90°得到线段PE ,连结EF .(1)如图1,当点P 与点G 分别在线段BC 与线段AD 上时.①求证:DF =PG ;②若AB =3,PC =1,求四边形PEFD 的面积;(2)如图2,当点P 与点G 分别在线段BC 与线段AD 的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.10.已知:如图,四边形ABCD ,AB DC ,CB AB ⊥,16AB cm =,6BC cm =,8CD cm =,动点Q 从点D 开始沿DA 边匀速运动,运动速度为1/cm s ,动点P 从点A 开始沿AB 边匀速运动,运动速度为2/cm s .点P 和点Q 同时出发,O 为四边形ABCD 的对角线的交点,连接 PO 并延长交CD 于M ,连接QM .设运动的时间为()t s ,08t <<.(1)当t 为何值时,PQ BD ?(2)设五边形QPBCM 的面积为()2S cm ,求S 与t 之间的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使PQM 的面积等于五边形面积的1115?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使点Q 在MP 的垂直平分线上?若存在,求出t 的值;若不存在,请说明理由.11.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),AB=62,点 P 从点 O 出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.(1)求点 B 的坐标;(2)设点 P 的运动时间为点 t 秒,△BDP 的面积为 S ,求 S 与 t 的函数关系式;(3)当点 P 与点 D 重合时,连接 BP ,点 E 在线段 AB 上,连接 PE ,当∠BPE =2∠OBP 时, 求点 E 的坐标.12.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.13.如图,直线y =﹣x+4与抛物线y =﹣12x 2+bx+c 交于A ,B 两点,点A 在y 轴上,点B 在x 轴上.(1)求抛物线的解析式;(2)在x 轴下方的抛物线上存在一点P ,使得∠ABP =90°,求出点P 坐标;(3)点E 是抛物线对称轴上一点,点F 是抛物线上一点,是否存在点E 和点F 使得以点E ,F ,B ,O 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.14.如图①,在ABC ∆中,90C ∠=︒,10,8AB BC ==.点,D E 分别是边,AC BC 上的动点,连接DE .设CD x =(0x >),BE y =,y 与x 之间的函数关系如图②所示.(1)求出图②中线段PQ所在直线的函数表达式;(2)将DCE沿DE翻折,得DME.①点M是否可以落在ABC∆的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;②直接写出....DME与ABC∆重叠部分面积的最大值及相应x的值.15.如图,在平面直角坐标系中,Rt ABC△的斜边在AB在x轴上,点C在y轴上90ACB∠=︒,OC、OB的长分别是一元二次方程2680x x-+=的两个根,且OC OB<.(1)求点A的坐标;(2)D是线段AB上的一个动点(点D不与点A,B重合),过点D的直线l与y轴平行,直线l交边AC或边BC于点P,设点D的横坐标为t,线段DP的长为d,求d关于t的函数解析式;(3)在(2)的条件下,当12d=时,请你直接写出点P的坐标.16.已知抛物线y=﹣x2﹣2x+3交x轴于点A、C(点A在点C左侧),交y轴于点B.(1)求A,B,C三点坐标;(2)如图1,点D为AC中点,点E在线段BD上,且BE=2DE,连接CE并延长交抛物线于点M,求点M坐标;(3)如图2,将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,点P为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可).17.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.18.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点0(3)A ,,点()0, 3B ,点(0,0)O(I)过边OB 上的动点D (点D 不与点B ,O 重合)作DE OB ⊥交AB 于点E ,沿着DE 折叠该纸片,点B 落在射线BO 上的点F 处.①如图,当D 为OB 中点时,求E 点的坐标;②连接AF ,当AEF ∆为直角三角形时,求E 点坐标:(Ⅱ) P 是AB 边上的动点(点 P 不与点B 重合),将AOP ∆沿OP 所在的直线折叠,得到'A OP ∆,连接'BA ,当'BA 取得最小值时,求P 点坐标(直接写出结果即可).19.如图,四边形AOBC 是正方形,点C 的坐标是(82,0).(1)正方形AOBC 的边长为 ,点A 的坐标是 ;(2)将正方形AOBC 绕点O 顺时针旋转45︒,点A ,B ,C 旋转后的对应点为A ',B ',C ',求点A '的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P 从点O 出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q 从点O 出发,沿折线OBCA 方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当OPQ △为等腰三角形时,求出t 的值(直接写出结果即可).20.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值;(2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?21.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.22.问题提出(1)如图1,已知三角形ABC ,请在BC 边上确定一点D ,使得AD 的值最小. 问题探究(2)如图2,在等腰ABC 中,AB AC =,点P 是AC 边上一动点,分别过点A ,点C 作线段BP 所在直线的垂线,垂足为点,D E ,若5,6AB BC ==,求线段BP 的取值范围,并求AD CE +的最大值.问题解决(3)如图3,正方形ABCD 是一块蔬菜种植基地,边长为3千米,四个顶点处都建有一个蔬菜采购点,根据运输需要,经过顶点A 处和BC 边的两个三等分点E F 、之间的某点P 建设一条向外运输的快速通道,其余三个采购点都修建垂直于快速通道的蔬菜输送轨道,分别为BB '、CC '、DD '.若你是此次项目设计的负责人,要使三条运输轨道的距离之和()BB CC DD '''++最小,你能不能按照要求进行规划,请通过计算说明.23.如图1,在平面直角坐标系中,O 是坐标原点,矩形OACB 的顶点A 、B 分别在x 轴和y 轴上,已知OA=5,OB=3,点D 的坐标是(0,1),点P 从点B 出发以每秒1个单位的速度沿折线BCA 的方向运动,当点P 与点A 重合时,运动停止,设运动的时间为t 秒.(1)点P 运动到与点C 重合时,求直线DP 的函数解析式;(2)求△OPD 的面积S 关于t 的函数解析式,并写出对应t 的取值范围;(3)点P 在运动过程中,是否存在某些位置使△ADP 是不以DP 为底边的等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.24.(1)(发现)如图1,在ABC 中,//DE BC 分别交AB 于D ,交AC 于E .已知CD BE ⊥,3CD =,5BE =,求BC DE +的值.思考发现,过点E 作//EF DC ,交BC 延长线于点F ,构造BEF ,经过推理和计算能够使问题得到解决(如图2).请回答:BC DE +的值为______.(2)(应用)如图3,在四边形ABCD 中,//AB CD ,AD 与BC 不平行且AD BC =,对角线AC BD ⊥,垂足为O .若3CD =,5AB =,DAB CBA ∠=∠,求AC 的长.(3)(拓展)如图4,已知平行四边形ABCD 和矩形ABEF ,AC 与DF 交于点G ,FD FB =,且30BFD ∠=︒,60EBF ∠=︒,判断AC 与DF 的数量关系并证明.25.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长t s的移动,线度的速度移动:同时另一个点Q以某一速度从点B沿线段BC移动,经过()段PQ被BD垂直平分,求t的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M,使MQ MC+的值最小?若存在,请求出点M的坐标:若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.A解析:(1)作图见解析;(2)PQ长最短是1.2;(3)四边形ADCF面积最大值是-+8131381313【解析】【分析】(1)连接线段OP交⊙C于A,点A即为所求;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短,根据勾股定理以及三角形的面积公式即可求出其最小值;(3)△ACF的面积有最大和最小值,取AB的中点G,连接FG,DE,证明△FAG~△EAD,进而证明点F在以G为圆心1为半径的圆上运动,过G作GH⊥AC于H,交⊙G于F1,GH 反向延长线交⊙G于F2,①当F在F1时,△ACF面积最小,分别求出△ACD的面积和△ACF 的面积的最小值即可得出四边形ADCF的面积的最小值;②当F在F2时,四边形ADCF的面积有最大值,在⊙G上任取异于点F2的点P,作PM⊥AC于M,作GN⊥PM于N,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF的面积的最大值.【详解】解:(1)连接线段OP交⊙C于A,点A即为所求,如图1所示;(2)过C 作CP ⊥AB 于Q ,P ,交⊙C 于Q ,这时PQ 最短.理由:分别在线段AB ,⊙C 上任取点P ',点Q ',连接P ',Q ',CQ ',如图2,由于CP ⊥AB ,根据垂线段最短,CP ≤CQ '+P 'Q ',∴CO +PQ ≤CQ '+P 'Q ',又∵CQ =CQ ',∴PQ <P 'Q ',即PQ 最短.在Rt △ABC 中22228610AB AC BC =+=+=,1122ABC S AC BC AB CP ∆=•=•, ∴68 4.810AC BC CP AB •⨯===, ∴PQ =CP ﹣CQ =6.8﹣3.6=1.2, ∴22226 4.8 3.6BP BC CP -=-=.当P 在点B 左侧3.6米处时,PQ 长最短是1.2.(3)△ACF 的面积有最大和最小值.如图3,取AB 的中点G ,连接FG ,DE .∵∠EAF =90°,1tan 3AEF ∠=, ∴13AF AE = ∵AB =6,AG =GB ,∴AC =GB =3,又∵AD =9, ∴3193AG AD ==, ∴DAF AE AG A = ∵∠BAD =∠B =∠EAF =90°,∴∠FAG =∠EAD ,∴△FAG ~△EAD , ∴13FG AF DE AE ==, ∵DE =3,∴FG =1,∴点F 在以G 为圆心1为半径的圆上运动,连接AC ,则△ACD 的面积=692722CD AD ⨯=⨯=, 过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小.理由:由(2)知,当F 在F 1时,F 1H 最短,这时△ACF 的边AC 上的高最小,所以△ACF 面积有最小值,在Rt △ABC 中,222269313AC AB BC =+=+=∴313sin 13313BC BAC AC ∠===, 在Rt △ACH 中,313913sin 31313GH AG BAC =•∠=⨯=, ∴119131F H GH GF =-=-, ∴△ACF 面积有最小值是:11191327313313(1)22AC F H -•=⨯-=; ∴四边形ADCF 面积最小值是:273138131327--+=; ②当F 在F 2时,F 2H 最大理由:在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,连接PG ,则四边形GHMN 是矩形,∴GH =MN ,在Rt △GNP 中,∠NGF 2=90°,∴PG >PN ,又∵F 2G =PG ,∴F 2G +GH >PN +MN ,即F 2H >PM ,∴F 2H 是△ACF 的边AC 上的最大高,∴面积有最大值,∵22913113F H GH GF =+=+, ∴△ACF 面积有最大值是21191327313313(1)22AC F H +•=⨯⨯+=; ∴四边形ADCF 面积最大值是273138131327+++=; 综上所述,四边形ADCF 面积最大值是813132+,最小值是813132-. 【点睛】本题为圆的综合题,考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.2.D解析:(1)6;(2)y=-3x+10(1≤x <103);(2)1769或32 【解析】【分析】(1)如下图,利用等腰直角三角形DHC 可得到HC 的长度,从而得出HB 的长,进而得出AD 的长;(2)如下图,利用等腰直角三角形的性质,可得PQ 、PR 的长,然后利用EB=PQ+PR 得去x 、y 的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P 在梯形内,一种是在梯形外,分别根y 的值求出x 的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D 作BC 的垂线,交BC 于点H∵∠C=45°,DH ⊥BC∴△DHC 是等腰直角三角形∵四边形ABCD 是梯形,∠B=90°∴四边形ABHD 是矩形,∴DH=AB=8∴HC=8∴BH=BC -HC=6∴AD=6(2)如下图,过点P 作EF 的垂线,交EF 于点Q ,反向延长交BC 于点R ,DH 与EF 交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103 当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4∴()16644322ABCD S =⨯++⨯=梯形 【点睛】 本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力. 3.B解析:(1)35t ,45t ;(2)当0<t <3时,224655S t t =--+;当3<t <7时,23391052S t t =+-;(3)75;(4)132,7713,477 【解析】【分析】(1)过点B 作x 轴垂线,利用相似三角形可求得; (2)分2种情况,一种是点P 在AD 上,另一种是点P 在CD 上,然后利用三角形面积公式可求得;(3)直接令15h OD =即可求出; (4)存在3种情况,第一种是:QP ∥BD ,第二种是EP ∥CD 或EQ ∥CB ,第三种是QE ∥BD ,分别按照几何性质分析求解.【详解】(1)如下图,过点B 作x 轴垂线,垂足为点M根据平移的特点,可得∠BOM=∠DBA∵∠BMO=∠DAB=90°,∴△BMO ∽△DAB∵AB=4,AD=BC=3∴BD=5 ∵BM OM BO DA BA BD ==,OB=t ∴BM=35t ,OM=45t (2)情况一:当0<t <3时,图形如下,过点P 作OD 的垂线,交OD 于点N∵∠NDP=∠BDA ,∠PND=∠BAD ,∴△PND ∽△BAD∵AP=t ,∴PD=3-t∵PN BA PD BD =,∴PN=()435t - 图中,OD=5+t ∴()()243124562555OBD t S t t t -=+=--+ 情况二:当3<t <7时,图形如下,过点P 作OD 的垂线,交OD 于点N图中,PD=t -3,OD=5+t同理,△PND ∽△BCD ,可得PN=()335t - ∴()()23313395251052OBD t S t t t -=+=-+- (3)情况一:当0<t <3时则h=PN=()435t - ∵15h OD =∴()43555t t -+= 解得:t=75情况二:当3<t <7时则h=PN=()335t - ∵15h OD =∴()33555t t -+= 解得:t=7(舍)(4)情况一:QP ∥BD ,图形如下由题意可得:BQ=43t ,AP=t ,则QA=4-43t ,DP=3-t ∵BD ∥QP∴QA PA QB PD= 代入得:4()2243t t =-解得:t=32∴OD=5+t=13 2情况二:如下图,EP∥CD(或EQ∥CB)∵点E是点A关于QP对称的点∴EP=PA,EQ=QA,QP=QP∴△APQ≌△EPQ∵EP∥CD,CD⊥AD∴EP⊥AD∴∠APQ=∠EPQ=45°∴△AQP是等腰直角三角形,AQ=PA∴4-43 tt=解得:t=12 7∴OD=5+t=47 7情况三:如下图,QE∥BD,延长QE交DA于点N∵△APQ≌△EPQ,∴∠QEP=∠QAP=90°∴△ENP是等腰直角三角形∵QN∥BD,∴∠NQA=∠DBA,∠A=∠A∴△QNA∽△BDA∵BQ=43t,AP=t,QA=4-43t,DP=3-t∴QN QA AN BD BA AD==∴QN=5-43t ,NA=3-t ∴EN=QN -QE=QN -QA=1-3t ,NP=NA -AP=3-2t ,EP=PA=t ∴在Rt △ENP 中,()2223213t t t ⎛⎫-+-= ⎪⎝⎭ 解得:t=1213或t=3(舍) ∴OD=5+t=7713 【点睛】本题考查动点问题,解题关键是利用相似将图形中各边用t 表示出来.4.A解析:(1)()1,1E -;(2)12m -≤≤-或01m ≤≤3)9t ≤≤.【解析】【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可.【详解】(1)()1,2D -到线段BC 的距离为2,32DC ==⨯∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,3EC ==>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,32FC ==<⨯∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点;(2)设直线l 上“倍增点”的横坐标为m ,当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=, 得1131m =+,2131m =-当点在O 内部时,22224(2)3(44(2))m m m m ++-+≥--+-+解得:m≥0或m≤-2∴直线l 上“倍增点”的橫坐标的取值范围为1312m -≤≤-或0131m ≤≤+;(3)如图所示,当点G(1,0)为T "倍增点"时,T(9,0),此时T 的横坐标为最大值,当点H(0,1)为T “倍增点”时,则T(63,此时T 的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t -≤≤.【点睛】在正确理解点A 是图形M 的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.5.A解析:(1)①(1,2),(2.5,0)A C ;②2232m ≤;(2)最小值为2.【解析】【分析】(1)①根据“特征点”的定义判断即可;②如图2中,当⊙W 1与直线y =−x +2相切时,1(22,0)W ,当⊙W 2与直线y =−x +3相切时,2(32,0)W +,结合图象,⊙W 与图中阴影部分有交点时,⊙W 上存在满足条件的特征点.(2)特征点的图象是由原点向外扩大,当与反比例函数的图象第一次有交点时,1x x+的值最小(如图3中).【详解】解:(1)①∵1+2=3,1+3=4,2.5+0=2.5,又∵2≤a ≤3,∴A ,C 是特征点,故答案为:(1,2),(2.5,0)A C ;②如图1,∵2≤a ≤3,∴直线y =−x +2和直线y =−x +3之间的区域(包括两直线)上的点都为“特征点”, 直线y =−x +2和直线y =−x +3分别与x 轴的交点为(2,0)P ,(3,0)Q ,当⊙W 1与直线y =−x +2相切时,设切点为M ,此时2OP =,1MW MP ⊥,145MPW ∠=︒,则1MPW 为等腰直角三角形,∵⊙W 1半径为1,即11MW =, ∴12PW =1122OW OP PW =-=- ∴1(22,0)W ,当⊙W 2与直线y =−x +3相切时,设切点为N ,此时3OQ =,2NW NQ ⊥,245NQW ∠=︒,则2NQW 为等腰直角三角形, 同理得:22QW =,则2232OW OQ QW =+=+, ∴2(32,0)W +,观察图象可知满足条件的m 取值范围为:2232m ≤(2)根据0x >,在第一象限画出1y x=的图象, ∴在此坐标系中图象上的点就是1x x ⎛⎫ ⎪⎝⎭,, ∵特征点满足x y a +=(x ≥0,a 为常数), ∴在此图象上对应的就是1x a x+=, ∴将特征点的图象由原点向外扩大,当与反比例函数1y x =的图象第一次有交点时,1x x+出现最小值,如图2,由x >0可将1x a x+=整理得:210x ax -+=, ∴2()40a ∆=--=,解得:12a =,22a =-(舍去),∴2a =,∴12Z x x =+=,即()10Z x x x=+>的最小值为2.【点睛】本题属于反比例函数综合题,考查了直线与圆的位置关系,反比例函数的性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考压轴题.6.B解析:(1)2y x 2x 3=-++;(2)①23S m m =-+,13m ≤≤;②P (32,3); (3)3,32⎛⎫ ⎪⎝⎭或(332,122)-+-【解析】【分析】(1)将点B 、C 的坐标代入2y x bx c =-++即可; (2)①求出顶点坐标,直线MB 的解析式等,由PD ⊥x 轴且OD=m 知P (m ,-2m+6),即可用含m 的代数式表示出S ;②在和①的情况下,将S 和m 的关系式化为顶点式,由二次函数的图象和性质即可写出点P 的坐标;(3)分情况讨论,当∠CPD=90°时,推出PD=CO=3,则点P 的纵坐标为3,即可求出点P 的坐标;当∠PCD=90°时,证∠PDC=∠OCD ,由锐角三角函数可求出m 的值,即可写出点P 的坐标;当∠PDC=90°时,不存在点P .【详解】解:(1)将()3,0B ,()0,3C 代入2y x bx c =-++,得0=-9+3b 33c +⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =-++=--+∴顶点M (1,4),将直线BM 的解析式设为y kx b =+,将点()3,0B ,M (1,4)代入, 可得304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩, ∴直线BM 的解析式为26y x =-+,如图∵PD ⊥x 轴且OD=m ,∴P (m ,-2m+6), ∴211(26)322PCD S S PD OD m m m m ==⋅=-+=-+, 即23S m m =-+,∵点P 为线段MB 上一个动点且()3,0B ,M (1,4),∴13m ≤≤; ②22393()24S m m m =-+=--+, ∴当32m =时,S 取最大值94, ∴P (32,3); (3)存在,理由如下:如图,当∠CPD=90°时,90COD ODP CPD ,∴四边形CODP 为矩形,∵PD=CO=3,将3y =代入直线26y x =-+, 得32x =, ∴P 3,32⎛⎫ ⎪⎝⎭;如图,当∠PCD=90°时,∵OC=3,OD=m ,22229CD OC OD m , //PD OC PDC OCD ,cos cos PDC OCD ,DC OC PD DC∴=, 2DC PD OC ∴=⋅,293(26)m m , 解得1332m (舍去),1332m =-+∴(332,1262)P -+-;当∠PDC=90°时,∵PD ⊥x 轴,∴不存在点P;综上所述,点P的坐标为3,3 2⎛⎫ ⎪⎝⎭或(332,1262)-+-.【点睛】本题考查了待定系数法求函数解析式,函数的思乡曲求极值以及直角三角形的存在性与动点结合等,解题的关键是注意分类讨论思想在解题过程中的运用.7.C解析:(1)点C的坐标为(2,0);(2)1522y x=-+;(3)①2481515y x x=-;②1013.【解析】【分析】(1)求得对称轴,由对称性可知C点坐标;(2)利用待定系数法求解可得;(3)①由AE=3AO的关系,建立K型模型相似,求得点E坐标代入解析式可得;②若△CDB与△BOA相似,则∠OAB=∠CDB=90°,由相似关系可得点D坐标,代入解析式y=ax2-2ax可得a值.【详解】解:(1)把0y=代入22y ax ax=-,得220ax ax-=,解得:0x=,或2x=.∵点C在x轴正半轴上,∴点C的坐标为(2,0).(2)设直线表达式为y kx b=+,把点(1,2)A,(5,0)B分别代入y kx b=+,得250k bk b+=⎧⎨+=⎩,解得1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的表达式为:1522y x=-+.(3)①作AH x⊥轴于点H,EF AH⊥于点F(如图),∵222125OA=+=,2222420AB,22525OB==,∴222OA AB OB +=.∴90EAO OAB ∠=∠=︒.由EFA AHO △∽△,得2EF FA EA AH HO AO ===, ∴4EF =,2FA =,∴点E 坐标为()3,4-. 把(3,4)E -代入22y ax ax =-,得964a a +=, 解得:415a =. ∴2481515y x x =-. ②若△CDB 与△BOA 相似,如图,作DG ⊥BC ,∴CD BD BC AO AB BO ==,∠OAB=∠CDB=90°, 35525==, ∴35CD =65BD =, ∵523BC =-=, ∴356565535DG ==, ∴156225x -+=,解得:135x =, ∴点D 的坐标为:(135,65), 把点D 代入22y ax ax =-,即16913622555a a -⨯= 解得:1013a =; 故答案为:1013. 【点睛】本题是二次函数的综合问题,考查了二次函数的基本性质,数形结合与K 型模型的使用,以及相似存在性问题,内容综合较好,难度相当入门级压轴问题.8.A解析:(1)512;(2);(3)3 【解析】【分析】(1)根据勾股定理算出AC ,再根据正切的定义可得结果;(2)根据题意得出当C B E 、、三点共线,且E 在CB 的延长线上时,线段CE 取得最大值,即此时CF 最大;(3)作DCB 的外接圆O ',连接OO ',设OO '交劣弧DB 于点E ,则OO DB ,可得当点C 与点E 重合时,线段OC 取得最小值,延长BC 交圆O 于点F ,连接AF ,证明CDB CBD ∠=∠得出AF BD ,从而可得FC AC ,根据3tan 4A =,在△ABF 中,利用勾股定理列出方程,解得AC 2,在△AOC 中,求出OC 即可.【详解】解:(1)∵90C ∠=︒,13AB =,5BC =,∴12=, ∴tanA=512BC AC =; (2)2BE =,点B 为定点,∴点E 在以B 为圆心,BE 长为半径的圆上运动.∴当C B E 、、三点共线,且E 在CB 的延长线上时,线段CE 取得最大值,在正方形ABCD 中,5AB =,CE ∴最大=5+2=7,四边形EFGC 是正方形, 2CF CE ,∴线段CF 的最大值为;(3)如图①,延长AC 交O 于点D ,连接DB . 在Rt ABC 中90ABC ∠=︒,且3tan 4A =, DAB ∴∠的大小不变.又点,A B 在O 上,点C 在O 内,且O 的半径为6,DCB 的大小,弦DB 的长均为定值.作DCB 的外接圆O ',则点C 在劣弧DB 上(不包括端点,D B ),如图②,连接OO ',设OO '交劣弧DB 于点E ,则OO DB ,且当点C 与点E 重合时,线段OC 取得最小值.延长BC 交圆O 于点F ,连接AF , 90ABC ∠=︒,AF ∴经过点O ,OO DB ,点C 在OO '上,CD CB ∴=,CDB CBD ∴∠=∠,又ADB AFB ,CBD AFB ,AF BD ,又OO DB ,AF OO ,FC AC ,3tan 4A =,设3BC x =,则4AB x =,5FC AC x , 538BF x x x ,又12AF ,∴在Rt ABF 中,22212(4)(8)x x ,解得295x , 222545AC x ,∴在Rt AOC 中,22245693OCAC AO , ∴线段OC 的最小值是3.【点睛】本题属于圆的综合题,考查了圆的性质,正方形的判定和性质,勾股定理,三角函数,难度较大,解题的关键是根据图形的运动变化,找到最值时的情况,再求解.9.E解析:(1)①详见解析;②8;(2)(2)四边形PEFD是菱形,证明详见解析【解析】【分析】(1)①根据四边形ABCD为正方形得AD=CD ,然后证明△ADF≌△CDP,则DF=DP,得到DF=PG;②先判断四边形PEFD是菱形,然后求出22+=P作PM⊥AD于点3110M,则四边形CDMP是矩形,则△DHG∽△PMG,根据相似三角形的性质,即可求出答案;(2)根据四边形ABCD为正方形得AD=AB,由四边形ABPM为矩形得AB=PM,则AD=PM,再利用等角的余角相等得到∠GDH=∠MPG,于是可根据“ASA”证明△ADF≌△MPG,得到DF=PG,加上PD=PG,得到DF=PD,然后利用旋转的性质得∠EPG=90°,PE=PG,所以PE=PD=DF,再利用DF⊥PG得到DF∥PE,于是可判断四边形PEFD为平行四边形,加上DF=PD,则可判断四边形PEFD为菱形.【详解】解:(1)①证明∵四边形ABCD是正方形,∴AD=CD ,∠A= ∠C=∠ADC=90°,∵DF⊥PG,∴∠DHG=90°,∴∠HGD+∠ADF=90°,∠CDP+∠PDG=90°,∵ PD=PG ,∴∠PGD=∠PDG,∴∠ADF=∠CDP,∴△ADF≌△CDP(ASA),∴DF=DP,∵ PD=PG ,∴DF=PG ;②∵线段PG 绕点P 逆时针旋转90°得到线段PE∴∠GPE=∠DHG=90°, PG=PE=DF= PD∴PE ∥DF∴四边形PEFD 是菱形在Rt △DCP 中,AD=AB=3,PC=1,PG=DP=223110+= 过点P 作PM ⊥AD 于点M ,则四边形CDMP 是矩形∴DM=MG=PC=1,DG=2DM=2,∠PMG=∠DHG=90°,∠DGH=∠PGM∴△DHG ∽△PMG∴DG GH PG MG = 即=110GH ∴GH=105, PH=PG-GH=4105 由(1)DF=DP=10∴四边形PEFD 的面积是DF PH ⋅=10×4105=8 ; (2)四边形PEFD 是菱形 ;作PM ⊥DG 于M ,如图2,∵四边形ABCD 为正方形,∴AD=AB ,∵四边形ABPM 为矩形,∴AB=PM ,∴AD=PM ,∵DF ⊥PG ,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG ,在△ADF 和△MPG 中FAD PMG AD MP ADF MPG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADF ≌△MPG (ASA ),∴DF=PG ,而PD=PG ,∴DF=PD ,∵线段PG 绕点P 逆时针旋转90°得到线段PE ,∴∠EPG=90°,PE=PG ,∴PE=PD=DF 而DF ⊥PG ,∴DF ∥PE ,且DF =PE ,∴四边形PEFD 为平行四边形,∵DF=PD ,∴四边形PEFD 为菱形.【点睛】本题考查了四边形的综合题:熟练掌握平行四边形、矩形、菱形和正方形的判定与性质是解题的关键;同时会运用等腰三角形的性质和旋转的性质;会利用三角形全等解决线段相等的问题.10.A解析:(1)409t =;(2)QPBCM S 242721905t t =-+;(3)不存在,理由详见解析;(4)存在,1t =,2t =. 【解析】【分析】(1)如下图,根据Rt △ADH 求得AD 的长,在利用QP∥DB 得到t 的值;(2)先利用DOC BOA △∽△,得到AP 、BP 、DM ,然后用割补法求面积;(3)假设存在,使得PQM 的面积等于五边形面积的1115,验证t 的值是否在取值范围内;(4)如下图,分别在Rt △EMQ 和Rt △QFP 中求得QM 和QP 的长,令它们相等求得t.【详解】。
人教版中考数学压轴题 易错题测试综合卷检测试题
一、中考数学压轴题1.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.2.如图1,平面直角坐标系xoy 中,A (-4,3),反比例函数(0)k y k x=<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长;②若折叠后点D 落在矩形ABOC 内(不包括边界),求线段CE 长度的取值范围. (2)若折叠后,△ABD 是等腰三角形,请直接写出此时点D 的坐标.3.如图,AB ∥CD ,定点E ,F 分别在直线AB ,CD 上,平行线AB ,CD 之间有一动点P . (1)如图1,当P 点在EF 的左侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 ,如图2,当P 点在EF 的右侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 . (2)如图3,当∠EPF =90°,F P 平分∠EFC 时,求证:EP 平分∠AEF ;(3)如图4,QE ,QF 分别平分∠PEB 和∠PFD ,且点P 在EF 左侧.①若∠EPF =60°,则∠EQF = .②猜想∠EPF 与∠EQF 的数量关系,并说明理由;4.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ;(2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ;(3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由.5.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 6.如图,在平面直角坐标中,点O 为坐标原点,ABC ∆的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.7.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;②若12,(33)2ADH a S ==+,求sin GAB ∠的值.8.对于平面直角坐标系xOy 中的图形W 1和图形W 2.给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N ,(点M 于点N 可以重合)使得AM=2BN ,则称图形W 1和图形W 2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(0,3),点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .①线段OP 的最小值为_______,最大值为_______;线段CP 的取值范直范围是_____; ②在点O ,点C 中,点____________与线段DE 满足限距关系;(2)如图2,⊙O 的半径为1,直线3y x b =+(b>0)与x 轴、y 轴分别交于点F ,G .若线段FG 与⊙O 满足限距关系,求b 的取值范围;(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.9.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=-,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.10.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式;(3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)11.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于AB 、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .12.如图1,在O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO ,AD AB =.(1)求证:2CAO CDB ∠=∠(2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE +=(3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长.13.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.14.在平面直角坐标系xOy 中,点A 为x 轴上的动点,点B 为x 轴上方的动点,连接OA ,OB ,AB .(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点P ,请直接写出P ∠的度数;(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=︒,求OAB OCB∠∠;(3)如图3,当点B 在第一象限内,点P 是AOB ∆内一点,点M ,N 分别是线段OA ,OB 上一点,满足:1902APB AOB ∠=︒+∠,PM PN =,180ONP OMP ∠+∠=︒.以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;④AM BN AB +=.正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).15.已知:矩形ABCD 内接于⊙O ,连接 BD ,点E 在⊙O 上,连接 BE 交 AD 于点F ,∠BDC+45°=∠BFD ,连接ED .(1)如图 1,求证:∠EBD=∠EDB ;(2)如图2,点G 是 AB 上一点,过点G 作 AB 的垂线分别交BE 和 BD 于点H 和点K ,若HK=BG+AF ,求证:AB=KG ;(3)如图 3,在(2)的条件下,⊙O 上有一点N ,连接 CN 分别交BD 和 AD 于10点 M 和点 P ,连接 OP ,∠APO=∠CPO ,若 MD=8,MC= 3,求线段 GB 的长.16.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.17.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点0(3)A ,,点()0, 3B ,点(0,0)O(I)过边OB 上的动点D (点D 不与点B ,O 重合)作DE OB ⊥交AB 于点E ,沿着DE 折叠该纸片,点B 落在射线BO 上的点F 处.①如图,当D 为OB 中点时,求E 点的坐标;②连接AF ,当AEF ∆为直角三角形时,求E 点坐标:(Ⅱ) P 是AB 边上的动点(点 P 不与点B 重合),将AOP ∆沿OP 所在的直线折叠,得到'A OP ∆,连接'BA ,当'BA 取得最小值时,求P 点坐标(直接写出结果即可).18.如图,在长方形ABCD 中,AB =4cm ,BE =5cm ,点E 是AD 边上的一点,AE 、DE 分别长acm .bcm ,满足(a -3)2+|2a +b -9|=0.动点P 从B 点出发,以2cm/s 的速度沿B→C→D 运动,最终到达点D ,设运动时间为t s .(1)a =______cm ,b =______cm ;(2)t 为何值时,EP 把四边形BCDE 的周长平分?(3)另有一点Q 从点E 出发,按照E→D→C 的路径运动,且速度为1cm/s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,△BPQ 的面积等于6cm 2.19.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD =AO .点E 、F 为矩形边上的两个动点,且∠EOF =60°.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若∠OEB =75°,求证:DF =AE ; (2)如图2,当点E 、F 同时位于AB 边上时,若∠OFB =75°,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将△OEF 沿OE 所在直线翻折至△OEP ,取线段CB 的中点Q .连接PQ ,若AD =2a (a >0),则当PQ 最短时,求PF 之长.20.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值;(2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?21.如图1,Rt △ABC 中,点D ,E 分别为直角边AC ,BC 上的点,若满足AD 2+BE 2=DE 2,则称DE 为R △ABC 的“完美分割线”.显然,当DE 为△ABC 的中位线时,DE 是△ABC 的一条完美分割线.(1)如图1,AB =10,cos A =45,AD =3,若DE 为完美分割线,则BE 的长是 .(2)如图2,对AC 边上的点D ,在Rt △ABC 中的斜边AB 上取点P ,使得DP =DA ,过点P 画PE ⊥PD 交BC 于点E ,连结DE ,求证:DE 是直角△ABC 的完美分割线.(3)如图3,在Rt △ABC 中,AC =10,BC =5,DE 是其完美分割线,点P 是斜边AB 的中点,连结PD 、PE ,求cos ∠PDE 的值.22.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.23.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.24.已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.25.小明研究了这样一道几何题:如图1,在ABC 中,把AB 绕点A 顺时针旋转()0180a a ︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180a β+=︒时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为AD =_______BC ;②如图3,当90BAC ∠=︒,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD ,90C ∠=︒,120A B ∠+∠=︒,3BC =6CD =,3DA =P ,使PDC △与PAB △之间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.B解析:(1)2452cm ;(2)22331624(0)22588020016(4)3335x x x y x x x ⎧--+≤<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)存在,使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、95. 【解析】 【分析】(1)先用勾股定理求出BD 的长,再根据旋转的性质得出10B D BD cm ''==,2CD B D BC cm '=''-=,利用B D A ∠'''的正切值求出CE 的值,利用三角形的面积差即可求阴影部分的面积;(2)分类讨论,当1605x ≤<时和当1645x ≤≤时,分别列出函数表达式; (3)分类讨论,当AB A B '=''时;当AA A B '=''时;当AB AA '='时,根据勾股定理列方程即可. 【详解】 解:(1)6AB cm =,8AD cm =,10BD cm ∴=,根据旋转的性质可知10B D BD cm ''==,2CD B D BC cm '=''-=,tan A B CEB D A A D CD'''''∠==''', 682CE∴=, 32CE cm ∴=,()28634522222A B CE A B D CED S S S cm ''''''⨯∴==-⨯÷=-; (2)①当1605x ≤<时,22CD x '=+,32CE x =, 233+22CD E S x x '∴=△, 22133368242222y x x x ∴=⨯⨯-=--+; ②当1645x ≤≤时,102BC x =-,()41023CE x =- ()221488020010223333y x x x ∴=⨯-=-+. (3)①如图1,当AB A B '=''时,0x =秒;②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==,2236AN A N +'=,222418623655x ⎛⎫⎛⎫∴-++= ⎪ ⎪⎝⎭⎝⎭,解得:6695x -=秒,(6695x --=舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'22224183646255x x ⎛⎫⎛⎫∴+=-++ ⎪ ⎪⎝⎭⎝⎭解得:32x =秒. 综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.2.E解析:(1)①EC =2; ②748CE <<;(2)点D 的坐标为233(,)82-或113(,)55- 【解析】 【分析】(1)①根据A (-4,3)和反比例函数图象上点的特征可得E 、F 的坐标,从而可表示出AE 、AF 并求得43=AE AF ,从而证得△AEF ∽△ACB ,利用相似三角形的性质的折叠的性质可推出12EC AC =,即可求得结果; ②当D 在BO 上时,由折叠的性质和同角的余角相等证得△AEF ∽△BAD ,设AF =x ,利用勾股定理可列出方程,解之得AF 的长,进而求出AE 、CE 的长,即可得出CE 的取值范围; (2)由△ABD 是等腰三角形,可得AD BD =或AD AB =,分情况进行求解即可. 【详解】解:(1)①由题意得(,3)3k E ,(4,)4--k F , ∵k 0<,则3=-k EC ,4=-k FB , ∴43=+k AE ,34=+k AF , ∴14(12)433133(12)44++===++k k AE k AF k , ∵由A (-4,3)得:4,3AC AB ==,∴43=AC AB , ∴AE ACAF AB=, 又∵∠A =∠A , ∴△AEF ∽△ACB , ∴∠AEF =∠ACB , ∴EF ∥CB ,如图2,连接AD 交EF 于点H ,由折叠的性质得:AH =DH , ∵D 在BC 上, ∴1==AE AHEC DH,则AE EC =, ∴122==EC AC ; ②由折叠得EF 垂直平分AD ,∴90AHE =︒∠,则90∠+∠=︒EAH AEF , 又∵90∠+∠=∠=︒BAD EAH BAC , ∴∠=∠BAD AEF ,如图,当D 落在BO 上时,∵90∠=∠=︒EAF ABD ,∴△AEF ∽△BAD , ∴=AE AF AB BD ,则43==AB AE BD AF , ∴4393344=÷=⨯=BD AB , 设AF =x ,则FB =3-x ,FD=AF =x ,在Rt △BDF 中,由勾股定理得:222FB BD FD +=,即2229(3)4⎛⎫-+= ⎪⎝⎭x x ,解得:7532=x ,∴7532=AF , ∴44752533328==⨯=AE AF , ∴2574488=-=-=CE AE , ∴748CE <<,即折叠后点D 落在矩形ABOC 内(不包括边界),CE 的取值范围为748CE <<; (2)∵△ABD 是等腰三角形,显然AB AD ≠, ∴AD BD =或AD AB =,①当AD BD =时,BAD ABD ∠=∠, 由(1)得:∠=∠BAD AEF , ∴∠=∠ABD AEF ,如图,过点D 作//DG x 轴分别交AB 、y 轴于点M 、N ,则DM AB ⊥,4==MN AC , ∴90∠=∠=︒BMD EAF ,1322==BM AB , ∴△AEF ∽△MBD , ∴=AE AF MB MD ,则43==MB AE MD AF , ∴43393248=÷=⨯=MD MB , ∴923488=-=-=DN MN MD , ∴点D 的坐标为233(,)82-; ②当AD AB =时,如图,过点D 作//DG x 轴分别交AB 、y 轴于点M 、N ,则3AD AB ==,DM AB ⊥,4==MN AC , ∴90∠=∠=︒AMD EAF , 由(1)得∠=∠BAD AEF , ∴△AEF ∽△MAD , ∴=AE AF AM MD ,则43==AM AE MD AF , 设4=AM a ,则3=MD a ,在Rt △MAD 中,由勾股定理得:222+=AM MD AD , 即222(4)(3)3+=a a ,解得:35a =,∴125=AM,95=MD,∴123355=-=-=BM AB AM,911455=-=-=DN MN MD,∴点D的坐标为113 (,)55 -;综上所述,若折叠后,△ABD是等腰三角形,点D的坐标为233(,)82-或113(,)55-.【点睛】本题考查了反比例函数与几何综合、相似三角形的判定与性质综合、等腰三角形的判定与性质,解题的关系是熟悉反比例函数图象上点的特征和熟练掌握相似三角形的判定与性质.3.E解析:(1)∠EPF=∠AEP+∠PFC,∠AEP+∠EPF+∠PFC=360°;(2)见解析;(3)①150°,∠EQF=180°-12∠EP F【解析】【分析】(1)如下图,过点P作AB的平行线,根据平行线的性质可推导出角度关系;(2)如下图,根据(1)的结论,可得∠AEP+∠PFC=∠EPF=90°,利用△EPF内角和为180°可推导得出∠PEF+∠PFE=90°,从而得出∠PEF=∠AEP;(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°,再利用角平分线的性质得出∠PEQ+∠PFQ=150°,最后在四边形EPFQ中得出结论;②根据(1)的结论知:∠AEP+∠PFC=∠EPF°,再利用角平分线的性质得出∠PEQ+∠PFQ=180°-1EPF2∠,最后在四边形EPFQ中得出结论.【详解】(1)如下图,过点P作PQ∥AB∵PQ∥AB,AB∥CD,∴PQ∥CD ∴∠AEP=∠EPQ,∠QPF=∠PFC 又∵∠EPF=∠EPQ+∠QPF∴∠EPF=∠AEP+∠PFC如下图,过点P作PQ∥AB同理,AB ∥QP ∥CD∴∠AEP+∠QPE=180°,∠QPF+∠PFC=180°∴∠AEP+∠EPF+∠PFC=∠AEP+∠EPQ+∠QPF+∠PFC=360° (2)根据(1)的结论知:∠AEP+∠PFC=∠EPF=90° ∵PF 是∠CFE 的角平分线,∴∠PFC=∠PFE 在△PEF 中,∵∠EPF=90°,∴∠PEF+∠PFE=90° ∴∠PEF+∠PFE=∠AEP+∠PFC∴∠PEF=∠AEP ,∴PE 是∠AEF 的角平分线(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60° ∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=300° ∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线 ∴∠PEQ=QEB ,∠PFQ=∠QFD ∴∠PEQ+∠PFQ=150°在四边形PEQF 中,∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-60°-150°=150° ②根据(1)的结论知:∠AEP+∠PFC=∠EPF∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=360°-∠EPF ∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线 ∴∠PEQ=∠QEB ,∠PFQ=∠QFD ∴∠PEQ+∠PFQ=()1360EPF 2∠︒-=180°-1EPF 2∠ ∴在四边形PEQF 中:∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-EPF ∠-(180°-1EPF 2∠)=180°-1EPF 2∠ 【点睛】本题考查“M ”型模型,解题关键在过两条平行线中间的点作已知平行线的平行线,然后利用平行线的性质进行角度转化可推导结论.4.D解析:(1)证明见解析;(22953)DG 2MG ,理由见解析. 【解析】 【分析】(1)连接MG 并延长交AB 于N 点,证明△ANM ≌△FGM 后得到MG=MN ,AN=CG ,进而得到BN=BG ,得到△ANG 为等腰直角三角形,即可证明MG=MB. (2)分两种情况画出图形再利用(1)中的思路结合勾股定理即可求解.(3)先画出图形,然后证明△ADG ≌△ABG ,得到DG=BG ,又△BMG 为等腰直角三角形,故而得到DG=BG=2MG. 【详解】解:(1) 连接MG 并延长交AB 于N 点,如下图所示:∵GF ∥AN , ∴∠NAM=∠GFM 在△ANM 和△FGM 中∠∠=⎧⎪=⎨⎪∠=∠⎩BAM GFM AM FMNMA GMF ,∴△ANM ≌△FGM(ASA) ∴MG=MN ,CG=GF=AN ∴AB-AN=BC-CG ∴NB=GB∴△NBG 为等腰直角三角形 又M 是NG 的中点∴由直角三角形斜边上的中线等于斜边的一半知: 故有:MG=MB. (2)分类讨论:情况一:当B 、G 、F 三点在正方形ABCD 外同一直线上时延长MG 到N 点,并使得MG=MN ,连接AN ,BN∴∠∠=⎧⎪=⎨⎪=⎩MN MG AMN GMF AM FM ,∴△AMN ≌△FMG(SAS) ∴AN=GF=GC ,∠NAM=∠GFM ∴AN ∥GF∴∠NAB+∠ABG=180° 又∠ABC=90° ∴∠NAB+∠CBG=90°又在△BCG 中,∠BCG+∠CBG=90° ∴∠NAB=∠BCG∴在△ABN 中和△CBG 中:∠∠=⎧⎪=⎨⎪=⎩AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)∴BN=BG ,∠ABN=∠CBG ∴∠ABC=∠NBG=90°∴△NBG 是等腰直角三角形,且∠BGN=45° 在Rt △BCG 中,2222=534--=BG BC CG 过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形 ∴MH=BH=HG=12BG=2 在Rt △MFH 中,2222MF=2529+=+=MH HF 情况二:当B 、G 、F 三点在正方形ABCD 内同一直线上时 如下图所示,延长MG 到MN ,并使得MG=MN ,连接NA 、NB ,同情况一中证明思路,∠∠=⎧⎪=⎨⎪=⎩MN MG AMN GMF AM FM ,△AMN ≌△FMG(SAS)∴AN=GF=GC ,∠NAM=∠GFM∴AN ∥GF∴∠NAB=∠ABG又∠ABG+∠GBC=90°∠GBC+∠BIF=90°∴∠BIF=∠ABG又∠BIF=∠BCG ,∠ABC=∠NAB∴∠NAB=∠GCB∴在△ABN 中和△CBG 中:∠∠=⎧⎪=⎨⎪=⎩AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)∴BN=BG ,∠ABN=∠CBG∴∠ABC=∠NBG=90°∴△NBG 是等腰直角三角形,且∠BGN=45°在△BCG 中,2222=534-=-=BG BC CG过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形∴MH=BH=HG=12BG=2 ∴HF=HG-GF=2-1=1在Rt △MFH 中,2222MF=215+=+=MH HF 29 5.(3)由题意作出图形如下所示:DG 、MG 的数量关系为:2,理由如下:∵G 点在AC 上∴∠DAG=∠BAG=45°在△ADG 和△ABG 中:∠∠=⎧⎪=⎨⎪=⎩AD AB DAG BAG AG AG ,∴△ADG ≌△BAG(SAS)∴DG=BG又由(2)中的证明过程可知:△MBG 为等腰直角三角形∴2MG∴2MG故答案为:2MG.【点睛】本题考查了正方形的旋转、三角形的全等、勾股定理等知识,难度很大,关键是要能正确做出图形,利用数形结合的思想,熟练的使用正方形的性质是解题的关键.5.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x =的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可;(3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为 12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m-=,即:n =-2m 或m =-2n , 当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=; 故答案为:0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程理由:∵点(,)p q 在反比例函数8y x=的图象上 ∴8q p =代入方程260px x q -+=得: 2860px x p -+= 解得:12x p =,24x p = ∵1212x x = ∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上, ∴抛物线的对称轴为:(1)(4)522t t x ++-== 又∵方程20ax bx c ++=是半等分根方程∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x +=所以153x =,2103x = 所以方程20ax bx c ++=的一个根为53得证. 【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答.6.A解析:(1)A (0,4),C (3,0);(2)S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩;(3)存在,满足条件的t 的值为3617或36,点Q 的坐标为162,17⎛⎫- ⎪⎝⎭或()2,16--. 【解析】【分析】(1)解方程组求出m ,n 即可解决问题.(2)分两种情形:如图1中,当0<t <4时,如图2中,当t >4时,根据S=12•BC•OP 求解即可.(3)分两种情形分别构建方程求解即可.【详解】解:(1)由725m n m n +=⎧⎨-=⎩, 解得:43m n =⎧⎨=⎩, ∴A (0,4),C (3,0);(2)如图1中,当0<t <4时,S=12•BC•OP=12×5×(4-t )=-52t+10. 如图2中,当t >4时,S=12•BC•OP=12×5×(t-4)=52t-10. 综上所述,S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩, (3)当04t <<时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯, 解得3617t =, 此时,363241717OP =-=, 32(0,)17P ∴, (4,0)B -,BQ ∴的中点Q 的坐标为162,17⎛⎫- ⎪⎝⎭, 当4t >时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯, 解得36t =,此时36432OP =-=,(0,32)P ∴-,(4,0)B -,BP ∴的中点Q 的坐标为(2,16)--.综上所述,满足条件的t 的值为3617或36.点Q 的坐标为16(2,)17-或(2,16)--. 【点睛】本题属于三角形综合题,考查了解方程组,三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 7.E解析:(1)3EF EC =,见解析;(2)27BK =;(3)①AGH 是等边三角形,见解析;②1(62)4- 【解析】【分析】 (1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到3AE EC =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案; ②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=.AF CD ⊥,垂足为F , 1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 3AF a ∴=在Rt ABF 中,22BF AB AF =+,72BF a ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=.//AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,AF ∴=.1(32ADH S =, 11(322DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.8.C解析:(1)①32,3,32CP ≤≤,②O;(2)13b ≥;(3)0<r≤3. 【解析】【分析】(1)①根据垂线段最短以及已知条件,确定OP ,CP 的最大值,最小值即可解决问题.②根据限距关系的定义判断即可.(2)直线3y x b =+与x 轴、y 轴分别交于点F ,G (0,b ),分三种情形:①线段FG 在⊙O 内部,②线段FG 与⊙O 有交点,③线段FG 与⊙O 没有交点,分别构建不等式求解即可.(3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,根据⊙H 和⊙K 都满足限距关系,构建不等式求解即可.【详解】(1)①如图1中,∵D (-1,0),E(03,∴OD=1,3OE =∴3OE tan EDO OD∠== ∴∠EDO=60°,当OP ⊥DE 时,3•60OP OD sin =︒=,此时OP 的值最小, 当点P 与E 重合时,OP 3当CP ⊥DE 时,CP 的值最小,最小值•603CD cos =︒=当点P 与D 或E 重合时,PC 的值最大,最大值为2,3332CP ≤. ②根据限距关系的定义可知,线段DE 上存在两点M ,N ,满足OM=2ON ,故点O 与线段DE 满足限距关系.故答案为O .(2)直线3y x b =+与x 轴、y 轴分别交于点F ,G (0,b ), 当0<b <1时,线段FG 在⊙O 内部,与⊙O 无公共点,此时⊙O 上的点到线段FG 的最小距离为1-b ,最大距离为1+b , ∵线段FG 与⊙O 满足限距关系,∴1+b ≥2(1-b ),解得13b ≥, ∴b 的取值范围为131b ≤<. 当1≤b ≤2时,线段FG 与⊙O 有公共点,线段FG 与⊙O 满足限距关系, 当b >2时,线段FG 在⊙O 的外部,与⊙O 没有公共点,此时⊙O 上的点到线段FG 的最小距离为121b -,最大距离为b+1, ∵线段FG 与⊙O 满足限距关系,∴11212b b ⎛⎫+≥-⎪⎝⎭, 而11212b b ⎛⎫+≥- ⎪⎝⎭总成立, ∴b >2时,线段FG 与⊙O 满足限距关系,综上所述,b 的取值范围为13b ≥. (3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,两圆的距离的最小值为2r-2,最大值为2r+2,∵⊙H 和⊙K 都满足限距关系,∴2r+2≥2(2r-2),解得r ≤3,故r 的取值范围为0<r ≤3.【点睛】本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.9.A解析:(1)5π;(2)3;(3)存在,63+【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=-推出16A CEC=,推出A1C=26nm•,推出BH=A1C=26nm•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到3FGFFM FED==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.【详解】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵22125+=∴D到点D1所经过路径的长度3055π⋅⋅=;(2)∵△BCE∽△BA2D2,∴222A D CE n CB A B m ==, ∴2n CE m=, ∵161EA EC=-, ∴16A C EC =, ∴A 1C=26n m⋅, ∴BH=A 1C=2226n m n m -=⋅, ∴42226n m n m-=⋅, ∴m 4﹣m 2n 2=6n 4, ∴242416n n m m-=•, ∴33n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,33BE n BG m ==, ∵四边形BEFG 是矩形,∴3FG FE = ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME ,∴3FG F FM FE D ==,∵∠DFM=90°,tan FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,∴2FM DM =;在矩形ABCD 中,有AD AB =3=,则3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=AB =,∴DM=AN=BP=2,∴2FM DM ===∴6PF PM MF =+=【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.10.C解析:(1)点C 的坐标为(2,0);(2)1522y x =-+;(3)①2481515y x x =-;②1013. 【解析】【分析】(1)求得对称轴,由对称性可知C 点坐标;(2)利用待定系数法求解可得;(3)①由AE=3AO 的关系,建立K 型模型相似,求得点E 坐标代入解析式可得;②若△CDB 与△BOA 相似,则∠OAB=∠CDB=90°,由相似关系可得点D 坐标,代入解析式y=ax 2-2ax 可得a 值.【详解】解:(1)把0y =代入22y ax ax =-,得220ax ax -=,解得:0x =,或2x =.∵点C 在x 轴正半轴上,∴点C 的坐标为(2,0).(2)设直线表达式为y kx b =+,把点(1,2)A ,(5,0)B 分别代入y kx b =+,得250k b k b +=⎧⎨+=⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的表达式为:1522y x =-+. (3)①作AH x ⊥轴于点H ,EF AH ⊥于点F (如图),∵222125OA =+=,2222420AB ,22525OB ==,∴222OA AB OB +=. ∴90EAO OAB ∠=∠=︒.由EFA AHO △∽△,得2EF FA EA AH HO AO ===, ∴4EF =,2FA =,∴点E 坐标为()3,4-.把(3,4)E -代入22y ax ax =-,得964a a +=,解得:415a =. ∴2481515y x x =-. ②若△CDB 与△BOA 相似,如图,作DG ⊥BC ,∴CD BD BC AO AB BO==,∠OAB=∠CDB=90°, 35525==, ∴355CD =655BD =, ∵523BC =-=, ∴356565535DG ==, ∴156225x -+=,解得:135x =, ∴点D 的坐标为:(135,65), 把点D 代入22y ax ax =-,即16913622555a a -⨯= 解得:1013a =; 故答案为:1013. 【点睛】本题是二次函数的综合问题,考查了二次函数的基本性质,数形结合与K 型模型的使用,以及相似存在性问题,内容综合较好,难度相当入门级压轴问题.11.A解析:(1)图见解析,33cm ;(2)①25cm 42cm AB ≤≤26【解析】【分析】(1)连接AO ,直线l 垂直平分PO .13cm 22OH PO ==,在Rt △AHO 中即可求解; (2)①分两种情况求解;②过O 作弦AB 的垂直与圆交于点D ,与弧AB 交于点C ,与AB 交于点E ,过M 作OM 的垂线,两条垂线的交点为O',连接AO ,得到OO'垂直平分AB ,O'为弧ABM 所在圆的圆心,10cm OO '=,在Rt △ADO 中即可求解;。
人教版中考数学压轴题 易错题综合模拟测评检测试题
一、中考数学压轴题1.已知四边形ABCD 是正方形,点P 在直线BC 上,点G 在直线AD 上(P ,G 不与正方形顶点重合,且在CD 的同侧),PD =PG ,DF ⊥PG 于点H ,交直线AB 于点F ,将线段PG 绕点P 逆时针旋转90°得到线段PE ,连结EF .(1)如图1,当点P 与点G 分别在线段BC 与线段AD 上时.①求证:DF =PG ;②若AB =3,PC =1,求四边形PEFD 的面积;(2)如图2,当点P 与点G 分别在线段BC 与线段AD 的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.2.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题.(1)(课本习题)如图①,△ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE=CD . 求证:DB=DE(2)(尝试变式)如图②,△ABC 是等边三角形,D 是AC 边上任意一点,延长BC 至E ,使CE=AD .求证:DB=DE .(3)(拓展延伸)如图③,△ABC 是等边三角形,D 是AC 延长线上任意一点,延长BC 至E ,使CE=AD 请问DB 与DE 是否相等? 并证明你的结论.3.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.4.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC 的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.105AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.5.如图1,已知,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,连接AO 并延长交BC 于点H .(1)求外接圆⊙O 的半径;(2)如图2,点D 是AH 上(不与点A ,H 重合)的动点,以CD ,CB 为边,作平行四边形CDEB ,DE 分别交⊙O 于点N ,交AB 边于点M .①连接BN ,当BN ⊥DE 时,求AM 的值;②如图3,延长ED 交AC 于点F ,求证:NM ·NF=AM ·MB ;③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.6.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N .(1)如图1,当α=60°时,求证:DM =BN ;(2)在上述旋转过程中,DN DM 的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积.7.如图,在平面直角坐标系中,Rt ABC ∆的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分BAC ∠交边BC 于点E ,经过点A D E 、、的圆的圆心F 恰好在y 轴上,⊙F 与y 里面相交于另一点G .(1)求证:BC 是⊙F 的切线 ;(2)若点A D 、的坐标分别为(0,1),(2,0)A D -,求⊙F 的半径及线段AC 的长; (3)试探究线段AG AD CD 、、三者之间满足的等量关系,并证明你的结论.8.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax =,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.9.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若12,(33)2ADH a S ==+,求sin GAB ∠的值.10.如图1,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,连接AC 、BC ,已知点A 、C 的坐标为()2,0A -、()0,6C -.(1)求抛物线的表达式;(2)点P 是线段BC 下方抛物线上的一动点,如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形为平行四边形,求点Q 的坐标;(3)如图2,若点M 是AOC △内一动点,且满足AM AO =,过点M 作MN OA ⊥,垂足为N ,设AMN 的内心为I ,试求CI 的最小值.11.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx+c 的图象与x 轴交于A (﹣3,0)、B (2,0)两点,与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)点E (m ,2)是直线AC 上方的抛物线上一点,连接EA 、EB 、EC ,EB 与y 轴交于D .①点F 是x 轴上一动点,连接EF ,当以A 、E 、F 为顶点的三角形与△BOD 相似时,求出线段EF 的长;②点G 为y 轴左侧抛物线上一点,过点G 作直线CE 的垂线,垂足为H ,若∠GCH =∠EBA ,请直接写出点H 的坐标.12.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.13.小明研究了这样一道几何题:如图1,在ABC 中,把AB 绕点A 顺时针旋转()0180a a ︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180a β+=︒时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为AD =_______BC ;②如图3,当90BAC ∠=︒,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD ,90C ∠=︒,120A B ∠+∠=︒,123BC =,6CD =,63DA =,在四边形内部是否存在点P ,使PDC △与PAB △之间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由.14.已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.15.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.16.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.17.已知:矩形ABCD 内接于⊙O ,连接 BD ,点E 在⊙O 上,连接 BE 交 AD 于点F ,∠BDC+45°=∠BFD ,连接ED .(1)如图 1,求证:∠EBD=∠EDB ;(2)如图2,点G 是 AB 上一点,过点G 作 AB 的垂线分别交BE 和 BD 于点H 和点K ,若HK=BG+AF ,求证:AB=KG ;(3)如图 3,在(2)的条件下,⊙O 上有一点N ,连接 CN 分别交BD 和 AD 于10点 M 和点 P ,连接 OP ,∠APO=∠CPO ,若 MD=8,MC= 3,求线段 GB 的长.18.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.19.如图①,△ABC 是等腰直角三角形,在两腰AB 、AC 外侧作两个等边三角形ABD 和ACE ,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,连接CM 、BN ,CM 与AB 交于点P .(1)求证:CM =BN ;(2)如图②,点F 为角平分线AN 上一点,且∠CPF =30°,求证:△APF ∽△AMC ;(3)在(2)的条件下,求PF BN 的值. 20.如图,在长方形ABCD 中,AB =4cm ,BE =5cm ,点E 是AD 边上的一点,AE 、DE 分别长acm .bcm ,满足(a -3)2+|2a +b -9|=0.动点P 从B 点出发,以2cm/s 的速度沿B→C→D 运动,最终到达点D ,设运动时间为t s .(1)a =______cm ,b =______cm ;(2)t 为何值时,EP 把四边形BCDE 的周长平分?(3)另有一点Q 从点E 出发,按照E→D→C 的路径运动,且速度为1cm/s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,△BPQ 的面积等于6cm 2.21.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB ∥CD ∥EF ,那么∠BAC+∠ACE+∠CEF =( )A .180°B .270°C .360°D .540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB ∥EF ,请直接写出∠BAD ,∠ADE ,∠DEF 之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD ,ED 分别平分∠BAC ,∠CEF 时,∠ACE 与∠ADE 之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB ∥EF ,当∠ACD=90°时,∠BAC 、∠CDE 和∠DEF 之间又有怎样的数量关系?请你直接写出结果,不需要证明.22.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值;(2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?23.(操作发现)如图1,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于45︒),旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF CD =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF .(1)请求出EAF ∠的度数?(2)DE 与EF 相等吗?请说明理由;(类比探究)如图2,ABC ∆为等边三角形,先将三角板中的60︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于30).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .(3)直接写出EAF ∠=_________度;(4)若1AE =,2BD =,求线段DE 的长度.24.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.25.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 3CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.E解析:(1)①详见解析;②8;(2)(2)四边形PEFD 是菱形,证明详见解析【解析】【分析】(1)①根据四边形ABCD 为正方形得AD=CD ,然后证明△ADF ≌△CDP ,则DF=DP ,得到DF=PG ;②先判断四边形PEFD是菱形,然后求出PG=DP=22+=,过点P作PM⊥AD于点3110M,则四边形CDMP是矩形,则△DHG∽△PMG,根据相似三角形的性质,即可求出答案;(2)根据四边形ABCD为正方形得AD=AB,由四边形ABPM为矩形得AB=PM,则AD=PM,再利用等角的余角相等得到∠GDH=∠MPG,于是可根据“ASA”证明△ADF≌△MPG,得到DF=PG,加上PD=PG,得到DF=PD,然后利用旋转的性质得∠EPG=90°,PE=PG,所以PE=PD=DF,再利用DF⊥PG得到DF∥PE,于是可判断四边形PEFD为平行四边形,加上DF=PD,则可判断四边形PEFD为菱形.【详解】解:(1)①证明∵四边形ABCD是正方形,∴AD=CD ,∠A= ∠C=∠ADC=90°,∵DF⊥PG,∴∠DHG=90°,∴∠HGD+∠ADF=90°,∠CDP+∠PDG=90°,∵ PD=PG ,∴∠PGD=∠PDG,∴∠ADF=∠CDP,∴△ADF≌△CDP(ASA),∴DF=DP,∵ PD=PG,∴DF=PG;②∵线段PG绕点P逆时针旋转90°得到线段PE∴∠GPE=∠DHG=90°, PG=PE=DF= PD∴PE∥DF∴四边形PEFD是菱形在Rt△DCP中,AD=AB=3,PC=1,PG=DP=22+=3110过点P作PM⊥AD于点M,则四边形CDMP是矩形∴DM=MG=PC=1,DG=2DM=2,∠PMG=∠DHG=90°,∠DGH=∠PGM∴△DHG∽△PMG∴DG GH PG MG=即=110GH∴GH=10, PH=PG-GH=410由(1)DF=DP=10∴四边形PEFD的面积是DF PH⋅=10×410=8 ;(2)四边形PEFD是菱形;作PM⊥DG于M,如图2,∵四边形ABCD为正方形,∴AD=AB,∵四边形ABPM为矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中FAD PMGAD MPADF MPG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF而DF⊥PG,∴DF∥PE,且DF =PE,∴四边形PEFD为平行四边形,∵DF=PD,∴四边形PEFD为菱形.【点睛】本题考查了四边形的综合题:熟练掌握平行四边形、矩形、菱形和正方形的判定与性质是解题的关键;同时会运用等腰三角形的性质和旋转的性质;会利用三角形全等解决线段相等的问题.2.D解析:(1)见详解;(2)见详解;(3)DB=DE成立,证明见详解【解析】【分析】(1)由等边三角形的性质,得到∠CBD=30°,∠ACB=60°,由CD=CE,则∠E=∠CDE=30°,得到∠E=∠CBD=30°,即可得到DB=DE;(2)过点D作DG∥AB,交BC于点G,证明△BDC≌△EDG,根据全等三角形的性质证明结论;(3)过点D作DF∥AB交BE于F,由“SAS”可证△BCD≌△EFD,可得DB=DE.【详解】证明:(1)∵△ABC是等边三角形∴∠ABC=∠BCA=60°,∵点D为线段AC的中点,∴BD平分∠ABC,AD=CD,∴∠CBD=30°,∵CD=CE,∴∠CDE=∠CED,又∵∠CDE+∠CED=∠BCD,∴2∠CED=60°,∴∠CED=30°=∠CBD,∴DB=DE;(2)过点D作DG∥AB,交BC于点G,如图,∴∠DGC=∠ABC=60°,又∠DCG=60°,∴△DGC为等边三角形,∴DG=GC=CD,∴BC-GC=AC-CD,即AD=BG,∵AD=CE,∴BG=CE,∴BC=GE ,在△BDC 和△EDG 中,60DC DG BCD EGD BC EG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDC ≌△EDG (SAS )∴BD=DE ;(3)DB=DE 成立,理由如下:过点D 作DF ∥AB 交BE 于F ,∴∠CDF=∠A ,∠CFD=∠ABC ,∵△ABC 是等边三角形∴∠ABC=∠BCA=∠A=60°,BC=AC=AB ,∴∠CDF=∠CFD=60°=∠ACB=∠DCF ,∴△CDF 为等边三角形∴CD=DF=CF ,又AD=CE ,∴AD-CD=CE-CF ,∴BC=AC=EF ,∵∠BCD=∠CFD+∠CDF=120°,∠DFE=∠FCD+∠FDC=120°,∴∠BCD=∠DFE ,且BC=EF ,CD=DF ,∴△BCD ≌△EFD (SAS )∴DB=DE .【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,以及平行线的性质,正确添加恰当辅助线构造全等三角形是本题的关键.3.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.4.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)32910AB BC =;(3)①125615-;②355AD CD =. 【解析】【分析】 (1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论; (2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出AB BC的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到3CF DF =,则(23)35AC x =+=,即可求出DF 的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AF AE EC=,然后求出CD 和AD 的长度,即可得到答案.【详解】解:(1)ABC 是“准黄金”三角形.理由:如图,过点A 作AD BC ⊥于点D ,∵12AC =,30ACB ∠=︒, ∴162AD AC ==. ∴:6:103:5AD BC ==. ∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.不防设3AE k =,5BC k =,∵点C 为ABD △的重心,∴:2:1BC CE =. ∴52k CE =,152k BE =. ∴2215329(3)2k AB k k ⎛⎫=+= ⎪⎝⎭. ∴329329:5AB k k BC ==. (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3,∵35AE BC =, ∴BC=5, ∵10AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=,∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF ,∴△ACE ∽△DAF ,∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°,∴3CF x =, ∴(23)35AC x =+=,解得:65315DF x ==-∴2125615CD DF ==-.②如图,过点A 作AE BC ⊥于点E ,则3AE =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.∴5BC =.∵10AB BC =, ∴10AB. ∴221BE AB AE =-=.∴6CE BE BC =+=,2236935AC CE AE =+=+=.分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,∴90B GC DFC '∠=∠=︒,3B G '=,5C B B C '==,则CG 4=.∵GCB FCD α'∠=∠=,∴AEC DFA ∽△△.∴::::3:4:5DF FC CD B G GC CB ''==.∴设3DF k =,4FC k =,5CD k =.∵12l l //,∴ACE CAD ∠=∠,且90AEC AFD ∠=∠=︒.∴AEC DFA ∽△△.∴DF AF AE EC =. ∴33543k k -=,解得35k =∴3552 CD k==,2222959595102AF DFAD⎛⎫⎛⎫+=+=⎪ ⎪⎪ ⎪⎝⎭⎝⎭=.∴93525355ADCD===.【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.5.A解析:(1)O半径为254;(2)①458AM=;②详见解析;③当1251017x<<时,有2220ND DM-<成立.【解析】【分析】(1)如下图,在Rt△ABH中,先求得AH的值,设OA=r,在Rt△OBH中,利用勾股定理可求得r的长;(2)①如下图,在Rt BCN,可求得BN的长,然后在矩形NBHD中,求得AD的值,最后利用cos∠MAD求得AM;②如下图,同过证AMN NFC△∽△可得结论;③如下图,通过转换,先得出222ND DM-=22AM MB DM⋅这个等式,然后利用3sin5DMMADAM∠==,设AM=x,可得到关于x的方程,进而求出x的取值范围.【详解】解:(1)如图1,连接OB,∵AH过圆心O,∴AH BC⊥,∵AB AC=,∴162BH CH BC===,在Rt ABH△中,221068AH=-=,设半径OA OB r==,则8OH r=-,在Rt OBH中,222(8)6r r-+=,解得254r =,即O 半径为254. (2)①如图2,连接CN在平行四边形CDEB 中,DE BC ∥,∴ENB NBC ∠=∠.∵BN DE ⊥,即90ENB ∠=︒,∴90NBC ∠=︒.∴CN 是O 的直径.2522CN r ==. ∴在Rt BCN 中,2272BN CN BC =-=. ∵四边形CDEB 是平行四边形,NB ⊥BH ,DH ⊥BH∴四边形NBHD 是矩形,∴72DH BN ==,6ND BH ==,∴79822AD AH DH =-=-=. ∴在Rt ADM △中,4cos 5AD AH MAD AM AB ∠===,∴458AM =, ②如图3,连接AN ,CN ,∵DE BC ∥,∴DNC NCB ∠=∠.∵NAB NCB ∠=∠,∴NAB DNC ∠=∠.由DE BC ∥,AB AC =可得AMD ABC ACB AFD ∠=∠=∠=∠,∴AMN NFC ∠=∠,AM AF =.∴AMN NFC △∽△,MB CF =.∴NM NM AM CF MB NF==,即NM NF AM MB ⋅=⋅. ③∵AH BC ⊥,DE BC ∥,∴AD MF ⊥,∵AM AF =,∴MD DF =,∴222222ND DM ND DM DM -=-- 2()()ND DM ND DM DM =-+-2NM NF DM =⋅-22AM MB DM =⋅.∵AM x =,∴10BM x =-, 由3sin 5DM MAD AM ∠==,得35DM x =, ∴22223342(10)10525ND DM x x x x x ⎛⎫-=--=-+ ⎪⎝⎭.(010)x << 该函数图象的示意图如图4易求得点P 坐标为125,017⎛⎫⎪⎝⎭ ∴当1251017x <<时,有2220ND DM -<成立. 【点睛】本题考查几何图形的综合,解题过程中用到了勾股定理、相似、三角函数和平行四边形、圆的性质,解题关键是将这些知识点综合起来分析题干.6.A解析:(1)详见解析;(2)3DN DM =3)92 【解析】【分析】(1)利用ASA 证ADM DBN △≌△,从而得出DM BN =;(2)如下图,先证NDQ MDP △∽△,得出DN DQ DM DP =,然后在Rt BDQ △,利用tan ∠B 得出DQ BQ 的值,最后得出DN DM的值; (3)如下图,先证点C 是EF 的中点,然后利用CD 平分EDF ∠可推导出四边形CGDH 为正方形,从而得出CHN CGM △≌△,进而得出面积.【详解】解:(1)由题意,∵60α=︒,90EDF ∠=︒,∴30BDN ∠=︒,∴BDN A ∠=∠,B EDA ∠=∠,∵点D 是斜边AB 的中点,∴AD BD =,∴ADM DBN △≌△,∴DM BN =.(2)3DN DM =,是一个定值. 证明:如图1,作DP AC ⊥于点P ,DQ BC ⊥于点Q ,∴90NQD MPD ∠=∠=︒,又∵90MDN PDQ ∠=∠=︒,∴NDQ MDP ∠=∠,∴NDQ MDP △∽△,∴DN DQ DM DP=, 在Rt BDQ △中,60B ∠=︒,∴tan ∠B 3DQ BQ== 又由(1)可知:DP BQ =, ∴3DQ DP=, ∴3DN DM =. (3)连接CD ,作CG DE ⊥于点G ,CH DF ⊥于点H ,在Rt ABC 中,点D 是AB 的中点,∴132CD AB ==, ∵AB EF =,∴12CD EF =,∵90EDF ∠=︒,∴C 是EF 中点, ∴CD 平分EDF ∠,45CDE ∠=︒,∵CG DE ⊥,CH DF ⊥,∴CG CH =,∵90CGD CHD EDF ∠=∠=∠=︒,∴四边形CGDH 为正方形,90GCH ∠=︒,∴GCM HCN ∠=∠,∴CHN CGM △≌△,∴S 四边形CMDN S =正方形21922CGDH CD ==. 【点睛】本题综合考查了全等三角形和相似三角形的证明和性质,解题关键是找出两个全等(相似)三角形,根据三角形全等(相似)的性质推出结论. 7.E解析:(1)详见解析;(2)52r =,552AC +=;(3)2AG AD CD =+,理由详见解析.【解析】【分析】 (1)连接EF ,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC ,得到FE ∥AC ,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD ,设⊙F 的半径为r ,根据勾股定理列出方程,解方程即可求出半径的长,证FEB ∆∽AOD ∆,求出BF 的长,再证BFE ∆∽BAC ∆,即可求出AC 的长;(3)过点F 作FR AC ⊥于点R ,得到四边形RCEF 是矩形,得到EF=RC=RD+CD ,根据垂径定理解答即可.【详解】(1)如图,连接EF ,∵AE 平分BAC ∠,FAE CAE ∴∠=∠,FA FE =,FAE FEA ∴∠=∠,FAE EAC ∴∠=∠,//FE AC ∴,90FEB C ∴∠=∠=︒,又E 为⊙F 上一点,BC ∴是⊙F 的切线;(2)如图,连接FD ,设⊙F 的半径为r ,∵点A D 、的坐标分别为(0,1),(2,0)A D -,1,2,1OA OD OF r ∴===-,5AD ∴=, 在Rt FOD ∆中,由勾股定理得,222FD OF OD=+,222(1)2r r ∴=-+,解得52r =, 即⊙F 的半径为52, 90ODA OAD EBF OAD ∠+∠=∠+∠=︒,ODA EBF ∴∠=∠,90AOD FEB ∠=∠=︒,∴FEB ∆∽AOD ∆,EF BF OA DA ∴=,即2.515=, 55BF ∴=, 5552BA +∴=, //EF AC ,∴BFE ∆∽BAC ∆,EF BF AC BA∴=,即55522555AC =+, 55AC +∴= (3)2AG AD CD =+.理由如下:如图,过点F 作FR AC ⊥于点R ,则∠FRC=90°,∵∠FEC=∠C=90°,∴四边形RCEF 为矩形,EF RC RD CD ∴==+,FR AD ⊥,AR RD ∴=,12EF RD CD AD CD ∴=+=+, 22AG EF AD CD ∴==+.【点睛】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握切线的判定定理是解题的关键.8.(1)212(02)16(25)x x y x x ⎧≤≤⎪=⎨≤≤⎪⎩;(2)220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)第2分钟末两颗弹珠速度相差最大,最大相差6米/分钟;(4)存在,理由详见解析【解析】【分析】(1)将(1,2)代入21y ax =,得2a =,从而得到212y x =,再代入2x =求出18y =,即可得到反比例函数解析式,即可得解;(2)当01x ≤≤时,第二颗弹珠未弹出,故第二颗弹珠的解析式为20y =;再分别根据(1)中的结论,即可求出当13x <≤和36x <≤时第二颗弹珠的解析式;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,则第2分钟末两颗弹珠速度相差最大,分别求出第2分钟末时两颗弹珠的速度,再相减即可的解;(4)第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟,第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.可以根据速度相等时列方程求得时刻.【详解】(1)当02x ≤≤时,将(1,2)代入21y ax =,得2a =,212y x ∴=,∵当2x =时,18y =,∴当25x ≤≤时,116y x=, 1y ∴与x 的函数关系式为212(02)16(25)x x y x x⎧≤≤⎪=⎨≤≤⎪⎩;(2)当01x ≤≤时,第二颗弹珠未弹出,∴第二颗弹珠的解析式为20y =;当13x <≤时,第二颗弹珠的解析式为222(1)y x =-;当36x <≤时,第二颗弹珠的解析式为2161y x =-; ∴2y 与x 的函数关系式为220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,∴第2分钟末两颗弹珠速度相差最大,∵第一颗弹珠的速度为2218222y x =⨯==米/分钟,第二颗弹珠的速度为2122(1)212y x =⨯==-米/分钟,∴两颗弹珠的速度最大相差8-2=6米/分钟;(4)存在,理由如下:第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟, 第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同. 这个时刻可以通过解方程2162(1)x x=-求得. 【点睛】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息,明确自变量的取值范围和图象所经过的点的坐标. 9.E解析:(1)EF =,见解析;(2)BK =;(3)①AGH 是等边三角形,见解析;②14 【解析】【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到AE =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到1DH =,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=.AF CD ⊥,垂足为F ,1,902CF DF a BAF AFD ︒∴==∠=∠=。
中考数学压轴题 易错题自检题学能测试试卷
一、中考数学压轴题1. 在平面直角坐标系中,点O 为坐标原点,直线y =﹣x+4与x 轴交于点A ,过点A 的抛物线y =ax 2+bx 与直线y =﹣x+4交于另一点B ,且点B 的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q 为抛物线上位于直线AB 上方的一动点(不与B 、A 重合),过Q 作QP ⊥x 轴,交x 轴于P ,连接AQ ,M 为AQ 中点,连接PM ,过M 作MN ⊥PM 交直线AB 于N ,若点P 的横坐标为t ,点N 的横坐标为n ,求n 与t 的函数关系式;在此条件下,如图2,连接QN 并延长,交y 轴于E ,连接AE ,求t 为何值时,MN ∥AE .(3)如图3,将直线AB 绕点A 顺时针旋转15度交抛物线对称轴于点C ,点T 为线段OA 上的一动点(不与O 、A 重合),以点O 为圆心、以OT 为半径的圆弧与线段OC 交于点D ,以点A 为圆心、以AT 为半径的圆弧与线段AC 交于点F ,连接DF .在点T 运动的过程中,四边形ODFA 的面积有最大值还是有最小值?请求出该值.2.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.3.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.4.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ;(2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ;(3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由.5.如图,在平面直角坐标系中,Rt ABC ∆的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分BAC ∠交边BC 于点E ,经过点A D E 、、的圆的圆心F 恰好在y 轴上,⊙F 与y 里面相交于另一点G .(1)求证:BC 是⊙F 的切线 ;(2)若点A D 、的坐标分别为(0,1),(2,0)A D -,求⊙F 的半径及线段AC 的长; (3)试探究线段AG AD CD 、、三者之间满足的等量关系,并证明你的结论.6.如图①,四边形ABCD 中,//,90AB CD ADC ∠=︒.(1)动点M 从A 出发,以每秒1个单位的速度沿路线A B C D →→→运动到点D 停止,设运动时间为a ,AMD ∆的面积为,S S 关于a 的函数图象如图②所示,求AD CD 、的长.(2)如图③动点P 从点A 出发,以每秒2个单位的速度沿路线A D C →→运动到点C 停止,同时,动点Q 从点C 出发,以每秒5个单位的速度沿路线C D A →→运动到点A 停止,设运动时间为t ,当Q 点运动到AD 边上时,连接CP CQ PQ 、、,当CPQ ∆的面积为8时,求t 的值.7.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若12,(33)2ADH a S ==+,求sin GAB ∠的值.8.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.9.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x . (1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)10.小明研究了这样一道几何题:如图1,在ABC 中,把AB 绕点A 顺时针旋转()0180a a ︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180a β+=︒时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为AD =_______BC ;②如图3,当90BAC ∠=︒,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD ,90C ∠=︒,120A B ∠+∠=︒,123BC =,6CD =,63DA =,在四边形内部是否存在点P ,使PDC △与PAB △之间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由.11.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),AB=62,点 P 从点 O 出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.(1)求点 B 的坐标;(2)设点 P 的运动时间为点 t 秒,△BDP 的面积为 S ,求 S 与 t 的函数关系式;(3)当点 P 与点 D 重合时,连接 BP ,点 E 在线段 AB 上,连接 PE ,当∠BPE =2∠OBP 时, 求点 E 的坐标.12.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM .(Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标;(Ⅱ)连接BN ,当1DM =时,求ABN 的面积;(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案) 在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题. 小明:我是这样想的,延长MN 与x 轴交于P 点,于是出现了Rt NAP △.小雨:我和你想的不一样,我过点N 作y 轴的平行线,出现了两个Rt NAP △.13.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.14.(1)探究发现数学活动课上,小明说“若直线21y x =-向左平移3个单位,你能求平移后所得直线所对应函数表达式吗?”经过一番讨论,小组成员展示了他们的解答过程:在直线21y x =-上任取点()01A -,, 向左平移3个单位得到点()31,'--A 设向左平移3个单位后所得直线所对应的函数表达式为2y x n =+.因为2y x n =+过点()31,'--A , 所以61n -+=-,所以5n =,填空:所以平移后所得直线所对应函数表达式为(2)类比运用已知直线21y x =-,求它关于x 轴对称的直线所对应的函数表达式;(3)拓展运用将直线21y x =-绕原点顺时针旋转90°,请直接写出:旋转后所得直线所对应的函数表达式 .15.已知:AB 为⊙O 的直径,点C 为弧AB 的中点,点D 为⊙O 上一点,连接CD ,交AB 于点M ,AE 为∠DAM 的平分线,交CD 于点E .(1)如图1,连接BE ,若∠ACD=22°,求∠MBE 的度数;(2) 如图2,连接DO 并延长,交⊙O 于点F ,连接AF ,交CD 于点N .①求证:DM 2+CN 2=CM 2;②如图3,当AD=1,AB=10时,请直接写出....线段ME 的长. 16.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积. 17.已知菱形ABCD 中,∠ABC=60°,AB=4,点M 在BC 边上,过点M 作PM ∥AB 交对角线BD 于点P ,连接PC .(1)如图1,当BM=1时,求PC 的长;(2)如图2,设AM 与BD 交于点E ,当∠PCM=45°时,求证:BE DE =233+; (3)如图3,取PC 的中点Q ,连接MQ ,AQ .①请探究AQ 和MQ 之间的数量关系,并写出探究过程;②△AMQ 的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.18.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值;(2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?19.如图1,Rt △ABC 中,点D ,E 分别为直角边AC ,BC 上的点,若满足AD 2+BE 2=DE 2,则称DE 为R △ABC 的“完美分割线”.显然,当DE 为△ABC 的中位线时,DE 是△ABC 的一条完美分割线.(1)如图1,AB =10,cos A =45,AD =3,若DE 为完美分割线,则BE 的长是 . (2)如图2,对AC 边上的点D ,在Rt △ABC 中的斜边AB 上取点P ,使得DP =DA ,过点P 画PE ⊥PD 交BC 于点E ,连结DE ,求证:DE 是直角△ABC 的完美分割线.(3)如图3,在Rt △ABC 中,AC =10,BC =5,DE 是其完美分割线,点P 是斜边AB 的中点,连结PD 、PE ,求cos ∠PDE 的值.20.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).21.问题提出(1)如图1,已知三角形ABC ,请在BC 边上确定一点D ,使得AD 的值最小. 问题探究(2)如图2,在等腰ABC 中,AB AC =,点P 是AC 边上一动点,分别过点A ,点C 作线段BP 所在直线的垂线,垂足为点,D E ,若5,6AB BC ==,求线段BP 的取值范围,并求AD CE +的最大值.问题解决(3)如图3,正方形ABCD 是一块蔬菜种植基地,边长为3千米,四个顶点处都建有一个蔬菜采购点,根据运输需要,经过顶点A 处和BC 边的两个三等分点E F 、之间的某点P 建设一条向外运输的快速通道,其余三个采购点都修建垂直于快速通道的蔬菜输送轨道,分别为BB '、CC '、DD '.若你是此次项目设计的负责人,要使三条运输轨道的距离之和()BB CC DD '''++最小,你能不能按照要求进行规划,请通过计算说明.22.已知,抛物线212y x bx c =++与y 轴交于点()0,4C -与x 轴交于点A ,B ,且B 点的坐标为()2,0. (1)求该抛物线的解析式.(2)如图1,若点P 是线段AB 上的一动点,过点P 作//PE AC ,交BC 于E ,连接CP ,求PCE ∆面积的最大值.(3)如图2,若直线y x m =+与线段AC 交于点M ,与线段BC 交于点N ,是否存在M ,N ,使得OMN ∆为直角三角形,若存在,请求出m 的值;若不存在,请说明理由.23.如图,在ABC 中,35,7,tan 4AB BC B ===,动点P 从点A 出发,沿AB 以每秒53个单位长度的速度向终点B 运动,过P 作PQ BC ,交AC 于点Q ,以PQ PB 、为邻边作平行四边形PQDB ,同时以PQ 为边向下作正方形PQEF ,设点P 的运动时间为t 秒()0t >.(1)点A 到直线EF 的距离______________;(用含t 的代数式表示)(2)当点D 落在落在PF 上时,求t 的值;(3)设平行四边形PQDB 与正方形PQEF 重叠部分的面积为()0S S >,求S 与t 之间的函数关系式,并求出S 的最大值.(4)设:PDE APE S S m =△△,当112m 时,直接写出t 的取值范围.24.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.25.如图,在平面直角坐标系中,矩形ABCD 的顶点,A D 在坐标轴上,两点的坐标分别是点()0,,A m 点(),0,D m 且m 满足:322m m -+62=边AB 与x 轴交于点,E 点F 是边AD 上一动点,连接FB ,分别与x 轴,y 轴交于点,P 点,H 且FD BE =.(1)求m 的值;(2)若45,APF ∠=︒求证:AHF HFA ∠=∠;(3)若点F 的纵坐标为,n 则线段HF 的长为 .(用含n 的代数式表示)【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.A解析:(1)y =﹣x 2+4x ;(2)n =2t 3t 42-+,(0<t <3); t =2时,MN ∥AE ;(3)在点T 运动的过程中,四边形ODFA 的面积有最小值为3【解析】【分析】(1)先求出点A 、B 的坐标,然后利用待定系数法,即可求出抛物线的解析式; (2)过点M 作MG ⊥x 轴于G ,NH ⊥GM 于H .先证明N 、P 、A 三点在以M 为圆心MA 为半径的⊙M 上,然后得到△NMH ≌△MPG ,得到NH =MG ,HM =PG ,再设P 为(t ,0),然后构建关于t 的方程,解方程即可得到t 的值;(3)设OT=m ,四边形ODFA 的面积为S ,CD =AF =AT =4﹣m ,CF =OT =m ,过D 作DR ⊥AC ,垂足为R ,则DR =DC•sin60°=3(4﹣m ),再由S =S △OAC ﹣S △CDF 即可得出结论.【详解】解:(1)∵直线y =﹣x+4与x 轴交于点A ,令y=0,则x=4,∴点A 为(4,0),∵直线y =﹣x+4经过点B ,点B 的横坐标为1,∴点B 的纵坐标为:y =﹣1+4=3,∴点B 为:(1,3),把点A 、B 代入y =ax 2+bx ,得 16403a b a b +=⎧⎨+=⎩,解得:14a b =-⎧⎨=⎩, ∴抛物线解析式为24y x x =-+;(2)如图1,过点M 作MG ⊥x 轴于G ,NH ⊥GM 于H .∵OA =OB ,∠AOB =90°,∴∠PAN =45°,∵∠NMP =90°,∴∠PAN =12∠NMP , ∴N 、P 、A 三点在以M 为圆心MA 为半径的⊙M 上,∴MN =MP ,∵∠NHM =∠PGM =∠NMP =90°,∴∠NMH+∠PMG =90°,∠PMG+∠MPG =90°,∴∠NMH =∠MPG ,∴△NMH ≌△MPG ,∴NH =MG ,HM =PG ,∵P (t ,0),∴Q (t ,﹣t 2+4t ),M (4t 2+,2t 4t 2-+) ∴MG =NH∴4t 2+﹣n =2t 4t 2-+ ∴n =2t 3t 42-+,(0<t <3). ∵MN ∥AE ,QM =MA ,∴EN =QN ,∴N 为EQ 中点,即N x =x x Q E 2+ ∴2t 3t 42-+=2t , ∴t 2﹣4t+4=0,解得:t =2∴t =2时,MN ∥AE .(3)四边形ODFA 的面积有最小值.设OT =m ,四边形ODFA 的面积为S∵C 是抛物线对称上一点,∴CO =CA .∵直线AB 绕A 点旋转15°,∴∠OAC=60°∴△OAC 是等边三角形∵OA =4,S △OAC =3×42=43, ∴CD =AF =AT =4﹣m ,CF =OT =m ,过D 作DR ⊥AC ,垂足为R ,则DR =DC•sin60°=2(4﹣m ),∴S △CDF =12CF•DR =12m•4﹣m 2, ∴S =S △OAC ﹣S △CDF=4m 2m )=m ﹣2)2.∴在点T 运动的过程中,四边形ODFA 的面积有最小值为.【点睛】本题考查的是二次函数综合题,涉及到全等三角形的判定与性质,三角函数、三角形的面积、二次函数的性质、旋转的性质等知识,(2)中要灵活运用关于t 的表达式建立方程进行分析,(3)中面积最值要转化为二次函数最值解答.2.C解析:(1)112y x =-+;(2)1d t =-+;(3)65t -= 【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE 的解析式,再将点C 坐标代入即可求解;(2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,通过解直角三角形可证EDM ≌EAN ,ENH ≌EMG ,得到AN =DM ,HN =GM ,进而得到AH DG =,再根据CE 解析式求出D 点坐标,即可找出d 与t 之间的函数关系式;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,证四边形BGMT 与四边形HNMC 均为矩形,得MN MT =,再进一步证明ENH ≌EMG ,利用全等三角形的性质通过角度计算,得出△BML 为等腰三角形且BM BL =,再用含有t 的代数式表示BM ,最后在Rt △BMG 中利用勾股定理建立等式,求出t 的值.【详解】解:(1)∵CE ⊥AB ,∴设直线CE 的解析式为:12y x c =-+, 把点C (2,0)代入上述解析式,得1c =,∴直线CD 的解析式为:112y x =-+; (2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,令26 112y xy x=+⎧⎪⎨=-+⎪⎩,解得22xy=-⎧⎨=⎩,∴()2,2E-,易证EDM≌EAN,ENH≌EMG,∴AN=DM ,HN=GM,∴AH DG=,由直线CE的解析式112y x=-+,可求点D(0,1)∴DG=1—t,∴1d t=-+;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,易证四边形BGMT与四边形HNMC均为矩形,由(2)问可知1tAH GD==-,则6tHC=-∴6tBG MT==-,∴MN MT=,∵90KNM LTM∠=∠=︒,∴ENH≌EMG,∴LNKM∠=∠,设KMNα∠=,则KMB KMNα∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-,∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =, ∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中, 222BM BG GM =+,解得t =(不合题意舍去)或t =故,65t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.3.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==.45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+, 16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩ 解得5959a c ⎧=⎪⎪⎨⎪=⎪⎩∴直线DM 的解析式为5599y x =+. 【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标. 4.D解析:(1)证明见解析;(23)DGMG ,理由见解析.【解析】【分析】(1)连接MG 并延长交AB 于N 点,证明△ANM ≌△FGM 后得到MG=MN ,AN=CG ,进而得到BN=BG ,得到△ANG 为等腰直角三角形,即可证明MG=MB.(2)分两种情况画出图形再利用(1)中的思路结合勾股定理即可求解.(3)先画出图形,然后证明△ADG ≌△ABG ,得到DG=BG ,又△BMG 为等腰直角三角形,故而得到DG=BG=2MG.【详解】解:(1) 连接MG 并延长交AB 于N 点,如下图所示:∵GF ∥AN ,∴∠NAM=∠GFM在△ANM 和△FGM 中∠∠=⎧⎪=⎨⎪∠=∠⎩BAM GFM AM FMNMA GMF ,∴△ANM ≌△FGM(ASA) ∴MG=MN ,CG=GF=AN∴AB-AN=BC-CG∴NB=GB∴△NBG 为等腰直角三角形又M 是NG 的中点∴由直角三角形斜边上的中线等于斜边的一半知: 故有:MG=MB.(2)分类讨论:情况一:当B 、G 、F 三点在正方形ABCD 外同一直线上时延长MG 到N 点,并使得MG=MN ,连接AN ,BN∴∠∠=⎧⎪=⎨⎪=⎩MN MG AMN GMF AM FM ,∴△AMN ≌△FMG(SAS)∴AN=GF=GC ,∠NAM=∠GFM∴AN ∥GF∴∠NAB+∠ABG=180°又∠ABC=90°∴∠NAB+∠CBG=90°又在△BCG 中,∠BCG+∠CBG=90°∴∠NAB=∠BCG∴在△ABN 中和△CBG 中:∠∠=⎧⎪=⎨⎪=⎩AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)∴BN=BG ,∠ABN=∠CBG∴∠ABC=∠NBG=90°∴△NBG 是等腰直角三角形,且∠BGN=45°在Rt △BCG 中,2222=534--=BG BC CG过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形∴MH=BH=HG=12BG=2 在Rt △MFH 中,2222MF=2529+=+=MH HF 情况二:当B 、G 、F 三点在正方形ABCD 内同一直线上时如下图所示,延长MG 到MN ,并使得MG=MN ,连接NA 、NB ,同情况一中证明思路,∠∠=⎧⎪=⎨⎪=⎩MN MG AMN GMF AM FM ,△AMN ≌△FMG(SAS)∴AN=GF=GC ,∠NAM=∠GFM∴AN ∥GF∴∠NAB=∠ABG又∠ABG+∠GBC=90°∠GBC+∠BIF=90°∴∠BIF=∠ABG又∠BIF=∠BCG ,∠ABC=∠NAB∴∠NAB=∠GCB∴在△ABN 中和△CBG 中:∠∠=⎧⎪=⎨⎪=⎩AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)∴BN=BG ,∠ABN=∠CBG∴∠ABC=∠NBG=90°∴△NBG 是等腰直角三角形,且∠BGN=45°在△BCG 中,2222=534-=-=BG BC CG过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形∴MH=BH=HG=12BG=2 ∴HF=HG-GF=2-1=1在Rt △MFH 中,2222MF=215+=+=MH HF 29 5.(3)由题意作出图形如下所示:DG 、MG 的数量关系为:2,理由如下:∵G 点在AC 上∴∠DAG=∠BAG=45°在△ADG 和△ABG 中:∠∠=⎧⎪=⎨⎪=⎩AD AB DAG BAG AG AG ,∴△ADG ≌△BAG(SAS)∴DG=BG又由(2)中的证明过程可知:△MBG 为等腰直角三角形∴2MG∴2MG故答案为:2MG.【点睛】本题考查了正方形的旋转、三角形的全等、勾股定理等知识,难度很大,关键是要能正确做出图形,利用数形结合的思想,熟练的使用正方形的性质是解题的关键.5.E解析:(1)详见解析;(2)52r =,552AC =;(3)2AG AD CD =+,理由详见解析.【解析】【分析】(1)连接EF ,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC ,得到FE ∥AC ,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD ,设⊙F 的半径为r ,根据勾股定理列出方程,解方程即可求出半径的长,证FEB ∆∽AOD ∆,求出BF 的长,再证BFE ∆∽BAC ∆,即可求出AC 的长;(3)过点F 作FR AC ⊥于点R ,得到四边形RCEF 是矩形,得到EF=RC=RD+CD ,根据垂径定理解答即可.【详解】(1)如图,连接EF ,∵AE 平分BAC ∠,FAE CAE ∴∠=∠,FA FE =,FAE FEA ∴∠=∠,FAE EAC ∴∠=∠,//FE AC ∴,90FEB C ∴∠=∠=︒,又E 为⊙F 上一点,BC ∴是⊙F 的切线;(2)如图,连接FD ,设⊙F 的半径为r ,∵点A D 、的坐标分别为(0,1),(2,0)A D -,1,2,1OA OD OF r ∴===-,5AD ∴=在Rt FOD ∆中,由勾股定理得,222FD OF OD =+,222(1)2r r ∴=-+, 解得52r =, 即⊙F 的半径为52, 90ODA OAD EBF OAD ∠+∠=∠+∠=︒,ODA EBF ∴∠=∠, 90AOD FEB ∠=∠=︒,∴FEB ∆∽AOD ∆,EF BF OA DA ∴=,即2.515=, 55BF ∴=, 555BA +∴=, //EF AC ,∴BFE ∆∽BAC ∆,EF BF AC BA∴=,即55522555AC =+, 55AC +∴= (3)2AG AD CD =+.理由如下:如图,过点F 作FR AC ⊥于点R ,则∠FRC=90°,∵∠FEC=∠C=90°,∴四边形RCEF 为矩形,EF RC RD CD ∴==+,FR AD ⊥,AR RD ∴=,12EF RD CD AD CD ∴=+=+, 22AG EF AD CD ∴==+.【点睛】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握切线的判定定理是解题的关键.6.C解析:(1)12,16AD CD ==;(2)277和297.【解析】【分析】(1)根据题意由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时16秒求出CD ,再利用三角形面积公式求得AD 即可;(2)由题意可知只能有P 和Q 点都在AD 边上,此时分当P 在Q 上方时以及当P 在Q 下方时两种情况运用数形结合思维进行分析得出答案.【详解】解:(1)由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时36-20=16秒,即CD=16,而此时AMD ∆的面积为96,又因为90ADC ∠=︒, 即有11169622CD AD AD =⨯=,解得12AD =. 所以12,16AD CD ==. (2)由题意可知Q 运动到点A 停止的时间为285,而P 运动到点D 停止的时间为6, 所以只能有P 和Q 点都在AD 边上,此时以PQ 为底边,CD 为高,设运动时间为t ,则AP=2t ,QD=5t-16,(162855t ≤<), ①当P 在Q 上方时,则有PQ=AD-AP-QD= 122516287t t t --+=-, 可知CPQ ∆的面积为8时即11(287)16822PQ CD t =⨯-⨯=,解得277t =(满足条件);②当P 在Q 下方时,则有PQ=QD-(AD-AP )= 516(122)728t t t ---=-, 可知CPQ ∆的面积为8时即11(728)16822PQ CD t =⨯-⨯=,解得297t =(满足条件). 所以当CPQ ∆的面积为8时,t 的值为277和297. 【点睛】 本题考查四边形动点问题和一次函数结合,熟练掌握四边形动点问题的解决办法和一次函数图象的相关性质,运用数形结合思维分析是解题的关键.7.E解析:(1)EF =,见解析;(2)BK =;(3)①AGH 是等边三角形,见解析;②14 【解析】【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到AE =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA =,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=.AF CD ⊥,垂足为F , 1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 3AF a ∴=在Rt ABF 中,22BF AB AF =+,72BF a ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=.//AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,AF ∴=.1(32ADH S =, 11(322DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.8.A解析:(1)①(1,2),(2.5,0)A C ;②23m ≤;(2)最小值为2.【解析】【分析】(1)①根据“特征点”的定义判断即可;②如图2中,当⊙W 1与直线y =−x +2相切时,1(22,0)W -,当⊙W 2与直线y =−x +3相切时,2(32,0)W +,结合图象,⊙W 与图中阴影部分有交点时,⊙W 上存在满足条件的特征点.(2)特征点的图象是由原点向外扩大,当与反比例函数的图象第一次有交点时,1x x+的值最小(如图3中).【详解】解:(1)①∵1+2=3,1+3=4,2.5+0=2.5,又∵2≤a ≤3,∴A ,C 是特征点,故答案为:(1,2),(2.5,0)A C ;②如图1,∵2≤a ≤3,∴直线y =−x +2和直线y =−x +3之间的区域(包括两直线)上的点都为“特征点”, 直线y =−x +2和直线y =−x +3分别与x 轴的交点为(2,0)P ,(3,0)Q ,当⊙W 1与直线y =−x +2相切时,设切点为M ,此时2OP =,1MW MP ⊥,145MPW ∠=︒,则1MPW 为等腰直角三角形, ∵⊙W 1半径为1,即11MW =, ∴12PW =1122OW OP PW =-=-∴1(22,0)W ,当⊙W 2与直线y =−x +3相切时,设切点为N ,此时3OQ =,2NW NQ ⊥,245NQW ∠=︒,则2NQW 为等腰直角三角形, 同理得:22QW =,则2232OW OQ QW =+=+,∴2(32,0)W +,观察图象可知满足条件的m 取值范围为:2232m ≤(2)根据0x >,在第一象限画出1y x =的图象, ∴在此坐标系中图象上的点就是1x x ⎛⎫ ⎪⎝⎭,, ∵特征点满足x y a +=(x ≥0,a 为常数),∴在此图象上对应的就是1x a x+=, ∴将特征点的图象由原点向外扩大,当与反比例函数1y x =的图象第一次有交点时,1x x +出现最小值,如图2,由x >0可将1x a x+=整理得:210x ax -+=, ∴2()40a ∆=--=,解得:12a =,22a =-(舍去),∴2a =,∴12Z x x =+=,即()10Z x x x=+>的最小值为2.【点睛】本题属于反比例函数综合题,考查了直线与圆的位置关系,反比例函数的性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考压轴题.9.A解析:(1)5AD x =,6DF x =+;(2)△ADF 为等腰三角形,x 的取值可以是4817,4831,12; (3)4或43 【解析】【分析】(1)由已知条件可得:CD=4x ,根据勾股定理得:AD=5x ,由AB=6且C 在B 点右侧,可以依次表示BC 、CF 、DF 的长;(2)分两种情况:①当C 在B 点的右侧时,AF=DF ,②当C 在线段AB 上时,又分两种情况:i )当CF <CD 时,如图3,ii )当CF >CD 时,如图4,由AF=DF ,作等腰三角形的高线FN ,由等腰三角形三线合一得:AN=ND=2.5x ,利用同角的三角函数列比例式可求得x 的值;(3)由翻折性质得到DG='GD ,'DGF FGD ∠=∠,从而证出'ADG AGD △≌△,从而推出∠FAC=∠DAG ,即AF 平分∠DAC ,过F 作FN ⊥AD 于N ,分两种情况:当C 在AB 的延长线上时,当C 在AB 边上时,根据35sin CDA ∠=可列出关于x 的比例式,即可求解.【详解】⑴∵CD=43AC ,AC=3x , ∴CD=4x, ∵CD⊥AM,∴∠ACD=90°,由勾股定理得:AD=5x ,∵AB=6,C 在B 点右侧,∴BC=AC-AB=3x-6,∵BC=FC=3x-6,∴DF=CD -FC=4x-(3x-6)=x+6;(2)分两种情况:①当C 在B 点的右侧时,∴AC >AB ,∴F 必在线段CD 上,∵∠ACD=90°,∴∠AFD 是钝角,若△ADF 为等腰三角形,只可能AF=DF ,过F 作FN⊥AD 于N ,如图,∴AN=ND=2.5x ,∴DN DC cos ADC DF AD ∠==, 即2.5465x x x x+=, 解得,4817x =; ②当C 在线段AB 上时,同理可知若△ADF 为等腰三角形,只可能AF=DF ,i )当CF <CD 时,过F 作FN⊥AD 于N ,如图,。
人教版中考数学压轴题 易错题难题综合模拟测评检测试卷
一、中考数学压轴题1.已知:在平面直角坐标系中,抛物线223y ax ax a =--与x 轴交于点A ,B (点B 在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2.(1)如图1,求此抛物线的解析式;(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若728CG AG =,求点P 的坐标.2.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.3.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.4.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.5.如图1,△ABC 内接于⊙O ,直径AD 交BC 于点E ,延长AD 至点F ,使DF =2OD ,连接FC 并延长交过点A 的切线于点G ,且满足AG ∥BC ,连接OC ,若cos ∠BAC =13,BC =8. (1)求证:CF 是⊙O 的切线;(2)求⊙O 的半径OC ;(3)如图2,⊙O 的弦AH 经过半径OC 的中点F ,连结BH 交弦CD 于点M ,连结FM ,试求出FM 的长和△AOF 的面积.6.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.7.综合与探究:如图1,在平面直角坐标系xOy 中,四边形OABC 是边长为4的菱形,60C ︒∠=(1)把菱形OABC 先向右平移4个单位后,再向下平移()03m m <<个单位,得到菱形''''O A B C ,在向下平移的过程中,易知菱形''''O A B C 与菱形OABC 重叠部分的四边形'AEC F 为平行四边形,如图2.试探究:当m 为何值时,平行四边形'AEC F 为菱形:(2)如图,在()1的条件下,连接''',AC B O G 、为CE 的中点J 为EB 的中点,H 为AC 上一动点,I 为''B O 上一动点,连接,,,GH HI IJ 求GH HI IJ ++的最小值,并直接写出此时,H I 点的坐标.8.平面直角坐标系中,点A 、B 分别在x 轴正半轴、y 轴正半轴上,AO =BO ,△ABO 的面积为8.(1)求点A 的坐标;(2)点C 、D 分别在x 轴负半轴、y 轴正半轴上(D 在B 点上方),AB ⊥CD 于E ,设点D 纵坐标为t ,△BCE 的面积为S ,求S 与t 的函数关系;(3)在(2)的条件下,点F 为BE 中点,连接OF 交BC 于G ,当∠FOB +∠DAE =45°时,求点E 坐标.9.附加题:在平面直角坐标系中,抛物线21y ax a =-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示);(3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围.10.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形; (2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+6211.(1)如图①,在Rt ABC 中,90C ∠=︒,13AB =,5BC =,则tan A 的值是_______.(2)如图②,在正方形ABCD 中,5AB =,点E 是平面上一动点,且2BE =,连接CE ,在CE 上方作正方形EFGC ,求线段CF 的最大值.问题解决:(3)如图③,O 半径为6,在Rt ABC 中,90B ∠=︒,点, A B 在O 上,点C 在O 内,且3tan 4A =.当点A 在圆上运动时,求线段OC 的最小值.12.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.13.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.14.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.15.已知AM //CN ,点B 为平面内一点,AB ⊥BC 于B .(1)如图1,直接写出∠A 和∠C 之间的数量关系;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ; (3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =5∠DBE ,求∠EBC 的度数.16.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度17.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.18.已知抛物线y=﹣x 2﹣2x+3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B .(1)求A ,B ,C 三点坐标;(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;(3)如图2,将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,点P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可).19.如图,四边形AOBC 是正方形,点C 的坐标是(82,0).(1)正方形AOBC的边长为,点A的坐标是;(2)将正方形AOBC绕点O顺时针旋转45︒,点A,B,C旋转后的对应点为A',B',C',求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当OPQ△为等腰三角形时,求出t的值(直接写出结果即可).20.如图,在⊙O中,直径AB=10,tanA=33.(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B点出发沿BC方向运动,设运动时间为t (0<t<103),连结PQ.当t为何值时,△BPQ为Rt△?21.如图所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.动点P 从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设△DPQ的面积为S,求S与t之间的关系式;(2)当t为何值时,四边形PCDQ是平行四边形?(3)分别求出当t为何值时,①PD=PQ;②DQ=PQ.22.如图1,以AB 为直径作⊙O ,点C 是直径AB 上方半圆上的一点,连结AC ,BC ,过点C 作∠ACB 的平分线交⊙O 于点D ,过点D 作AB 的平行线交CB 的延长线于点E .(1)如图1,连结AD ,求证:∠ADC =∠DEC .(2)若⊙O 的半径为5,求CA •CE 的最大值.(3)如图2,连结AE ,设tan ∠ABC =x ,tan ∠AEC =y ,①求y 关于x 的函数解析式; ②若CB BE =45,求y 的值. 23.已知,抛物线212y x bx c =++与y 轴交于点()0,4C -与x 轴交于点A ,B ,且B 点的坐标为()2,0. (1)求该抛物线的解析式.(2)如图1,若点P 是线段AB 上的一动点,过点P 作//PE AC ,交BC 于E ,连接CP ,求PCE ∆面积的最大值.(3)如图2,若直线y x m =+与线段AC 交于点M ,与线段BC 交于点N ,是否存在M ,N ,使得OMN ∆为直角三角形,若存在,请求出m 的值;若不存在,请说明理由.24.综合与探究:如图1,抛物线24832999y x x =-++与x 轴交于,A B 两点(点A 在点B 的左侧),顶点为D ,P 为对称轴右侧抛物线的一个动点,直线AD 与y 轴于点C ,过点P 作//PF AD ,交x 轴于点F .(1)求直线AD 的函数表达式及点C 的坐标;(2)如图2,当//PC x 轴时,将AOC ∆以每秒1个单位长度的速度沿x 轴的正方向平移,当点C 与点P 重合时停止平移.设平移t 秒时,在平移过程中AOC ∆与四边形AFPC 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围; (3)如图3,过点P 作x 轴的平行线,交直线AD 于点E ,直线DF 与PE 交于点M ,设点P 的横坐标为m .①当3DM MF =时,求m 的值;②试探究点P 在运动过程中,是否存在值m ,使四边形AFPE 是菱形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.已知:如图,四边形ABCD ,AB DC ,CB AB ⊥,16AB cm =,6BC cm =,8CD cm =,动点Q 从点D 开始沿DA 边匀速运动,运动速度为1/cm s ,动点P 从点A 开始沿AB 边匀速运动,运动速度为2/cm s .点P 和点Q 同时出发,O 为四边形ABCD 的对角线的交点,连接 PO 并延长交CD 于M ,连接QM .设运动的时间为()t s ,08t <<.(1)当t 为何值时,PQ BD ?(2)设五边形QPBCM 的面积为()2S cm ,求S 与t 之间的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使PQM 的面积等于五边形面积的1115?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使点Q 在MP 的垂直平分线上?若存在,求出t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.C解析:(1)21322y x x =--;(2)1m t =-;(3)933,28P ⎛⎫ ⎪⎝⎭ 【解析】【分析】(1)将抛物线解析式化为顶点式可得y=a (x-1)2-4a ,则C 点为(1,-4a ),再由-4a=-2即可求a 的值,进而确定函数解析式;(2)由已知分别求出点P 和点A 的坐标,可得AP 的直线解析式,求出D 点坐标则可求CD ;(3)设CD 与x 轴的交点为H ,连接BE ,由三角形中位线的性质可求BE=2(t-3)=2t-6;过点F 作FN ⊥BE 于点N ,过点P 作PM ⊥BE 交BE 的延长线于点M ,可证明Rt △PME ≌Rt △ENF (HL ),从而推导出∠EPF=∠EFP=45°;过点C 作CK ⊥CG 交PA 的延长线于点K ,连接AC 、BC ,能够进一步证明△ACK ≌△BCG (SAS ),得到∠KGB=90°;令AG=8m ,则CG=BG=6m ,过点G 作GL ⊥x 轴于点L ,在Rt △ABG 中,AG=10m=4,求出m 值,利用等积法可求G 点的坐标,再将G 点坐标代入3322t t y x --=+,求出t ,即可求出点P 坐标.【详解】解:(1)22223(23)(1)4y ax ax a a x x a x a =--=--=--,∴顶点C 的坐标为(1,4)a -,点C 的纵坐标为2-,42a ∴-=-,12a ∴=, 21322y x x ∴=--; (2)点P 的横坐标为t ,213(,)22P t t t ∴--, 21322y x x =--与x 轴的交点为(1,0)A -,(3,0)B , ∴设AP 的直线解析式为y kx b =+,则有201322k b kt b t t -+=⎧⎪⎨+=--⎪⎩,解得3232t k t b -⎧=⎪⎪⎨-⎪=⎪⎩, 3322t t y x --∴=+, //CD y 轴交AP 于点D ,(1,3)D t ∴-,321CD t t ∴=-+=-,1m t ∴=-;(3)如图:设CD 与x 轴的交点为H ,连接BE , CD 垂直平分AB ,ED AD =,//DH BE ∴,12DH BE =, BE x ∴⊥轴, 2(3)26BE t t ∴=-=-,过点F 作FN BE ⊥于点N ,过点P 作PM BE ⊥交BE 的延长线于点M ,EF BF =,132EN BN BE t PM ∴===-=, EP FE =,Rt PME Rt ENF(HL)∴∆≅∆,MPE FEN ∴∠=∠,90FEN MEP MPE MEP ∴∠+∠=∠+∠=︒,90PEF ∴∠=︒,45EPF EFP ∴∠=∠=︒,过点C 作CK CG ⊥交PA 的延长线于点K ,连接AC 、BC ,90KCG ∴∠=︒,45K KGC ∴∠=∠=︒,CK CG ∴=,90AHC BHC ∠=∠=︒,2AH BH CH ===,45CAH ACH HBC HCB ∴∠=∠=∠=∠=︒,90ACB ∴∠=︒,AC CB =,90KCA ACG GCB ∴∠=︒-∠=∠,()ACK BCG SAS ∴∆≅∆,45BGC K AGC ∴∠=∠=∠=︒,AKBG =,90KGB ∴∠=︒, 令8AG m =,则CG =,CK CG =,90KCG ∠=︒,214KG CG m ∴==, 6BG AK KG AG m ∴==-=,过点G 作GL x ⊥轴于点L ,在Rt ABG ∆中,22104AB AG BG m =+==,25m ∴=, 165AG ∴=, 11861022ABG S m m m GL ∆=⨯⨯=⨯⨯, 4825GL ∴=, 22AL AG GL ∴=-,3925OL AL AO ∴=-=, 39(25G ∴,48)25, AG 的解析式为3322t t y x --=+, ∴483393252252t t --=⨯+, 92t ∴=, 9(2P ∴,33)8.【点睛】本题考查二次函数的综合题.熟练掌握二次函数的图象及性质,通过辅助线构造三角形全等,逐步求出G 点的坐标从而求出t 的值是解题的关键.2.B解析:(1)12;(2)533)202【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =, 42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=, 11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=, 155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-= ⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,22OM QH MQ OH ∴====, 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠, E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.3.A解析:(1)145;(2)2274,0314971421,2235t tSt t t⎧⎛⎫<≤⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<<⎪⎪⎝⎭⎩;(3)t的值为477-或727-.【解析】【分析】(1)如下图,根据4tan3A=,可得出PN与AP的关系,从而求出t的值;(2)如下图,存在2种情况,一种是点M在△ABC内,另一种是点M在△ABC外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM所在的直线将△ABC的面积平分,另一种是QN 所在的直线将△ABC的面积平分.【详解】(1)如图1,点N在AC上图1由题意可知:PD=DQ=t,AP=7-t∴PN=PQ=2t∵4 tan3A=∴43NPAP=,即2473tt=-解得:t=14 5(2)①如图2,图2四边形PQMN是正方形,90BQM ∴∠=︒,45B ∠=︒,BQ MQ ∴=,即72t t -= 解得73t =, 故当0t <≤73时,22(2)4S t t ==; ②如图3,图3 90BQF ∠=︒,45B ∠=︒,7BQ FQ t ∴==-,45BFQ MFE ∠=∠=︒, 则37MF MQ QF t =-=-,90M ∠=︒,37ME MF t ∴==-,则2221149(2)(37)21222S t t t t =--=-+-71435t ⎛⎫<< ⎪⎝⎭; 综上,2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩. (3)如下图,过点C 作AB 的垂线,交AB 于点G 图4 ∵4tan 3A = ∴设CG=4x ,则AG=3x∵∠B=45°∴△CBG是等腰直角三角形∴GB=GC=4x∵AB=14∴3x+4x=14,解得:x=2∴1148562ABCS==∴128 2ABCS=情况一:PM所在的直线平分△ABC的面积,如下图,PM与BC交于点E 图5则28PBES=∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵1282PBES PE PB==∴PE=PB=214∴PB=47∵PB=AB-PA=14-(7-t)=7+t∴7+t=47t=477-情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,28AFQS=∵四边形PQMN 是正方形,∴∠EQH=45° ∴△FHQ 是等腰直角三角形 ∵4tan 3A =∴设FH=4y ,则AH=3y ,HQ=FH=4y ,∴AQ=7y∴174282AFQSy y ==,解得:∵AQ=AB -QB=14-(7-t)=7+t∴解得:7∴综上得:t 的值为7或7. 【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.4.A解析:(1)①(1,2),(2.5,0)A C ;②23m ≤;(2)最小值为2. 【解析】 【分析】(1)①根据“特征点”的定义判断即可;②如图2中,当⊙W 1与直线y =−x +2相切时,1(2W ,当⊙W 2与直线y =−x +3相切时,2(3W +,结合图象,⊙W 与图中阴影部分有交点时,⊙W 上存在满足条件的特征点.(2)特征点的图象是由原点向外扩大,当与反比例函数的图象第一次有交点时,1x x+的值最小(如图3中). 【详解】解:(1)①∵1+2=3,1+3=4,2.5+0=2.5, 又∵2≤a ≤3, ∴A ,C 是特征点,故答案为:(1,2),(2.5,0)A C ; ②如图1,∵2≤a ≤3,∴直线y =−x +2和直线y =−x +3之间的区域(包括两直线)上的点都为“特征点”, 直线y =−x +2和直线y =−x +3分别与x 轴的交点为(2,0)P ,(3,0)Q ,当⊙W 1与直线y =−x +2相切时,设切点为M ,此时2OP =,1MW MP ⊥,145MPW ∠=︒,则1MPW 为等腰直角三角形, ∵⊙W 1半径为1,即11MW =,∴12PW =1122OW OP PW =-=- ∴1(22,0)W ,当⊙W 2与直线y =−x +3相切时,设切点为N ,此时3OQ =,2NW NQ ⊥,245NQW ∠=︒,则2NQW 为等腰直角三角形, 同理得:22QW =,则2232OW OQ QW =+=+, ∴2(32,0)W +,观察图象可知满足条件的m 取值范围为:2232m ≤ (2)根据0x >,在第一象限画出1y x=的图象, ∴在此坐标系中图象上的点就是1x x ⎛⎫⎪⎝⎭,,∵特征点满足x y a +=(x ≥0,a 为常数), ∴在此图象上对应的就是1x a x+=, ∴将特征点的图象由原点向外扩大,当与反比例函数1y x =的图象第一次有交点时,1x x+出现最小值, 如图2,由x >0可将1x a x+=整理得:210x ax -+=, ∴2()40a ∆=--=,解得:12a =,22a =-(舍去),∴2a =, ∴12Z x x =+=,即()10Z x x x=+>的最小值为2.【点睛】本题属于反比例函数综合题,考查了直线与圆的位置关系,反比例函数的性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考压轴题.5.D解析:(1)见解析;(2)32332232【解析】【分析】(1)由DF=2OD,得到OF=3OD=3OC,求得13OE OCOC OF==,推出△COE∽△FOE,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切线;(2)利用三角函数值,设OE=x,OC=3x,得到CE=3,根据勾股定理即可得到答案;(3)连接BD,根据圆周角定理得到角相等,然后证明△AOF∽△BDM,由相似三角形的性质,得到FM为中位线,即可求出FM的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.【详解】解:(1)∵DF=2OD,∴OF=3OD=3OC,∴13 OE OCOC OF==,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF=∠DEC=90°,∴CF是⊙O的切线;(2)∵∠COD=∠BAC,∴cos∠BAC=cos∠COE=13 OEOC=,∴设OE=x,OC=3x,∵BC=8,∴CE=4,∵CE⊥AD,∴OE 2+CE 2=OC 2, ∴x 2+42=9x 2,∴x =2(负值已舍去), ∴OC =3x =32, ∴⊙O 的半径OC 为32; (3)如图,连结BD ,由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠, ∵BC ⊥AD , ∴AC AB =, ∴∠ADC=∠ADB ,∴2AOF ADC BDM ∠=∠=∠, ∴△AOF ∽△BDM ; ∵点F 是OC 的中点, ∴AO :OF=BD :DM=2, 又∵BD=DC , ∴DM=CM , ∴FM 为中位线, ∴322, ∴S △AOF : S △BDM =(326 2 34=; ∵111118(322)4222222BDM BCD S S BC DE ∆∆==⨯•=⨯⨯⨯= ∴S △AOF =3424=32 【点睛】本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.6.B解析:(1)213222y x x =-++;(2)3(,0)2;(3)存在;(0,2)N 或(3,2)N 或(2,3)--N 或(5,18)--N【解析】 【分析】(1)由直线122y x =-+可得B 、C 两点的坐标,根据二次函数的对称轴求得A 点坐标,可设抛物线的解析式为(1)(4)y a x x =+-,将C 点坐标代入可求得a ,即可得抛物线的解析式;(2)根据绝对值的性质得出BM CM -的值最小时,点M 为BC 的垂直平分线与直线32x =的交点,求得BC 垂直平分线的解析式,联立直线32x =即可求得点M ; (3)分四种情况进行讨论,设出N 的坐标,根据相似三角形的对应边成比例的性质,求得N 的横坐标与纵坐标的关系,然后联立抛物线解析式即可求解. 【详解】 解:∵直线122y x =-+与x 轴交于点B ,与y 轴交于点C , ∴当y =0时,即1022x =-+,解得:x =4,则点B 的坐标为(4,0), 当x =0时,10222=-⨯+=y ,则点C 的坐标为(0,2), 由二次函数的对称性可知:点A 与点B 关于直线32x =对称, ∴点A 的坐标为(1,0)-,∵抛物线与x 轴的交点为点(1,0),(4,0)A B -, ∴可设抛物线的解析式为(1)(4)y a x x =+-, 又∵抛物线过点(0,2)C , ∴2(01)(04)a =+-,解得:12a =-, ∴2113(1)(4)2222y x x x x =-+-=-++ ∴抛物线的解析式为213222y x x =-++; (2)如图1,连结CM 、BM ,作线段BC 的垂直平分线l 分别交BC 、直线32x =于点'、N M ,则N 为BC 中点;由绝对值的性质可得:0≥-BM CM ,∴当BM CM -的值最小时,即0=-BM CM ,则此时CM BM =, ∴点M 为l 与直线32x =的交点,此时M 与'M 重合, 设l 的解析式为:y kx b =+, ∵直线BC 的解析式为:122y x =-+,BC l ⊥ ∴112-⋅=-k ,解得:2k =,则l 的解析式可化为:2y x b =+, 由(4,0),(0,2)B C 得点N 的坐标为(2,1),将(2,1)N 代入2y x b =+得: 14b =+,解得:3b =-,∴23y x =-, 将32x =代入23y x =-,得323=02=⨯-y ,即3'(,0)2M , ∴当BM CM -的值最小时,点M 的坐标为3(,0)2,(3)抛物线上存在点N ,使得以点、、B N H 为顶点的三角形与ABC 相似; ∵(1,0),(4,0),(0,2)-A B C∴1,4==OA OB ,2OC =,5AB =,∴2222125=+=+=AC OA OC 22224225BC OB OC =+=+=, ∵22252025+=+==AC BC AB , ∴ABC 为直角三角形,90ACB ∠=︒, ∵NH x ⊥轴,∴90∠=︒NHB ,则90∠=∠=︒NHB ACB ,如图2所示,分四种情况,点N 的坐标分别为1234、、、N N N N ,设点N 的坐标为(,)m n ,①当点1N 在x 轴的上方,要使11N BH ABC ,则11∠=∠N BH ABC ,则此时点1N 与点C 重合,则此时点1H 与点O 重合, 则11≅N BH ABC ,满足题意, ∴此时点1N 的坐标为(0,2); ②当点2N 在x 轴的上方,要使22BN H ABC ,则2222==N H BCBH AC, ∴24=-nm,即28n m =-+,代入抛物线的解析式得: 21328222mm m ,化简得:27120m m ,解得:13m =,24m =(不符合题意,故舍去), 将3m =代入抛物线解析式得:2n =, ∴此时点2N 的坐标为(3,2); ③当点3N 在x 轴的下方,要使33N BH ABC ,则3332==BH BCN H AC, ∴42-=-m n ,即42-=m n ,代入抛物线的解析式得: 24132222m m m ,化简得:2280m m --=,解得:12m =-,24m =(不符合题意,故舍去), 将2m =-代入抛物线解析式得:3n =-,∴此时点3N 的坐标为(2,3)--; ④当点4N 在x 轴的下方,要使44BN H ABC ,则4442==N H BCBH AC, ∴24-=-nm,即28=-n m ,代入抛物线的解析式得: 21328222m m m ,化简得:2200m m,解得:15m =-,24m =(不符合题意,故舍去), 将5m =-代入抛物线解析式得:18n =-, ∴此时点4N 的坐标为(5,18)--;综上所述,抛物线存在点N 的坐标为(0,2)或(3,2)或(2,3)--或(5,18)--使得以点、、B N H 为顶点的三角形与ABC 相似. 【点睛】本题主要考查了一次函数与二次函数的性质、相似三角形的性质,运用数形结合与分类讨论的方法是解题的关键.7.H解析:(1)3;(2)最短距离为:21,H(914,13314),I(275,235) 【解析】 【分析】(1)根据菱形性质,得到A 、B 、C 、O 四点坐标,然后根据平移得到对应点坐标,故可求得C E '和C F '的长,令它们相等可得m 的值;(2)点G 作以C A '为对称轴的点G ',交C F '于点G ',点J 作以O B ''为对称轴的点J ',交A B ''于点J ',G J ''与C A '、A B ''的交点便是点H 、I ;先利用对称的性质,求解得出点G '、J '的坐标,然后利用代入系数法求得线段对应函数解析式,最后联立方程得到点H 、I 的坐标. 【详解】(1)如下图,CB 与y 轴交于点M ,过点C 作x 轴的垂线,交x 轴于点N∵在菱形ABCO 中,∠C=60°,菱形边长为4 ∴在Rt △COM 中,CM=2,3∴O(0,0),A(4,0),B(2,3,C(-2,3∵将菱形OABC 先向右平移4个单位后,再向下平移() 03m m <<个单位,得到菱形''''O A B C∴O '(4,-m),A '(8,-m),B '(6,23m -),C '(2,23m -) ∴直线AB 的解析式为:y=343x -+∵点E 的纵坐标为:23m -,代入解析式得:x=32m + ∴E(32m +,23m -) 同理,F(34m -,0) ∵四边形AE C F '是菱形 ∴E F C C '=' E 33C m '=∵C '(2,23m -),F(343m -,0) ∴NF=32m -,∴23F 4C m =-' ∴3234m m =- 解得:m=3(2)如下图,点G 作以C A '为对称轴的点G ',交C F '于点G ',过点C '作x 轴的垂线,交过点G '作y 轴的垂线于点K ,同样作点J '和点Q3C '(23),E(33 ∵点G 是C E '的中点,∴12C G '=∴12C G ''=,∴14G K '=,4C K '=∴G '(94,) 同理,J 32B J B '''==∴34J Q '=,QB '=∴J '(274,∴G J ==''根据点A 、C '可得直线A C '的解析式为:y x =+根据点O '、B '可得直线O B ''的解析式为:y =-根据点G '、J '可得直线G J ''的解析式为:9y x =联立G J ''和A C '得:x=914,,∴H(914)联立G J ''和O B ''得:x=275,275) 【点睛】本题考查了菱形的性质、一次函数与平面直角坐标系,在第(2)问中,解题关键是利用对称找出最短距离对应的点.8.A解析:(1)A (4,0);(2)2144S t =-;(3)(4,8)E - 【解析】 【分析】(1)利用三角形的面积公式构建方程即可解决问题.(2)证明△CEA 和△COD 是等腰直角三角形,由EN ⊥AC ,推出42t CN NE NA +===,AC=4+t ,根据S=S △AEC -S △ABC 计算即可.(3)过点F 作FM ⊥AC 于点M ,由(2)求出点F 的坐标为(1,3)44t t-+,从而得到1144t t OM =-=-,34tFM =+,由∠ABO=∠BDA+∠BAD=45°,∠FOB +∠DAE =45°,得出∠FOB=∠BDA ,进而得出∠MFO=∠ODA ,tan ∠MFO =tan ∠ODA ,故而OA OMOD MF=, 即14434t t t -=+,解出t 的值,再求点E 的坐标即可. 【详解】(1)由题意可得:211•••822AOB S OA OB OA ===,∴OA 2=16, ∵OA >0, ∴OA=OB=4,∴A (4,0),B (0,4).(2)如图,过点E 作EN ⊥AC 于点N .∵∠AOB=90°,OA=OB , ∴∠OAB=45°, ∵AB ⊥CD , ∴∠CEA=90°, ∴∠ECA=45°,∴△CEA 是等腰直角三角形, ∵∠ECA=45°,∠COD=90°, ∴∠CDO=45°,∴△CDO 是等腰直角三角形. ∵点D 纵坐标为t , ∴CO=DO=t. ∵OA=OB=4, ∴AC=t+4.∴42t CN NE NA +===,∴()()2141144442224AECABCt S SSt t t +⎛⎫=-=⨯+⨯-⨯+⨯=- ⎪⎝⎭; ∴S 与t 的函数关系是:2144S t =-. (3)如图,过点F 作FM ⊥AC 于点M ,由(2)可知,42t CN NE +==, ∴22tON OC CN =-=-, ∴点E 的坐标为(2,2)22t t-+, ∵点B (0,4),点F 为BE 中点, ∴点F 的坐标为(1,3)44t t-+, ∴1144t t OM =-=-,34tFM =+, ∵∠ABO=∠BDA+∠BAD=45°,∠FOB +∠DAE =45°, ∴∠FOB=∠BDA , ∴OF ∥AD , ∵FM ⊥AC , ∴FM ∥DO , ∴∠MFO=∠ODA , ∴tan ∠MFO =tan ∠ODA , ∴OA OM OD MF=, 即14434t t t -=+,解得t=12或4=-4(不合题意,舍去) ∴点E 的坐标为(4,8)-.【点睛】本题考查三角形综合题,解题的关键是正确作出辅助线,灵活运用所学知识,利用参数构建方程解决问题.9.B解析:(1)直线x=0;(2)B (0,1a );(3)≤a ≤13-或13≤a 【解析】 【分析】(1)根据抛物线的表达式直接得出对称轴即可;(2)根据题意得出点A 的坐标,再利用关于x 轴对称的点的坐标规律得出点B 坐标; (3)分a >0和a <0两种情况分别讨论,画图图像,求出a 的范围. 【详解】解:(1)在抛物线21y ax a=-中, 002a-=, ∴对称轴为直线x=0,即y 轴; (2)∵抛物线与y 轴交于点A ,∴A (0,1a-), ∵点A 关于x 轴的对称点为点B ,∴B (0,1a); (3)当a >0时,点A (0,1a-)在y 轴负半轴上, 当点P 恰好在抛物线上时,代入得:11a a a-=,解得:a =(舍),当点Q 恰好在抛物线上时,代入得:190a a-=, 解得:13a =或13-(舍),∴当13≤a 时,抛物线与线段PQ 恰有一个公共点;当a <0时,点A (0,1a-)在y 轴正半轴上, 同理可知:当点P 恰好在抛物线上时,代入得:11a a a -=, 解得:2a =(舍)或2-,当点Q 恰好在抛物线上时,代入得:190a a-=, 解得:13a =(舍)或13-,∴当2-≤a ≤13-时,抛物线与线段PQ 只有一个公共点;综上:若抛物线与线段PQ 恰有一个公共点,a 的取值范围是2-≤a ≤13-或13≤a 2. 【点睛】本题是一道二次函数的综合题目,主要考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,画出相应的函数图象,利用分类讨论的方法和数形结合的思想解答.10.E解析:(1)见解析;(2)见解析;(3)()()11a b ++<9+62.【解析】【分析】(1)根据题目要求作出图形即可;(2)连EF ,EG ,延长AB 交EF 于点H ,先依据矩形与平行线的性质,等角的余角相等,旋转的性质,得到AHE ≌ADC (AAS),依据全等的性质及等量代换可得BH FH =,结合依据相似的判定与性质,得到AB AG =,再依据SAS 可证明GAE ≌BAC ,依据全等的性质得到90AGE ABC ∠=∠=︒,即EG ⊥AD ;(3)依据勾股定理求出GB ,依据平行线分线段成比例可分别证MAG △∽MCB △,BAG ∽BHF ,NBC ∽NFE ,依据相似三角形的性质得到MG GB 、、42a MB ==、BF、122b NF BF ===,即可求出()()11a b ++=()()42121++=9+52<9+62.【详解】解:(1)补全图形如下:(2)连EF ,EG ,延长AB 交EF 于点H ,设AD n =,CD m =,∵//AE DF ,AE DF =,∴四边形AEFD 是平行四边形, ∴//AD EF ,AD EF n ==, ∴ABG ∽HBF ,∴AB AGBH FH =, ∵矩形ABCD ,∴//AD BC ,90ADC BAD ABC ∠=∠=∠=︒, ∴//BC EF ,∴90AHF ABC ∠=∠=︒, ∴18090AHE AHF ∠=︒-∠=︒, ∴AHE ADC ∠=∠, ∵90EAC BAD ∠=︒=∠,∴EAC BAC BAD BAC ∠-∠=∠-∠,即EAH CAD ∠=∠, 又∵AE AC =, ∴AHE ≌ADC (AAS),∴EH CD m ==,AH AD n ==, ∴BH n m FH =-=,又∵AB AGBH FH =, ∴AB AG =,又∵90BAC CAD GAE ∠=︒-∠=∠,AC AE =, ∴GAE ≌BAC (SAS ), ∴90AGE ABC ∠=∠=︒, ∴EG ⊥AD ;(3) 当AB =2,BC =4,MB =a ,NF =b 时,()()11a b ++<9+62,理由如下:2AG AB ==,2222GB AG AB +=4EF AD BC ===,4AH AD ==,2BH AH AB =-=, ∵//AD BC ,∴MAG △∽MCB △, ∴MG AG MB BC ==2142=,∴MG GB ==a MB == ∵//AD EF , ∴BAG ∽BHF , ∴GB AB BF HB ==212=,∴BF GB == ∵//BC EFNBC ∽NFE , ∴1BN BCNF EF==,∴12b NF BF ===,()()11a b ++=()11<【点睛】本题考查了矩形与平行线的性质,等角的余角相等,旋转的性质,全等的判定与性质、相似三角形的判定与性质,解题的关键是构造全等三角形,灵活运用相似三角形的性质求各条线段的长度.11.A解析:(1)512;(2);(3)3 【解析】 【分析】(1)根据勾股定理算出AC ,再根据正切的定义可得结果;(2)根据题意得出当C B E 、、三点共线,且E 在CB 的延长线上时,线段CE 取得最大值,即此时CF 最大;(3)作DCB 的外接圆O ',连接OO ',设OO '交劣弧DB 于点E ,则OODB ,可得当点C 与点E 重合时,线段OC 取得最小值,延长BC 交圆O 于点F ,连接AF ,证明CDB CBD ∠=∠得出AFBD ,从而可得FC AC ,根据3tan 4A =,在△ABF 中,利用勾股定理列出方程,解得AC 2,在△AOC 中,求出OC 即可. 【详解】解:(1)∵90C ∠=︒,13AB =,5BC =,∴12=,∴tanA=512BC AC =; (2)2BE =,点B 为定点,∴点E 在以B 为圆心,BE 长为半径的圆上运动.。
中考数学中考数学压轴题 易错题测试综合卷学能测试试题(1)
一、中考数学压轴题1.如图,平面直角坐标系中,抛物线228y ax ax a =--与x 轴交于B 、C 两点(点B 在点C 右侧),与y 轴交于点A ,连接AB ,25AB =.(1)求抛物线的解析式;(2)点P 在第二象限的抛物线上,连接PB 交y 轴于D ,取PB 的中点E ,过点E 作EH x ⊥轴于点H ,连接DH ,设点P 的横坐标为t .ODH 的面积为S ,求S 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,作PF y ⊥轴于F ,连接CP 、CD ,CP CD =,点S 为PF 上一点,连接BS 交y 轴于点T ,连接BF 并延长交抛物线于点R .SBC FBO 45∠+∠=︒,在射线CS 上取点Q.连接QF ,QF RF =,求直线TQ 的解析式.2.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.3.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.4.对于平面直角坐标系xOy 中的图形W 1和图形W 2.给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N ,(点M 于点N 可以重合)使得AM=2BN ,则称图形W 1和图形W 2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(0,3),点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .①线段OP 的最小值为_______,最大值为_______;线段CP 的取值范直范围是_____; ②在点O ,点C 中,点____________与线段DE 满足限距关系;(2)如图2,⊙O 的半径为1,直线3y x b =+(b>0)与x 轴、y 轴分别交于点F ,G .若线段FG 与⊙O 满足限距关系,求b 的取值范围;(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.5.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.6.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N .①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标;②若NCB DBC ∠=∠,求点N 的坐标.7.定义:两个相似等腰三角形,如果它们的底角有一个公共的顶点,那么把这两个三角形称为“关联等腰三角形”.如图,在ABC ∆与AED ∆中,,BA BC EA ED == ,且,ABC AED ∆∆所以称ABC ∆与AED ∆为“关联等腰三角形”,设它们的顶角为α,连接,EB DC ,则称DC EB 会为“关联比". 下面是小颖探究“关联比”与α之间的关系的思维过程,请阅读后,解答下列问题:[特例感知]()1当ABC ∆与AED ∆为“关联等腰三角形”,且90α︒=时, ①在图1中,若点E 落在AB 上,则“关联比”DC EB=②在图2中,探究ABE ∆与ACD ∆的关系,并求出“关联比”DC EB 的值.[类比探究]()2如图3,①当ABC ∆与AED ∆为“关联等腰三角形”,且120a ︒=时,“关联比”DC EB= ②猜想:当ABC ∆与AED ∆为“关联等腰三角形”,且n α=︒时,“关联比”DC EB= (直接写出结果,用含n 的式子表示)[迁移运用] ()3如图4, ABC ∆与AED ∆为“关联等腰三角形”.若90,4,ABC AED AC ︒∠=∠==点P 为AC 边上一点,且1PA =,点E 为PB 上一动点,求点E 自点B 运动至点P 时,点D 所经过的路径长.8.对于平面内的点M 和点N ,给出如下定义:点P 为平面内的一点,若点P 使得PMN 是以M ∠为顶角且M ∠小于90°的等腰三角形,则称点P 是点M 关于点N 的锐角等腰点P .如图,点P 是点M 关于点N 的锐角等腰点.在平面直角坐标系xOy 中,点O 是坐标原点.(1)已知点(2,0)A ,在点123(0,2),(13),(13)P P P -,4(2,2)P -中,是点O 关于点A 的锐角等腰点的是___________.(2)已知点(3,0)A ,点C 在直线2y x b =+上,若点C 是点O 关于点A 的锐角等腰点,求实数b 的取值范围.(3)点D 是x 轴上的动点,(,0),(2,0)D t E t -,点(,)F m n 是以D 为圆心,2为半径的圆上一个动点,且满足0n ≥.直线24y x =-+与x 轴和y 轴分别交于点H K ,,若线段HK 上存在点E 关于点F 的锐角等腰点,请直接写出t 的取值范围.9.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形;(2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+62之间的大小关系,并证明.10.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)11.(1)如图①,在Rt ABC 中,90C ∠=︒,13AB =,5BC =,则tan A 的值是_______.(2)如图②,在正方形ABCD 中,5AB =,点E 是平面上一动点,且2BE =,连接CE ,在CE 上方作正方形EFGC ,求线段CF 的最大值.问题解决:(3)如图③,O 半径为6,在Rt ABC 中,90B ∠=︒,点, A B 在O 上,点C 在O 内,且3tan 4A =.当点A 在圆上运动时,求线段OC 的最小值.12.已知:如图①,在等腰直角ABC ∆中,斜边2AC =.(1)请你在图①的AC 边上求作一点P ,使得90APB ∠=︒;(2)如图②,在(1)问的条件下,将AC 边沿BC 方向平移,使得点A 、P 、C 对应点分别为E 、Q 、D ,连接AQ ,BQ .若平移的距离为1,求AQB ∠的大小及此时四边形ABDE 的面积;(3)将AC 边沿BC 方向平移m 个单位至ED ,是否存在这样的m ,使得在直线DE 上有一点M ,满足30AMB ∠=︒,且此时四边形ABDE 的面积最大?若存在,求出四边形ABDE 面积的最大值及平移距离m 的值;若不存在,请说明理由.13.在Rt ABC ∆中,6AB =,90B ∠=︒,8BC =,点P 从A 出发沿AC 方向在运动速度为3个单位/秒,点Q 从C 出发向点B 运动,速度为1个单位/秒,P 、Q 同时出发,点Q 到点B 时两点同时停止运动.(1)点P 在线段AC 上运动,过P 作DP PQ ⊥交边AB 于D ,2t =时,求PD PQ的值; (2)运动t 秒后,90BPQ ∠=︒,求此时t 的值;(3)t =________时,AQ QP =. 14.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 15.如图,四边形AOBC 是正方形,点C 的坐标是(82,0).(1)正方形AOBC 的边长为 ,点A 的坐标是 ;(2)将正方形AOBC 绕点O 顺时针旋转45︒,点A ,B ,C 旋转后的对应点为A ',B ',C ',求点A '的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P 从点O 出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q 从点O 出发,沿折线OBCA 方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当OPQ △为等腰三角形时,求出t 的值(直接写出结果即可).16.如图,在长方形ABCD 中,AB =4cm ,BE =5cm ,点E 是AD 边上的一点,AE 、DE 分别长acm .bcm ,满足(a -3)2+|2a +b -9|=0.动点P 从B 点出发,以2cm/s 的速度沿B→C→D 运动,最终到达点D ,设运动时间为t s .(1)a =______cm ,b =______cm ;(2)t 为何值时,EP 把四边形BCDE 的周长平分?(3)另有一点Q 从点E 出发,按照E→D→C 的路径运动,且速度为1cm/s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,△BPQ 的面积等于6cm 2.17.如图,在⊙O 中,直径AB =10,tanA =33. (1)求弦AC 的长; (2)D 是AB 延长线上一点,且AB =kBD ,连接CD ,若CD 与⊙O 相切,求k 的值;(3)若动点P 以3cm/s 的速度从A 点出发,沿AB 方向运动,同时动点Q 以32cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为t (0<t <103),连结PQ .当t 为何值时,△BPQ 为Rt △?18.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 19.如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16.动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒).(1)设△DPQ 的面积为S ,求S 与t 之间的关系式;(2)当t 为何值时,四边形PCDQ 是平行四边形?(3)分别求出当t 为何值时,①PD=PQ ;②DQ=PQ .20.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.21.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.22.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?23.在菱形ABCD中,点P是对角线BD上一点,点M在CB的延长线上,且=,连接PA.PC PM()1如图①,求证:PA PM=;()2如图②,连接,AM PM与AB交于点,120PC AM;O ADC︒∠=求证 =()3连接AM ,当 90ADC ︒∠=时,PC 与AM 的数量关系是24.在平面直角坐标系xOy 中,点A 为x 轴上的动点,点B 为x 轴上方的动点,连接OA ,OB ,AB .(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点P ,请直接写出P ∠的度数;(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=︒,求OAB OCB∠∠;(3)如图3,当点B 在第一象限内,点P 是AOB ∆内一点,点M ,N 分别是线段OA ,OB 上一点,满足:1902APB AOB ∠=︒+∠,PM PN =,180ONP OMP ∠+∠=︒.以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;④AM BN AB +=.正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).25.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.H解析:(1)211242y x x =--;(2)213S 242t t =---;(3)7433y x =-+ 【解析】【分析】(1)先把B 、C 两点坐标求解出来,再根据待定系数法即可把函数解析式求解出来;(2) 过点P 作PK x ⊥轴于点K ,PF y ⊥轴于点F ,把OH 、OD 的长度用t 表示出来,再根据ODH ∆的面积为S ,即可表示出S 与t 的函数关系式; (3)先证明PKC COD ∆≅∆,再过点R 作RN x ⊥轴,设211m,242R m m ⎛⎫-- ⎪⎝⎭,连接RC 、RO ,作CL RO ⊥于L ,求出Q 点的坐标,再利用待定系数法即可把直线TQ 的解析式求解出来;【详解】(1)∵228y ax ax a =--与x 轴交于B 、C 两点∴令0y =,即2280ax ax a --=解得14x =,22x =-由题意得,∴B(4,0),C(2,0)-在Rt OAB 中,4OB =,25AB =.∴22OA 2AB OB =-=∴()0,2A -∴82a -=-∴14a = ∴抛物线的解析式为211242y x x =-- (2)过点P 作PK x ⊥轴于点K ,PF y ⊥轴于点F∴PKO PFO 90∠=∠=︒,FOK 90∠=︒∴四边形FPKO 为矩形∴FO PK =∵E 为PB 的中点∴PE BE =∵EH BK ⊥∴PKB EHB 90∠=∠=︒∴PK //EH ∴BH BM HK PM= ∴BH HK = ∵211,242P t t t ⎛⎫-- ⎪⎝⎭ ∴211PK OF 242t t ==--,OK PF t ==- ∴BK 4t =- ∴1t BH BK 222==- ∴t t OH 42222⎛⎫=--=+ ⎪⎝⎭ ∵OD PK tan DBO OB BK ∠==, 即21441422t t OD t--=- ∴OD t 2=-- ∴211t 13S OD OH (t 2)2222242t t ⎛⎫=⋅=--+=--- ⎪⎝⎭, (3)∵OK t =-,OC 2=,∴CK OD t 2==--,∵CP CD =,PKC COD 90∠=∠=︒,∴PKC COD ∆≅∆,∴PK OC 2==,∴2OF = ∴OF 1tan FBO OB 2∠== 过点R 作RN x ⊥轴,如图设211m,242R m m ⎛⎫-- ⎪⎝⎭∴RN 1tan FBO BN 2∠==, ∴211214242m m m --=- 解得4m =-或4m =(舍去),∴R(4,4)- ∴CN 1tan CRN RN 2∠== ∴CRN FBO ∠=∠连接RC 、RO ,作CL RO ⊥于L ,如上图∵RN ON =∴45NRO RON NRC CRO ∠=∠=∠+∠=︒,∴LC LO =,RO 42=, ∴CL OL 2==, ∴CL 1tan CRO RL 3∠=, ∵SBC FBO 45∠+∠=︒, ∴OT 1tan TBO OB 3∠==, ∴4OT 3=,2TF 3=, ∴4T 0,3⎛⎫ ⎪⎝⎭∵//PF OB ,∴2FT 13tan FST FS 3FS ∠=== ∴2FS =,∴FS CO OF 2===,∴QC BC ⊥∵QF FB =,QSF BOF 90∠=∠=︒,∴QFS BFO ∆≅∆∴QS OB 4==∴(2,6)Q -设直线TQ 的解析式为y kx b =+ ∴2643k b b -+=⎧⎪⎨=⎪⎩ 解得7343k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线TQ 的解析式为7433y x =-+. 【点睛】本题主要考查了二次函数的综合应用,涉及到用待定系数法求解函数解析式、一次函数、全等三角形、图形的面积计算、矩形的性质、解直角三角形等相关知识,灵活运用所学知识是解题的关键. 2.A解析:(1) A (12,0) B (72,0);(2)①y x =+,②2999y x x =-+ 【解析】【分析】(1)根据抛物线的解析式可得对称轴为x =2,利用:3:4∆∆=ABC BCE S S 得出CA :CE =3:4,由△AOE ∽△AGC 可得13=AO AG ,进而求得OA 、OB 的长,即可求得点A 、点B 的坐标; (2)根据旋转的性质求出C 点坐标,利用C 点坐标和△AOE ∽△AGC 可求得E 点坐标,,分别利用待定系数法即可求得直线CE 和抛物线的解析式.【详解】解:(1)∵抛物线的解析式为24(0)=-+>y mx mx n m , ∴对称轴为直线422-=-=m x m, 如图,设对称轴与x 轴交于G ,则//CG y 轴,2OG =,∴△AOE ∽△AGC , ∴=AO AE AG AC , ∵:3:4ABC BCE S S =,∴CA :CE =3:4 ,则31AE AC =, ∴13==AO AE AG AC , ∴1142==OA OG ,3342==AG OG , 则23==AB AG ,72=+=OB OA AB , ∴A (12,0), B (72,0); (2)如图,设O 旋转后落在点Q 处,过点C 作CP y ⊥轴于点P ,由旋转的性质得:△BCO ≌△ACQ ,∴BO =AQ =72,CO =CQ , ∴OQ==== ∵CP y ⊥轴,∴12==OP OQ ∴点C的坐标为(2,,则CG =由(1)得△AOE ∽△AGC ,13==OE AE CG AC ,∴3OE =,即点E的坐标为(0,3, ①设CE 的解析式为y kx b =+,分别代入C (2,,E 得:23k b b ⎧+=⎪⎨=⎪⎩,解得:k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴CE的解析式为33y x =-+; ②将A (12,0),C (2,分别代入24y mx mx n =-+得:120448m m n m m n ⎧-+=⎪⎨⎪-+=⎩,解得:99m n ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为2999y x x =-+. 【点睛】本题考查了二次函数的综合、旋转的性质、相似三角形的性质和求一次函数的解析式,正确的理解题意,熟练运算“数形结合思想”是解题的关键. 3.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==.45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩ 解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+,16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥, HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠ MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩解得5959 ac⎧=⎪⎪⎨⎪=⎪⎩∴直线DM的解析式为5599y x=+.【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.4.C解析:(1)①3,3,32CP≤≤,②O;(2)13b≥;(3)0<r≤3.【解析】【分析】(1)①根据垂线段最短以及已知条件,确定OP,CP的最大值,最小值即可解决问题.②根据限距关系的定义判断即可.(2)直线3y x b=+与x轴、y轴分别交于点F,G(0,b),分三种情形:①线段FG 在⊙O内部,②线段FG与⊙O有交点,③线段FG 与⊙O没有交点,分别构建不等式求解即可.(3)如图3中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,根据⊙H和⊙K都满足限距关系,构建不等式求解即可.【详解】(1)①如图1中,∵D(-1,0),E(03,∴OD=1,3OE=∴3OEtan EDOOD∠==∴∠EDO=60°,当OP⊥DE时,3•602OP OD sin=︒=,此时OP的值最小,当点P与E重合时,OP3当CP ⊥DE 时,CP 的值最小,最小值•603CD cos =︒=, 当点P 与D 或E 重合时,PC 的值最大,最大值为2, 故答案为:3,3,32CP ≤≤. ②根据限距关系的定义可知,线段DE 上存在两点M ,N ,满足OM=2ON , 故点O 与线段DE 满足限距关系. 故答案为O . (2)直线3y x b =+与x 轴、y 轴分别交于点F ,G (0,b ),当0<b <1时,线段FG 在⊙O 内部,与⊙O 无公共点, 此时⊙O 上的点到线段FG 的最小距离为1-b ,最大距离为1+b , ∵线段FG 与⊙O 满足限距关系, ∴1+b ≥2(1-b ), 解得13b ≥, ∴b 的取值范围为131b ≤<. 当1≤b ≤2时,线段FG 与⊙O 有公共点,线段FG 与⊙O 满足限距关系, 当b >2时,线段FG 在⊙O 的外部,与⊙O 没有公共点, 此时⊙O 上的点到线段FG 的最小距离为121b -,最大距离为b+1, ∵线段FG 与⊙O 满足限距关系,∴11212b b ⎛⎫+≥- ⎪⎝⎭,而11212b b ⎛⎫+≥-⎪⎝⎭总成立, ∴b >2时,线段FG 与⊙O 满足限距关系,综上所述,b 的取值范围为13b ≥. (3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,两圆的距离的最小值为2r-2,最大值为2r+2,∵⊙H 和⊙K 都满足限距关系, ∴2r+2≥2(2r-2), 解得r ≤3,故r 的取值范围为0<r ≤3. 【点睛】本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.5.C解析:(1)C ;(2)﹣1﹣2≤x k ≤1﹣2或2﹣1≤x k ≤1+2;(3)m≤3﹣210或m≥3+210. 【解析】 【分析】(1)由题意可知当Q 与A 重合时,点C 在以AP 为直径的圆上,所以可以成为点P 与线段AB 的共圆点的是C ;(2)根据题意由两点的距离公式可得AP=BP=22,分别画以AP 和BP 为直径的圆交x 轴于4个点:K 1、K 2、K 3、K 4,结合图形2可得4个点的坐标,从而得结论; (3)由题意先根据直线y=12x+3,当x=0和y=0计算与x 轴和y 轴的交点坐标,分两种情况:M 在A 的左侧和右侧,先计算圆E 与直线y=12x+3相切时m 的值,从而根据图形可得结论. 【详解】解:(1)如图1,可以成为点P 与线段AB 的共圆点的是C ,故答案为:C ;(2)∵P (0,1),点A (﹣2,﹣1),点B (2,﹣1). ∴AP =BP 22(20)(11)--+--2,如图2,分别以PA 、PB 为直径作圆,交x 轴于点K 1、K 2、K 3、K 4,∵OP=OG=1,OE∥AB,∴PE=AE=2,∴OE=12AG=1,∴K1(﹣1﹣2,0),k2(1﹣2,0),k3(2﹣1,0),k4(1+2,0),∵点K为点P与线段AB的共圆点,∴﹣1﹣2≤x k≤1﹣2或2﹣1≤x k≤1+2;(3)分两种情况:①如图3,当M在点A的左侧时,Q为线段AM上一动点,以PQ为直径的圆E与直线y=12x+3相切于点F,连接EF,则EF⊥FH,当x=0时,y=3,当y=0时,y=12x+3=0,x=﹣6,∴ON=3,OH=6,∵tan∠EHF=ON EFOH FH=36=12,设EF=a,则FH=2a,EH5,∴OE=65,Rt△OEP中,OP=1,EP=a,由勾股定理得:EP2=OP2+OE2,∴2221(65)a a =+-, 解得:a =35222+(舍去)或35222-, ∴QG =2OE =2(6﹣5a )=﹣3+210, ∴m≤3﹣210;②如图4,当M 在点A 的右侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =12x+3相切于点F ,连接EF ,则EF ⊥FH ,同理得QG =10, ∴10综上,m 的取值范围是m≤3﹣10或10. 【点睛】本题属于圆和一次函数综合题,考查一次函数的应用,新定义:M 为点P 与线段AB 的共圆点,圆的切线的性质等知识,解题的关键是理解题意,学会利用图象法解决问题,学会利用特殊点解决取值范围问题.6.A解析:(1)(1,4)D ;(2)158(,)33M ,274(,)33M ;(3)N 的坐标为57(,)24. 【解析】 【分析】(1)将点A 坐标代入函数关系式可得a 与b 的方程,再根据顶点D 的横坐标为1可得另一个关于a 和b 的方程,联立方程组求解即可得到a 和b 的值,进而求得抛物线的函数关系式,再将顶点D 的横坐标代入即可求得点D 坐标;(2)①如图,取DB 得三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,通过证相似三角形可得点M 的横纵坐标与点B 、D 的横纵坐标之间的数量关系,进而得解;(3)取线段BC 的中点G ,连接GM ,由中点坐标可得33(,)22G ,根据等腰三角形的三线合一可得GM ⊥BC ,在根据两条直线互相垂直可求得:GM l y x =,与:26BD l y x =-+联立方程组可求得点M 的坐标,再由(2,2),(0,3)M C 利用待定系数法可得1:32CM l y x =-+,最后将132y x =-+与2y x 2x 3=-++联立方程组即可求得点N 的坐标. 【详解】解:(1)将(1,0)A -代入23y ax bx =++可得03a b =-+①∵顶点D 的横坐标为1,∴12ba-=,即2b a =-② 联立①②解得1,2a b =-=∴2y x 2x 3=-++ 当1x =时,4y =(1,4)D ∴(2)由(1)得2y x 2x 3=-++ 当y=0时,x 1=-1,x 2=3, ∴B (3,0),即BO=3,如图,取DB 的三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,则可得△DGM 1∽△DHM 2∽△DEB ,△BQM 2∽△BPM 1∽△BED ,且相似比为1:2:3, ∴12833M D y y == 115()33M D B D x x x x =+-=158(,)33M ∴同理可得:274(,)33M∴点M 的坐标为:158(,)33M ,274(,)33M(3)NCB DBC ∠=∠CM MB ∴=取线段BC 的中点G ,作直线GM ,∵点B (3,0),点C (0,3) ∴中点G 的坐标为33(,)22∵CM MB =,点G 为线段BC 的中点, ∴GM ⊥BC , ∴设直线GM 为y=x+m 将33(,)22G 代入得m=0, ∴:GM l y x =① 设直线BD 为y=kx+n将,B D 坐标代入得k=-2,n=6, ∴:26BD l y x =-+②联立①②可得22x y =⎧⎨=⎩∴(2,2)M 设直线MC 为y=k 2x+n 2将(2,2),(0,3)M C 坐标代入得k 2=12-,n 2=3, ∴1:32CM l y x =-+③ 联立③与2y x 2x 3=-++可得5274x y ⎧=⎪⎪⎨⎪=⎪⎩∴57(,)24N 故N 的坐标为57(,)24. 【点睛】本题考查了一次函数与二次函数的综合应用以及相似三角形的判定及性质的应用,能够根据题意做出正确的辅助线,利用数形结合思想进行转化是解决本题的关键.7.A解析:(1;(2;②2cos 902n s ︒⎛⎫︒- ⎪⎝⎭;(3【解析】 【分析】(1)①由α=90°可得△ABC 与△AED 为等腰直角三角形,斜边AB ,AE ,而DC=AC-AD ,EB=AB-AE ,代入计算即求得DCEB. ②由△ABC 与△AED 为等腰直角三角形可得∠BAC=∠EAD=45°,减去公共角∠CAE 得∠CAD=∠BAE ,再加上两夹边成比例,证得△CAD ∽△BAE ,所以DCEB. (2)①过点E 作EF ⊥AD 于点F ,由α=120°可得∠EAD=30°,所以得到Rt △AED 的三边比,则AE=2EF ,,进而有EF ,代入计算即求得DCEB②由α=n°可得∠EAD=90°-2n ︒,又因为cos ∠EAD=AF AE,所以得AF=AE•cos (90°-2n ︒),AD=2AF=2AE•cos (90°-2n ︒),根据①的证明过程可得DC EB =AD AE=2cos (90°-2n ︒). (3)过点B 作BF ⊥AC 于点F ,根据等腰直角三角形的条件求得PB 的长,即求得点E 自点B 运动至点P 时BE 的长.连接CD ,由(1)②的证明过程可知△CAD ∽△BAE ,所以∠ACD=∠ABE 为一个定角,即点D 所经过的路径是线段CD .根据“关联比”DCEB的值为,求得.【详解】解:(1)①∵当90α︒=时,ABC 与AED 为等腰直角三角形2,2AC AB AD AE ∴== 22CD AC AD AB AE ∴=-=-222DC AB AEEB AB AE-∴==- 故答案为: 2 ②当90α︒=时,,ABC AED ∆∆均为等腰直角三角形45BAC EAD ︒∴∠=∠= 2,2AC AB AD AE ==AC ADAB AE∴= 又CAD EAD CAE CAB CAE BAE ∠+∠-∠=∠-∠=∠ CAD BAE ∴∆∆ 2CD CABE BA∴== ∴“关联比”DCEB为2 ()2①过点E 作EF ⊥AD 于点F∴∠AFE=90°∵AE=DE ,∠AED=α=120°∴∠EAD=∠EDA=30°,AF=DF ∴AE=2EF ,3 ∴3 ∴3ADAE= 同理可证:∠BAC=30°,3AC ADAB AE==∴∠EAD+∠CAE=∠BAC+∠CAE 即∠CAD=∠BAE ∴△CAD ∽△BAE3CD CABE BA∴== 故答案为:3. ②过点E 作EF⊥AD 于点F90AFE ︒∴∠= a n ︒=1809022n n EAD EDA ︒︒︒︒-∴∠=∠==-Rt AEF ∆中,cos AFEAD AE∠=cos 902n AF AE ︒︒⎛⎫∴=⋅- ⎪⎝⎭22cos 902n AD AF AE ︒︒⎛⎫∴==⋅- ⎪⎝⎭2cos 902ADn AE ︒︒⎛⎫∴=- ⎪⎝⎭ 由①的证明过程可得2cos 902DC ADn EB AE ︒︒⎛⎫==- ⎪⎝⎭ 故答案为:2cos 902n ︒︒⎛⎫- ⎪⎝⎭()3如图,过点B 作BF AC ⊥于点F∵ABC ∆与AED ∆为“关联等腰三角形",90,4ABC AED AC ︒∠=∠==,ABC ∆∴与AED ∆均为等腰直角三角形,122CF FA FB AC ====∵1, 211PA PF ==-=2222215PB BF PF =+=+=连接CD ,由上可知.ACD ∆≌ABE ∆ACD ABE ∴∠=∠=定角, ∴点D 所经过的路径是线段CD∵90α︒=时,“关联比”为2,∴当点E 自点B 运动至点P 时,点D 所经过的路径5210⨯= 【点睛】本题考查了新定义的理解和应用,等腰三角形的性质,相似三角形的判定和性质,三角函数的应用.解题关键是理解新定义并把性质进行运用,利用转化思想解决新问题.8.E解析:(1)24P P ,;(2)353b -≤<;(3)6425t >≥- 【解析】 【分析】(1)根据等腰锐角点的定义即得;(2)先确定极限位置:直线与圆相切于第四象限及直线过(0,3)时b 的值,进而确定范围;(3)分类讨论:E 点和F 点位于线段HK 左侧;E 点和F 点位于线段HK 右侧;利用一线三垂直模型及相似三角形的性质确定极限位置t 的值,进而确定范围. 【详解】(1)∵点P 是点O 关于点A 的锐角等腰点,(2,0)A ∴OA=OP=2 如下图:当1(0,2)P 时,OP 1=2,OP 1⊥OA ,不成立; 当(23P 时,过P 2作P 2M ⊥x 轴∴OM=1,P 23∴在2Rt P MO 中,22222OP OM P M =+= ∵290P OA ∠<︒∴点()21,3P 是点O 关于点A 的锐角等腰点;当()31,3P -时,390POA>︒∠ ∴点()31,3P -不是点O 关于点A 的锐角等腰点; 当()42,2P -时,过P 4作P 4N ⊥x 轴∴ON=2,P 4N=2∴在4Rt P NO 中,22442OP ON P N =+=,445P ON =︒∠ ∴点()42,2P -是点O 关于点A 的锐角等腰点.∴点O 关于点A 的锐角等腰点有()21,3P ,()42,2P -故答案为:24P P ,(2)以O 为圆心,OA=3为半径作圆,当直线2y x b =+与圆O 相切与第四象限时,切点即为点O 关于点A 的锐角等腰点,如下图点C .由题意,得:OB=-b ,OD=2b∴在Rt DOB 中,2252DB OD OB =+=- ∵11122OD OB DB OC = ∴215322b b =-⨯ 解得:35b =-如上图:当直线2y x b =+过点E ()03,时,3b =,OE ⊥OA ∴要使在直线2y x b =+上存在点C 是点O 关于点A 的锐角等腰点,3b < 综上所述:353b -≤<时,直线2y x b =+上存在点C 是点O 关于点A 的锐角等腰点 . (3)如下图:当E F ,在直线左侧,4EF =时,过E 作EG HK ⊥ ∵90KOH EGH KHO GHE ==︒∠=∠∠∠, ∴H EGH KO ∽ ∴KO KHEG EH= ∵()()()()0420020K H D t E t -,,,,,,, ∴KO=4,KH=25,EH=4-t ∴EG=8525425t-⨯=∵要使线段HK 上存在点E 关于点F 的锐角等腰点,则4EG ≤ ∴852545t-≤ ∴425t ≥-当E 点和F 点位于线段HK 右侧时,即:4t ≥时,如下图,过E 作EB ⊥EF ,过B 作BM ⊥x 轴,过点F 作FL ⊥x 轴当BE EF =时,F BME EL ≌ ∴BM EL =,ME FL =∵()F m n ,,()(),020D t E t -,,∴ME FL n ==,2BM EL m t ==-+ ∴2OM t n =-- ∴()22B t n m t ---+,将点()22B t n m t ---+,代入直线24y x =-+得:()2224m t t n -+=---+解得:62t n m =+-∴当62t n m <+-时,线段HK 上存在点E 关于点F 的锐角等腰点. ∵2m t ≥-,20n ≥≥∴62622212t n m t t <+-≤+⨯-+=-,即6t <综上所述:6425t >≥-HK 上存在点E 关于点F 的锐角等腰点 【点睛】本题考查了等腰三角形的定义,全等三角形的判定及性质,切线的性质,相似三角形的判定及性质,圆的定义及一次函数,解题关键是将动点问题转化问各个状态,进而应用等量关系列出方程求解,得出极限状态的未知量的值,进而得出取值范围.9.E解析:(1)见解析;(2)见解析;(3)()()11a b ++<9+62.【解析】 【分析】(1)根据题目要求作出图形即可;(2)连EF ,EG ,延长AB 交EF 于点H ,先依据矩形与平行线的性质,等角的余角相等,旋转的性质,得到AHE ≌ADC (AAS),依据全等的性质及等量代换可得BH FH =,结合依据相似的判定与性质,得到AB AG =,再依据SAS 可证明GAE ≌BAC ,依据全等的性质得到90AGE ABC ∠=∠=︒,即EG ⊥AD ;(3)依据勾股定理求出GB ,依据平行线分线段成比例可分别证MAG △∽MCB △,BAG ∽BHF ,NBC ∽NFE ,依据相似三角形的性质得到MG GB 、、42a MB ==、BF、122b NF BF ===,即可求出()()11a b ++=()()42121++=9+52<9+62.【详解】解:(1)补全图形如下:(2)连EF ,EG ,延长AB 交EF 于点H ,设AD n =,CD m =,∵//AE DF ,AE DF =,∴四边形AEFD 是平行四边形, ∴//AD EF ,AD EF n ==, ∴ABG ∽HBF ,∴AB AGBH FH =, ∵矩形ABCD ,∴//AD BC ,90ADC BAD ABC ∠=∠=∠=︒, ∴//BC EF ,∴90AHF ABC ∠=∠=︒, ∴18090AHE AHF ∠=︒-∠=︒, ∴AHE ADC ∠=∠, ∵90EAC BAD ∠=︒=∠,∴EAC BAC BAD BAC ∠-∠=∠-∠,即EAH CAD ∠=∠, 又∵AE AC =, ∴AHE ≌ADC (AAS),∴EH CD m ==,AH AD n ==, ∴BH n m FH =-=,又∵AB AGBH FH =, ∴AB AG =,又∵90BAC CAD GAE ∠=︒-∠=∠,AC AE =,∴GAE ≌BAC (SAS ), ∴90AGE ABC ∠=∠=︒, ∴EG ⊥AD ;(3) 当AB =2,BC =4,MB =a ,NF =b 时,()()11a b ++<9+62,理由如下:2AG AB ==,2222GB AG AB +=4EF AD BC ===,4AH AD ==,2BH AH AB =-=, ∵//AD BC ,∴MAG △∽MCB △, ∴MG AG MB BC ==2142=, ∴22MG GB ==42a MB == ∵//AD EF , ∴BAG ∽BHF , ∴GB AB BF HB ==212=,∴BF GB == ∵//BC EFNBC ∽NFE , ∴1BN BCNF EF==,∴12b NF BF ===,()()11a b ++=()11<【点睛】本题考查了矩形与平行线的性质,等角的余角相等,旋转的性质,全等的判定与性质、相似三角形的判定与性质,解题的关键是构造全等三角形,灵活运用相似三角形的性质求各条线段的长度.10.A解析:(1)5AD x =,6DF x =+;(2)△ADF 为等腰三角形,x 的取值可以是4817,4831,12; (3)4或43【解析】 【分析】(1)由已知条件可得:CD=4x ,根据勾股定理得:AD=5x ,由AB=6且C 在B 点右侧,可以依次表示BC 、CF 、DF 的长;(2)分两种情况:①当C 在B 点的右侧时,AF=DF ,②当C 在线段AB 上时,又分两种情况:i )当CF <CD 时,如图3,ii )当CF >CD 时,如图4,由AF=DF ,作等腰三角形的高线FN ,由等腰三角形三线合一得:AN=ND=2.5x ,利用同角的三角函数列比例式可求得x 的值;(3)由翻折性质得到DG='GD ,'DGF FGD ∠=∠,从而证出'ADG AGD △≌△,从而推出∠FAC=∠DAG ,即AF 平分∠DAC ,过F 作FN ⊥AD 于N ,分两种情况:当C 在AB 的延长线上时,当C 在AB 边上时,根据35sin CDA ∠=可列出关于x 的比例式,即可求解. 【详解】 ⑴∵CD=43AC ,AC=3x , ∴CD=4x, ∵CD⊥AM, ∴∠ACD=90°, 由勾股定理得:AD=5x , ∵AB=6,C 在B 点右侧, ∴BC=AC-AB=3x-6, ∵BC=FC=3x-6,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、中考数学压轴题1.已知:在平面直角坐标系中,抛物线223y ax ax a =--与x 轴交于点A ,B (点B 在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2.(1)如图1,求此抛物线的解析式;(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若728CG AG =,求点P 的坐标.2.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.3.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC 的值. (拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.105AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.4.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;②若12,(33)2ADH a S ==+,求sin GAB ∠的值.5.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.6.如图1,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,连接AC 、BC ,已知点A 、C 的坐标为()2,0A -、()0,6C -.(1)求抛物线的表达式;(2)点P 是线段BC 下方抛物线上的一动点,如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形为平行四边形,求点Q 的坐标;(3)如图2,若点M 是AOC △内一动点,且满足AM AO =,过点M 作MN OA ⊥,垂足为N ,设AMN 的内心为I ,试求CI 的最小值.7.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 上以每秒3的速度匀速运动,在CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由. 8.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+,32AB =,45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .问题探究(1)如图1,若30PBC ∠=︒,则AP 的长为__________.(2)如图2,请求出BPC △周长的最小值;(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;②请直接写出PMN 面积的最小值.9.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于A B 、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .10.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.11.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),2,点 P 从点 O 出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.(1)求点 B 的坐标;(2)设点 P 的运动时间为点 t 秒,△BDP 的面积为 S ,求 S 与 t 的函数关系式;(3)当点 P 与点 D 重合时,连接 BP ,点 E 在线段 AB 上,连接 PE ,当∠BPE =2∠OBP 时, 求点 E 的坐标.12.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.13.如图,直线y=﹣x+4与抛物线y=﹣12x2+bx+c交于A,B两点,点A在y轴上,点B在x轴上.(1)求抛物线的解析式;(2)在x轴下方的抛物线上存在一点P,使得∠ABP=90°,求出点P坐标;(3)点E是抛物线对称轴上一点,点F是抛物线上一点,是否存在点E和点F使得以点E,F,B,O为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.14.(1)(发现)如图1,在ABC中,//DE BC分别交AB于D,交AC于E.已知CD BE⊥,3CD=,5BE=,求BC DE+的值.思考发现,过点E 作//EF DC ,交BC 延长线于点F ,构造BEF ,经过推理和计算能够使问题得到解决(如图2).请回答:BC DE +的值为______.(2)(应用)如图3,在四边形ABCD 中,//AB CD ,AD 与BC 不平行且AD BC =,对角线AC BD ⊥,垂足为O .若3CD =,5AB =,DAB CBA ∠=∠,求AC 的长.(3)(拓展)如图4,已知平行四边形ABCD 和矩形ABEF ,AC 与DF 交于点G ,FD FB =,且30BFD ∠=︒,60EBF ∠=︒,判断AC 与DF 的数量关系并证明.15.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.16.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.17.如图,在平面直角坐标系中,Rt ABC △的斜边在AB 在x 轴上,点C 在y 轴上90ACB ∠=︒,OC 、OB 的长分别是一元二次方程2680x x -+=的两个根,且OC OB <.(1)求点A 的坐标;(2)D 是线段AB 上的一个动点(点D 不与点A ,B 重合),过点D 的直线l 与y 轴平行,直线l 交边AC 或边BC 于点P ,设点D 的横坐标为t ,线段DP 的长为d ,求d 关于t 的函数解析式;(3)在(2)的条件下,当12d =时,请你直接写出点P 的坐标.18.ABC 内接于O ,AB BC =,连接BO ;(1)如图1,连接CO 并延长交O 于点M ,连接AM ,求证://AM BO ;(2)如图2,延长BO 交AC 于点H ,点F 为BH 上一点,连接AF ,若AH HF AB BF =,求证:BAF HAF ∠=∠;(3)在(2)的条件下,如图3,点E 为AB 上一点,点D 为O 上一点,连接ED 、OE ,若CBD 3ABH 90∠+∠=︒,若OF 3=,FH 4=,13623EBD S ∆=,连接OE ,求线段OE 的长.19.定义:将函数l的图象绕点P(m,0)旋转180°,得到新的函数l'的图象,我们称函数l'是函数关于点P的相关函数.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)当m=0时①一次函数y=x﹣1关于点P的相关函数为;②点(12,﹣98)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m=;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣12m2关于点P(m,0)的相关函数的最大值为6,求m的值.20.如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为R△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC的一条完美分割线.(1)如图1,AB=10,cos A=45,AD=3,若DE为完美分割线,则BE的长是.(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P 画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB的中点,连结PD、PE,求cos∠PDE的值.21.如图1,在平面直角坐标系中,O是坐标原点,矩形OACB的顶点A、B分别在x轴和y轴上,已知OA=5,OB=3,点D的坐标是(0,1),点P从点B出发以每秒1个单位的速度沿折线BCA的方向运动,当点P与点A重合时,运动停止,设运动的时间为t秒.(1)点P 运动到与点C 重合时,求直线DP 的函数解析式;(2)求△OPD 的面积S 关于t 的函数解析式,并写出对应t 的取值范围;(3)点P 在运动过程中,是否存在某些位置使△ADP 是不以DP 为底边的等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.22.如图,平行四边形ABCD 中,AB ⊥AC ,AB =2,AC =4.对角线AC 、BD 相交于点O ,将直线AC 绕点O 顺时针旋转α°(0°<α<180°),分别交直线BC 、AD 于点E 、F .(1)当α=_____°时,四边形ABEF 是平行四边形;(2)在旋转的过程中,从A 、B 、C 、D 、E 、F 中任意4个点为顶点构造四边形, ①当α=_______°时,构造的四边形是菱形;②若构造的四边形是矩形,求该矩形的两边长.23.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =+,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.24.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.25.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.C解析:(1)21322y x x =--;(2)1m t =-;(3)933,28P ⎛⎫ ⎪⎝⎭ 【解析】【分析】(1)将抛物线解析式化为顶点式可得y=a (x-1)2-4a ,则C 点为(1,-4a ),再由-4a=-2即可求a 的值,进而确定函数解析式;(2)由已知分别求出点P 和点A 的坐标,可得AP 的直线解析式,求出D 点坐标则可求CD ;(3)设CD 与x 轴的交点为H ,连接BE ,由三角形中位线的性质可求BE=2(t-3)=2t-6;过点F 作FN ⊥BE 于点N ,过点P 作PM ⊥BE 交BE 的延长线于点M ,可证明Rt △PME ≌Rt △ENF (HL ),从而推导出∠EPF=∠EFP=45°;过点C 作CK ⊥CG 交PA 的延长线于点K ,连接AC 、BC ,能够进一步证明△ACK ≌△BCG (SAS ),得到∠KGB=90°;令AG=8m ,则CG=72BG=6m ,过点G 作GL ⊥x 轴于点L ,在Rt △ABG 中,AG=10m=4,求出m 值,利用等积法可求G 点的坐标,再将G 点坐标代入3322t t y x --=+,求出t ,即可求出点P 坐标.【详解】解:(1)22223(23)(1)4y ax ax a a x x a x a =--=--=--,∴顶点C 的坐标为(1,4)a -,点C 的纵坐标为2-,42a ∴-=-,12a ∴=,21322y x x ∴=--; (2)点P 的横坐标为t ,213(,)22P t t t ∴--, 21322y x x =--与x 轴的交点为(1,0)A -,(3,0)B , ∴设AP 的直线解析式为y kx b =+,则有201322k b kt b t t -+=⎧⎪⎨+=--⎪⎩, 解得3232t k t b -⎧=⎪⎪⎨-⎪=⎪⎩, 3322t t y x --∴=+, //CD y 轴交AP 于点D ,(1,3)D t ∴-,321CD t t ∴=-+=-,1m t ∴=-;(3)如图:设CD 与x 轴的交点为H ,连接BE ,CD 垂直平分AB ,ED AD =,//DH BE ∴,12DH BE =, BE x ∴⊥轴, 2(3)26BE t t ∴=-=-,过点F 作FN BE ⊥于点N ,过点P 作PM BE ⊥交BE 的延长线于点M ,EF BF =,132EN BN BE t PM ∴===-=, EP FE =,Rt PME Rt ENF(HL)∴∆≅∆,MPE FEN ∴∠=∠,90FEN MEP MPE MEP ∴∠+∠=∠+∠=︒,90PEF ∴∠=︒,45EPF EFP ∴∠=∠=︒,过点C 作CK CG ⊥交PA 的延长线于点K ,连接AC 、BC ,90KCG ∴∠=︒,45K KGC ∴∠=∠=︒,CK CG ∴=,90AHC BHC ∠=∠=︒,2AH BH CH ===,45CAH ACH HBC HCB ∴∠=∠=∠=∠=︒,90ACB ∴∠=︒,AC CB =,90KCA ACG GCB ∴∠=︒-∠=∠,()ACK BCG SAS ∴∆≅∆,45BGC K AGC ∴∠=∠=∠=︒,AKBG =,90KGB ∴∠=︒,令8AG m =,则CG =,CK CG =,90KCG ∠=︒,14KG m ∴=,6BG AK KG AG m ∴==-=,过点G 作GL x ⊥轴于点L ,在Rt ABG ∆中,104AB m ===,25m ∴=, 165AG ∴=, 11861022ABG S m m m GL ∆=⨯⨯=⨯⨯, 4825GL ∴=,AL ∴=3925OL AL AO ∴=-=, 39(25G ∴,48)25, AG 的解析式为3322t t y x --=+, ∴483393252252t t --=⨯+, 92t ∴=, 9(2P ∴,33)8.【点睛】本题考查二次函数的综合题.熟练掌握二次函数的图象及性质,通过辅助线构造三角形全等,逐步求出G 点的坐标从而求出t 的值是解题的关键.2.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.3.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)10AB BC =;(3)①AD CD =. 【解析】【分析】 (1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论; (2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出AB BC的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到CF =,则(2AC x =+=DF 的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AF AE EC =,然后求出CD 和AD 的长度,即可得到答案. 【详解】解:(1)ABC 是“准黄金”三角形.理由:如图,过点A 作AD BC ⊥于点D ,∵12AC =,30ACB ∠=︒, ∴162AD AC ==. ∴:6:103:5AD BC ==.∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.不防设3AE k =,5BC k =,∵点C 为ABD △的重心,∴:2:1BC CE =.∴52k CE =,152k BE =. ∴2215329(3)22k AB k k ⎛⎫=+= ⎪⎝⎭. ∴329329:5210AB k k BC ==. (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3, ∵35AE BC =, ∴BC=5,∵5AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:1BE ==,∴156EC =+=,∴AC ==∵∠AEC=∠DFA=90°,∠ACE=∠DAF ,∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°,∴CF =,∴(2AC x ==解得:DF x ==∴2CD DF ==②如图,过点A 作AE BC ⊥于点E ,则3AE =. ∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.∴5BC =.∵AB BC =, ∴10AB.∴1BE ==.∴6CE BE BC =+=,AC ==分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,∴90B GC DFC '∠=∠=︒,3B G '=,5C B B C '==,则CG 4=.∵GCB FCD α'∠=∠=,∴AEC DFA ∽△△.∴::::3:4:5DF FC CD B G GC CB ''==.∴设3DF k =,4FC k =,5CD k =.∵12l l //,∴ACE CAD ∠=∠,且90AEC AFD ∠=∠=︒.∴AEC DFA ∽△△. ∴DF AF AE EC =. ∴335436k k =,解得3510k =. ∴355CD k ==2222959595102AF DF AD ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=. ∴9352355AD CD === 【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.4.E解析:(1)3EF EC =,见解析;(2)27BK =;(3)①AGH 是等边三角形,见解析;②1(62)4【解析】【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到3AE EC =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=.AF CD ⊥,垂足为F , 1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 23AF a ∴=在Rt ABF 中,22BF AB AF =+,7BF a ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=.//AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,AF ∴=.1(32ADH S =, 11(322DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.5.A解析:(1)()1,1E -;(2)12m -≤≤-或01m ≤≤3)9t ≤≤.【解析】【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可.【详解】(1)()1,2D -到线段BC 的距离为2,32DC ==⨯∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,3EC ==>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,32FC ==<⨯∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点;(2)设直线l 上“倍增点”的横坐标为m ,当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=,得11m =21m =当点在O 内部时,43(4+≥解得:m≥0或m≤-2∴直线l 上“倍增点”的橫坐标的取值范围为12m ≤≤-或01m ≤≤(3)如图所示,当点G(1,0)为T "倍增点"时,T(9,0),此时T 的横坐标为最大值,当点H(0,1)为T “倍增点”时,则T(63,此时T 的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t -≤≤.【点睛】在正确理解点A 是图形M 的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.6.C解析:(1)26y x x =--;(2)Q 的坐标为()2,0或()4,0;(3)CI 的最小值为42【解析】【分析】(1)待定系数法求解析式;(2)根据//CP BQ 即点C 坐标,可以求出P 点坐标,算出CP 长,即可写出Q 点坐标; (3)利用AIM AIO ≌△△可判断出I 的运动轨迹是圆弧,设I 运动轨迹所在的圆心为G 计算出圆心G 的坐标及半径为,当G 、I 、C 三点共线时候CI 最短.【详解】(1)由题意得:A 点坐标为()2,0-,C 点坐标为()0,6-带入2y x bx c =++中得:4206b c c -+=⎧⎨=-⎩, 解得:16b c =-⎧⎨=-⎩∴抛物线的解析式为26y x x =--.(2)∵点Q 在x 轴上,又点B 、C 、P 、Q 为顶点的四边形是平行四边形∴//CP BQ ,由对称性可知,P 点的坐标为()1,6-∴1PC =,∴1BQ =.∴Q 的坐标为()2,0或()4,0.(3)连接AI ,MI ,OI∵I 为AMN 的内心∴AI 、MI 分别平分MAN ∠,AMN ∠∴MAI OAI ∠=∠又∵MN AN ⊥,∴90ANM ∠=︒∴135AIM ︒∠=.又∵MA OA =,AI AI =∴AIM AIO ≌△△∴135AIO AIM ∠=∠=︒∴I 的运动轨迹是圆弧.设I 运动轨迹所在的圆心为G∵135AIO ∠=︒,∴90AGO ∠=︒又∵AG OG =,2AO =∴圆心G 的坐标为()1,1-2当G 、I 、C 三点共线时候CI 最短∵()()2210165052CG =--++== 2GI =∴CI 的最小值为52242=综上所述:CI 的最小值为42【点睛】此题为二次函数的综合应用,第一问利用待定系数法求解属基本题型;第二问判断出//CP BQ 是解题关键;第三问判断出I 的运动轨迹是解题关键.7.C解析:(1)2233(06)53103343(68)333031503(810)2t t S t t t t t t ⎧+⎪⎪⎪⎪=-+-<⎨⎪⎪-+<⎪⎪⎩,S 的最大值为63;(2)存在,m 的值为165或32163-或163或1423-. 【解析】【分析】(1)分06t 、68t 和810t 三种情况分别表示出有关线段求得两个变量之间的函数关系即可.(2)分两种情形:①如图31-中,由题意点P 在AB 上运动的时间与点R 在BC 上运动的时间相等,即8m =.当RP BR =时,当PB BR =时,当PR PB =时,分别构建方程求解即可.②如图32-中,作RH BC ⊥于H .首先证明90BPR ∠=︒,根据BP PR =构建方程即可解决问题.【详解】解:(1)如图21-中,当06t 时,点P 与点Q 都在AB 上运动,PM AC ⊥,//NQ PM ,90ANQ AMP ∴∠=∠=︒,AQ t =,2AP t =+,60A ∠=︒,1122AN AQ t ∴==,33QN ==,112AM t =+,33PM . ∴此时两平行线截平行四边形ABCD 的面积为33S +. 如图22-中,当68t 时,点P 在BD 上运动,点Q 仍在AB 上运动.则AQ t =,12AN t =,142CN t =-,3QN t =,6BP t =-,10DP t =-,3(10)PM t =-,而43BC =,故此时两平行线截平行四边形ABCD 的面积为:BCNQ BCMP S S S =+四边形四边形()()3111434433106222t t t t ⎛⎫⎛⎫⎡⎤=+⋅-++-⋅- ⎪ ⎪⎣⎦ ⎪⎝⎭⎝ 253103343t t =-+-, 如图23-中,当810t 时,点P 和点Q 都在BD 上运动.则202DQ t =-,(202)3QN t =-,10DP t =-,(10)3PM t =-.∴此时两平行线截平行四边形ABCD 的面积为2333031503S t =-+ 故S 关于t 的函数关系式为2233(06)53103343(68)3331503(810)t S t t t t ⎪⎪⎪=+-<⎨-+<⎪⎩, 当06t 时,S 随t 增大而增大,当68t <时,S 随t 增大而增大,当810t <时,S 随t 增大而减小,∴当t=8时,S 最大,代入可得S=63(2)如图31-中,由题意点P 在AB 上运动的时间与点R 在BC 上运动的时间相等,8m =.当RP BR =时,3PB BR =,则有383m m -=⋅,解得165m =, 当PB BR =时,则有38m m -=,解得32163m =-, 当PR PB =时,3BR PB =,则有33(8)m m =-,解得163m =. 如图32-中,作RH BC ⊥于H .在Rt △CHR 中,2(8)CR m =-,30RCH ∠=︒,182RH CR m ∴==-, 8BP m =-,RH BP ∴=,HR BP ∥,∴四边形RHBP 是平行四边形,90RHB ∠=︒,∴四边形RHBP 是矩形,90BPR ∴∠=︒,当BP PR =时,则有83(12)m m -=-,解得1423m =-综上所述,满足条件的m 的值为165或32163-163或1423-. 【点睛】本题属于四边形综合题,考查了平行四边形的性质,多边形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.8.B解析:(1)333-;(2)18;(3)①2716;②972625 【解析】【分析】(1)过点B 作BF ⊥AD ,交DA 的延长线于点F ,利用等腰直角三角形ABF 求得AF 和BF 的长,再利用Rt △PBF 求得PF 的长,进而得解; (2)作点B 关于直线AD 的对称点B',连接B'C ,交AD 于点P',连接BP',根据两点之间线段最短可知当B',P ,C 三点共线时,BPC △周长取得最小值,再利用勾股定理计算即可;(3)①②根据EM PB ⊥,EN PC ⊥可得点E 、M 、P 、N 在以PE 为直径的圆上,利用圆周角定理和直角三角形两锐角互余可证得△MPN ∽△CPB ,进而可知当MN 最大时,PMN 面积的最大,当MN 最小时,PMN 面积的最小,由圆的性质可知当MN 为直径时MN 最大,当MN ⊥PE 时,MN 最小,最后利用勾股定理、等积法和相似三角形的性质求解即可.【详解】 解:(1)如图,过点B 作BF ⊥AD ,交DA 的延长线于点F ,∵AD ∥BC ,∠ABC =45°,∴∠FAB =∠ABC =45°,∵BF ⊥AD ,∴在Rt △ABF 中,AF 2+BF 2=AB 2,∵32AB =∴AF =BF =22AB =23232⨯=, ∵AD ∥BC ,∠PBC =30°,∴∠FPB =∠PBC =30°,∵在Rt △PBF 中,tan ∠FPB =BF PF ∴tan30°=33PF =, ∴33PF =∴333AP PF AF =-=;(2)如图,作点B 关于直线AD 的对称点B',连接B'C ,交AD 于点P',连接BP',∵点B 与点B'关于直线AD 对称,∴AD 垂直平分BB',BF =B'F =3,∴P'B =P'B',BB'=6,∴当点P 在点P'时,PB+PC 取得最小值,最小值为B'C 的长,此时△BPC 的周长最小, 在Rt △BB'C 中,B'C =22226810'BB BC +=+=,∴△BPC 的周长最小值为B'C +BC =10+8=18;(3)①∵EM PB ⊥,EN PC ⊥,∴∠EMP =∠ENP =90°,∴点E 、M 、P 、N 在以PE 为直径的圆上,如图所示,则∠PMN =∠PEN ,∵PE BC ⊥,EN PC ⊥,∴∠PEC =∠ENC =90°,∴∠PEN+∠NEC =∠NEC+∠PCB =90°,∴∠PEN =∠PCB ,∴∠PMN =∠PCB , 又∵∠MPN =∠CPB , ∴△MPN ∽△CPB ,∴2PMN PCB S MN S BC ⎛⎫= ⎪⎝⎭∵PE BC ⊥,∴PE =3,∴11831222PCB S BC PE ==⨯⨯= ∴2128PMN SMN ⎛⎫= ⎪⎝⎭∴当MN 取得最大值时,PMN 的面积取得最大值, 当MN =PE =3时,23128PMN S ⎛⎫= ⎪⎝⎭解得2716PMN S =即当MN=PE=3时,PMN的面积最大,最大值为27 16;②由①可知,2 128PMNS MN⎛⎫= ⎪⎝⎭,∴当MN取得最小值时,PMN的面积取得最小值,由垂径定理可知,当MN⊥PE时,MN取得最小值,如图,当MN⊥PE时,则弧ME=弧NE∴∠MPE=∠NPE,∵PE BC⊥,∴∠PEB=∠PEC=90°,∴△PEB≌△PEC,∴EB=EC=12BC=4,在Rt△BEP中,BP2222435BE PE+=+=,∵1122BEPS BE PE BP ME ==∴1143522ME ⨯⨯=⨯∴125 ME=,在Rt△PME中,PM2222129355 PE ME⎛⎫-=-=⎪⎝⎭∵1122PMES PM ME PE MH ==∴191213 2552MH ⨯⨯=⨯∴3625 MH=,∴72225 MN MH==,∴227292512825PMNS⎛⎫⎪⎛⎫==⎪ ⎪⎝⎭⎪⎝⎭,解得972625PMNS=,∴PMN面积的最小值为972625.【点睛】本题考查了等腰直角三角形、特殊角的三角函数、相似三角形的判定及性质、勾股定理、垂径定理和圆周角定理等相关知识,有点难度,属中考压轴题,能够将第(3)问转化为利用圆的相关知识和相似三角形的性质解决是解决本题的关键.9.A解析:(1)图见解析,33cm;(2)①25cm42cmAB≤≤;②26【解析】【分析】(1)连接AO,直线l垂直平分PO.13cm22OH PO==,在Rt△AHO中即可求解;(2)①分两种情况求解;②过O作弦AB的垂直与圆交于点D,与弧AB交于点C,与AB交于点E,过M作OM的垂线,两条垂线的交点为O',连接AO,得到OO'垂直平分AB,O'为弧ABM所在圆的圆心,10cmOO'=,在Rt△ADO中即可求解;【详解】(1)如图,直线l为所求,连接AO.∵点P与点O关于直线l对称,∴直线l垂直平分PO.∴13cm22OH PO==.在Rt AHO∆中,∵222AH HO AO+=,∴2233cm2AH AO HO=-=.。