智能网联汽车
智能网联汽车基础知识
智能网联汽车基础知识
2024/7/18
第19页
智能网联汽车基础知识
2024/7/18
第20页
第 21 页
智能网联汽车基础知识
第21页
智能网联汽车基础知识
2024/7/18
第22页
智能网联汽车基础知识
2024/7/18
第23页
驾驶员拥有车辆全部控制权
智能网联汽车基础知识
2024/7/18
第24页
第13页
1.1.1 智能网联汽车定义——无人驾驶汽车
无人驾驶汽车是经过车载环境感知系统感知道路环境, 自动 规划和识别行车路线并控制车辆抵达预定目标智能汽车。 它是利用环境感知系统来感知车辆周围环境, 并依据感知所 取得道路情况、车辆位置和障碍物信息等, 控制车辆行驶方 向和速度, 从而使车辆能够安全、可靠地在道路上行驶
无人驾驶汽车发展还需要多方面共同努力
智能网联汽车基础知识
2024/7/18
第16页
1.1.2 智能网联汽车分级
智能网联汽车基础知识
2024/7/18
第17页
第二节 智能网联汽车技术分级
智能网联汽车基础知识
2024/7/18
第18页
1.1.2 智能网联汽车分级
在量产车型中, 自动驾驶等级最高是L3级, 即奥迪A8, 它配 置了4个鱼眼摄像头、12个超声波雷达、4个中程毫米波雷 达、1个远程毫米波雷达、1个激光雷达、1个前视摄像头。 其中, 4个鱼眼摄像头用于360°环视系统, 12个超声波雷达 用于自动泊车系统
会自动完成全部工况下自动驾驶
2024/7/18
智能网联汽车基础知识
第30页
1.2 智能网联汽车体系结构—层次结构
2024智能网联汽车概论课件模块一智能网联汽车概述
一智能网联汽车概述contents •智能网联汽车基本概念•智能网联汽车关键技术•智能网联汽车产业链分析•国内外典型案例分析•未来发展趋势预测与挑战分析•总结回顾与拓展思考目录定义与发展历程定义智能网联汽车是一种集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,它运用大数据、云计算、人工智能等新技术,实现车与车、路、人、云等智能信息交换共享,具备复杂环境感知、智能决策、协同控制等功能。
发展历程智能网联汽车经历了从单一功能到多功能集成,从低级自动化到高级自动化的发展历程。
随着技术的不断进步,未来智能网联汽车将实现更高程度的自动化和智能化。
技术体系架构及特点技术体系架构智能网联汽车技术体系架构包括感知层、决策层、执行层和控制层四个层次。
感知层负责采集车辆周围环境信息,决策层根据感知信息进行决策规划,执行层控制车辆各部件执行决策指令,控制层对整个系统进行监控和调度。
特点智能网联汽车具有环境感知、智能决策、协同控制等特点。
它能够实时感知周围环境信息,并根据不同场景做出智能决策和协同控制,提高驾驶安全性和舒适性。
行业应用现状及前景行业应用现状目前,智能网联汽车已经在多个领域得到应用,如自动驾驶出租车、物流运输车、公共交通等。
同时,各国政府和企业也在积极推动智能网联汽车的发展,加大技术研发和基础设施建设投入。
前景随着技术的不断进步和应用场景的不断拓展,智能网联汽车将迎来更加广阔的发展前景。
未来,智能网联汽车将实现更高程度的自动化和智能化,提高交通效率和安全性,改变人们的出行方式和生活方式。
同时,智能网联汽车也将成为智能交通系统的重要组成部分,推动交通行业的转型升级和可持续发展。
通过发射激光束并接收反射回来的光信号,精确测量距离和角度,实现环境感知和障碍物检测。
激光雷达利用毫米波段的电磁波进行探测,具有穿透雾、霾、尘等恶劣天气的能力,适用于中远距离的目标检测。
毫米波雷达通过捕捉图像信息,实现车道线识别、交通信号识别、行人检测等功能。
智能网联汽车的定义及分级
展。
加强产业链上下游企业的合作,形成完整的智能网联汽车产业 链,提高产业整体竞争力。
政府应出台相关政策支持智能网联汽车的发展,包括资金支持 、税收优惠、基础设施建设等。
THANK YOU
智能网联汽车的主要特点
自动驾驶
智能网联汽车具备不同程度的自动驾驶功能,包括自适应巡航控制、 自动泊车、车道偏离预警、碰撞预警等。
互联互通
智能网联汽车能够通过车载设备与互联网、其他车辆以及交通基础设 施进行信息交换和共享,提高行车安全和道路通行效率。
智能化决策
智能网联汽车具备强大的计算和控制能力,能够根据实时感知的环境 信息和车辆状态进行智能化决策,优化行驶方案。
总结词
驶辅助功能,如车道偏离预警、自动泊车等,但仍 需要驾驶员对车辆进行监控和操作。
L3级智能网联汽车
总结词
具备部分自动驾驶能力
详细描述
L3级智能网联汽车在一定条件下能够自主驾驶,如高速公路自动驾驶、交通拥堵辅助等,但驾驶员仍需随时准备 接管车辆控制。
智能网联汽车的定义及分级
汇报人: 202X-01-06
• 智能网联汽车的定义 • 智能网联汽车的分级 • 智能网联汽车的关键技术 • 智能网联汽车的发展趋势 • 智能网联汽车面临的挑战与解决方
案
01
智能网联汽车的定义
智能网联汽车的基本概念
• 智能网联汽车是指通过先进的传感器、控制器、执行器等装置 ,结合现代通信与网络技术,实现车与车、车与路、车与云之 间的智能信息交换、共享,具备复杂的环境感知、智能决策、 协同控制和执行等功能,可实现安全、舒适、节能、高效行驶 ,并最终可替代人来操作的新一代汽车。
汽车构造 第十八章 智能网联汽车技术简介
环境感知层 主要功能
通过车载环境感知 技术(如视觉传感器 、雷达、高精度定 位与导航等)、车内 网技术、4G/5G及 V2X无线通信技术等
实现对车内与车外 (如道路、车辆和 行人等)静、动态 信息的提取和收集, 并向智能决策层输 送信息
作为智能网联 车各类功能实 现的前提
智能决策层 主要功能
制
我国智能网联汽车网联化分级
等级定义
控 典型信息 传输需求
制
基于车-路,车-后台通信,实
地图、交通流
现导航等辅助信息的获取,以 人 量、交通标志、 传输实时性、
及车辆行驶与驾驶员操作等数
油耗、里程等 可靠性要求
据上传
信息
较低
基于车-车,车-路,车-人,车
-后台通信,实时获取车辆周边 人 周边车辆/行人 传输实时性、
1 驾驶辅助(DA) 通过环境信息对方向和加 人与系 人
人
减速中的一项操作提供支 统
援,其他驾驶操作都由人
操作
2 部分自动驾驶 通过环境信息对方向和加 人与系 人
人
(PA)
减速中的多项操作提供支 统
援,其他驾驶操作都由人
操作
系统(自动驾驶系统)监控驾驶环境
3 有条件自动驾驶 由无人驾驶系统完成所有 系统
交通环境信息,与车载传感器 与 /非机动车位置, 可靠性要求
的感知信息融合,作为车辆自 系 信号灯相位, 较高
动驾驶决策与控制系统的输入 统 道路预警等信
息
基于车-车,车-路,车-人,车
-后台通信,实时并可靠获取车 人 车-车,车-路 传输实时性、
辆周边交通环境信息及车辆决 与 间的协同控制 可靠性要求
(CA)
驾驶操作,根据系统请求,
智能网联汽车概论 第三章 智能网联汽车基础平台
激光雷达
LiDAR (激光雷达)以线数及距离两大因素为标准,价格从几百美元到几万美元不等。单线激 光雷达的应用在国内已相对较广,像扫地机器人使用的便是单线激光雷达。单线激光雷达可以获取 二维数据,但无法识别目标的高度信息,而多线激光雷达则可以识别2.5维甚至是三维数据,在精度 上会比单线雷达高很多。目前,在国际市场上推出的主要有4线、8线、16线、32线、64线和128线。 随着线数的提升,其识别的数据点也随之增加,所要处理的数据量也非常巨大。例如,Velodyne的 HDL-3 HDL-64E 通过64束的激光束进行垂直范围26.8°、水平360°的扫描,每秒能产生的数据点高达130万 VelodyneHDL-64E激光雷达如图3-2所示,主要由上下两部分组成。
车载摄像头
从应用方案出发,目前摄像头可划分为单目前视、单目后视、立体(双目)前视和环视摄像头4种。 单目前视摄像头一般安装在前挡风玻璃上部,用于探测车辆前方环境,识别道路、车辆行人等。先 通过图像匹配进行目标识别(各种车型、行人、物体等),再通过测量目标物体在图像中的大小估算目标 距离。 单目后视摄像头一般安装在车尾,用于探测车辆后方环境,技术难点在于如何适应各种恶劣环境。 立体(双目)前视摄像头通过对两幅图像视差的计算,直接对前方景物(图像所拍摄到的范围)进行 距离测量,而无须判断前方出现的是什么类型的障碍物。依靠两个平行布置的摄像头产生的“视差”找 到同一个物体所有的点,依赖精确的三角测距,就能够算出摄像头与前方障碍物的距离,实现更高的识 别精度和更远的探测范围。 环视摄像头一般至少包括4个摄像头,分别安装在车辆前、后、左、右侧,实现360°环境特性。
3.2 硬件平台
激光雷达
自动驾驶汽车利用计算机代替人类实现驾驶功能,这就需要在有人驾驶汽车的基础 上增加感知定位系统计算平台、控制执行系统等一系列能够实现车辆环境感知、决策与 驾驶动作执行的系统。在车辆内部,为了辅助各系统的正常运行,通信总线、控制单元 以及整车的电子电气架构都要进行相应的改进甚至重新设计。这些硬件系统共同构成了 自动驾驶汽车的硬件平台,如图3-雷达又称光学雷达(Light Detection And Ranging,LiDAR),是一种先进的光学遥感技术, 它通过首先向目标发射一束激光,然后根据接收-反射的时间间隔确定目标物体的实际距离。同时 结合这束激光的发射角度,利用基本的三角函数原理推导出目标的位置信息。由于激光具有能量密 度高、方向性好的特点,激光雷达的探测距离往往能达到100m以上。与传统雷达使用不可见的无线 电波不同,激光雷达的探测介质是激光射线,使用的波长集中在600~1000nm,远低于传统雷达的波 长。又因为雷达具有波长越短探测精度越高的特点,故激光雷达可以用于测量物体距离和表面形状。 激光雷达的精度可达厘米级。激光雷达在自动驾驶运用中拥有两个核心作用。
智能网联汽车基础知识
第1章 智能网联汽车基础知识 第2章 智能网联汽车环境感知系统 第3章 智能网联汽车无线通信系统 第4章 智能网联汽车网络系统 第5章 智能网联汽车导航定位系统 第6章 智能网联汽车先进驾驶辅助系统 练习与实训
第1页
第1章 智能网联汽车基础知识
1.1 智能网联汽车的定义与分级 1.2 智能网联汽车的体系结构 1.3 智能网联汽车的关键技术和发展趋势 1.4 我国智能网联汽车的发展规划
练习与实训
第 55 页
练习与实训
第 56 页
练习与实训
第 57 页
练习与实训
第 58 页
练习与实训
第 59 页
谢 谢!
第 60 页
2021/4/13
1.1.1 智能网联汽车的定义——智能汽车
➢奔驰2019款E 260 L运动型4MATIC轿车,配置了盲区监测系 统、车道偏离预警系统、车道保持辅助系统、驾驶员疲劳预警 系统、自适应巡航控制系统、自动泊车辅助系统等,属于智能 化程度较高的智能汽车
2021/4/13
1.1.1 智能网联汽车的定义——智能汽车
自动驾驶汽车至少包括自适应巡航控制系统、车道保持辅助系 统、自动制动辅助系统、自动泊车辅助系统,比较高级的车型 还应该配备交通拥堵辅助系统
2021/4/13
1.1.1 智能网联汽车的定义——自动驾驶汽车
天籁2019款2.0T XV AD1智能领航版轿车配备了并线辅助系统、 车道偏离预警系统、车道保持辅助系统、自动制动辅助系统、 驾驶员疲劳预警系统、全速自适应巡航控制系统、自动泊车辅 助系统等,属于L2级的自动驾驶汽车
2021/4/13
1.1.1 智能网联汽车的定义——网联汽车
网联汽车是指基于通信互联建立车与车之间的连接,车与网络中心和智能交通系统 等服务中心的连接,甚至是车与住宅、办公室以及一些公共基础设施的连接,也就 是可以实现车内网络与车外网络之间的信息交互,全面解决人—车—外部环境之间的 信息交流问题
智能网联汽车概论
智能网联汽车概论引言随着科技的不断进步和人们对智能化生活的追求,智能网联汽车逐渐成为现代社会的一个热门话题。
智能网联汽车是指利用先进的信息通信技术将汽车、道路和基础设施相互连接,实现信息共享、智能控制和自动化操作的车辆。
本文将对智能网联汽车的概念、特点、应用和未来发展进行探讨。
智能网联汽车的概念智能网联汽车是指通过智能化技术和互联网连接使汽车具备智能处理和自动化控制能力的车辆系统。
它将物联网、人工智能、车联网和自动驾驶等先进技术相结合,实现车辆间、车辆与基础设施之间的信息交互与共享。
智能网联汽车不仅仅是传统汽车的延伸,它还包括了自动驾驶技术,使汽车能够进行自主导航、智能决策和自动操作。
通过车辆与道路、车辆与车辆之间的通信,智能网联汽车能够提高道路安全、减少交通拥堵、改善能源利用效率,提供更便捷的出行体验。
智能网联汽车的特点智能网联汽车具有以下几个特点:1.信息共享:智能网联汽车能够将车辆信息与互联网连接,实现车辆与车辆、车辆与基础设施之间的实时信息交互。
这一特点可以提供实时的交通状况、道路条件和气候信息等,提高驾驶安全性和舒适度。
2.智能决策:通过人工智能技术的应用,智能网联汽车能够对周围环境进行感知和理解,做出智能化的决策。
它能够根据道路条件、交通状况和用户需求等因素,自主选择最优的行驶路线和速度,提高行驶效率。
3.自动驾驶:智能网联汽车是自动驾驶技术的重要应用领域。
它能够通过感知技术、决策算法和控制系统,实现车辆的自主导航和自动操作。
自动驾驶技术的发展将彻底改变人们的出行方式,提高交通安全性和效率。
智能网联汽车的应用智能网联汽车在各个领域都有广泛的应用,包括交通运输、物流配送、出行服务等。
在交通运输方面,智能网联汽车可以提供实时的交通信息,帮助驾驶员选择最佳的路线和避免拥堵。
同时,它还可以通过自动驾驶技术,提高道路安全性,减少交通事故的发生。
在物流配送方面,智能网联汽车可以通过互联网连接货车和配送中心,实现实时的货物跟踪和配送路线优化。
智能网联汽车技术应用与发展趋势
智能网联汽车技术应用与发展趋势1. 引言1.1 智能网联汽车技术的定义智能网联汽车技术是指利用各类先进的信息技术,如人工智能、大数据、云计算、物联网等,将汽车与互联网相连接,实现汽车之间、汽车与道路设施之间以及汽车与交通管理中心之间的实时信息交换和数据共享,从而提高汽车的安全性、便利性、智能化程度和可持续性。
通过智能网联汽车技术,驾驶员可以实时获取周围环境信息、道路状况以及其他车辆的动态信息,实现自动驾驶、交通拥堵缓解、交通事故预警等功能。
智能网联汽车技术不仅可以提高驾驶安全性,提升驾驶舒适性,还可以有效节约能源、减少环境污染,促进交通系统的智能化和高效化发展。
智能网联汽车技术的发展已经成为汽车行业的重要趋势,也是未来交通领域发展的重要方向,对推动我国汽车产业转型升级、改善出行体验,实现智慧城市建设具有重要意义。
1.2 智能网联汽车技术的重要性智能网联汽车技术的重要性体现在多个方面。
智能网联汽车技术可以提高驾驶安全性。
通过实时监测道路情况、车辆行驶状态以及周围环境,智能网联汽车可以实现自动驾驶、碰撞预警等功能,避免交通事故的发生。
智能网联汽车技术可以提高交通效率。
车辆之间的信息共享和协同行驶可以减少交通拥堵,减少通勤时间和能源消耗。
智能网联汽车技术可以改善交通环境。
智能车辆可以更加智能地规划路径、控制排放,减少空气污染和噪音污染。
智能网联汽车技术还可以促进汽车产业的升级和创新,推动整个社会向智能化、绿色化方向发展。
智能网联汽车技术的重要性不仅体现在驾驶安全和交通效率上,更是对未来智慧交通、智慧城市建设的重要支撑。
1.3 本文内容概要本文将重点讨论智能网联汽车技术的应用与发展趋势。
我们将回顾智能网联汽车技术的发展历程,从最初的概念提出到技术逐步成熟的过程。
我们将探讨智能网联汽车技术的关键技术,包括感知技术、通信技术和控制技术等方面。
然后,我们将介绍智能网联汽车技术在汽车行业的应用,以及其在交通领域的影响。
汽车行业智能网联汽车技术方案
汽车行业智能网联汽车技术方案第1章智能网联汽车概述 (3)1.1 智能网联汽车的定义与分类 (3)1.2 智能网联汽车发展现状及趋势 (3)1.3 智能网联汽车的关键技术 (4)第2章车载网络通信技术 (4)2.1 车载通信协议及标准 (4)2.1.1 车载通信协议概述 (4)2.1.2 车载通信协议分类 (4)2.1.3 车载通信标准 (5)2.2 车载网络架构及关键技术 (5)2.2.1 车载网络架构 (5)2.2.2 车载网络关键技术 (5)2.3 车载网络安全与隐私保护 (5)2.3.1 车载网络安全 (5)2.3.2 车载网络隐私保护 (5)第3章传感器与感知技术 (6)3.1 车载传感器概述 (6)3.2 感知算法与数据处理 (6)3.3 感知技术的应用场景 (6)第4章数据融合与处理技术 (7)4.1 多传感器数据融合方法 (7)4.1.1 数据级融合 (7)4.1.2 特征级融合 (7)4.1.3 决策级融合 (7)4.2 数据预处理与特征提取 (7)4.2.1 数据预处理 (7)4.2.2 特征提取 (8)4.3 数据驱动的智能决策 (8)4.3.1 深度学习 (8)4.3.2 强化学习 (8)4.3.3 迁移学习 (8)第5章车载计算平台与人工智能 (8)5.1 车载计算平台架构与功能要求 (8)5.1.1 车载计算平台架构 (8)5.1.2 车载计算平台功能要求 (9)5.2 人工智能算法在智能网联汽车中的应用 (9)5.2.1 深度学习算法 (9)5.2.2 强化学习算法 (9)5.2.3 群体智能算法 (9)5.3 边缘计算与云计算在智能网联汽车中的协同 (9)5.3.1 边缘计算在智能网联汽车中的应用 (10)5.3.2 云计算在智能网联汽车中的应用 (10)5.3.3 边缘计算与云计算的协同 (10)第6章自主导航与路径规划 (10)6.1 自主导航系统架构 (10)6.1.1 感知层 (11)6.1.2 数据处理层 (11)6.1.3 决策层 (11)6.1.4 控制层 (11)6.2 路径规划算法及优化 (11)6.2.1 Dijkstra算法 (11)6.2.2 A算法 (11)6.2.3 RRT算法 (11)6.2.4 路径规划算法优化 (12)6.3 智能交通系统与车联网 (12)6.3.1 智能交通系统 (12)6.3.2 车联网 (12)第7章智能控制系统与车辆动力学 (12)7.1 智能控制器设计与实现 (12)7.1.1 控制系统概述 (12)7.1.2 控制器硬件设计 (13)7.1.3 控制器软件设计 (13)7.2 车辆动力学建模与仿真 (13)7.2.1 车辆动力学概述 (13)7.2.2 车辆动力学建模 (13)7.2.3 车辆动力学仿真 (13)7.3 智能控制算法在车辆动力学中的应用 (13)7.3.1 智能控制算法概述 (13)7.3.2 控制算法设计 (13)7.3.3 控制算法实现与验证 (13)7.3.4 功能分析与优化 (14)第8章信息娱乐与车联网服务 (14)8.1 信息娱乐系统架构与功能 (14)8.1.1 硬件层面 (14)8.1.2 软件层面 (14)8.1.3 服务层面 (14)8.2 车联网服务及应用场景 (14)8.2.1 应用场景 (14)8.2.2 服务优势 (15)8.3 车联网在智能网联汽车中的融合与创新 (15)第9章安全性与法规标准 (15)9.1 智能网联汽车的安全性分析 (15)9.1.1 安全风险概述 (16)9.1.2 信息安全风险分析 (16)9.1.3 控制安全风险分析 (16)9.1.4 数据隐私保护 (16)9.2 法规标准与政策支持 (16)9.2.1 国内外法规标准概述 (16)9.2.2 我国法规标准现状 (16)9.2.3 政策支持与产业发展 (16)9.3 智能网联汽车的安全认证 (16)9.3.1 安全认证体系 (16)9.3.2 安全认证关键技术研究 (16)9.3.3 安全认证实践与推广 (17)第10章未来发展趋势与展望 (17)10.1 智能网联汽车的技术挑战与发展方向 (17)10.2 智能网联汽车与新型交通模式的融合 (17)10.3 智能网联汽车对汽车产业的影响与变革 (17)第1章智能网联汽车概述1.1 智能网联汽车的定义与分类智能网联汽车,是指通过搭载先进的车载传感器、控制器、执行器等装置,实现车与车、车与路、车与人的智能信息交换和共享,具备复杂环境感知、智能决策、协同控制等功能,并能实现安全、高效、舒适行驶的新一代汽车。
智能网联汽车发展现状及未来展望
加强国际合作和交流,共同推 进智能网联汽车产业的发展。
THANK YOU.
04 智能网联汽车的未来展望
智能网联汽车的技术发展趋势
自动驾驶技术
随着传感器、计算机视觉和深度学习技术的发展,自动驾驶技术 将在未来几年取得重要突破,实现更高级别的自动化。
V2X通信技术
车辆与基础设施(V2X)通信技术的推广将大幅提高道路安全和 交通效率,是实现智能网联汽车的关键技术。
5G和物联网技术
传感器技术的发展趋势
随着技术的不断进步,传感器将更加小型化、高效化,能够提供 更高精度的感知数据。
无线通信技术
01
无线通信技术的种类
02
V2X通信技术
包括Wi-Fi、蓝牙、蜂窝通信等,能够 实现车辆与车辆、车辆与道路基础设 施之间的信息交互。
V2X通信技术是智能网联汽车的关键 技术之一,能够实现车辆与车辆、车 辆与道路基础设施之间的实时信息交 互,为车辆提供全面的交通信息。
高铁和机场接驳
在高铁和机场之间提供快速、高效的接驳 服务,提高旅客出行体验。
智能网联汽车的发展现状
技术进步
随着感知技术、决策技术、通信技术等技术 的不断发展,智能网联汽车的技术水平不断 提高。
政策支持
各国政府纷纷出台相关政策,推动智能网联汽车的 发展,如中国的新四化战略和美国的自动驾驶发展 计划等。
政策支持
中国政府出台了一系列政策,加大对智能网联 汽车产业的支持力度,推动产业
发展趋势
智能网联汽车产业将迎来更加广阔的发展前景,自动驾驶、车联网、新能源等技术的广泛应用将进一步推动产 业的发展和升级。
挑战
智能网联汽车产业的发展也面临着一些挑战,如技术瓶颈、安全问题、法律法规等方面的挑战,需要各国政府 和企业共同努力解决。
探究我国智能网联汽车发展现状
探究我国智能网联汽车发展现状1. 引言1.1 智能网联汽车概述智能网联汽车是指基于先进信息技术和通信技术,通过车辆之间、车辆与道路基础设施之间、车辆与互联网之间等信息交换与互联,实现车辆之间、车辆与环境之间的智能交互和自主决策,进而提高交通安全、行车效率和驾驶舒适度的汽车。
智能网联汽车的核心技术包括车联网技术、自动驾驶技术、人工智能技术等,通过这些技术的融合与应用,实现了车辆之间的智能互联和自主驾驶。
智能网联汽车的出现,不仅提高了交通系统的整体效率,减少了交通事故发生概率,还能改善用户出行体验,降低交通能耗,改善环境质量,推动城市智能化和可持续发展。
随着技术的不断进步和应用,智能网联汽车已经成为全球汽车产业的发展趋势和方向,受到各国政府、企业和消费者的广泛关注和支持。
我国作为世界上最大的汽车市场之一,也在积极推动智能网联汽车的发展。
随着政策支持的不断加大、技术水平的持续提升和市场需求的逐渐增长,我国智能网联汽车产业正迎来更加广阔的发展空间和机遇。
1.2 我国智能网联汽车发展态势近年来,我国智能网联汽车的发展态势呈现出快速增长的趋势。
政府不断加大对智能网联汽车产业的支持力度,各大车企也纷纷投入大量资金和人力进行研发。
智能网联汽车技术得到了不断突破和应用,智能驾驶、车联网、智能交通等领域取得了显著进展。
我国智能网联汽车的市场规模也不断扩大,消费者对智能化、智能驾驶的需求逐渐增加。
我国智能网联汽车产业链也在不断完善和壮大,涵盖了智能传感器、人工智能、半导体芯片等多个领域。
一大批新兴企业和初创公司涌现,为智能网联汽车的发展提供了更多的创新动力。
我国智能网联汽车发展态势良好,具有巨大的发展潜力和市场空间。
随着政策支持的不断加大和技术的不断成熟,智能网联汽车将会逐步走向普及化,成为未来汽车产业的主流发展方向。
2. 正文2.1 智能网联汽车技术应用智能网联汽车技术应用方面,目前已经在智能驾驶、车联网、智能交通管理等领域取得了一系列进展。
第一章 智能网联汽车及相关技术概念
第一章 智能网联汽车及相关技术概念:智能网联汽车关键技术
12.交通云计算关键技术 交通云计算平台应该是一个整合的、先进的、安全的、自动化的、易扩展的、服务于交通行业的 开放性平台。智慧交通云平台示意图如图1-19所示。
图1-19 智慧交通云平台示意图
第一章 智能网联汽车及相关技术概念:中国智能网联汽车的发展目标
第一章 智能网联汽车及相关技术概念:智能网联汽车关键技术
9.高精度地图与定位技术 高精度地图技术将大量的行车辅助信息存储为结构化数据,这些信息可以分为两类。第一类是道 路数据,第二类是车道周边的固定对象信息。高精度地图具有高鲜度、高精度和高丰富度的特点。 高丰富度与机器的更多逻辑规则相结合,进一步提升了自动驾驶的安全性。
第一章 智能网联汽车及相关技术概念:智能网联汽车发展现状
地区 吉林 辽宁 北京 安徽
智能网联汽车示范区 国家智能网联汽车应用(北方)示范区
北汽盘锦无人驾驶汽车运营项目 国家智能汽车与智慧交通示范区 V2X技术开发与示范场地建设项目
江苏
国家智能交通综合测试基地(无锡)、常熟中国智能车综合技术研发与测试中心、南京市江宁区智能网联开放测试区
中国在售汽车ADAS配置搭载率(含停产车型)
60.00%
表1-3为汽车之家2019年统计的在售
55.30%
车辆ADAS配置搭载率,近三成以上
ห้องสมุดไป่ตู้
51.70%
市面车辆在不同程度上搭载了ADAS
50.00%
44.60%
的相关功能,搭载率已经具备规模
化应用程度。
40.00%
39.50%
37.60%
37.20%
1-2 车联网技术示意图 ”
智能网联汽车的定义
智能网联汽车的定义:智能网联汽车是一种跨技术、跨产业领域的新兴汽车体系,不同角度、不同背景对它的理解是有差异的,各国对于智能网联汽车的定义不同,叫法也不尽相同,但终极目标是一样的,即可上路安全行驶的无人驾驶汽车。
智能网联汽车更侧重于解决安全、节能、环保等制约产业发展的核心问题,其本身具备自主的环境感知能力,其聚焦点是在车上,发展重点是提高汽车安全性。
从狭义讲,智能网联汽车是搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现V2X智能信息交换共享,具备复杂的环境感知、智能决策、协同控制和执行等功能,可实现安全、舒适、节能、高效行驶,并最终可替代人来操作的新一代汽车。
美国SAE智能汽车的评价等级:美国汽车工业学会将自动驾驶从0(fully manual)到5(完全自动驾驶)定义了6个等级。
这些等级的定义也被美国交通部采纳和认可。
L0级(无自动驾驶No Driving Automation)今天路上的大部分汽车都是0等级:手动控制。
尽管车上有相关的系统帮助驾驶者更好地驾驶但是还是人来发布“动态的指令”。
一个例子就是紧急制动系统-因为从技术上讲,它并不驾驶汽车,不能被当做自动化的驾驶。
L1级(驾驶辅助Driver Assistance)L1等级为自动驾驶的最低的一个等级,它最显著的特点是对于辅助驾驶有一个简单地自动系统,例如:转向或者加速(巡航控制)。
自适应巡航系统可以让车辆与前车保持一个安全的距离,因为它由驾驶员来监控像是转向,刹车这些驾驶状况,所以它是可以作为是L1里的一个功能。
L2级(部分自动驾驶Partial Driving Automation)这意味着更先进的驾驶辅助系统或者ADAS,汽车可以控制转向和加减速。
L2等级的自动化驾驶达不到自动驾驶,因为还是人坐在驾驶员的位置全时控制汽车。
特斯拉的自动导航(Tesla Autopilot)和凯迪拉克的超级巡航系统都是L2。
智能网联汽车安全智能网联汽车安全概述
智能网联汽车安全概述xx年xx月xx日CATALOGUE目录•智能网联汽车简介•智能网联汽车安全需求•智能网联汽车安全技术•智能网联汽车安全挑战•智能网联汽车安全策略建议01智能网联汽车简介指通过先进的传感器、控制器等装置,实现车辆与车外环境、设施及其他车辆等的信息共享与实时交流,具备复杂决策与协同控制能力,并能够实现安全、舒适、高效行驶的汽车。
智能网联汽车定义传统汽车主要依赖驾驶员的感官和经验进行驾驶,而智能网联汽车可以通过车载系统进行自主决策和协同控制。
与传统汽车的区别智能网联汽车的定义1智能网联汽车的发展历程2320世纪80年代至2000年,研究智能车辆的体系结构、传感器技术、导航系统等基础技术;第一阶段2000年至2010年,研究车辆的辅助驾驶、智能交通系统、车联网等技术;第二阶段2010年至今,研究自动驾驶、车联网、智能交通系统等技术,并逐步实现商业化应用。
第三阶段智能网联汽车的应用场景具备完全自动驾驶能力的出租车,可提供无人驾驶的出行服务。
自动驾驶出租车智能交通系统车联网系统高级驾驶辅助系统通过智能网联技术优化交通管理,提高道路使用效率,减少交通拥堵和事故。
通过车辆与车辆、车辆与路侧设备的通信,实现车辆之间的信息共享和协同行驶,提高行车安全和舒适度。
通过智能网联技术为驾驶员提供辅助驾驶支持,包括自适应巡航、自动泊车等功能。
02智能网联汽车安全需求自动驾驶系统失灵智能网联汽车依赖于复杂的自动驾驶系统来感知和处理路况。
然而,如果系统出现故障或受到攻击,可能导致车辆无法正确判断路况,甚至无法控制车辆。
智能网联汽车的安全风险数据泄露和隐私侵犯智能网联汽车收集和处理大量数据,包括路况、车辆运行状态、驾驶员行为等。
如果数据保护措施不到位,可能导致数据泄露和隐私侵犯。
网络攻击智能网联汽车需要与外部网络进行数据交换,以便接收实时交通信息和更新地图等。
如果网络安全措施不足,可能导致车辆受到网络攻击,进而影响车辆行驶安全。
智能网联汽车技术应用
智能网联汽车可将实时交通信息上传至云平台,通过大数据分析和 预测,为驾驶员提供拥堵预警,并协助交通管理部门进行交通疏导 。
协同式碰撞避免
通过车与车、车与基础设施的实时通信,智能网联汽车可共同感知和 分析道路安全状况,实现协同式碰撞避免,提高行车安全。
智能网联汽车在自动驾驶出租车领域的应用
智能网联汽车技术应用
目 录
• 智能网联汽车概述 • 智能网联汽车关键技术应用 • 智能网联汽车应用场景与案例分析 • 智能网联汽车技术发展挑战与前景展望
01
智能网联汽车概述
智能网联汽车的定义
先进性定义
智能网联汽车是一种利用先进的车载传感器、控制器、执行器等装置,融合现代通信与网络技术,实现车与车、 路、人、云端等智能信息交换、共享,具备复杂环境感知、智能决策、协同控制等功能,可实现安全、高效、舒 适、节能行驶,并最终可实现替代人来操作的新一代汽车。
自动驾驶技术
智能网联汽车结合高精度地图、传感器和车载计算平台,实现高度自动化的驾驶,为出租 车行业提供便捷、安全的运输服务。
乘客需求响应
通过智能网联技术,自动驾驶出租车可实时感知乘客需求,实现快速响应和智能派单,提 高乘客出行体验。
车队协同管理
智能网联技术可实现自动驾驶出租车队的高效协同管理,包括车辆调度、能源管理、维修 保养等方面,降低运营成本。
产业链下游
主要包括汽车销售(2B/2C)、后市 场服务(维修、保养、保险等)和运 营服务(共享出行、物流运输等)三 个环节。这三个环节直接面向消费者 和市场,是智能网联汽车产业链的最 终实现部分。
02
智能网联汽车关键技术应用
自动驾驶技术
环境感知技术
通过激光雷达、毫米波雷达、摄 像头等传感器,实现对车辆周围 环境的高精度感知,为自动驾驶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能网联汽车—车联网与智能汽车杂交产物
智能网联汽车是融合了自主式与网联式两类的智能汽车,也体现了未来汽车技术发展的趋势。
智能网联汽车搭载着先进的传感器、控制器、执行器等装置,融合现代4G\5G网络通讯技术,实现了车与人、车、路、云的智能信息交换与共享,具备了复杂的环境感知、智能决策、协同控制等,实现更安全、高效、舒适、节能的行驶,最终,我们不用再“考驾照”了。
智能网联汽车是车联网与智能汽车的交集,也是智能处理技术与高速网络通信技术的深度融合,国内初期的智能网联大多是基于V2X协同通信的智能交通应用,在美国,他们管它叫网联汽车,欧洲称之为协作式智能交通,日本叫网联驾驶,虽说法不一,但大体一致。
网联汽车基本具备安装一个互联接入的TBOX,或者叫超级TBOX,或者智能网关的“信息终端”,允许汽车与车内和车外的其他设备共享互联,接入网络,从而共享数据信息。
我们在保时捷、奥迪、奔驰品牌等高端车型中都有见过不少的智能网关,他们安装于副驾驶手套箱内嵌、中控下方等不同的位置,通常情况下,他们配备了一些加解密等特殊技术,以接入互联网,也为驾驶人提供来自互联网的协作数据。
早期的凯迪拉克安吉星系统,就是这类应用初始阶段,美国汽车事故发生率不低,这套系统的目的就是实现安全驾驶及汽车发生事故的时候,为车主提供紧急救援、车辆健康报告、转弯打灯提示、数据连接功能等在现在,现阶段经过进化,都更人性化了。
但这些网联功能基本局限于一台车,或者一个品牌的同配置下的车型,现在汽车普遍装备了
实时在线导航系统,也可以通过各类连接方式连接到高带宽传输的5G智能手机,无论是驾乘、还是娱乐、社交、电商、基于位置的服务等,驾驶员都可以通过“巨屏”看到,实现管理和操作,提供的服务还包含了音乐、音频、手机应用、导航、位置援助、语音交互、停车、引擎控制、远程诊断、OTA升级等等。
那下一段的智能网联汽车,还会做到进一步的“智能化”,通过各种车载终端、智能手机、路侧设备交换至行人位置、运输出行、车辆数据、交通运行数据等,这些信息输入到自动驾驶决策与控制系统,改变现状只针对“车”的开发,配套周边环境的传感,实现真正意义上的自动驾驶。
随着技术的发展,人工智能、物联网、大数据、5G通信技术的快速落地,汽车与电子、通信、互联网的深度融合,在未来汽车产业中,“智能驾驶汽车”已经成为新一轮竞争的制高点,企业、资本、市场等纷纷入坑。
在智能网联技术体系中,通过联网终端完成数据交换是完成完全驾驶决策和控制的基石。
这些数据不能由单个人、单辆车或者单个系统来获得,需要通过高速无线通信技术(5G\6G)进行协同共享,那么国内华为领先的5G通信技术,同样也将带领着全球汽车产业,打造新的汽车产业格局。
从数据类型来划分,分为交通运行数据和运输出行两个大类。
交通运行数据是反映道路交通管理和运行情况相关数据,包括了交通标志、交通状况、道路性能、交通控制、道路基础设施、停车场数据和气象数据等,主要来源于人、车载传感器、路侧传感设备、交通与公路等管理部门及云平台。
运输出行数据是人、货、车等运输数据,包含了行人、乘用车、公交车、商用车的出行数据,主要来源于安装了网联TBOX终端的汽车及商业运输管理中心数据以
及乘客信息和车辆工况。
从数据来源维度我们把这些数据源分为三类。
第一类是行人和车辆。
行人和车辆是感知数据的主要提供者,也是智能网联驾驶应用的使用者,他们提供的数据包括行人位置、运输出行、车辆数据和部分交通运行数据。
第二类来源于路侧设备,这些设备一般都部署在道路周边。
我们在本田的汽车测试安全中心,路边就部署了不少的测试设备,对于特别的交通状况,路侧设备也可以是移动设备或者手持设备。
路侧设备包括路侧呈现设备与路侧传感设备。
呈现设备主要是发布交通运行数据,用于交通管理,包括信号灯、交通标识、显示、警告等,路侧传感设备主要是采集交通运输数据,部署传感器并实时检测和传送交通运行数据,部署的这些道路就是大家说的“智能公路”,这些道路将弥补车载传感器感知能力的不足。
第三类数据源是交通运输管理云平台。
云平台收集、储存、分析行人的位置、车辆数据、交通运行、运输出行等信息数据,发布交通标志、交通控制等交通智慧数据,发布运输出行数据。
常用的交通运输管理平台包括交通管理、交通信息、公路管理、环保管理、气象服务、应急管理、停车管理、公交运输管理和商业运输管理等。
恰恰,速锐得与华为的智能驾驶项目在西安落地,无论是从数据采集、分析、控制到智能驾驶应用,都有做了深入的研究。
我们采用V81的终端,在LINUX系统下,实现各类数据采集及数据应用。
在智能网联数据共享的传输,有两种基本的方式:一是V2X协同通信,二是高速蜂窝(5G\6G)移动通信。
V2X协同通信用于交通运输管理平台与车载终端、行人智能手机和路侧终端进行数据传输和交换,车辆之间传输或者广播如车辆位置、车辆行驶工况、车辆操作和车辆碰撞等时间敏感性数据,高速蜂窝网络传输是V2X协同通信的重要补充,交管部门云平台直接通过5G或者未来的6G、7G与车辆车载终端TBOX类或行人智能“手机”相连接。
传输和交换非时间敏感性数据,如交通运行数据、运输出行数据等。
目前,我国强化5G通信技术,车联网项目应用上大量支持LTE-V2X、5G-V2X等无线通信关键技术的发展,就目前来看,各类车载终端通过推动网络升级(2G升4G),满足车联网大规模应用,典型的场景有共享出行、安全驾驶、DMS、车辆管理、碰撞预警等等。
后续,大平台将各项数据输入到自动驾驶决策和控制体系当中,实现网络自动驾驶,完成智能网联的最终目标。
未来,人工智能技术将为智能网联技术带来深刻影响,自动驾驶通过完成路径规划、行为决策、运动规划和操作指令,将其交由电子控制单元“超级ECU”或者“超级大脑”进行驾驶控制和执行,这也许是智能网联汽车带给智能交通一个不用死那么多细胞,一切按部就班执行,躺赢未来的最终愿景。