2020-2021中考数学培优 易错 难题(含解析)之初中数学 旋转及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学培优 易错 难题(含解析)之初中数学 旋转及答案
一、旋转
1.如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB
=42,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′. (1)求抛物线C 的函数表达式;
(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.
【答案】(1)2
142
y x =-+;(2)2<m <23)m =6或m 173. 【解析】
试题分析:(1)由题意抛物线的顶点C (0,4),A (2,0),设抛物线的解析式为
24y ax =+,把A (220)代入可得a =1
2
-
,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为
()2142y x m =--,由()22142
14
2y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题
意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()
222(4280
20280m m m ⎧-->⎪⎪
>⎨⎪->⎪⎩

解不等式组即可解决问题;
(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得
M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.
试题解析:(1)由题意抛物线的顶点C (0,4),A (22,0),设抛物线的解析式为
24y ax
=+,把A (22,0)代入可得a =1
2
-
,∴抛物线C 的函数表达式为21
42
y x =-+.
(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为
()2142y x m =--,由2142
1(4
2x y x y ⎧=-+⎪⎪⎨⎪=-⎪⎩,消去y 得到222280x mx m -+-= ,由题意,
抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()
222(4280
20280m m m ⎧-->⎪⎪
>⎨⎪->⎪⎩
,解得
2<m <22,∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.
理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .
由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-
+上,∴()2
12242
m m -=-++,解得m 173或173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.
情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-
+中,()2
12242
m m -=--+,解得m =6或0(舍弃),∴m =6
时,四边形PMP ′N 是正方形.
综上所述:m =6或m =17﹣3时,四边形PMP ′N 是正方形.
2.如图1,在Rt △ABC 中,∠ACB =90°,AC =BC .点D 、E 分别在AC 、BC 边上,DC =EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .
(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .
(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;
(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度. 【答案】(1)1
,22
PM BE BE MN ==;(2)成立,理由见解析;(3)MN 17﹣117 【解析】 【分析】
(1)如图1中,只要证明PMN V 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;
(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅V V ,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、
BD 、AB 的中点,推出//PM BE ,12PM BE =
,//PN AD ,1
2
PN AD =,推出PM PN =,90MPN ∠=︒,可得2
2222
BE PM MN MN ==⨯
=; (3)有两种情形分别求解即可.
【详解】 (1)如图1中,
∵AM =ME ,AP =PB ,
∴PM ∥BE ,1
2
PM BE =
, ∵BN =DN ,AP =PB ,
∴PN ∥AD ,1
2
PN AD =
, ∵AC =BC ,CD =CE , ∴AD =BE , ∴PM =PN , ∵∠ACB =90°, ∴AC ⊥BC ,
∴∵PM ∥BC ,PN ∥AC , ∴PM ⊥PN ,
∴△PMN 的等腰直角三角形, ∴2MN PM =,
∴1
22
MN BE =⋅, ∴2BE MN =

故答案为1
2
PM BE =
,2BE MN =. (2)如图2中,结论仍然成立.
理由:连接AD 、延长BE 交AD 于点H . ∵△ABC 和△CDE 是等腰直角三角形, ∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°,
∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE , ∴∠ACD =∠ECB , ∴△ECB ≌△DCA , ∴BE =AD ,∠DAC =∠EBC , ∵∠AHB =180°﹣(∠HAB +∠ABH ) =180°﹣(45°+∠HAC +∠ABH ) =∠180°﹣(45°+∠HBC +∠ABH ) =180°﹣90° =90°, ∴BH ⊥AD ,
∵M 、N 、P 分别为AE 、BD 、AB 的中点,
∴PM ∥BE ,12PM BE =,PN ∥AD ,1
2
PN AD =, ∴PM =PN ,∠MPN =90°,
∴2
2222
BE PM MN MN ==⨯
=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,
当D 、E 、B 共线时,在Rt △BCG 中,()
2
222
6234BG BC CG =-=-
=
∴342BE BG GE =-= ∴2
1712
MN BE =
=. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===
当D 、E 、B 共线时,在Rt △BCG 中,()
2
222
6234BG BC CG =-=-
=,
∴342BE BG GE =+=+, ∴2
1712
MN BE =
=+. 综上所述,MN =17﹣1或17+1. 【点睛】
本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
3.如图所示,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC 的延长线交BD 于点P .
(1)把△ABC 绕点A 旋转到图1,BD ,CE 的关系是 (选填“相等”或“不相等”);简要说明理由;
(2)若AB=3,AD=5,把△ABC 绕点A 旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;
(3)在(2)的条件下写出旋转过程中线段PD 的最小值为 ,最大值为 .
【答案】(1)BD ,CE 的关系是相等;(25341720
3417
3)1,7 【解析】
分析:(1)依据△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA ,∠BAD=∠CAE ,DA=EA ,进而得到△ABD ≌△ACE ,可得出BD=CE ; (2)分两种情况:依据∠PDA=∠AEC ,∠PCD=∠ACE ,可得△PCD ∽△ACE ,即可得到
PD AE =
CD
CE
,进而得到PD=
5
34
17
;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得
△BAD∽△BPE,即可得到PB BE
AB BD
=,进而得出PB=
6
34
34
,PD=BD+PB=
20
34
17

(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.
详解:(1)BD,CE的关系是相等.
理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,
∴BA=CA,∠BAD=∠CAE,DA=EA,
∴△ABD≌△ACE,
∴BD=CE;
故答案为相等.
(2)作出旋转后的图形,若点C在AD上,如图2所示:
∵∠EAC=90°,
∴CE=2234
AC AE
+=,
∵∠PDA=∠AEC,∠PCD=∠ACE,
∴△PCD∽△ACE,
∴PD CD
AE CE
=,
∴PD=534
17

若点B在AE上,如图2所示:
∵∠BAD=90°,
∴Rt △ABD 中,BD=2234AD AB +=,BE=AE ﹣AB=2,
∵∠ABD=∠PBE ,∠BAD=∠BPE=90°,
∴△BAD ∽△BPE , ∴
PB BE
AB BD
=,即334PB =, 解得PB=
6
3434
, ∴PD=BD+PB=34+63434=20
3417
, 故答案为
53417或203417
; (3)如图3所示,以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大. 如图3所示,分两种情况讨论:
在Rt △PED 中,PD=DE•sin ∠PED ,因此锐角∠PED 的大小直接决定了PD 的大小. ①当小三角形旋转到图中△ACB 的位置时, 在Rt △ACE 中,2253-, 在Rt △DAE 中,225552+= ∵四边形ACPB 是正方形, ∴PC=AB=3, ∴PE=3+4=7,
在Rt △PDE 中,2250491DE PE -=-=, 即旋转过程中线段PD 的最小值为1;
②当小三角形旋转到图中△AB'C'时,可得DP'为最大值, 此时,DP'=4+3=7,
即旋转过程中线段PD 的最大值为7. 故答案为1,7.
点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.
4.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.
(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;
(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.
(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1
【解析】
分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.
由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;
(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.
(3)分两种情况讨论即可.
详解:(1)D’A=1.理由如下:
过D′作D′N⊥CD于N.
∵∠NCD′=30°,CD′=CD=2,∴ND′= 1
2
CD′=1.
由已知,D’A∥CE,且D’A=CE=1,
∴四边形ACED’为平行四边形.
又∵∠DCE=90°,
∴四边形ACED’为矩形;
(2)如图,取BC中点即为点G,连接GD’.
∵∠DCE=∠D’CE’=90°,
∴∠DCE’=∠D’CG.
又∵D’C= DC,CG=CE’,
∴△DCE’≌△D’CG,
∴GD’=E’D.
(3)分两种情况讨论:①如图1.
∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角
=∠ECE′=180°+30°=210°.
②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.
点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.
5.在Rt△ACB和△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.
特殊发现:
如图1,若点E、F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).
问题探究:
把图1中的△AEF绕点A顺时针旋转.
(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)记AC
BC
=k,当k为何值时,△CPE总是等边三角形?(请直接写出后的值,不必说)
【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为3
3
时,CPE V 总是等边三角形 【解析】 【分析】
(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有
EM FP
MC PB
=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.
(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC
BC
=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】
解:(1)PC=PE 成立,理由如下:
如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴
EM FP
MC PB
=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;
(2)PC=PE 成立,理由如下:
如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中
,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF , ∴△DAF ≌△EAF (AAS ), ∴AD=AE ,在△DAP 和△EAP 中, ∵AD=AE ,∠DAP=∠EAP ,AP=AP , ∴△DAP ≌△EAP (SAS ), ∴PD=PE ,
∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC , ∴FD ∥BC ∥PM , ∴
DM FP
MC PB
=, ∵点P 是BF 的中点, ∴DM=MC ,又∵PM ⊥AC , ∴PC=PD ,又∵PD=PE , ∴PC=PE ;
(3)如图4,∵△CPE 总是等边三角形, ∴∠CEP=60°, ∴∠CAB=60°, ∵∠ACB=90°,
∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵
AC k BC =,AC
BC
=tan30°, ∴k=tan30°=3
∴当k 为
3
3
时,△CPE 总是等边三角形.
【点睛】
考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.
6.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.
(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;
②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.
(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.
(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=1
2
,求BE2+DG2的值.
【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.
【解析】
分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;
②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;
(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;
(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.
详解:(1)①BG⊥DE,BG=DE;
②∵四边形ABCD和四边形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE,
∴△BCG≌△DCE,
∴BG=DE,∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG⊥DE.
(2)∵AB=a,BC=b,CE=ka,CG=kb,
∴BC CG b
==,
DC CE a
又∵∠BCG=∠DCE,
∴△BCG∽△DCE,
∴∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG⊥DE.
(3)连接BE、DG.
根据题意,得AB=3,BC=2,CE=1.5,CG=1,
∵BG⊥DE,∠BCD=∠ECG=90°
∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.
点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.
7.如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;
(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=
42,
∠CBE=30°,求DE的长.
【答案】(1)答案见解析;(226
+
【解析】
试题分析:(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到
∠EBC=∠CAF,即可得到结论;
(2)连接CD,DF,证得△BCE≌△ACF,根据全等三角形的性质得到BE=CF,CE=AF,证得△DEF是等腰直角三角形,根据等腰直角三角形的性质得到EF2DE,EF=CE+BE,进而得到DE的长.
试题解析:解:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,
∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.
在△BCE与△ACF中,∵
90
AFC BEC
EBC ACF
BC AC
∠=∠=︒


∠=∠

⎪=

,∴△ACF≌△CBE(AAS);
(2)如图2,连接CD,DF.∵BE⊥CE,∴∠BEC=∠ACB=90°,
∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.
在△BCE与△CAF中,∵
90
AFC BEC
EBC ACF
BC AC
∠=∠=︒


∠=∠

⎪=

,∴△BCE≌△CAF(AAS);
∴BE=CF.∵点D是AB的中点,∴CD=BD,∠CDB=90°,∴∠CBD=∠ACD=45°,而
∠EBC=∠CAF,∴∠EBD=∠DCF.在△BDE与△CDF中,∵
BE CF
EBD FCD
BD CF
=


∠=∠

⎪=


∴△BDE≌△CDF(SAS),∴∠EDB=∠FDC,DE=DF.∵∠BDE+∠CDE=90°,
∴∠FDC+∠CDE=90°,即∠EDF=90°,∴△EDF是等腰直角三角形,∴EF2DE,∴EF=CE+CF=CE+BE.∵CA=CB,∠ACB=90°,AB2∴BC=4.又∵∠CBE=30°,
∴CE=1
2BC=2,BE3CE3∴EF=CE+BE3∴DE
2
223
2
+
26.
点睛:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形斜边上的中线的性质,证得△BCE≌△ACF是解题的关键.
8.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:
(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.
【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.
【解析】
【分析】
(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;
(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;
(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.
【详解】
(1)∵a=b=3,且∠ACB=60°,
∴△ABC是等边三角形,
∴OC=,
∴CD=3;
(2)3;
(3)以点D为中心,将△DBC逆时针旋转60°,
则点B落在点A,点C落在点E.连接AE,CE,
∴CD=ED,∠CDE=60°,AE=CB=a,
∴△CDE为等边三角形,
∴CE=CD.
当点E、A、C不在一条直线上时,
有CD=CE<AE+AC=a+b;
当点E、A、C在一条直线上时,
CD有最大值,CD=CE=a+b;
只有当∠ACB=120°时,∠CAE=180°,
即A、C、E在一条直线上,此时AE最大
∴∠ACB=120°,
因此当∠ACB=120°时,CD有最大值是a+b.
【点睛】
本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.
9.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)
(1)如图2,当0°<α<90°,且DF′∥AB时,求α;
(2)如图3,当α=120°,求证:AF′=BE′.
【答案】(1)15°;(2)见解析.
【解析】
试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,
∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;
(2)∵α=120°,∴∠AD E′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣
120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,
∴△ADF′≌△BDE′,∴AF′=BE′.
考点:①旋转性质;②全等三角形的判定和性质.
10.如图2,边长为2的等边△ABC内接于⊙O,△ABC绕圆心O顺时针方向旋转得到△,A′C′分别与AB、AC交于E、D点,设旋转角度为.
(1)当=,△A′B′C′与△ABC出现旋转过程中的第一次完全重合;
(2)当=60°时(如图1),该图()
A.是中心对称图形但不是轴对称图形
B.是轴对称图形但不是中心对称图形
C.既是轴对称图形又是中心对称图形
D.既不是轴对称图形也不是中心对称图形
(3)如图2,当,△ADE的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.
【答案】(1)120°;(2)C;(3)△的周长不变.
【解析】
【分析】
(1)根据等边三角形的中心角为120°可直接求解;
(2)根据题意可知,当=60°时,点A、、B、、C、为⊙O的六等分点,,所有的三角形都是正三角形,由此可得到所有图形即是轴对称图形,又是中心对称图形;
(3)得到结论:周长不发生变化,连接A,根据弦相等,则它们所对的弧相等的性质可
得,即,再根据等弧所对的圆周角相等,得,由等角对等边的性质可得,同理,因此可求△的周长
==.
【详解】
解:(1)120°.
如图,可根据等边三角形的性质直接根据三角形的内角和求得∠O=120°;
(2)C
(3)△的周长不变;
理由如下:连接AA′,
∵,
∴,
∴,
∴,
∴,
同理,,
∴△的周长=.

考点:正多边形与圆,圆周角定理
11.在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.
(1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________;
(2)如图2,当∠BAC=100°,时,求∠CBD的大小;
(3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.
【答案】(1)30°;(2)30°;(3)α=120°-m°,α=60°或α=240-m°.
【解析】
试题分析:(1)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,旋转角为α,α=60°时△ACD是等边三角形,且AC=AD=AB=CD,知道∠BAD的度数,进而求得∠CBD的大小.(2)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,连结DF、BF.AF=FC=AC,
∠FAC=∠AFC=60°,∠ACD=20°,由∠DCB=20°案.依次证明△DCB≌△FCB,
△DAB≌△DAF.利用角度相等可以得到答案.
(3)结合(1)(2)的解题过程可以发现规律,求得答案.
试题解析:(1)30°;(2)30°;
(2)如图作等边△AFC,连结DF、BF.
∴AF=FC=AC,∠FAC=∠AFC=60°.
∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.
∵∠ACD=20°,∴∠DCB=20°.
∴∠DCB=∠FCB=20°.①
∵AC=CD,AC=FC,∴DC=FC.②
∵BC=BC,③
∴由①②③,得△DCB≌△FCB,
∴DB=BF,∠DBC=∠FBC.
∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.
∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.
∴∠BAD=∠FAD=20°.④
∵AB=AC,AC=AF,∴AB=AF.⑤
∵AD=AD,⑥
∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.
(3)α=120°-m°,α=60°或α=240-m°.
考点:1.全等三角形的判定和性质;2.等边三角形的判定和性质.
12.(1)观察猜想
如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是
_____;
(2)拓展探究
将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
(3)解决问题
若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.
【答案】(1)BG=AE.
(2)成立.
如图②,
连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.…………………………………………7分
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.
正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=
【解析】
解:(1)BG=AE.
(2)成立.
如图②,连接AD.
∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]
因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=.
即在正方形DEFG旋转过程中,当AE为最大值时,AF=.
13.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.
(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.
(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,
AC=kAF,上一问的结论还成立吗?并证明你的结论.
(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且
∠IHJ=∠AGB=θ=60°,k=2;
求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).
【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最
小值为1.
【解析】
试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,
FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明
△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,
△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.
试题解析:(1)特例发现,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,
∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,
∴FQ=AG,∴PE=FQ;
(2)延伸拓展,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,
∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,
△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(3)深入探究,如图2,
在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,
∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,
△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(4)应用推广,如图3,
在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,
∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,
∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,
∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为
△AEF的中位线,∴MN min=EF=×2=1.
考点:1.几何变换综合题;2.三角形全等及相似的判定性质.
14.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.
(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.
(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若
不成立,请说明理由;
(3)如图3,当点P 在BC 延长线上时,若∠BPO =15°,BP =4,请求出BQ 的长.
【答案】(1)BQ =CP ;(2)成立:PC =BQ ;(3)434-. 【解析】
试题分析:(1)结论:BQ =CP .如图1中,作PH ∥AB 交CO 于H ,可得△PCH 是等边三角形,只要证明△POH ≌△QPB 即可;
(2)成立:PC =BQ .作PH ∥AB 交CO 的延长线于H .证明方法类似(1);
(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF .设CE =CO =a ,则FC =FP =2a ,EF 3,在Rt △PCE 中,表示出PC ,根据PC +CB =4,可得方程
62)24a a +=,求出a 即可解决问题;
试题解析:解:(1)结论:BQ =CP . 理由:如图1中,作PH ∥AB 交CO 于H .
在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,
∵∠OPB =∠OPQ +∠QPB =∠OCB +∠COP ,∵∠OPQ =∠OCP =60°,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ . (2)成立:PC =BQ .理由:作PH ∥AB 交CO 的延长线于H .
在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠POH =60°+∠CPO ,∠QPO =60°+∠CPQ ,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .
(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF . ∵∠OPC =15°,∠OCB =∠OCP +∠POC ,∴∠POC =45°,∴CE =EO ,设CE =CO =a ,则FC =FP =2a ,EF 3a ,在Rt △PCE 中,PC 22PE CE +22(23)a a a ++=62)a ,∵PC +CB =4,∴(62)24a a =,解得a =4226,
∴PC =434,由(2)可知BQ =PC ,∴BQ =434.
点睛:此题考查几何变换综合题、旋转变换、等边三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
15.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.
(1)求证:是等边三角形;
(2)当时,的周长是否存在最小值?若存在,求出的最小周长;
若不存在,请说明理由.
(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.
【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.
【解析】
试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结
论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.
试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,
∴∠DCE=60°,DC=EC,
∴△CDE是等边三角形;
(2)存在,当6<t<10时,
由旋转的性质得,BE=AD,
∴C△DBE=BE+DB+DE=AB+DE=4+DE,
由(1)知,△CDE是等边三角形,
∴DE=CD,
∴C△DBE=CD+4,
由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,
此时,CD=2cm,
∴△BDE的最小周长=CD+4=2+4;
(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,
∴当点D与点B重合时,不符合题意,
②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,
∴∠BED=90°,
由(1)可知,△CDE是等边三角形,
∴∠DEB=60°,
∴∠CEB=30°,
∵∠CEB=∠CDA,
∴∠CDA=30°,
∵∠CAB=60°,
∴∠ACD=∠ADC=30°,
∴DA=CA=4,
∴OD=OA﹣DA=6﹣4=2,
∴t=2÷1=2s;
③当6<t<10s时,由∠DBE=120°>90°,
∴此时不存在;
④当t>10s时,由旋转的性质可知,∠DBE=60°,
又由(1)知∠CDE=60°,
∴∠BDE=∠CDE+∠BDC=60°+∠BDC,
而∠BDC>0°,
∴∠BDE>60°,
∴只能∠BDE=90°,
从而∠BCD=30°,
∴BD=BC=4,
∴OD=14cm,
∴t=14÷1=14s,
综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.。

相关文档
最新文档