(完整word版)整式的运算考试题型复习专题

合集下载

整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)

整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)

整式的加减专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.单项式的概念 (2)2.多项式的概念 (3)3.整式的概念 (4)4.正确列代数式 (5)5.同类项的概念 (7)6.合并同类项 (8)7.去括号法则 (9)8.整式的加减(合并同类项) (10)三、重难点题型 (11)1.整式加法的应用 (11)2.待定系数法 (12)3.整式的代入思想 (13)4.整数的多项式表示 (14)5.与字母的取值无关的问题 (15)6.整式在生活中的应用 (16)二、基础知识点1.单项式的概念单项式:数或字母的积叫作单项式注:①分母中有字母,那就是字母的商,不是单项式②“或”单独的一个数字或单独一个字母也称为单项式例:5x;100;x;10ab等系数:单项式中的数字叫做单项式的系数单项式的次数:一个单项式中所有字母的指数的和例1.判断下列各式中那些是单项式,那些不是?如果是单项式,请指出它的系数和次数。

-13b;13xy2;2π;−ab;32a2b;13a−b;−5x2y33答案:单项式有:-13b,系数为-13,次数为11 3xy2,系数为13,次数为1+2=32π,系数为2π,次数为032a2b,系数为9,次数为2+1=3−5x2y33,系数为−53,次数为2+3=5例2.−xy2z3的系数是,次数是。

答案:系数为:-1,次数为1+2+3=62.多项式的概念多项式:几个单项式的和叫作多项式注:减单项式,实际是加该单项式的负数,也称作“和”项:每个单项式叫做多项式的项,有几项,就叫做几项式常数项:不含字母的项多项式的次数:所有项中,次数最高的项的次数就是多项式的次数(最高次数是n次,就叫做n次式)x2y2按字母y作升幂排列。

例1.将多项式3xy3−4x4+15x2y2+3xy3答案:−4x4+15−4x4中y的次数为01x2y2中y的次数为253xy3中y的次数为3例2.指出下列多项式的项和次数,并说明每个多项式是几次几项式。

整式复习题及答案

整式复习题及答案

整式复习题及答案一、选择题1. 下列哪个表达式不是整式?A. 3x^2 + 2x + 1B. x^0C. √xD. 5答案:C2. 计算下列整式的结果:(2x^2 - 3x + 1) + (4x^2 - x + 5) =A. 6x^2 - 4x + 6B. 6x^2 - 2x + 6C. 6x^2 + 2x + 6D. 6x^2 - 2x + 1答案:B3. 如果多项式f(x) = ax^3 + bx^2 + cx + d,且f(1) = 5,f(-1) = -1,那么a + d的值是多少?A. 4B. 6C. -2D. 2答案:D二、填空题4. 整式\( P(x) = x^3 - 2x^2 + 3x - 4 \)的常数项是________。

答案:-45. 整式\( Q(x) = 4x^2 + 5 \)的二次项系数是________。

答案:46. 如果\( R(x) = x^2 - 6x + 9 \)可以表示为完全平方的形式,那么它可以写成\( (x - a)^2 \)的形式,其中a的值是________。

答案:3三、解答题7. 计算下列整式的乘积,并合并同类项:\( (3x - 2)^2 \)。

解:\( (3x - 2)^2 = (3x - 2)(3x - 2) \)\( = 9x^2 - 6x - 6x + 4 \)\( = 9x^2 - 12x + 4 \)8. 给定多项式\( S(x) = 2x^3 - 5x^2 + 3x - 1 \),求\( S(2) \)的值。

解:\( S(2) = 2(2)^3 - 5(2)^2 + 3(2) - 1 \)\( = 2(8) - 5(4) + 6 - 1 \)\( = 16 - 20 + 6 - 1 \)\( = 1 \)9. 已知\( T(x) = x^3 - 3x^2 + 2x + 1 \),求\( T(-1) \)的值。

解:\( T(-1) = (-1)^3 - 3(-1)^2 + 2(-1) + 1 \)\( = -1 - 3 - 2 + 1 \)\( = -5 \)四、综合题10. 证明整式\( (x + a)(x + b) = x^2 + (a + b)x + ab \)。

新初一数学(下)整式的运算知识点总结及习题

新初一数学(下)整式的运算知识点总结及习题

七年级数学第一单元《整式的运算》本章知识构造:一、整式的相关观点1、单项式2、单项式的系数及次数3、多项式4、多项式的项、次数5、整式二、整式的运算(一)整式的加减法(二)整式的乘法1、同底数的幂相乘2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完整平方公式(三)整式的除法1、单项式除以单项式2、多项式除以单项式一、整式的相关观点1、单项式:数与字母乘积,这样的代数式叫单项式。

单唯一个数或字母也是单项式。

2、单项式的系数:单项式中的数字因数。

3、单项式的次数:单项式中全部的字母的指数和。

4、多项式:几个单项式的和叫多项式。

5、多项式的项及次数:构成多项式中的单项式叫多项式的项,多项式中次数最高项的次数叫多项式的次数。

6、整式:单项式与多项式统称整式。

特别注意,分母含有字母的代数式不是整式,即单项式和多项式的分母都不可以含有字母。

.......................................二、整式的运算(一)整式的加减法基本步骤:去括号,归并同类项。

特别注意:1.整式的加减本质上就是去括号后,归并同类项,运算结果是一个多项式或是单项式.括号前方是“+”号,去括号时,括号内各项都不变号括号前方是“-”号,去括号时,括号内各项都要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.(二)整式的乘法1、同底数的幂相乘法例:同底数的幂相乘,底数不变,指数相加。

数学符号表示:a m a n a mn(此中m、n为正整数)特别注意,公式还能够逆用:a mn a m a n(m、n均为正整数)2、幂的乘方法例:幂的乘方,底数不变,指数相乘。

数学符号表示:(a m)n a mn(此中m、n为正整数)拓展:[(a m)n]p a mnp(此中m、n、P为正整数)特别注意,公式还能够逆用:a mn(a m)n(a n)m,a mnp[(a m)n]p(m、n均为正整数)3、积的乘方法例:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。

专题02整式的运算(知识点总结+例题讲解)-2021届中考数学一轮复习

专题02整式的运算(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学 专题02 整式的运算(知识点总结+例题讲解)一、整式的基本概念:1.单项式:由数或者字母的积组成的式子,叫做单项式。

(1)单独的一个数或者一个字母也是单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

【例题1】下列各式是单项式的是( ) A.n m B.3n m C.32D.3m+6n【答案】C【解析】数与字母乘积的代数式叫做单项式;A.分母中有字母,不是单项式; B 、D.是几个单项式的和,不是单项式; C.符合单项式的定义,是单项式;故选C 。

【变式练习1】下列关于单项式53-2yx 的说法中,正确的是( ) A.系数、次数都是3 B.系数是53,次数是3C.系数是53-,次数是2D.系数是53-,次数是3【答案】D【解析】根据单项式系数、次数的定义可知:单项式53-2y x 的系数是53-,次数是2+1=3,只有D 正确;故选D 。

2.多项式:几个单项式的和叫做多项式。

(1)其中每个单项式叫做多项式的项,不含字母的项叫做常数项; (2)多项式里,次数最高项的次数,叫做多项式的次数。

【例题2】关于多项式3x 2-2x 3y-4y 2+x-y+7,下列说法正确的是( ) A.它是三次六项式 B.它的最高次项是2x 3y C.它的一次项是x D.它的二次项系数是-4 【答案】D【解析】A.多项式3x 2-2x 3y-4y 2+x-y+7中的单项式-2x 3y 的次数最高,为3+1=4,故该多项式是四次六项式;B.该多项式的最高项是-2x 3y ;C.该多项式的一次项是x 和-y ; D.该多项式关于y 的二次项系数是-4,常数项是-7,故本选项正确。

【变式练习2】对于多项式π3232-22+-y x x ,下列说法正确的是( )A.是2次3项式,常数项是3πB.是3次3项式,没有常数项C.是2次3项式,没有常数项D.是3次3项式,常数项是3π 【答案】D【解析】∵多项式中的每个单项式叫做多项式的项, 多项式里次数最高项的次数,叫做这个多项式的次数;∴多项式π3232-22+-y x x 中最高次项-2x 2y 的次数为3,3π中虽有字母π,但是作已知数处理;故多项式为3次3项式,常数项是3π;故选D 。

(完整word版)整式的乘除知识点及题型复习

(完整word版)整式的乘除知识点及题型复习
10.有若干张如图2所示的正方形和长方形卡片,如果要拼一个长为 ,宽为
的长方形,则需要A类卡片________张,B类卡片_______张,C类卡片_______张.
解析:因式分解的一般步骤是:若多项式的各项有公因式,就先提公因式,然后观察剩下因式的特征,如果剩下的因式是二项式,则尝试运用平方差公式;如果剩下的因式是三项式,则尝试运用完全平方公式继续分解。
1、
2、已知 ,求 的值。
3、
三、课后作业
1、 (1) (2)
(3) (4) (运用乘法公式)
2、(5分)先化简,再求值: ,其中 .
所以:
练习:
1、已知 与 的和是单项式,则 的值是______.
经典题目:
1、已知整式 ,求 的值。
考点2、整式的乘法运算
例:计算: =.
解: = = .
练习:
8、若 ,求 、 的值。
9、已知 , ,则 的值为( )。
A. B. C. D.
10、代数式 的值( )。
A.只与 有关 B.只与 有关
C.与 都无关 D.与 都有关
考点4、利用整式运算求代数式的值
例:先化简,再求值: ,其中 .
分析:本题是一道综合计算题,主要在于乘法公式的应用。
解:
当 , 时, 。
1、 ,其中 , .
2、若 ,求 、 的值.
3、当代数式 的值为7时,求代数式 的值.
4、已知 , , ,求:代数式 的值.
5、已知 时,代数式 ,求当 时,代数式 的值。
练习:
1、已知一个多项式与单项式 的积为 求这个多项式。
2、已知一个多项式除以多项式 所得的商式是 ,余式是 ,求这个多项式。
方法总结:①乘法与除法互为逆运算.

(完整版)整式的混合运算专项练习99题(有答案有过程)

(完整版)整式的混合运算专项练习99题(有答案有过程)

(完整版)整式的混合运算专项练习99题(有答案有过程)整式的混合运算专项练习99题(有答案)(1)﹣(2x2y3)2?(xy)3(2)5x2(x+1)(x﹣1)(3)x(y﹣x)+(x+y)(x﹣y);(4)(a+2b)2+4ab3÷(﹣ab).(5)3(a2)3?(a3)2﹣(﹣a)2(a5)2(6)(5mn﹣2m+3n)+(﹣7m﹣7mn)(7)(x+2)2﹣(x+1)(x﹣1)(8)(x+2)2﹣(2x)2;(9)(2a+3b)2﹣4a (a+3b+1).(10)(﹣2xy2)2?3x2y÷(﹣x3y4)(11)(x+1)2+2(1﹣x)(12)(﹣a3)2?(﹣a2)3;(13)[(﹣a)(﹣b)2?a2b3c]2;(14);(15)(x3)2÷x2÷x+x3÷(﹣x)2?(﹣x2).(16)(﹣3x2)3?(﹣4y3)2÷(6x2y)3;(17)(﹣x﹣y)2﹣(2y﹣x)(x+2y)(18)(19)(a+b)(﹣b+a)+(a+b)2﹣2a(a+b)(20);(21)x(x+1)﹣(2x+1)(2x﹣3);(22)(2a+3b)2﹣(2a﹣3b)2.(23)2a2﹣a8÷a6;(24)(2﹣x)(2+x)+(x+4)(x﹣1)(25)(﹣2ab3)2+ab4?(﹣3ab2);(26)(2a+3)(2a﹣3)+(a﹣3)2.(27)12ab2(abc)4÷(﹣3a2b3c)÷[2(abc)3].(28)(﹣2x2)3÷(﹣x)2(29)(﹣2m﹣1)(3m﹣2)(30)2x?(﹣x2+3x)﹣3x2?(x+1).(31)3a?(﹣ab2)﹣(﹣3ab)2.(32)﹣3x?(2x2﹣x+4)(33)2x3?(﹣2xy)(﹣xy)3.(34)3(x2﹣2x+3)﹣3x (x+1)=0.(35)(3x+2)(3x+1)﹣(3x+1)2.(36)2a (a+b)﹣(a+b)2.(37)x(2x﹣7)+(3﹣2x)2.(38)(﹣3x2y)2÷(﹣3x3y2)(39)(a+2)2﹣(a+1)(a﹣1)(40)(a2)4÷a2(41).(42)a(ab2﹣4b)+4a3b÷a2;(43)(x﹣8y)(x﹣y).(44)(3x2y)3?(﹣5y);(45)[(x+y)2﹣y(2x+y)﹣4x]÷2x.(46)(2x+a)2﹣(2x﹣a)2(47)[(2x2)3﹣6x3(x3+2x2)]÷(﹣2x2)(48)(x﹣2)(x+2)﹣(x+1)(x﹣3)(49)(2a)3?b4÷12a3b2(50)(3x﹣1)(2x+3)﹣6x2.(51)(﹣6x2)2+(﹣3x2)?x﹣27x5÷(﹣9x2)(52)(﹣2y2)3+y?y5(53)(x+2)2﹣(x+1)(x﹣1)(54)(a+b)(a﹣b)+(a+b)2﹣a(2a+b)(55)(﹣a)2?(a2)2÷a3(56)(15x2y﹣10xy2)÷5xy.(57)[(2x2)3﹣6x3(x3+2x2+x)]÷(﹣x)4.(58)(x+1)2+2(1﹣x)﹣x2 (59)(12a3﹣6a2+3a)÷3a(60)5x2(x+1)(x﹣1)(61)(b﹣2a)2﹣4a(a﹣b)(62)(﹣3ab2)3(﹣4ab2)(63)(3a﹣2)(a﹣6)(64)(3a3b﹣9a2b2﹣21a2b3)÷(﹣3a2b)(65)(x+3)(x﹣2)﹣(x﹣2)2(66)(3x+4y)(3x﹣4y)(67)(x+3y)(2x﹣y)﹣y(5x+3y)(68)3(a5)2?(﹣a3)2﹣(2a3)2?(a2)5;(69)4xy+(x﹣2y)2+(x+3y)(3y﹣x)(70)﹣3x2y2?(﹣2xy)2.(71)(a﹣2b)2+(a+2b)(a﹣2b)(72).(73).(74)(﹣2xy2)3+(﹣3xy4)(﹣2x2y2)(75)(2x)3×(﹣3xy2)(76)(a+3b)(a﹣2b)﹣(2a﹣b)2.(77)(﹣2x2y)3+(3x2)2?(﹣x2)?y3.(78)(m2n)3?(﹣m4n)÷(﹣mn)2(79)(2a﹣1)2(2a+1)2(80)(x4y+6x3y2﹣x2y3)÷(3x2y)(81)(2x﹣3y+1)(2x+3y﹣1)(82)(﹣2x)(4x2﹣2x+1)(83)(6a3﹣4a2+2a)÷2a(84)(2x﹣y)(2x+y)﹣(x﹣3y)2(85)(4x2﹣2x3+6x)÷(﹣2x)﹣(2x﹣1)2.(86).(87)[x(xy2+2xy)﹣y(x2y﹣6x2y2)]÷2x2y.(88)x6÷(﹣x)2﹣(x)2?27x2.(89)(2x+y)(2x﹣3y)+4y(2x+y)(90)(m+2)(m﹣2)+(m ﹣1)(m+5)(91)[(x+y)2﹣y(2x+y)﹣8x]÷2x.(92)(2xy2﹣6xy)÷2x+y(y+2)(93)(27a3﹣15a2+6a)÷(3a)(94)x(x+2y)﹣(x+1)2+2x.(95)(x2y3)2÷(x3y4)?(﹣4xy)(96)a3?a3+(﹣2a3)2﹣(﹣a2)3.(97)(2x+1)(x+3)﹣6(x2+x﹣1);(99)[(2x+y)2﹣y(y+2x)﹣4x]÷2x.(98)[x(x2y2﹣xy)﹣y(x2﹣x3y)]+3x2y.整式混合运算99题参考答案:(1)﹣(2x2y3)2?(xy)3=﹣4x4y6?x3y3=﹣4x7y9;(2)5x2(x+1)(x﹣1),=5x2(x2﹣1),=5x4﹣5x2.(3)x(y﹣x)+(x+y)(x﹣y),=xy﹣x2+x2﹣y2,=xy﹣y2;(4)(a+2b)2+4ab3÷(﹣ab),=a2+4ab+4b2﹣4b2,=a2+4ab(5)3(a2)3?(a3)2﹣(﹣a)2(a5)2,=3a6?a6﹣a2?a10,=3a12﹣a12,=2a12.(6)(5mn﹣2m+3n)+(﹣7m﹣7mn),=5mn﹣2m+3n﹣7m﹣7mn,=(5﹣7)mn+(﹣2+7)m+3n,=3n﹣9m﹣2mn;(7)(x+2)2﹣(x+1)(x﹣1),=x2+4x+4﹣x2+x﹣x+1,=4x+5.(8)(x+2)2﹣(2x)2,=x2+4x+4﹣4x2,=﹣3x2+4x+4;(9)(2a+3b)2﹣4a(a+3b+1),=4a2+12ab+9b2﹣4a2﹣12ab﹣4a,=9b2﹣4a.(10)(﹣2xy2)2?3x2y÷(﹣x3y4),=4x2y4?3x2y÷(﹣x3y4),=12x4y5÷(﹣x3y4),=﹣12xy(11)(x+1)2+2(1﹣x),=(x+1)2+2(1﹣x),=x2+2x+1+2﹣2x,=x2+3.(12)(﹣a3)2?(﹣a2)3,=a6?(﹣a6),=﹣a12;(13)[(﹣a)(﹣b)2?a2b3c]2,=(﹣a3b5c)2,=a6b10c2;(14),=(9××)3,=23,=8;(15)(x3)2÷x2÷x+x3÷(﹣x)2?(﹣x2),=x6÷x2÷x+x3÷x2?(﹣x2),=x3﹣x3,=0.(16)原式=﹣27x6?(16y6)÷(216x6y3)=﹣2y3;(17)原式=(﹣x﹣y)2﹣(2y﹣x)(x+2y),=x2+2xy+y2﹣(4y2﹣x2),=x2+2xy+y2﹣4y2+x2,=2xy﹣3y2(18)=[3x2y ÷(﹣xy)]+[﹣xy2÷(﹣xy)]+[xy ÷(﹣xy)],=﹣6x+2y﹣1;(19)(a+b)(﹣b+a)+(a+b)2﹣2a(a+b),=(a+b)(a﹣b+a+b﹣2a),=0(20)原式=[2x(3x6y6)?y2]÷9x7y8,=(6x7y6?y2)÷9x7y8,=2x7y8÷9x7y8,=;(21)原式=x2+x﹣(4x2﹣6x+2x﹣3),=x2+x﹣4x2+6x﹣2x+3,=﹣3x2+5x+3;(22)原式=(2a+3b+2a﹣3b)(2a+3b﹣2a+3b),=4a?9b,=36ab(23)2a2﹣a8÷a6,=2a2﹣a2,=a2;(24)(2﹣x)(2+x)+(x+4)(x﹣1),=4﹣x2+x2+3x﹣4,=3x.(25)(﹣2ab3)2+ab4?(﹣3ab2),=4a2b6﹣3a2b6,=a2b6;(26)(2a+3)(2a﹣3)+(a﹣3)2,=4a2﹣9+a2﹣6a+9,=5a2﹣6a(27)原式=12a5b6c4÷(﹣3a2b3c)÷2a3b3c3 =﹣4a3b3c3÷2a3b3c3=﹣2(28)原式=﹣8x6÷x2=﹣8x4;(29)原式=﹣6m2+4m﹣3m+2=﹣6m2+m+2 (30)原式=﹣2x3+6x2﹣3x3﹣3x2=﹣5x3+3x2.(31)3a?(﹣ab2)﹣(﹣3ab)2﹣12a2b2,=﹣3a2b2﹣9a2b2﹣12a2b2,=﹣24a2b2(32)原式=﹣6x3+3x2﹣12x;(33)原式=2x3?(﹣2xy)(﹣x3y3)=x7y4(34)3(x2﹣2x+3)﹣3x(x+1)=0,∴3x2﹣6x+9﹣3x2﹣3x=0,∴﹣9x=﹣9,∴x=1(35)原式=9x2+3x+6x+2﹣9x2﹣6x﹣1=3x﹣1.(36)2a(a+b)﹣(a+b)2.=(a+b)(2a﹣a﹣b)=(a+b)(a﹣b)(37).原式=2x2﹣7x+9﹣12x+4x2=6x2﹣19x+9.(38)(﹣3x2y)2÷(﹣3x3y2),=9x4y2÷(﹣3x3y2),=﹣3x;(39)(a+2)2﹣(a+1)(a﹣1),=a2+4a+4﹣(a2﹣1),=a2+4a+4﹣a2+1,=4a+5(40)原式=a8÷a2=a6;(41)原式=a2b﹣6ab2+6ab2=a2b.(42)原式=a2b2﹣4ab+4ab=a2b2;(43)原式=x2﹣xy﹣8xy+8y2=x2﹣9xy+8y2(44)原式=27x6y3?(﹣5y)=﹣135x6y4;(45)原式=(x2+y2+2xy﹣2xy ﹣y2﹣4x)÷2x =(x2﹣4x)÷2x=x﹣2(46)原式=[(2x+a)+(2x﹣a)][(2x+a)﹣(2x ﹣a)] =(2x+a+2x﹣a)(2x+a﹣2x+a)=4x?2a=8ax;(47)原式=(8x6﹣6x6﹣12x5)÷(﹣2x2)=2(x6﹣6x5)÷(﹣2x2)=﹣x4+6x3=6x3﹣x4;(48)原式=x2﹣4﹣(x2﹣2x﹣3)=x2﹣4﹣x2+2x+3=2x﹣1(49)原式=8a3?b4÷12a3b2,=b2.(50)原式=(6x2+9x﹣2x﹣3)﹣6x2=6x2+9x﹣2x﹣3﹣6x2=7x﹣3(51)(﹣6x2)2+(﹣3x2)?x﹣27x5÷(﹣9x2)=36x4﹣3x3+3x3=36x4(52)(﹣2y2)3+y?y5=﹣8y6+y6=﹣7y6;(53)(x+2)2﹣(x+1)(x﹣1)=x2+4x+4﹣x2+1=4x+5.(54)原式=a2﹣b2+a2+2ab+b2﹣2a2﹣ab=ab.(55)(﹣a)2?(a2)2÷a3=a2?a4÷a3=a6÷a3=a3;(56)(15x2y﹣10xy2)÷5xy=3x﹣2y(57)原式=[8x6﹣6x6﹣12x5﹣6x4]÷x4=[2x6﹣12x5﹣6x4]÷x4=2x2﹣12x﹣6(58)原式=(x+1)2+2(1﹣x)﹣x2=x2+2x+1+2﹣2x﹣x2=3.(59)(12a3﹣6a2+3a)÷3a=4a2﹣2a+1;(60)5x2(x+1)(x﹣1)=5x2(x2﹣1)=5x4﹣5x2.(61)原式=b2﹣4ab+4a2﹣4a2+4ab=b2(62)原式=(﹣27a3b6)(﹣4ab2)=108a4b8(63)原式=3a2﹣18a﹣2a+12=3a2﹣20a+12(64)化成单项式除以单项式﹣a+3b+7b2(65)原式=x2﹣2x+3x﹣6﹣(x2﹣4x+4)=x2+x﹣6﹣x2+4x ﹣4=5x﹣10;(66)原式=9x2﹣16y2;(67)原式=2x2﹣xy+6xy﹣3y2﹣5xy﹣3y2=2x2﹣6y2.(68)原式=3a10?a6﹣4a6?a10=3a16﹣4a16=﹣a16;(69)原式=4xy+x2﹣4xy+4y4+9y2﹣x2=4y4+9y2.(70)原式=﹣3x2y2?4x2y2=﹣12x4y4;(71)原式=a2﹣4ab+4b2+a2﹣4b2=2a2﹣4ab(72)原式=a2﹣4b2﹣2ab+4b2=a2﹣2ab(73)原式=10x3﹣2x3=8x3(74)原式=﹣8x3y6+6x3y6=﹣2x3y6.(75)原式=8x3×(﹣3xy2)=﹣24x4y2;(76)原式=a2﹣2ab+3ab﹣6b2﹣(4a2﹣4ab+b2)=a2﹣2ab+3ab﹣6b2﹣4a2+4ab﹣b2=﹣3a2+5ab﹣7b2(77)原式=﹣8x6y3+9x4?(﹣x2)?y3=﹣8x6y3﹣9x6y3=﹣17x6y3(78)原式=﹣m10n4÷m2n2=﹣m8n2;(79)原式=[(2a﹣1)(2a+1)]2=16a4﹣8a2+1;(80)原式=x2+2xy ﹣y2;(81)原式=[2x﹣(3y﹣1)][2x+(3y﹣1)]=4x2﹣9y2+6y ﹣1(82)(﹣2x)(4x2﹣2x+1),=﹣8x3+4x2﹣2x;(83)(6a3﹣4a2+2a)÷2a,=3a2﹣2a+1.(84)(2x﹣y)(2x+y)﹣(x﹣3y)2,=4x2﹣y2﹣x2+6xy﹣9y2,=3x2+6xy﹣10y2.(85)原式=﹣2x+x2﹣3﹣(2x﹣1)2=﹣2x+x2﹣3﹣(4x2﹣4x+1)=﹣2x+x2﹣3﹣4x2+4x﹣1=x2﹣4x2﹣2x+4x﹣3﹣1=﹣3x2+2x﹣4(86)原式=(9m2+6mn+n2﹣6mn﹣n2)÷2m=9m2÷2m=m(87)原式=(x2y2+2x2y﹣x2y2+6x2y3)÷2x2y=(2x2y+6x2y3)÷2x2y=1+3y2(88)原式=x6÷x2﹣x2?27x2=x4﹣3x4=﹣2x4.(89)原式=(2x+y)(2x﹣3y+4y)=(2x+y)(2x+y)=(2x+y)2(90)原式=m2﹣4+m2+5m﹣m﹣5=2m2+4m﹣9;(91)原式=[x2+2xy+y2﹣(2xy+y2)﹣8x]÷2x =(x2+2xy+y2﹣2xy﹣y2﹣8x)÷2x=(x2﹣8x)÷2x=x﹣4.(92).原式=2xy2÷2x﹣6xy÷2x+y2+2y=y2﹣3y+y2+2y=2y2﹣y(93)原式=9a2﹣5a+2;(94)原式=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1;(95)原式=x4y6÷(x3y4)?(﹣4xy)=x4y6××(﹣4xy)=×(﹣4xy)=﹣;(96)原式=a3+3+4a6+a6=a6+4a6+a6=6a6(97)(2x+1)(x+3)﹣6(x2+x﹣1)=2x2+6x+x+3﹣6x2﹣6x+6=﹣4x2+x+9;(98)[x(x2y2﹣xy)﹣y(x2﹣x3y)]+3x2y =[x3y2﹣x2y﹣x2y+x3y2]+3x2y=2x3y2﹣2x2y+3x2y=2x3y2+x2y(99)原式=[(2x+y)(2x+y﹣y)﹣4x]÷2x =[(2x+y)×2x ﹣4x]÷2x=2x(2x+y﹣2)÷2x=2x+y﹣2.。

整式的乘除知识点及题型复习

整式的乘除知识点及题型复习

举例说明:如单项 式x^2除以多项式 2x-1,结果为 (x^2)/(2x1)=x+1
除法运算顺序:按照从左到 右的顺序进行除法运算,注 意先处理括号内的内容
除法法则:类似于多项式乘 法,将除法转化为乘法,然 后利用乘法法则进行计算
除法结果的化简:将除法结 果化简到最简形式,注意约
分和合并同类项
除法运算的注意事项:注意 处理符号和运算优先级的问
添加标题
解析:根据速度、时间和距离的关系,速度=距离/时间,所以时间=距离/速度。将已知数值代入公式,得到时间=100千米 /80千米/小时=1.25小时。
添加标题
题目:一架飞机以每小时800千米的速度从甲地飞往乙地,飞行了3小时后,发现方向有误,于是立即改变航向,并以每小时 1000千米的速度飞行了4小时,求飞机到达乙地所需的总时间。
项式。
整式除法的结 果仍为一个多 项式,其各项 系数和次数与 被除式相同。
整式除法的一 般形式为:被 除式=除式×商
式+余式。
在整式除法中, 需要注意除数 不能为0,且各 项系数和次数 必须符合数学
规则。
定义:将一个单项式除以另一个单项式的商称为单项式除以单项式。
运算法则:与单项式乘法类似,按照系数、字母因子的指数分别相除,对于只在被除式 中出现的字母因子,连同其指数一起作为商的一个字母因子。
定义:两个多项式相乘,将一个多项式的每一项与另一个多项式的每一项 相乘,再将所得积相加。 举例:$(x+1)(x+2) = x^2 + 3x + 2$
公式:$(x+a)(x+b) = x^2 + (a+b)x + ab$
注意事项:注意乘法分配律的应用,以及合并同类项时的符号问题。

(word完整版)初中数学总复习:整式

(word完整版)初中数学总复习:整式

初中数学总复习:整式知识网络及考点(一) 1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

1 2注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如4丄a2b,313这种表示就是错误的,应写成a2b。

一个单项式中,所有字母的指数的和叫做这个单项式3的次数。

女口5a3b2c是6次单项式。

3、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算岀结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不岀其字母的值,需要利用技巧,“整体”代入。

4、同类项所有字母相同,并且相同字母的指数也分别相同的单项式叫做同类项。

几个常数项也是同类项。

5、去括号法则(1) 括号前是“ +”,把括号和它前面的“ +”号一起去掉,括号里各项都不变号。

(2 )括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都变号。

6、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:a m ?a n a m n(m, n都是正整数)(a m)n a mn(m,n都是正整数)注意:(1)单项式乘单项式的结果仍然是单项式。

(2) 单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3) 计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4) 多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5) 公式中的字母可以表示数,也可以表示单项式或多项式。

1⑹ a01(a 0); a p p (a 0, p为正整数)a(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

整式的乘除复习试题(3套)

整式的乘除复习试题(3套)

整式的乘除过关测试A一、(时间: 40分钟, 总分: 80分) 选择题(共12小题, 每小题3分, 共36分) )可写成(13.1+m a()()a a D aa C aa a B aa A m m m m ⋅++⋅+3333....()6223124355126663)5(;1243)4(;)3(;)2(;2)1(.2y x xy b b b c c c a a a a a a n n n ==⋅=⋅=+=⋅下列计算:中正确的个数为( )A.0B.1C.2D.3 )(324,0352.3=⋅=-+y x y x 则若A.32B.16C.8D.4())的结果为(计算200920088125.0.4⨯-A.8B.-8C.-1D.无法计算)的是(下列等式中运算不正确.5()()2223243322232442.51025.842.63)2(3.y xy x y x D xy x y x x C b a ab b a B y x y x xy x xy A ++=--=-=⋅-=-()()()()的值为、,则若a a M 10M 102105108.626⨯=⨯⨯⨯ 105M 108M 92M 88M ========a D a C a B a A ,、,、,、,、()()()等于则若m n n x x mx x -++=-+,315.72 251.251.25.25.--D C B A()()()的关系是与的一次项,则展开后不含要使多项式q p x q x px x -++2.822.1.0..===+=pq D pq C q p B q p A()的值是,那么已知ab b a b a 2,3.922=-=+A.-0.5B.0.5C.-2D.2 10.计算: 得( )A.0B.1C.8.8804D.3.960111.现有纸片: 4张边长为a 的正方形, 3张边长为b 的正方形, 8张宽为a 、长为b 的长方形, 用这15张纸片重新拼出一个长方形, 那么该长方形的长为( )A.2a+3bB.2a+bC.a+3bD.无法确定()的最小值是则如果多项式p b a b a p ,2008422.1222++++= A.2005 B.2006 C.2007 D.2008 填空题(共6小题, 每小题3分, 共18分)()()=-⋅-322323.13a a 计算 。

(word完整版)整式的加减法提高题

(word完整版)整式的加减法提高题

6.1 整式的加减法一、选择题(共5小题;共25分)1. 下列运算中正确的是( )A. 3a2−2a2=a2B. 3a2−2a2=1C. 3x2−x2=3D. 3x2−x=2x2. 下列运算正确的是 ( )A. 3x+4y=7xyB. 6y2−y2=5C. b4+b3=b7D. 4x−x=3xab n是同类项,那么m−n的值是 ( )3. 已知代数式−5a m−1b6与12A. 5B. −5C. 4D. −44. 下列计算中,正确的是 ( )A. 5a2b−4a2b=a2bB. 2b2+3b3=5b5C. 6a3−2a3=4D. a+b=ab5. 下列计算正确的是 ( )A. 7a+a=7a2B. 5y−3y=2C. 3x2y−2x2y=x2yD. 3a+2b=5ab二、填空题(共5小题;共25分)6. 三个连续整数中,n是最小的一个,这三个数的和是.7. 当b=时,式子2a+ab−5的值与a无关.=8. 设m和n均不为零,3x2y3和−5x2+2m+n y3是同类项,则3m3−m2n+3mn2+9n35m3+3m2n−6mn2+9n39. 多项式2(x2−xy−3y2)−(3x2−axy+y2)中不含xy项,则a=.∣x∣+∣x+2∣的最大值与最小值之差为10. 设−1≤x≤2,则∣x−2∣−12三、解答题(共10小题;共130分)11. 设a是一个两位数,b是一个三位数,把a放在b的左边组成一个五位数x,把b放在a的左边,组成一个五位数y,试问(x−y)能否被9整除?说明理由.12. 若多项式2x n−1−x n+3x m+1是五次二项式,试求3n2+2m−5的值.(x−5)2+5∣m∣=0,求代数式(2x2−3xy+6y2)−13. 若3a2b3与−3a2b y+1是同类项,且23m(3x2−xy+9y2)的值.14. 小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米 ),解答下列问题:(1) 用含m,n的代数式表示地面的总面积S;(2) 已知n=1.5,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?15. 先化简,再求值:2x−3y−3(x−2y),其中x=−2,y=1.16. 已知a+2b−4=0,求代数式12a−[4b+(−c)−(12a−c)]+6b的值.17. 先化简,再求值:(3a2−7a)−2(a2−3a+2),其中a2−a−5=0.18. 先化简,再求值:−a2b+(3ab2−a2b)−2(2ab2−a2b) ,其中a=1 , b=−2 .19. 若关于x,y的多项式x m−1y3+x3−m y∣n−2∣+x m−1y+x2m−3y∣n∣+m+n−1合并同类项后得到一个四次三项式,直接写出m,n的值(所有指数均为正整数).20. 用“ ☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1) 求(−2)☆3的值;(2) 若(a+12☆3)☆(−12)=8,求a的值;(3) 若2☆x=m,(14x)☆3=n(其中x为有理数),试比较m,n的大小.答案第一部分1. A2. D3. D4. A5. C第二部分6. 3n+37. −28. 55979. 210. 1第三部分11. 由题意得:x=1000a+b,y=100b+a,x−y=(1000a+b)−(100b+a)=1000a+b−100b−a=999a−99b=9(111a−11b).所以计算的结果能被9整除.12. 由多项式2x n−1−x n+3x m+1是五次二项式,应分情况讨论:(1)若2x n−1与3x m+1是同类项,则−x n是五次的,则n=5,n−1=4,m+1=n−1=4,所以m=3.所以3n2+2m−5=3×52+2×3−5=76;(2)若−x n与3x m+1是同类项,且都是五次的,则n=5,m+1=5,得m=4.所以3n2+2m−5=3×52+2×4−5=78.13. 由同类项的定义,得y+1=3,∴y=2.(x−5)2+5∣m∣=0,又(x−5)2≥0,∣m∣≥0,且23∴(x−5)2=0,∣m∣=0.∴x=5,m=0.∴(2x2−3xy+6y2)−m(3x2−xy+9y2)=2x2−3xy+6y2.把x=5,y=2代入得,原式=2×25−3×5×2+6×22=50−30+24=44.14. (1) S=2n+6m+3×4+2×3=6m+2n+18 .(2) 当n=1.5时,2n=3.根据题意,得6m=8×3=24 .∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用为4500元.15. 原式=2x −3y −(3x −6y )=2x −3y −3x +6y =−x +3y .当 x =−2,y =1 时−x +3y =−(−2)+3×1=2+3=5 .16.原式=12a −[4b +(−c )−(12a −c )]+6b =12a −[4b +(−c )−12a +c ]+6b =12a −[4b −12a ]+6=12a −4b +12a +6b =a +2b因为 a +2b −4=0,所以 a +2b =4 . 所以,原式 =4 .17. 原式=3a 2−2a 2−7a +6a −4=a 2−a −4∵a 2−a −5=0, ∴a 2−a =5 .∴a 2−a −4=5−4=1 .18. −a 2b +(3ab 2−a 2b )−2(2ab 2−a 2b )=−a 2b +3ab 2−a 2b −4ab 2+2a 2b =−ab 2.当 a =1 , b =−2 时,−ab 2=−4, ∴ 原式的值是 −4 . 19. m =2,n =1 或 3.20. (1) (−2)☆3=−2×32+2×(−2)×3+(−2)=−32. (2)a +12☆3=a +12×32+2×a +12×3+a +12=8(a +1).8(a +1)☆(−12)=8(a +1)×(−12)2+2×8(a +1)×(−12)+8(a +1)=2(a +1).∴2(a +1)=8, 解得,a =3.(3) 由题意 m =2x 2+2×2x +2=2x 2+4x +2, n =14x ×32+2×14x ×3+14x =4x , 所以 m −n =2x 2+2>0. 所以 m >n .。

中考数学专题复习《整式的运算》测试卷-附带答案

中考数学专题复习《整式的运算》测试卷-附带答案

中考数学专题复习《整式的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算(−x2)3的结果是()A.−x6B.x6C.−x5D.−x82.下列计算正确的是()A.x7÷x=x7B.(−3x2)2=−9x4C.x3•x3=2x6D.(x3)2=x63.下列计算正确的是()A.3x+3y=6xy B.a2•a3=a6C.b6÷b3=b2D.(m2)3=m6 4.下列计算正确的是()A.3a3⋅2a3=6a3B.(−4a3b)2=8a6b2C.(a+b)2=a2+b2D.−2a2+3a2=a25.下列运算正确的是()A.(x−1)(x+1)=x2−x−1B.x2−2x+3=(x−1)2+4C.(x−1)2=x2−2x−1D.(x−1)(−1−x)=1−x26.观察一列单项式:x−3x37x5−15x731x9⋯.则第n个单项式是()A.(−1)n+1(2n−1)x2n−1B.(−1)n(2n−1)x2n+1C.(−1)n+1(2n−1)x2n−1D.(−1)n(2n+1)x2n−17.若k为任意整数则(2k+3)2−4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除8.已知10a=25,100b=40则a+2b的值是()A.1B.2C.3D.49.对于任意自然数n关于代数式(n+7)2﹣(n﹣5)2的值说法错误的是()A.总能被3整除B.总能被4整除C.总能被6整除D.总能被7整除10.若2a-3b=-1 则代数式4a2−12ab+9b2的值为()A.-1B.1C.2D.311.已知关于x的两个多项式A=x2−ax−2B=x2−2x−3.其中a为常数下列说法:①若A−B的值始终与x无关则a=−2②关于x的方程A+B=0始终有两个不相等的实数根③若A ⋅B 的结果不含x 2的项 则a =52④当a =1时 若A B 的值为整数 则x 的整数值只有2个.以上结论正确的个数有( ) A .4B .3C .2D .112.对于若干个单项式 我们先将任意两个单项式作差 再将这些差的绝对值进行求和并化简 这样的运算称为对这若干个单项式作“差绝对值运算”. 例如:对2,3,4作“差绝对值运算” 得到|2−3|+|2−4|+|3−4|=4 则①对1,3,4,7作“差绝对值运算”的结果是19 ②对x 2,x ,−3(x 2>x >−3)进行“差绝对值运算”的结果是38 则x =±4 ③对a ,b ,c (互不相等)进行“差绝对值运算”的结果一共有7种. 以上说法中正确的个数为( ) A .0B .1C .2D .3二 填空题13.已知3x+y=-3 xy=-6 则 xy 3+9x 3y = .14.若实数m 满足(m −2023)2+(2024−m)2=2025 则(m −2023)(2024−m)= .15. 已知 m +n +2m+n =4,则 (m +n )2+(2m+n )2的值为 . 16.小明在化简:(4x 2−6x +7)−(4x 2−□x +2)时发现系数“□”印刷不清楚 老师提示他:“此题的化简结果是常数” 则多项式中的“□”表示的数是 .17.如果一个三位自然数m =abc ̅̅̅̅̅的各数位上的数字互不相等且均不为0 满足a +c =b 那么称这个三位数为“中庸数”.将“中庸数”m =abc ̅̅̅̅̅的百位 个位数字交换位置 得到另一个“中庸数”m ′=cba ̅̅̅̅̅ 记F(m)=m−m ′99,T(m)=m+m ′121.例如:m =792,m ′=297.F(m)=792−29799=5 T(m)=792+297121=9.计算F(583)= 若“中庸数”m 满足2F(m)=s 2,2T(m)=t 2 其中s ,t 为自然数1 2 3…… 则该“中庸数”m 是 .18.一个四位自然数M 若它的千位数字与十位数字的差为3 百位数字与个位数字的差为2 则称M 为“接二连三数” 则最大的“接二连三数”为 已知“接二连三数”M 能被9整除 将其千位数字与百位数字之和记为P 十位数字与个位数字之差记为Q 当PQ 为整数时 满足条件的M 的最小值为 .三 计算题19.计算:(1)x(1−x)(2)(a−1)(2a+3)−2a(a−4)(3)x 2x−1−x−1.20.计算:(1)(−2xy2)2⋅3x2y.(2)(−2a2)(3ab2−5ab3).(3)(3m2n)2⋅(−2m2)3÷(−m2n)2.(4)(a−2b−3c)(a−2b+3c).21.(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1)其中x=−12 ..22.−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)其中x=−2y=12.23.先化简再求值:[(x+2y)2−(x+2y)(x−2y)]÷4y其中x=1y=−1.四解答题24.观察下面的等式:32−12=8×1,52−32=8×2,72−52=8×3,92−72=8×4,⋯(1)写出192−172的结果.(2)按上面的规律归纳出一个一般的结论(用含n的等式表示n为正整数)(3)请运用有关知识推理说明这个结论是正确的.25.尝试:①152=225=1×2×100+25.②252=625=2×3×100+25.③352=1225=_▲_...运用:小滨给出了猜想和证明请判断是否正确若有错误请给出正确解答.猜想:(10a+5)2=100a(a+1)+25.证明:(10a+5)2=100a(a+1)+25所以10a2+100a+5=100a2+100a+25.所以10a2=100a2.因为a≠0所以10a2≠100a2.所以等式不成立结论错误.26.已知实数a b满足(2a2+b2+1)(2a2+b2-1)=80 试求2a2+b2的值.解:设2a2+b2=m则原方程可化为(m+1)(m-1)=80 即m2=81 解得:m=±9 ∵2a2+b2≥0 ∴2a2+b2=9 上面的这种方法称为“换元法” 换元法是数学学习中最常用的一种思想方法在结构较复杂的数和式的运算中若把其中某些部分看成一个整体并用新字母代替(即换元)则能使复杂问题简单化.根据以上阅读材料解决下列问题:(1)已知实数x y满足(2x2+2y2-1)(x2+y2)=3 求3x2+3y2-2的值(2)若四个连续正整数的积为120 求这四个正整数.27.阅读下列材料:我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方公式如果一个多项式不是完全平方公式我们常做如下变形:先添加一个适当的项使式子中出现完全平方式再减去这个项使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法可以求代数式的最大值或最小值.例如:求代数式x2+2x-3的最小值.解:x2+2x-3=x2+2x+12-12-3=(x2+2x+12)-4=(x+1)2-4.∵(x+1)2≥0 ∴(x+1)2-4≥-4∴当x=-1时x2+2x-3的最小值为-4.再例如:求代数式-x2+4x-1的最大值.解:-x2+4x-1=-(x2-4x+1)=-(x2-4x+22-22+1)=-[(x2-4x+22)-3]=-(x-2)2+3∵(x-2)2≥0 ∴-(x-2)2≤0 ∴-(x-2)2+3≤3.∴当x=2时-x2+4x-1的最大值为3.(1)【直接应用】代数式x2+4x+3的最小值为(2)【类比应用】若M=a2+b2-2a+4b+2023 试求M的最小值(3)【知识迁移】如图学校打算用长20m的篱笆围一个长方形菜地菜地的一面靠墙(墙足够长)求围成的菜地的最大面积.28.在学习《完全平方公式》时某数学学习小组发现:已知a+b=5 ab=3 可以在不求a b的值的情况下求出a2+b2的值.具体做法如下:a2+b2=a2+b2+2ab-2ab=(a+b)2-2ab=52-2×3=19.(1)若a+b=7 ab=6 则a2+b2=(2)若m满足(8-m)(m-3)=3 求(8-m)2+(m-3)2的值同样可以应用上述方法解决问题.具体操作如下:解:设8-m=a 8-m=a m-3=b则a+b=(8-m)+(m-3)=5 a+b=(8-m)+(m-3)=5 ab=(8-m)(m-3)=3所以(8-m)2+(m-3)2=a2+b2=(a+b)2-2ab=52-2×3=19.请参照上述方法解决下列问题:若(3x-2)(10-3x)=6 求(3x-2)2+(10-3x)2的值29.利用完全平方公式a2+2ab+b2=(a+b)2和a2−2ab+b=2(a−b)2的特点可以解决很多数学问题.下面给出两个例子:例1分解因式:x2+2x−3x2+2x−3=x2+2x+1−4=(x+1)2−4=(x+1+2)(x+1−2)=(x+3)(x−1)例2求代数式2x2−4x−6的最小值:2x2−4x−6=2(x2−2x)−6=2(x2−2x+1−1)−6=2[(x−1)2−1]−6=2(x−1)2−8又∵2(x−1)2≥0∴当x=1时代数式2x2−4x−6有最小值最小值是−8.仔细阅读上面例题模仿解决下列问题:(1)分解因式:m2−8m+12(2)代数式−x2+4x−2有最(大小)值当x=时最值是(3)当x y为何值时多项式2x2+y2−8x+6y+25有最小值?并求出这个最小值.30.发现:一个两位数的平方与其个位数字的平方的差一定是20的倍数.如:132−32=160160是20的8倍262−62=640640是20的32倍.(1)请你仿照上面的例子再举出一个例子:(⋅⋅⋅⋅)2−(⋅⋅⋅⋅⋅)2=(⋅⋅⋅⋅⋅)(2)十位数字为1 个位数字为a的两位数可表示为若该两位数的平方与a的平方的差是20的5倍则a=(3)设一个两位数的十位数字为m个位数字为n(0<m<100≤n<10且m n为正整数)请用含m n的式子论证“发现”的结论是否符合题意.31.灵活运用完全平方公式(a±b)2=a2±2ab+b2可以解决许多数学问题.例如:已知a−b=3,ab=1求a2+b2的值.解:∵a−b=3,ab=1∴(a−b)2=9,2ab=2,∴a2−2ab+b2=9∴a2−2+b2=9,∴a2+b2=9+2=11.请根据以上材料解答下列问题.(1)若a2+b2与2ab−4互为相反数求a+b的值.(2)如图矩形的长为a 宽为b 周长为14 面积为8 求a2+b2的值.32.定义:对于一个三位正整数如果十位数字恰好等于百位数字与个位数字之和的一半我们称这个三位正整数为“半和数”.例如三位正整数234 因为3=12×(2+4)所以234是“半和数”.(1)判断147是否为“半和数” 并说明理由(2)小林列举了几个“半和数”:111 123 234 840… 并且她发现:111÷3=37123÷3=41 234÷3=78840÷3=280… 所以她猜测任意一个“半和数”都能被3整除.小林的猜想正确吗?若正确请你帮小林说明该猜想的正确性若错误说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】D10.【答案】B11.【答案】B12.【答案】B13.【答案】-27014.【答案】−101215.【答案】1216.【答案】617.【答案】2 121或484或58318.【答案】9967 885619.【答案】(1)解:x(1−x)=x−x2(2)解:(a−1)(2a+3)−2a(a−4)=2a2+3a−2a−3−2a2+8a=9a−3(3)解:x 2x−1−x−1=x2x−1−(x+1)=x2−(x+1)(x−1)x−1=x2−x2+1x−1=1x−1.20.【答案】(1)解:(−2xy2)2⋅3x2y=4x2y4⋅3x2y=12x4y5(2)解:(−2a2)(3ab2−5ab3)=−6a3b2+10a3b3(3)解:(3m2n)2⋅(−2m2)3÷(−m2n)2=9m4n2⋅(−8m6)÷m4n2=−72m10n2÷m4n2=−72m6(4)解:(a−2b−3c)(a−2b+3c)=[(a−2b)−3c][(a−2b)+3c]=(a−2b)2−9c2=a2−4ab+4b2−9c2.21.【答案】解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3当x=−1 2时∴原式=(−12)2+3=31 4.22.【答案】解:−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)=−12xy+12x2+3y2−32x2+12xy−y2=−x2+2y2当x=−2y=1 2时原式=−(−2)2+2×(12)2=−4+2×1 4=−4+1 2=−72.23.【答案】解:化简方法一:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x+2y)(x+2y−x+2y)]÷4y=[(x+2y)·4y]÷4y=x+2y化简方法二:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x2+4xy+4y2)−(x2−4y2)]÷4y=(x2+4xy+4y2−x2+4y2)÷4y=(4xy+8y2)÷4y=4xy÷4y+8y2÷4y=x+2y当x=1y=−1时原式=1+2×(−1)=−1.24.【答案】(1)8×9(2)(2n+1)2−(2n−1)2=8n(3)(2n+1)2−(2n−1)2=(2n+1+2n−1)(2n+1−2n+1)=4n×2=8n。

《整式》练习题精选全文完整版

《整式》练习题精选全文完整版

可编辑修改精选全文完整版《整式》练习题一、知识点:1、整式的加减法:(1)去括号法则;(2)添括号法则;(3)合并同类项法则。

2、整式的乘法:幂的运算:(1)m n m n a a a +•=(2)m n mn a a =()(3)()n n n ab a b =(m n 、都是正整数)乘法公式: (1)22))((b a b a b a -=-+ (2) 222()2a b a ab b ±=±+3、整式的除法:m n m na a a-÷=(0a ≠,m n 、都是正整数)4.),0(1);0(10为正整数p a a a a a p p ≠=≠=-二、练习题:1.(2011宿迁)计算(-a 3)2的结果是( )A .-a 5 B .a 5 C .a 6 D .-a 62.(2011日照)下列等式一定成立的是( )(A )a 2+a 3=a 5 (B )(a+b )2=a 2+b 2 (C )(2ab 2)3=6a 3b 6 (D )(x -a )(x -b )=x 2-(a+b )x+ab3.(2011宜宾)下列运算正确的是( )A .3a -2a=1B .632a a a =⋅C .2222)(b ab a b a +-=-D .222)(b a b a +=+4.计算323)(a a ⋅的结果是( )A .8a B .9a C .10a D .11a5.下列运算正确的是( )A 、22x x x =⋅ B 、22)(xy xy = C 、632)(x x = D 、422x x x =+ 6.下列运算中正确的是( )A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 7.负实数a 的倒数是( )A .-a B . 1 a C .- 1aD .a8.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A.Q P > B. Q P = C. Q P < D.不能确定9.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为( )A. 26元 B. 27元 C. 28元 D. 29元10.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( ) A.()2222a b a ab b -=-+ B.()2222a b a ab b +=++C.22()()a b a b a b -=+-D.2()a ab a a b +=+a 第19题 ba -baba -b甲乙11.图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )A .22()()4m n m n mn +--=B .222()()2m n m n mn +-+= C .222()2m n mn m n -+=+ D .22()()m n m n m n +-=-12.(2011邵阳)若□×3ab=3a 2b ,则□内应填( )A.ab B.3ab C.a D.3a 13.(2011芜湖)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a +B .2(315)cm a + C .2(69)cm a + D .2(615)cm a +14.(2011枣庄)如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m+3B .m+6C .2m+3D .2m+615.(2011泰州)多项式 与m 2+m -2的和是m 2-2m .16.(2011荆州)已知x A 2=,B 是多项式,在计算A B +时,小马虎同学把A B +看成了A B ÷,结果得x 2+21x ,则A B += 。

《整式运算》中考专题复习(知识点+基础应用+能力提高+中考真题).doc

《整式运算》中考专题复习(知识点+基础应用+能力提高+中考真题).doc

基本知识点总结一、主要概念:1.单项式2.多项式3.同类项4.整式「单项式(定义、系数、次数)整式{I多项式(定义、项、次数、同类项、升降幕排列)二、基本运算法则1•合并同类项法则:合并同类项时,把系数相加,字母和字母指数不变.2.添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。

3.整式加减法法则:儿个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项。

步骤:第一步:有括号的先去括号第二步:题目中标出同类项第三步:合同同类型整式加减运算专题应用A. 3和0B. 2冰2与兀2R 24.下列各对单项式中,不是同类项的是 ( )A. 0 与丄B. -3x n+2 y m 与 2y w x n+2 3C. xy 与 2pxyD. — 与 3〉,”一£屮C. \3x 2y 与 25yXD. OAa 2b 与 O.3^Z?22 a 2 b 2、—a 2 b 2考点一:同类项概念及其应用 基础应用1.下列各组式子中是同类项的是 (A. — mn ^5m 2nB. 5ab 与5abc 4 2•下列说法正确的是()C. 与2/Z?D. 5?与护A. a 是单项式,它的系数为0B. - Jix 是一次单项式C.多项式x 2 一 2xy + y 2是单项式x 2、2xy 、y 2的和 D 丄是一个单项式 X3.下列各组中,不是同类项的是5.下列各组中的两项不屈于同类项的是( )A. 3m 2/:3 和一加MB.—和 5xy56吗宀不仅所含字母相同,而且相同字母的指数也相同的是7•下列各组式子中,两个单项式是同类项的是()&说出下列各题屮的两项是不是同类项?为什么?(3) 3. 5日比、0. 5acb能力提咼1. 如果+严2y3与一 3”y2I 是同类项,那么臼、力的值分別是()2•若于丹与心(是同类项,则mA. -x 2z 2 B. —xy2C. - yx 2D. xy 2(4)4\ /(5) a 2、a 2(6)2开八4xD. a 2 和 X 3)A. 2a 与C. xy 与无D ・ 0. 3m /广与 0. 3xa = O B.b = 2c. \a =2b = \3•已知:| xW^-1时是同类项,求“的值4.若单项式2兀》”与一扌兀〉3是同类项,求m + n的值-a3m-]b3--a5b2n+l5.已知9 与8 是同类项,求(2加_5/7严彳的值中考真题1.(2016•上海)下列单项式中,与才b是同类项的是()A. 2a bB. cfl/ C・ a b ~Q 3a b2.(2012-梅州)若代数式-4fy与fy是同类项,则常数n的值为____________ .3.(2010-红河自治州)如果与—5〃y3是同类项,则加和斤的取值是()A. 3 和-2B. -3 和2C. 3 和2D. -3 和-24.(2013-凉山州)如果单项式与与%2是同类项,那么禺方的值分别为()2A. a二2, b=3B. a—1, b—2C. a—1, b—3D. 3=2, b=25.(2015<遵义)如果单项式-xybT与丄X a「2y3是同类项,那么(a-b)20,5= _____________ .26.(2012・黔西南州)已知・2x m-,y3和丄只屮知是同类项,则(n・m)2012= ____________ ・27.(2012>河源)若代数式-4x%与x2"y是同类项,则常数n的值为 ______________ .8.(2012・莆出)如果单项式x a+T与2x?yb是同类项,那么』二____________ .考点二:合并同类项基础应用1.合并下列多项式中的同类项:(1)6ab-ab (2)5刃-5.x (3)^,n3_2/H3(4)2a2bc + -a2bc ⑸一沙+2a3b222 5 5 3.下列各题合并同类项的结果对不对?(1) 3a + 2b = 5ab(2) 3X2+5X5=8X7(3) 4x2y-5xy2 =-x2y(4) 2a + b=2a b(5) 3兀2_兀2 =2 (6) 7inn-7nin 二0 (7) a^a-a1(8) 2x2+3x2 =5x4 (9) 3x + 2y = 5xy(10) 7x2-3x2 =4 (11) Sci -2a = 6(12) 5兀$+2兀3 =7兀5 (13) 3a2b-2ab2 =a2b(14) -5x2y-3x2y =-8x2y (15) 2x+5y=7y (16) 8x3),~9A-y3=x3y (17) Sab + 4c = 9abc(18) 3x3+2x2 =5x5(19) 4x2+x2 =5x2(20) 3a2b-lab2 =-4ab能力提高1.若-4#》+刁=_3心,贝\]a + b= _______________ .2.若2x k y M与3/)/的和为5〒才,则k二_______ , n= ____3.若2/歹与-o,5a"b4的和是单项式,则加= __________ , n = ______34.如果- x a y aH与3x5y b 1的和仍是一个单项式,求2a-b的值.5.丄°沪”+1与丄丹的和仍是单项式,求m, n.4 36.已知2a3+m b5 - pab n^ = -la A b5,求m+n-p 的值.中考真题1.(2010・株洲市)在2x2y f -2xy2, 3兀分,一小四个代数式中找出两个同类项,并合并这两个同类项.2 (2014-毕节地区)若-2a m b4与5亍W可以合并成一项,则加"的值是()A.2B. 0C.-1D. 13. (2010・衡阳)若3x m+5y 2与Jy"的和是单项式,则『二 ______________ 考点二:添括号法则l.a, b, c 都是有理数,那么a-b+c 的相反数是()4. _______________________________________________ 在括号内填上适当的项:(a+b —c )(a —b+c )= [d + ( _________________________ )][d-( ____ )].5. 去括号运算:一{一[一(一。

(完整word版)初一整式的加减所有知识点总结和常考题提高难题压轴题练习(含答案解析)

(完整word版)初一整式的加减所有知识点总结和常考题提高难题压轴题练习(含答案解析)

第1页(共17页)初一整式的加减所有知识点总结和常考题知识点:1单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2 •单项式系数:单项式中不为零的数字因数,叫单项式数字系数,简称单项式的系数;3. 单项式的次数:单项式中所有字母的指数的和,叫单项式的次数4. 多项式:几个单项式的和叫做多项式。

5•多项式的项与项数:多项式中每个单项式叫多项式的项;不含字母的项叫做常数项。

多项式里所含单项式的个数就是多项式的项数;6•多项式的次数:多项式里,次数最高项的次数叫多项式的次数;常数项的次数为0注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.7.多项式的升幕排列:把一个多项式的各项按某个字母的指数从小到大排列起来,叫做按这个字母的升幕排列。

多项式的降幕排列:把一个多项式的各项按某个字母的指数从大到小排列起来,叫做按这个字母的降幂排列。

(注意:多项式计算的最后结果一般应该进行升幕(或降幕)排列8•整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.9•整式分类:整式/单项式. (注意:分母上含有字母的不是整式。

)i多项式10.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项11.合并同类项法:各同类项系数相加,所得结果作为系数,字母和字母指数不变。

12•去括号的法则:(原理:乘法分配侓)(1)括号前面是“ +”号,把括号和它前面的“ +”号去掉,括号里各项的符号都不变;(2)括号前面是“一”号,把括号和它前面的“一”号去掉,括号里各项的符号都要改变。

13.添括号的法则:(1)若括号前边是“ +”号,括号里的各项都不变号;(2)若括号前边是“-”号,括号里的各项都要变号.14.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并整式加减的步骤:(1)列出代数式;(2)去括号;(3)添括号(4)合并同类项。

(完整word版)整式的运算经典题型

(完整word版)整式的运算经典题型

1 整式的运算经典题型类型一:用字母表示数量关系1.填空题:(1)香蕉每千克售价3元,m 千克售价____________元.(2)温度由5℃上升t ℃后是__________℃。

(3)每台电脑售价x 元,降价10%后每台售价为____________元。

(4)某人完成一项工程需要a 天,此人的工作效率为__________。

类型二:整式的概念2.指出下列各式中哪些是整式,哪些不是.(1) 312x +;(2)a =2;(3)π;(4)S =πR 2;(5) 73;(6) 2335> 类型三:同类项3.若1312a x y -与23b a b x y -+-是同类项,那么a ,b 的值分别是( ) (A)a =2, b =-1。

(B )a =2, b =1。

(C)a =-2, b =-1。

(D )a =-2, b =1。

类型四:幂的运算4.计算并把结果写成一个底数幂的形式.① 43981⨯⨯; ② 66251255⨯⨯类型五:整式的加减5.化简m -n -(m +n )的结果是( )(A )0. (B )2m 。

(C )-2n . (D )2m -2n 。

6.已知15x =-,13y =-,求代数式(5x 2y -2xy 2-3xy )-(2xy +5x 2y -2xy 2) 类型六:整式的乘除及公式运算7。

化简:(1)()()22222a b a b a ab a ++--÷(2)()()()()22,x y x y x y y y x -+-++-类型七:公式变式运用8.已知6ab =,5a b +=-,则22a b +=9.已知4m n -=,228m n -=,则m n +=10若2(3)(4)x x ax bx c +-=++,则___,____,_____a b c ===。

类型八:整体思想的应用11.已知x 2+x +3的值为7,求2x 2+2x -3的值。

2 练习:1、某校学生给“希望小学”邮寄每册a 元的图书240册,若每册图书的邮费为书价的5%,则共需邮费______________元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六讲:整式的运算复习一.知识点a m ·a n =a m+n a 0=1(a ≠0) (a m )n =a m n a -P = pa1(a ≠0,p ≠0) (ab )n =a n b n a m ÷a n =a m –n 平方差公式:22))((b a b a b a -=-+ 完全平方公式:2222)(b ab a b a +±=±一次二项式乘法公式:2()()()x a x b x a b x ab ++=+++ bd x bc ad acx d cx b ax +++=++)())((2应用乘法公式可以得到以下变形:(1)ab b a b a 2)(222-+=+ (2)ab b a b a 2)(222+-=+(3)])()[(212222b a b a b a -++=+ (4)ab b a b a 4)()(22=--+ 二、典型考题分析类型一:用字母表示数量关系1、香蕉每千克售价3元,m 千克售价_____元。

2、每台电脑售价x 元,降价10%后每台售价为______元。

3、某人完成一项工程需要a 天,此人的工作效率为____。

4、温度由5℃上升t ℃后是__________℃。

类型二:整式的概念指出下列各式中哪些是整式,哪些不是。

(1)312x +;(2)a =2;(3)π;(4)S =πR 2;(5) 73;(6) 2335> 类型三:同类项若1312a x y -与23b a b x y -+-是同类项,那么a ,b 的值分别是( ) (A )a =2, b =-1。

(B )a =2, b =1。

(C )a =-2, b =-1。

(D )a =-2, b =1。

类型四:幂的运算计算并把结果写成一个底数幂的形式。

① 43981⨯⨯; ② 66251255⨯⨯类型五:整式的加减1、化简m -n -(m +n )的结果是( )(A )0。

(B )2m 。

(C )-2n 。

(D )2m -2n 。

2、已知15x =-,13y =-,求代数式(5x 2y -2xy 2-3xy)-(2xy +5x 2y -2xy 2)类型六:整式的乘除及公式运算化简:(1)()()22222a b a b a ab a ++--÷ (2)()()()()22,x y x y x y y y x -+-++-类型八:整体思想的应用已知x 2+x +3的值为7,求2x 2+2x -3的值。

类型九:公式变式1、已知223a b +=,1ab =,求①2()a b +;②2()a b -2、已知3a b +=,1ab = 求①2()a b +;②22a b +;③2()a b -3、已知16)(2=+y x ,4)(2=-y x ,求xy 的值.类型十:配方填项 公式:2222()a ab b a b ++=+ 2222()a ab b a b -+=-1、26x x ++ =2()⎽⎽⎽⎽⎽⎽⎽⎽⎽2、24x x -+ =2()⎽⎽⎽⎽⎽⎽⎽⎽⎽ 3、216x +⎽⎽⎽⎽⎽⎽⎽+=2()⎽⎽⎽⎽⎽⎽⎽⎽⎽类型十一:分式变式 1、已知15a a +=,求221a a +的值; 2、已知17a a -=,求221a a+的值;类型十二:简便计算1、 10298⨯2、 224114510541⨯-⨯类型十三:添项巧算1、24816(12)(12)(12)(12)(12)+++++ 2、2481632(1)(1)(1)(1)(1)(1)x x x x x x ++++++3、2481111(1)(1)(1)(1)2222++++类型十四:指数变式 1、若3ma =,9nb =,则2613m n -+的值; 2、若3230x y +-=,则y x 48⋅的值;类型十五:配方1、 226413x x y y ++-+=0 2、 求证2225420x xy y y ++-+>0类型十六:如何分组1、)45)(32)(54)(32(x y y x y x y x --++2、()()z y x z y x -+++类型十七:面积问题1、如图(1)的面积可以用来解释(2a)2=4a 2,那么根据图(2),可以用来解释 (写出一个符合要求的代数恒等式).1、 计算图3中阴影部分的面积.6、阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些等式也可以用这种形式表示,例如:()()22322a b a b a ab b ++=++就可以用图1或图2等图表示.(1)请写出图3中所表示的代数恒等式_______; (2)试画出一个几何图形,使它的面积能表示:()()a b a b a ab b ++=++343227、如图四边形ABCD 是校园内一边长为a +b 的正方形土地(其中a >b )示意图,现准备在这块正方形土地中修建一个小正方形花坛,使其边长为a -b ,其余的部分为空地,留作道路用,请画出示意图,并标明各部分面积的代数式.用等式表示大小正方形及空地间的面积关系.类型十八:降次1、己知x+5y=6 , 求 x 2+5xy+30y 的值.2、如果012=-+x x ,则=++3223x x .类型十九:系数分析法1、已知()()b x a x mx x ++=++122,并且m b a ,,均为整数,那么m 可能取的值有几个?是哪几个?2、如果22)3(24-=++mx b x ax ,求a 、b 、m 的值.3、已知()()b ax x x +++22的积中不含x 的二次项和一次项,求a 、b 的值.图3课堂练习:1、在下面的语句中,正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个 ①2323a b -与3212a b 是同类项;②221()2x yz -与2zx y -是同类项;③-1与15是同类项;④字母相同的项是同类项。

2、把下列式子按单项式、多项式、整式进行归类。

x 2y ,12a b-,x +y 2-5,2x -,-29,2ax +9b -5, 600xz ,52axy , xyz -1,11x +。

3、2412m mn -+ =2()⎽⎽⎽⎽⎽⎽⎽⎽⎽ 4、24914m m ++ =2()⎽⎽⎽⎽⎽⎽⎽⎽⎽5、已知6ab =,5a b +=-,则22a b +=6、已知4m n -=,228m n -=,则m n += 7、若2(3)(4)x x ax bx c +-=++,则___,____,_____a b c === 若0132=-+x x ,则=+++185523x x x . 已知那么=_______.8、已知4a b -=,1ab =, 求①2()a b -;②22a b +;③2()a b +9、已知5x y +=,2215x y +=,求xy 的值 10、已知5-=+b a ,7=ab , 求b a ab b a --+22的值.11、已知22114a a +=,求①1a a +;②21()a a - 12、已知31=+a a ,求172++a a a的值13、若2540x y --=,则432xy 的值 14、已知x 2n =4,求(3x 3n )2-4(x 2) 2n 的值.15、求证:无论x 、y 为何值,3530912422+++-y y x x 的值恒为正.16、已知:2248250a b a b +-++=,求()4a b -的值.1 问题一图217、)64)(64(z y x z y x +--+ 18、()()53253222-++-a a a a19、如图,某市有一块长为()b a +3米,宽为()b a +2米的长方形地块,•规划部门 计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米? •并求出当3=a ,2=b 时的绿化面积.20、有一块绿地的形状如图所示,则它的面积表达式经化简后结果为______. 21、某公司计划砌一个形状如图1所示的喷水池,经人建议改为如图2所示的形状,且外圆半径不变,只是担心原来准备好的材料不够.请你比较两种方案, 哪一种需要的材料多?22、242(1)(1)(1)(1)na a a a ++++L L 23、计算:()()()()12121212242++++n Λ24、己知: (x+1)(x 2+mx+n) 的计算结果不含x 2和x 项,求m ,n.25、已知()()q x x px x +-++3822的展开式中不含32,x x 项,求p 、q 的值.26、已知25602+-x px ,2)5(-qx 都是关于x 的多项式并且相等,求q p 、的值.。

相关文档
最新文档