机构运动仿真基本知识

合集下载

常用机构的运动仿真(20个例程)

常用机构的运动仿真(20个例程)

20个常用机构的运动仿真案例1、风扇摇头机构图1是风扇摇头机构的原理模型。

该机构把电机的转动转变成扇叶的摆动。

红色的曲柄与蜗轮固接,蓝色杆为机架,绿色的连架杆与蜗杆(电机轴)固接。

电机带扇叶转动,蜗杆驱动蜗轮旋转,蜗轮带动曲柄作平面运动,而完成风扇的摇头(摆动)运动。

机构中使用了蜗轮蜗杆传动,目的是降低扇叶的摆动速度、模拟自然风。

图 1 风扇摇头机构2、用摆动扇形齿轮实现间接送料机构图2 是一个曲柄摇杆机构。

绿色的可调曲柄可作整周旋转。

并驱动扇形齿轮(摇杆)摆动,扇形齿轮又使蓝色小齿轮正反转动,若小齿轮与电磁离合器或超越离合器结合可完成间歇转动,可完成间断送料。

图 2 摆动扇形齿轮机构3、量筒开盖落料机构图3 用于电子秤自动计量的设备上,绿色的量筒挂在电子秤上(图中未显示),当充填的物料达到设定的要求时,秤重传感器发出信号,通过电磁阀接通单作用气缸,活塞杆伸出推动摇杆转动,打开量筒盖,物料下落;气缸复位,红色的配重块自动关盖。

图 3 开盖落料机构4、犁爪伸缩机构图4 为一犁地机构示意图。

黄色的车轮缘上铰接多个红色的犁爪,犁爪的另一端与绿色的连杆相铰接,连杆又与深蓝色的圆环相铰接,圆环与浅蓝色的偏心圆盘铰接,偏心圆盘与车轴固接;偏心圆盘中心位置应在车轴垂直下方。

当轮转动时圆环绕固定的偏心圆盘转动,并带动犁爪伸缩完成犁地的动作。

该机构原理也可用于包装生产线步进送料机构。

5、转动导杆与摆动导杆串接机构图5 为牛头刨床的运动原理模型。

可实现由转动到往复的直线运动过程。

主动件是一个浅红色的短曲柄,曲柄铰接一个蓝色的滑块,滑块与蓝色的转动导杆相配合,滑块可以在转动导杆的导槽中滑动。

转动导杆的另一端也铰接一个滑块,并与黄色的摆动的导杆相配合,摆动导杆的下端与机架铰接,上端与棕色连杆铰接,棕色连杆可带动粉红色的滑块(刨头)作往复直线运动。

刨头向左运动为工作状态,向右为退出状态。

此机构工作状态近似匀速平稳运动并具有快速退出功能。

机构运动仿真设计

机构运动仿真设计

• 二、进行机构运动仿真 • 1.检查机构是否能顺利装配成机构组件。 • 2.进入机构设计/分析模块。 • 3.设置伺服电动机。 • 4.设置凸轮连接。 • 5.进行机构运动分析和仿真。 • 6.播放机构分析及仿真的结果。 • 7.测量滑杆顶点的位置随着时间变化的曲线。 • 8.保存文件。
9.2.2 牛头刨床运动仿真
• 在仿真分析之前,首先要明白约束连接和机构连接的区别,并对常用连接接头的 用法和用途有明确的理解,能够在仿真分析之前使用合理的接头来完成机构的组 装。完成机构组装后,通常需要进一步检查主体的连接情况,还可以通过手工 “拖动”零件来观察机构运动的轨迹是否符合预期要求。
本章大纲
9.1初识仿真原理——十字联轴器运动仿真 9.2综合应用 9.3小结
9.1 初识仿真原理——十字联轴器运动仿真 本例将介绍如图9-1所示十字联轴器的运动仿真设计过程。
图9-1 十字联轴器
9.1.1 设计分析
• 机构仿真设计的基本流程如图9-2所示,其中重点和关 键的步骤如下。
建立连接 设置连接轴 创建运ห้องสมุดไป่ตู้副 创建伺服电机
• 其实,在现代设计中随着CAD和CAE技术的发展和完善,人们正在尝试将生产过 程逐步纳入“虚拟”的轨道,所谓“虚拟”就是在不涉及真实物理材料的前提下, 利用计算机提供的数字环境来模拟加工过程。与真实的加工对象相对应,在虚拟 环境中使用一种被称为“数字样机”的三维实体模型,来取代作为真实加工对象 的“物理样机”。数字样机不但不需要消耗材料和能源,而且可以方便地对其进 行编辑和修改。更为重要的是,设计人员在CAE设计环境中可以对数字样机进行 全方位的仿真分析,借助系统强大的分析工具,可以迅速、直观、简便地获得设 计的工作过程信息,以发现设计中潜在的缺陷。

运动仿真

运动仿真

运动仿真本章主要内容:●运动仿真的工作界面●运动模型管理●连杆特性和运动副●机构载荷●运动分析9.1 运动仿真的工作界面本章主要介绍UG/CAE模块中运动仿真的功能。

运动仿真是UG/CAE(Computer Aided Engineering)模块中的主要部分,它能对任何二维或三维机构进行复杂的运动学分析、动力分析和设计仿真。

通过UG/Modeling的功能建立一个三维实体模型,利用UG/Motion的功能给三维实体模型的各个部件赋予一定的运动学特性,再在各个部件之间设立一定的连接关系既可建立一个运动仿真模型。

UG/Motion的功能可以对运动机构进行大量的装配分析工作、运动合理性分析工作,诸如干涉检查、轨迹包络等,得到大量运动机构的运动参数。

通过对这个运动仿真模型进行运动学或动力学运动分析就可以验证该运动机构设计的合理性,并且可以利用图形输出各个部件的位移、坐标、加速度、速度和力的变化情况,对运动机构进行优化。

运动仿真功能的实现步骤为:1.建立一个运动分析场景;2.进行运动模型的构建,包括设置每个零件的连杆特性,设置两个连杆间的运动副和添加机构载荷;3.进行运动参数的设置,提交运动仿真模型数据,同时进行运动仿真动画的输出和运动过程的控制;4.运动分析结果的数据输出和表格、变化曲线输出,人为的进行机构运动特性的分析。

9.1.1 打开运动仿真主界面在进行运动仿真之前,先要打开UG/Motion(运动仿真)的主界面。

在UG的主界面中选择菜单命令【Application】→【Motion】,如图9-1所示。

图9-1 打开UG/Motion操作界面选择该菜单命令后,系统将会自动打开UG/Motion的主界面,同时弹出运动仿真的工具栏。

9.1.2 运动仿真工作界面介绍点击Application/Motion后UG界面将作一定的变化,系统将会自动的打开UG/Motion 的主界面。

该界面分为三个部分:运动仿真工具栏部分、运动场景导航窗口和绘图区,如图9-2所示。

曲柄摇杆机构运动学仿真

曲柄摇杆机构运动学仿真

曲柄摇杆机构运动学仿真
曲柄摇杆机构是一种常用的机械传动机构,具有简单、紧凑、高效等特点。

在工程设计中,对于曲柄摇杆机构的运动学性能进行仿真分析可以帮助设计人员更好地理解机构的运动规律,优化设计参数,提高传动效率。

曲柄摇杆机构由曲柄、连杆和摇杆三个部件组成,其中曲柄是通过转动驱动,连杆和摇杆通过曲柄的推动而产生相应的运动。

在运动学仿真中,我们可以通过建立模型,解析运动关系方程,模拟机构运动过程,从而得到机构部件的位置、速度和加速度等参数。

我们需要建立曲柄摇杆机构的几何模型。

通过测量和绘图,确定曲柄、连杆和摇杆的长度和相对位置。

根据机构的几何结构,我们可以利用几何图形的计算方法,计算得到机构各个部件的位置坐标。

接下来,我们需对机构的运动规律进行分析和建模。

由于曲柄摇杆机构是一个复杂的多连杆机构,其运动关系方程较为复杂。

针对不同的机构类型,我们可以应用不同的方法来求解。

常见的方法有几何法、向量法和代数法等。

通过这些方法,我们可以得到机构各个部件之间的角度和位移关系。

运动学仿真的重点是模拟机构的运动过程。

我们可以利用计算机辅助设计软件或者编程软件进行仿真分析。

在仿真过程中,我们通过设定初始条件和边界条件,模拟机构不同时刻的位置、速度和加速度。

通过不断调整参数和观察仿真结果,我们可以对曲柄摇杆机构的运动特性进行深入了解。

我们可以对仿真结果进行分析和评估。

通过比较不同参数组合下的仿真结果,我们可以评估机构的运动性能和传动效率,并选择最佳参数组合。

我们也可以通过仿真结果来验证设计理论和分析方法的正确性。

ProE机构运动仿真设计及分析

ProE机构运动仿真设计及分析

活塞连杆机 构的装配注 意需要添加 两个连接。 连杆大头销 钉连接到曲 柄销,活塞 在缸孔内滑 动杆连接。
运动影片
三、机构动力学分析
在5.0中,运动仿真和动态分析功能集成于机构模块中,包括机械设计和动态分析 两方面的分析功能. 在机构动力学分析中简单一种的是不涉及重力、弹簧、阻尼、力和力矩等的 分析,实现机构的运动模拟,可以观察并测量记录如位置、距离、速度、加速度 等运动特征,并可以通过图形直观地显示这些测量值。 另外一种可以在机构上定义重力、弹簧、阻尼、力和力矩等特征,对机构设 置材料、密度等属性,使其更加接近现实中的机构,达到真实模拟现实的目的。
活塞连杆机构装配
先装连杆,采用坐标系 对齐方式
采用销钉连接装配活塞销, 对齐中间平面
销钉连接装配活塞,注意需 选择同一主体的轴和平面
技巧:装配完成后可以按住键,按鼠标左 键拖动零件可检查零件的运动情况。
曲轴及活塞连杆机构装配
基础件机 体按坐标 系对齐装 配,曲轴 按销钉连 接装配到 缸体上, 对齐止推 轴承中心 面。
新建装配, 装配缸体或 骨架模型
曲轴按销钉 连接装配到 基础上
分别按销钉连接和滑 动杆连接装配活塞连 杆机构的连杆大头和 活塞
此机构中基础件为机体(也可以用机体总成骨 架),活塞在气缸中上下运动,不能旋转,活塞 采用滑动杆连接。关键有四组相同的活塞连杆机 构,因此活塞连杆可单独装配成一个小机构,然 后再往曲轴和缸体上连接。
机构连接形式:
序号
1 2 3 4 5 6 7 8 9 10 11
名称
自由度 旋转 平移
0
0
1
0
0
1
1
1
说明
使用一个或多个基本约束,交元件与组件连接在一起,连接后,元件与组件成为一个 主体,相互间没有自由度。 由一个轴对齐约束加一个与轴垂直的平移约束组成。元件可以绕轴旋转,不能平移。 例如,活塞销,齿轮、曲轴等。 由一个轴对齐约束与一个旋转约束组成,元件可沿轴平移,但不能旋转。如活塞。 由一个轴对齐约束组成,元件可绕轴旋转同时可沿轴向平移。如挺柱、气门等。

CATIA航空产品设计与制造课件:运动仿真

CATIA航空产品设计与制造课件:运动仿真
CATIA航空发动机
运动仿真
1
工程图基础
2
视图的创建
3
三维尺寸标注
CONTENTS


项目
1
运动机构仿真基础
进入运动机构仿真工作台 运动机构仿真结构树
运动机构仿真基础
1.1 概述
运动机构仿真基础
1.2进入运动机构仿真模块
运动机构仿真基础
用户界面:运动机构仿真
运动机构仿真基础
结构树:运动பைடு நூலகம்构仿真
运动机构仿真 3.1 运动机构仿真
运动机构仿真基础 3.2 定义固定部件
运动机构仿真基础 3.3 机构运动副的添加
运动机构仿真基础
运动机构仿真基础
运动机构仿真基础
运动机构仿真基础 3.4 驱动命令的添加
运动机构仿真基础
运动机构仿真基础 3.5 机制修饰的添加
运动机构仿真基础 3.6 驱动命令添加规则
➢ 点和曲面副
运动副的创建
➢ 滑动曲线副
运动副的创建
➢ 滚动曲线副
运动副的创建
➢ 点、曲面副
运动副的创建
➢ 万向节副
运动副的创建
➢ CV关联副
运动副的创建
➢ 齿轮副
运动副的创建
➢ 齿条副
运动副的创建
01 02 03
➢ 课程导学 ➢ 课程录屏
项目
3
运动机构仿真
运动机构仿真一般步骤 运动机构副的添加 运动机构仿真
运动机构仿真基础
运动机构仿真基础
运动机构仿真基础 3.7 使用命令或者规则进行机构仿真
运动机构仿真基础
运动机构仿真基础
运动机构仿真基础
运动机构仿真基础 3.8 运动机构仿真的记录和回放

ug nx motion机构运动仿真基础及实例

ug nx motion机构运动仿真基础及实例

ug nx motion机构运动仿真基础及实例
UGNXMotion机构运动仿真是一种基于UGNX软件平台的机构运动分析工具,它能够模拟机构的运动及其相应的反应,为机构设计和优化提供有效的工具支持。

本文将介绍UG NX Motion机构运动仿真的基本原理和操作方法,并通过实例详细说明其应用。

首先,本文将介绍机构运动仿真的基本理论,包括机构运动的分类、运动学和动力学基本概念、运动仿真的基本流程等,以帮助读者更好地理解机构运动仿真的原理和方法。

接着,本文将详细介绍UG NX Motion机构运动仿真的操作方法,包括建立机构模型、定义运动和负载条件、设定仿真参数、运行仿真和分析仿真结果等。

通过这些操作,读者将能够熟练地使用UG NX Motion机构运动仿真工具进行机构设计和优化。

最后,本文将通过实例详细说明UG NX Motion机构运动仿真的应用,包括平面机构、空间机构、连杆机构等。

通过这些实例,读者将能够更加深入地了解UG NX Motion机构运动仿真的能力和优势,为机构设计和优化提供更加有效的支持。

综上所述,《UG NX Motion机构运动仿真基础及实例》将为读者介绍机构运动仿真的基本原理和操作方法,并通过实例详细说明其应用,为机构设计和优化提供有效的工具支持。

- 1 -。

第 1讲 PROE运动仿真基础-四连杆机构.

第 1讲 PROE运动仿真基础-四连杆机构.

五、分析 1、类型:运动学; 2、终止时间:1--3 sec; 3、桢频:100-200; 4、若有“快照” ,点“快照”,“运行”。 六、回放 1、播放; 2、生成视频:在“播放”的“动画”窗口内,点“捕获”,输入“路 径”、文件名。 七、分析结果(测量):分析测量 1、新建“测量点”:测量点1(摇杆的位置)、测量点2(摇杆的速度)、 测量点3(摇杆的加速度); 2、按ctrl选多个测量点、复选“分别绘制”、选“结果集”中仿真分析名 称; 3、点左上角 “绘制”图标,再点“文件”——“输出EXCEL文件”。 八、绘制曲线 轨迹曲线——纸零件(选装配图或机架)——选取点——选“结果集”— —确定
(采用普通装配的方式进行约束)
1、刚性:采用普 通装配的方式进行 约束;(自动) 2、焊接:采用坐 标系进行约束; (缺省)
(垫片)
SVA
四连杆机构
一、装配 1、机架(左):缺省方式; 2、机架(右):前面、底面对齐,右面相距120; 3、曲柄、连杆:销钉; 4、摇杆:两个销钉(在“放置”页左下点“新设置”, 添加第2销钉); “应用”——“机构”,进入仿真界面 二、设置运动副(凸轮副、齿轮副) 三、设置电机 1、电机位置(类型):拾取“销钉运动副”; 2、电机大小(轮廓):速度、A为360 deg/sec。 四、调整:手形“拖动”图标,进行调整,“快照”确定当 前位置。
参照下图,设计一万向连接传动机构,结构、尺寸 均自己设计确定,并装配、运动仿真、分析。
缺省专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料sva专业资料专业资料专业资料四连杆机构一装配1机架左

Creo 7.0基础教程 第8章机构运动仿真设计

Creo 7.0基础教程 第8章机构运动仿真设计

销连接
同连杆装配







复制粘贴
配置文件: engine
仿真设计-机构模块
前面我们已经对引擎机构进行了仿真装配,但要让其仿真运动起来,需要对其添加动力, 即添加电机,仿真运动起来后我们可以对其进行运动分析,了解机构上某点的位置、速度 和加速度等的运动轨迹。
1.设置伺服电动机;2.进行机构分析
配置文件夹:CH8\圆柱连接
平面连接
平面连接的连接元件既可以在一个平面内移动,也可以绕垂直于该平面的轴 线转动,有两个移动自由度和一个转动自由度
配置文件夹:CH8\平面连接
球连接
球连接的连接元件在约束点上可以向任何方向转动,球连接只需一个点对齐 约束,球连接有三个转动自由度,没有移动自由度
配置文件夹:CH8\球连接
配置文件夹:CH8\凸轮连接
齿轮链接
配置文件夹:2-5-1齿轮齿条连接
齿轮链接
配置文件夹:2-5-2圆柱+齿轮练习
凸轮链接
配置文件夹: 3-5启用摩擦
仿真设计-发动机运动仿真
6DOF连接是元件与组件间无约束的一种连接。具有三个转动自由度和三个 移动自由度,选择两个元件的坐标系作为参考,但注意不是约束
配置文件夹:CH8\6DOF连接
槽连接
槽连接可以使元件上的一点始终在另一元件中的一条曲线上运动,点可以是基准点也可以 是顶点,曲线可以是基准曲线也可以是3D曲线,也可以是多条曲线,但这多条曲线必须连续。 槽连接有三个转动自由度和一个沿曲线移动的移动自由度
移自由度为1; 5. 平面连接:元件可以在配合平面内进行平移和绕平面法向的轴线旋转,旋转自由
度为1,平移自由度为2; 6. 球连接:元件可以绕配合点进行空间旋转,旋转自由度为3,平移自由度为0; 7. 焊缝连接:两个元件按指定坐标系固定在一起,自由度为0;

机械设计实用机构运动仿真图解

机械设计实用机构运动仿真图解

目 录前言第一部分 常用基本机构介绍1.平面连杆机构1)铰链四杆机构2)单移动副四杆机构3)双移动副四杆机构2.凸轮机构1)凸轮机构的组成及特点2)凸轮机构的分类3.齿轮机构1)齿轮机构的组成2)齿轮机构的类型4.轮系1)定轴轮系2)周转轮系3)混合轮系第二部分 运动仿真应用实例例1 雨刷器例2 扇形齿轮做摇杆的停歇送料机构例3 搅拌撒草机构例4 插秧机例5 划桨机构例6 曲柄摇杆与曲柄滑块串接机构例7 齿轮副连接曲柄摇杆与摆动导杆机构例8 利用连杆上一点近似直线轨迹的皮革抛光机构例9 割草机驱动机构例10 双面刀刃割草机驱动机构例11 肘杆夹紧机构1例12 肘杆夹紧机构2例13 双肘杆联动夹紧机构例14 不自锁推拉夹紧机构例15 多轴钻例16 平行四杆机构用于带轮涨紧机构例17 电动机皮带轮涨紧机构例18 平行四杆机构做停歇送料机构例19 六组平行四杆机构例20 梨爪伸缩机构例21 孔销联轴器例22 十字滑块联轴器例23 可逆转坐席机构例24 砂箱翻转机构例25 开关炉门机构例26 前轮转向机构例27 卸料小车挡料板自动开启机构例28 转动导杆与摆动导杆串接机构例29 转动导杆与停歇运转的摆动导杆机构例30 转动导杆切纸机构例31 曲柄摇杆与正弦串接机构例32 曲柄摆动导杆与正弦串接机构例33 曲柄摇块滑块三级机构例34 曲柄摇杆滑块三级机构例35 双曲柄与曲柄滑块串接机构例36 斜直槽双移动副机构例37 摆动导杆与双滑块机构例38 曲柄双滑块机构用于金属丝(片)成型机构例39 偏置曲柄滑块机构(弓锯床运动机构)例40 曲柄滑块与转动导杆串接机构例41 增大滑块行程机构例42 曲柄摇块机构实现近似直线轨迹例43 输出摆杆有停歇的铰链连杆机构例44 双摇杆搬运机构例45 双曲柄与转动导杆串接机构例46 转动导杆机构应用实例例47 机架长度可调的摆动导杆机构例48 摆杆极限位置可调节的铰链六杆机构例49 深拉压力机例50 用转动导杆调节切纸速度的机构例51 输入/输出均为转动的导杆机构例52 输入/输出均为转动的导杆机构应用实例例53 直线运动机构例54 双连杆送料机构例55 可实现单侧停歇的摆动导杆机构例56 从动件在极限位置有较长时间停歇的机构例57 六杆压力机机构例58 双摇杆夹紧机构例59 组合夹紧机构例60 凸轮连杆组合输送薄板机构例61 热合联动机构例62 双凸轮与铰链四杆组合的步进输送机构例63 两个相同的曲柄摇杆组合的步进输送机构例64 输出构件做停歇摆动机构例65 等宽凸轮移动间歇机构例66 蜗轮蜗杆用于挑膜机构例67 齿轮齿条用于拉膜机构例68 风扇摇头机构例69 正反转销驱动摆杆机构例70 翻转机构例71 双偏心轮驱动导杆机构例72 凸轮与转动导杆组合机构例73 切膜(纸)机构例74 气钻行星齿轮机构例75 对开螺母机构例76 齿轮升降机构例77 凸轮调节锥齿轮周转轮系输出轴转速机构例78 凸轮调节输出轴转速机构例79 手动夹爪机构例80 量筒开盖落料机构例81 保持工件姿势不变的运转机构例82 手动搅拌器例83 开门机构例84 摆动式油泵例85 手动双联行星机构例86 双凸轮控制二维移动机构例87 增大凸轮升程角转动导杆机构例88 桨轮机构例89 转动导杆与正弦机构组合的机构例90 电磁夹紧机构例91 夯土机例92 抛光机构例93 四导杆机构例94 增大摆角的摆动导杆机构例95 凸轮齿轮机构例96 螺杆充填机例97 齿轮连杆组合机构例98 两偏心齿轮往复运动机构例99 一组锥齿轮传动机构例100 双发动机速度指示机构例101 后面夹紧机构例102 螺母驱动转动压板夹紧机构例103 翻转压板与楔夹紧机构例104 针孔传动机构例105 齿轮正弦机构例106 送膜机构例107 封膜机构例108 固定槽凸轮与摆动从动杆机构例109 移动夹紧机构例110 凸轮夹紧机构例111 可调行程的凸轮绕线机构例112 开袋热合机构例113 开锁机构例114 切膜机构例115 摆动齿轮行星减速机构例116 单万向联轴器例117 双万向联轴器例118 有缺口的齿轮传动机构例119 直线导轨组合机构例120 装载机例121 从动件在极限位置有较长停歇的机构例122 移动导杆有单侧停歇的机构例123 输出摆杆有双侧停歇的机构例124 连杆上一点直线轨迹平行于机架的四杆机构例125 车制椭圆机构例126 调整刀具车制八边形机构例127 加工卵形零件的车床夹具例128 机床尾座运动机构例129 双摆杆挠性件差动机构(抛磨机)例130 平衡吊直线引导机构例131 热合夹紧机构例132 实现精确直线行星轮系连杆机构例133 实现精确直线移动的双滑块机构例134 无导轨虎钳例135 主从动轴线重合的齿轮连杆机构例136 深拉压力机机构例137 齿轮-连杆组合机构例138 带轮驱动的导杆机构例139 带固定凸轮的凸轮连杆机构例140 移动导杆近似等速移动机构例141 锁扣眼机构例142 摆动式飞剪机构例143 封罐机例144 可变节距扭绞金属线机构例145 连轧机差动减速器例146 导杆行星齿轮组合机构例147 调位-对中机构例148 拉膜辊调节机构例149 齿轮-螺旋差动机构例150 用行星齿轮实现微量进给机构例151 宽三角带式机械无级调速器例152 直线引导机构例153 平行钳口的夹钳例154 简易平口钳例155 滑槽杠杆式抓取机构结构1例156 滑槽杠杆式抓取机构结构2例157 连杆杠杆式抓取机构结构1例158 连杆杠杆式抓取机构结构2例159 连杆杠杆式抓取机构结构3例160 平板式抓取机构例161 平面平行移动连杆式抓取机构例162 手臂伸屈机构例163 圆锥齿轮行星机构机械手1例164 圆锥齿轮行星机构机械手2例165 开袋机构机械设计实用机构运动仿真图解朱金生 凌云 编著電子工業出版社Publishing House of Electronics Industry 北京·BEIJING本书是作者多年实践经验的结晶,通过对精选的典型实用运动机构的三维仿真、图解、分析,让读者轻松、快速掌握其运动原理、特点,开拓设计思路,在工作中举一反三。

CATIADMU运动机构仿真设计

CATIADMU运动机构仿真设计

CATIADMU运动机构仿真设计CATIA是一种常用的计算机辅助设计软件,其中包含了DMU(数字化模型精度)运动模块,可以用来进行机构仿真设计。

DMU运动机构仿真设计是利用数字化模型来模拟和分析机械系统中各个零部件之间的相对运动。

本文将详细介绍CATIADMU运动机构仿真设计的基本原理及其步骤。

首先,进行DMU运动机构仿真设计时,需要先建立机械系统的几何模型。

CATIA提供了丰富的建模工具,可以通过创建零部件、装配关系和约束等方式来构建机械系统的几何模型。

构建模型时应注意尽量保持模型的简洁性,减少不必要的细节,以提高仿真的计算效率。

接下来,需要对机械系统的各个零部件进行运动学建模。

CATIA提供了多种类型的运动模型,如旋转、平移、剪切、复杂曲线等,可以根据实际情况选择合适的运动模型进行建模。

运动学建模的目的是将机械系统的几何模型与运动规律相结合,确定各个零部件之间的运动关系。

完成运动学建模后,需要为机械系统的各个零部件添加运动学约束。

运动学约束描述了每个零部件的运动范围和运动方式,可以通过刚体关系、轴向约束、连接约束和平面约束等方式来定义。

运动学约束的设置应尽量符合实际情况,并满足机械系统的设计要求。

在建立运动学约束后,还需要对机械系统添加运动学驱动。

运动学驱动描述了机械系统的运动输入和输出,可以通过转动轴、线性运动、旋转预定义曲线等方式来实现。

运动学驱动的设置应基于机械系统的实际工作原理,并考虑到各个零部件之间的相互影响。

完成运动学驱动设置后,就可以对机械系统进行运动分析和仿真。

CATIA提供了丰富的仿真工具,可以模拟机械系统在各种条件下的运动特性和性能。

通过仿真分析,可以评估机械系统的稳定性、可靠性和运动性能,并在需要时进行优化和改进。

最后,进行DMU运动机构仿真设计后,还可以利用CATIA提供的动画功能,生成机械系统的运动动画。

动画可以直观地展示机械系统的运动过程和效果,有助于理解和沟通机械系统的设计意图。

运动仿真知识点总结

运动仿真知识点总结

运动仿真知识点总结一、运动仿真的基本原理1. 动力学原理:运动仿真的基本原理之一是动力学原理。

动力学原理是指研究物体在外力作用下产生的运动规律的学科。

它通过牛顿定律、运动矢量、质点动力学、刚体动力学等方面的研究,确定了物体的运动轨迹、速度、加速度等信息,为运动仿真提供了基本的数学模型和理论基础。

2. 控制理论:运动仿真的基本原理之二是控制理论。

控制理论是指研究如何通过控制器来实现对系统运动的控制和调节的一门学科。

在运动仿真中,通过控制器对仿真模型进行控制,可以使其产生不同的运动行为,从而实现对物体、机器人等的精确控制和模拟。

3. 数值计算方法:运动仿真的基本原理之三是数值计算方法。

数值计算方法是指利用计算机对数学问题进行计算和模拟的一种方法。

在运动仿真中,利用数值计算方法对动力学方程、控制模型等进行离散化和求解,可以实现对运动仿真模型的精确求解和模拟。

二、运动仿真的应用领域1. 体育竞赛:运动仿真技术在体育竞赛中得到了广泛的应用。

通过对运动员的运动规律、力学特性等进行仿真,可以对比赛结果进行预测,帮助教练和运动员进行训练和比赛策略的制定。

2. 工程设计:运动仿真技术在工程设计中也得到了广泛的应用。

通过对机械装置、汽车、飞机、船舶等的运动特性进行仿真,可以评估其性能、优化设计方案,减少试验和开发成本。

3. 医学研究:运动仿真技术在医学研究中有着重要的应用。

通过对人体运动、姿势、步态等进行仿真,可以帮助医生对疾病、伤病进行诊断和治疗,设计康复训练方案。

4. 航天航空:运动仿真技术在航天航空领域也有着重要的应用。

通过对航天器、飞机、火箭等的运动特性进行仿真,可以评估其飞行性能、设计控制系统,确保航天航空任务的成功执行。

5. 虚拟现实:运动仿真技术在虚拟现实领域的应用也越来越广泛。

通过对虚拟环境中物体的运动进行仿真,可以实现沉浸式体验、互动式设计等功能,提高虚拟现实系统的真实感和逼真程度。

三、运动仿真的发展现状目前,运动仿真技术已经取得了重要的进展,形成了一系列成熟的理论、方法和工具。

PROE运动仿真基础-四连杆机构

PROE运动仿真基础-四连杆机构

将各个杆件组装在一起,形成 一个完整的四连杆机构模型。
添加运动副和运动驱动
在装配模式下,将四连杆机构添加到 装配文件中。
添加运动驱动,指定运动副的运动方 式和运动参数,如速度和加速度。
选择合适的运动副类型,如旋转副或 移动副,将运动副添加到相应的杆件 上。
设置初始条件和运动参数
01
根据需要设置初始条件,如初始角度或初始位置。
ProE运动仿真基础-四 连杆机构
目 录
• 四连杆机构简介 • Pro/E运动仿真基础 • 四连杆机构在Pro/E中的建模 • 四连杆机构运动仿真分析 • 四连杆机构优化设计 • 案例分析与实践
01
四连杆机构简介
定义与特点
定义
四连杆机构是一种由四个杆件相互连 接而成的机械结构,通过改变杆件的 长度或相对位置,可以实现复杂的运 动轨迹和运动形式。
02
根据实际需求,设置运动参数,如运动时间、运动 轨迹等。
03
运行仿真,观察四连杆机构的运动情况,并调整参 数以优化机构性能。
04
四连杆机构运动仿真分 析
仿真运行与结果查看
01
启动Pro/E软件,打开四连杆机构 模型。
02
在菜单栏中选择“工具”-“机 构”-“仿真”,进入仿真界面。
在仿真界面中设置仿真参数,如 时间、步数等,然后点击“运行 ”按钮开始仿真。
机构的运动特性,如周期性、
死点等。
06
案例二:平面四杆机构的优化设计
总结词:通过Pro/E软件对 平面四杆机构进行优化设计
,提高其运动性能。
建立平面四杆机构的几何模 型。
定义设计变量、约束条件和 目标函数。
详细描述
使用Pro/E的优化工具进行 优化设计。

基于UG的运动仿真及高级仿真

基于UG的运动仿真及高级仿真

《基于UG的运动仿真及高级仿真》项目一:机构运动仿真项目要求:熟悉UG机构运动仿真模块的内容,掌握运动仿真的一般流程和方法,并根据分析输出结果对机构进行优化。

任务一:熟悉掌握运动仿真基础知识运动分析模块(Scenario for motion)是UG/CAE模块中的主要部分,用于建立运动机构模型,分析其运动规律。

通过UG/Modeling的功能建立一个三维实体模型,利用UG/Motion的功能给三维实体模型的各个部件赋予一定的运动学特性,再在各个部件之间设立一定的连接关系既可建立一个运动仿真模型。

UG/Motion模块可以进行机构的干涉分析,跟踪零件的运动轨迹,分析机构中零件的速度、加速度、作用力、反作用力和力矩等。

运动分析模块的分析结果可以指导修改零件的结构设计(加长或缩短构件的力臂长度、修改凸轮型线,调整齿轮比等)或调整零件的材料(减轻或加重或增加硬度等)。

设计的更改可以反映在装配主模型的复制品分析方案中,再重新分析,一旦确定优化的设计方案,设计更改就可反映在装配主模型中。

一、运动方案创建步骤1.创建连杆(Links);2.创建两个连杆间的运动副(Joints)3.定义运动驱动(Motion Driver)无运动驱动(none):构件只受重力作用运动函数:用数学函数定义运动方式恒定驱动:恒定的速度和加速度简谐运动驱动:振幅、频率和相位角关节运动驱动:步长和步数二、创建连杆创建连杆对话框将显示连杆默认的名字,格式为L001、L002 (00)质量属性选项:质量特性可以用来计算结构中的反作用力。

当结构中的连杆没有质量特性时,不能进行动力学分析和反作用力的静力学分析。

根据连杆中的实体,可以按默认设置自动计算质量特性,在大多数情况下,这些默认计算值可以生成精确的运动分析结果。

但在某些特殊情况下,用户必须人工输入这些质量特性。

固定连杆:人工输入质量属性,需要指定质量、惯性矩、初始移动速度和初始转动速度。

proe机构运动仿真教程

proe机构运动仿真教程

proe机构运动仿真教程Pro/E是一款专业的三维参数化设计软件,具备强大的建模、绘图和分析功能,同时也支持运动仿真。

Pro/E机构运动仿真可以帮助设计师在设计机构时预测机构在运动过程中的动态行为和工作状态,从而提高设计的准确性和效率。

本教程将介绍Pro/E机构运动仿真的基础知识和操作步骤。

一、机构运动仿真概述机构运动仿真是指通过计算机模拟机构在不同工作状态下的动态行为和运动学、动力学特性,以评估机构的工作效率、可靠性和稳定性等。

机构运动仿真可以帮助设计师预测机构在实际工作中的行为,包括运动范围、速度、加速度和力等指标。

与传统的试制方法相比,机构运动仿真可以极大地降低试制成本和时间,同时也提高了设计的准确性和效率。

二、机构运动仿真的基础知识1. 机构机构是由两个或多个刚体通过连杆、齿轮、曲柄等连接构成的机械系统。

机构的功能是将输入运动和输出运动分离,从而实现不同类型的运动转换。

机构的类型根据连接的刚体个数可分为二级机构和三级机构;根据传递运动的方式可分为平面机构和空间机构;根据传递运动的数量可分为单自由度机构和多自由度机构。

2. 运动学和动力学运动学是研究机构运动的几何学原理,包括机构末端轨迹、速度、加速度和角度等指标;而动力学是研究机构运动的动力学原理,包括机构的力学特性、动力特性和能量特性等。

机构运动仿真需要同时考虑机构的运动学和动力学特性,并进行分析和仿真。

3. 运动学链运动学链是指连接机构各个部件的连杆、齿轮和副件等构成的运动链路。

运动学链的结构会影响机构的运动学性能,因此在机构运动仿真前需要建立运动学链模型,并确定各个部件之间的关系和运动学指标等。

三、机构运动仿真的操作步骤机构运动仿真需要按照以下基本步骤进行:1. 建立模型并确定机构类型在Pro/E中打开新的机构模型,并根据实际需求从零开始建立机构模型。

确定机构类型,包括二级机构或三级机构、平面机构或空间机构、单自由度机构或多自由度机构等。

机构运动仿真的一般过程

机构运动仿真的一般过程

机构运动仿真的一般过程机构运动仿真是指通过计算机模拟机构运动过程,以实现机构运动的设计、分析和优化。

它是机械设计中不可或缺的一部分,可以有效地减少设计时间、降低成本、提高设计精度。

下面将介绍机构运动仿真的一般过程。

第一步:建立机构模型机构模型是机构运动仿真的基础,它是仿真的对象。

建立机构模型的过程包括选择合适的仿真软件、导入设计数据、定义零件特性等。

在建立机构模型时,需要注意选择合适的零件库和材料库,确保模型的准确性和可靠性。

第二步:定义运动副和力学特性运动副是指机构中连接零件并实现相对运动的零件,它是机构运动仿真的核心。

在定义运动副时,需要考虑运动副的类型、运动自由度、转动方向、运动范围等因素。

同时,还需要定义力学特性,如零件的质量、惯性、摩擦等,以便进行后续的力学分析和优化。

第三步:设置运动参数和载荷条件运动参数是指机构中运动副的运动速度、加速度、角度等参数,它是机构运动仿真的输入。

在设置运动参数时,需要考虑机构的实际工作条件,如转速、工作时间等。

同时,还需要设置载荷条件,包括静载荷和动载荷,以便进行机构的强度分析和优化。

第四步:进行仿真计算和分析进行机构运动仿真计算的过程是通过计算机模拟机构的运动过程,以获取机构的运动轨迹、速度、加速度等数据。

在进行仿真计算时,需要注意选择合适的仿真算法和求解器,以保证计算的准确性和稳定性。

同时,还需要进行各种力学分析和优化,如强度分析、刚度分析、动力学分析等,以便对机构的设计进行优化。

第五步:评估仿真结果和优化设计评估仿真结果是指通过对仿真计算的数据进行分析和比较,评估机构的运动性能和强度性能,以便对机构的设计进行优化。

在进行评估时,需要考虑机构的实际工作条件和设计要求,如运动精度、承载能力、寿命等。

同时,还需要进行适当的设计优化,如修改运动副、增加零件强度、减轻重量等,以达到最佳的设计效果。

机构运动仿真的一般过程包括建立机构模型、定义运动副和力学特性、设置运动参数和载荷条件、进行仿真计算和分析、评估仿真结果和优化设计等步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机构仿真是PROE的功能模块之一。

PROE能做的仿真内容还算比较好,不过用好的兄弟不多。

当然真正专做仿真分析的兄弟,估计都用Ansys去了。

但是,Ansys研究起来可比PROE麻烦多了。

所以,学会PROE的仿真,在很多时候还是有用的。

我再发一份学习笔记,并整理一下,当个基础教程吧。

希望能对学习仿真的兄弟有所帮助。

术语创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。

连接(Connections) - 定义并约束相对运动的主体之间的关系。

自由度(Degrees of Freedom) - 允许的机械系统运动。

连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。

拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。

动态(Dynamics) - 研究机构在受力后的运动。

执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。

齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。

基础(Ground) - 不移动的主体。

其它主体相对于基础运动。

机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。

运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。

环连接(Loop Connection) - 添加到运动环中的最后一个连接。

运动(Motion) - 主体受电动机或负荷作用时的移动方式。

放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。

回放(Playback) - 记录并重放分析运行的结果。

伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。

可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。

LCS - 与主体相关的局部坐标系。

LCS 是与主体中定义的第一个零件相关的缺省坐标系。

UCS - 用户坐标系。

WCS - 全局坐标系。

组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。

运动分析的定义在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。

运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。

因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。

运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。

如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。

使用运动分析可获得以下信息:几何图元和连接的位置、速度以及加速度元件间的干涉机构运动的轨迹曲线作为Pro/ENGINEER 零件捕获机构运动的运动包络运动分析工作流程创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接检查模型:拖动组件,检验所定义的连接是否能产生预期的运动加入运动分析图元:设定伺服电机准备分析:定义初始位置及其快照,创建测量分析模型:定义运动分析,运行结果获得:结果回放,干涉检查,查看测量结果,创建轨迹曲线,创建运动包络装入元件时的两种方式:机构连接与约束连接向组件中增加元件时,会弹出“元件放置”窗口,此窗口有三个页面:“放置”、“移动”、“连接”。

传统的装配元件方法是在“放置”页面给元件加入各种固定约束,将元件的自由度减少到0,因元件的位置被完全固定,这样装配的元件不能用于运动分析(基体除外)。

另一种装配元件的方法是在“连接”页面给元件加入各种组合约束,如“销钉”、“圆柱”、“刚体”、“球”、“6DOF”等等,使用这些组合约束装配的元件,因自由度没有完全消除(刚体、焊接、常规除外),元件可以自由移动或旋转,这样装配的元件可用于运动分析。

传统装配法可称为“约束连接”,后一种装配法可称为“机构连接”。

约束连接与机构连接的相同点:都使用PROE的约束来放置元件,组件与子组件的关系相同。

约束连接与机构连接的不同点:约束连接使用一个或多个单约束来完全消除元件的自由度,机构连接使用一个或多个组合约束来约束元件的位置。

约束连接装配的目的是消除所有自由度,元件被完整定位,机构连接装配的目的是获得特定的运动,元件通常还具有一个或多个自由度。

“元件放置”窗口:机构连接的类型机构连接所用的约束都是能实现特定运动(含固定)的组合约束,包括:销钉、圆柱、滑动杆、轴承、平面、球、6DOF、常规、刚性、焊接、槽,共11种。

销钉:由一个轴对齐约束和一个与轴垂直的平移约束组成。

元件可以绕轴旋转,具有1个旋转自由度,总自由度为1。

轴对齐约束可选择直边或轴线或圆柱面,可反向;平移约束可以是两个点对齐,也可以是两个平面的对齐/配对,平面对齐/配对时,可以设置偏移量。

圆柱:由一个轴对齐约束组成。

比销钉约束少了一个平移约束,因此元件可绕轴旋转同时可沿轴向平移,具有1个旋转自由度和1个平移自由度,总自由度为2。

轴对齐约束可选择直边或轴线或圆柱面,可反向。

滑动杆:即滑块,由一个轴对齐约束和一个旋转约束(实际上就是一个与轴平行的平移约束)组成。

元件可滑轴平移,具有1个平移自由度,总自由度为1。

轴对齐约束可选择直边或轴线或圆柱面,可反向。

旋转约束选择两个平面,偏移量根据元件所处位置自动计算,可反向。

轴承:由一个点对齐约束组成。

它与机械上的“轴承”不同,它是元件(或组件)上的一个点对齐到组件(或元件)上的一条直边或轴线上,因此元件可沿轴线平移并任意方向旋转,具有1个平移自由度和3个旋转自由度,总自由度为4。

平面:由一个平面约束组成,也就是确定了元件上某平面与组件上某平面之间的距离(或重合)。

元件可绕垂直于平面的轴旋转并在平行于平面的两个方向上平移,具有1个旋转自由度和2个平移自由度,总自由度为3。

可指定偏移量,可反向。

球:由一个点对齐约束组成。

元件上的一个点对齐到组件上的一个点,比轴承连接小了一个平移自由度,可以绕着对齐点任意旋转,具有3个入旋转自由度,总自由度为3。

6DOF:即6自由度,也就是对元件不作任何约束,仅用一个元件坐标系和一个组件坐标系重合来使元件与组件发生关联。

元件可任意旋转和平移,具有3个旋转自由度和3个平移自由度,总自由度为6。

刚性:使用一个或多个基本约束,将元件与组件连接到一起。

连接后,元件与组件成为一个主体,相互之间不再有自由度,如果刚性连接没有将自由度完全消除,则元件将在当前位置被“粘”在组件上。

如果将一个子组件与组件用刚性连接,子组件内各零件也将一起被“粘”住,其原有自由度不起作用。

总自由度为0。

焊接:两个坐标系对齐,元件自由度被完全消除。

连接后,元件与组件成为一个主体,相互之间不再有自由度。

如果将一个子组件与组件用焊接连接,子组件内各零件将参照组件坐标系发按其原有自由度的作用。

总自由度为0。

槽:是两个主体之间的一个点----曲线连接。

从动件上的一个点,始终在主动件上的一根曲线(3D)上运动。

槽连接只使两个主体按所指定的要求运动,不检查两个主体之间是否干涉,点和曲线甚至可以是零件实体以外的基准点和基准曲线,当然也可以在实体内部。

机构连接类型:约束连接:常规:也就是自定义组合约束,可根据需要指定一个或多个基本约束来形成一个新的组合约束,其自由度的多少因所用的基本约束种类及数量不同而不同。

可用的基本约束有:匹配、对齐、插入、坐标系、线上点、曲面上的点、曲面上的边,共7种。

在定义的时候,可根据需要选择一种,也可先不选取类型,直接选取要使用的对象,此时在类型那里开始显示为“自动”,然后根据所选择的对象系统自动确定一个合适的基本约束类型。

常规—匹配/对齐:对齐)。

单一的“匹配/对齐”构成的自定义组合约束转换为约束连接后,变为只有一个“匹配/对齐”约束的不完整约束,再转换为机构约束后变为“平面”连接。

这两个约束用来确定两个平面的相对位置,可设定偏距值,也可反向。

定义完后,在不修改对象的情况下可更改类型(匹配常规—插入:选取对象为两个柱面。

单一的“插入”构成的自定义组合约束转换为约束连接后,变为只有一个“插入”约束的不完整约束,再转换为机构约束后变为“圆柱”连接。

常规—坐标系:选取对象为两个坐标系,与6DOF的坐标系约束不同,此坐标系将元件完全定位,消除了所有自由度。

单一的“坐标系”构成的自定义组合约束转换为约束连接后,变为只有一个“坐标系”约束的完整约束,再转换为机构约束后变为“焊接”连接。

常规—线上点:选取对象为一个点和一条直线或轴线。

与“轴承”等效。

单一的“线上点”构成的自定义组合约束转换为约束连接后,变为只有一个“线上点”约束的不完整约束,再转换为机构约束后变为“轴承”连接。

常规—曲面上的点:选取对象为一个平面和一个点。

单一的“曲面上的点”构成的自定义组合约束转换为约束连接后,变为只有一个“曲面上的点”约束的不完整约束,再转换为机构约束后仍为单一的“曲面上的点”构成的自定义组合约束。

常规—曲面上的边:选取对象为一个平面/柱面和一条直边。

单一的“曲面上的点”构成的自定义组合约束不能转换为约束连接。

自由度与冗余约束自由度(DOF)是描述或确定一个系统(主体)的运动或状态(如位置)所必需的独立参变量(或坐标数)。

一个不受任何约束的自由主体,在空间运动时,具有6个独立运动参数(自由度),即沿XYZ三个轴的独立移动和绕XYZ三个轴的独立转动,在平面运动时,则只具有3个独立运动参数(自由度),即沿XYZ三个轴的独立移动。

主体受到约束后,某些独立运动参数不再存在,相对应的,这些自由度也就被消除。

当6个自由度都被消除后,主体就被完全定位并且不可能再发生任何运动。

如使用销钉连接后,主体沿XYZ三个轴的平移运动被限制,这三个平移自由度被消除,主体只能绕指定轴(如X轴)旋转,不能绕另两个轴(YZ轴)旋转,绕这两个轴旋转的自由度被消除,结果只留下一个旋转自由度。

冗余约束指过多的约束。

在空间里,要完全约束住一个主体,需要将三个独立移动和三个独立转动分别约束住,如果把一个主体的这六个自由度都约束住了,再另加一个约束去限制它沿X轴的平移,这个约束就是冗余约束。

合理的冗余约束可用来分摊主体各部份受到的力,使主体受力均匀或减少磨擦、补偿误差,延长设备使用寿命。

冗余约束对主体的力状态产生影响,对主体的对运动没有影响。

因运动分析只分析主体的运动状况,不分析主体的力状态,在运动分析时,可不考虑冗余约束的作用,而在涉及力状态的分析里,必须要适当的处理好冗余约束,以得到正确的分析结果。

系统在每次运行分析时,都会对自由度进行计算。

并可创建一个测量来计算机构有多少自由度、多少冗余。

相关文档
最新文档