高考数学-指数函数图像和性质及经典例题
高考学生指数与对数函数知识点小结及典型例题

高考学生指数与对数函数知识点小结及典型例题高考中经常考到指数函数和对数函数的概念和性质,下面来介绍一些基础知识。
一、指数与指数幂的运算1.根式的概念:如果 $x^n=a$,那么 $x$ 叫做 $a$ 的$n$ 次方根,其中 $n>1$,且 $n\in N$。
2.分数指数幂:规定正数的分数指数幂的意义为$a^{m/n}=n\sqrt[n]{a^m}(a>0,m,n\in N^*,n>1)$,负分数指数幂没有意义。
3.实数指数幂的运算性质:$(a^r)^s=a^{rs}(a>0,r,s\in R)$,$a^r\cdot a^s=a^{r+s}(a>0,r,s\in R)$,$(ab)^r=a^r\cdotb^r(a>0,r\in R)$。
二、指数函数及其性质1.指数函数的概念:函数 $y=ax(a>0,a\neq1)$ 叫做指数函数,其中 $x$ 是自变量,定义域为 $R$。
注意:底数不能是负数、零和 $1$。
2.指数函数的图象和性质:当 $00$,非奇非偶函数,函数图象过定点 $(0,1)$;当 $a>1$ 时,函数图象在 $R$ 上单调递增,定义域为 $R$,值域为 $y>0$,非奇非偶函数,函数图象过定点 $(0,1)$。
利用函数的单调性,结合图象,可以得到一些性质,例如在 $[a,b]$ 上,$f(x)=ax(a>0,a\neq1)$ 的值域是$[f(a),f(b)]$ 或 $[f(b),f(a)]$。
三、对数函数1.对数的概念:如果 $a^x=N(a>0,a\neq1)$,那么数 $x$ 叫做以 $a$ 为底 $N$ 的对数,记作 $x=\log_a N$。
注意底数的限制 $a>0$,且 $a\neq1$。
2.对数的运算性质:如果 $a>0$,且 $a\neq1$,$M>0$,$N>0$,那么:$\log_a MN=\log_a M+\log_a N$,$\log_a\frac{M}{N}=\log_a M-\log_a N$,$\log_a M^r=r\log_aM(a>0,M>0,r\in R)$。
高中数学必修一2.1.2.2指数函数的图像及性质的应用

解得x<
1 5
1.如果指数函数 f (x) (a 1)x 是 R 上的减函数,那么 a 的取值范围是
( C)
A. a 2
B. a 2 C.1 a 2
D. 0 a 1
2.
设1 3
1 3
b
1 a 3
1 .则有
A. 0 b a 1 B. a b 1
4.5 4
在R上是增函数, ; 而2.5<3,所以,
3.5
3
fx
=
1.7x 2.5
2
1.5
1.72.5< 1.73
1 0.5
-2
-1
-0.5
1
2
3
4
5
6
② 0.80.1 , 0.80.2 解:利用函数单调性 0.80.1 与 0.80.2
的底数是0.8,它们可以看成函数 y= 0.8x
解:(1) y1 y2 当且仅当 3x 1 2x ,
解得 x 1 5
(2)当 a 1 时,函数 y a x 为增函数,
故 y1 y2 当且仅当 3x 1 2x ,
解得 x 1 5
当0<a<1时,函数y=ax为减函数,
故y1>y2当且仅当3x+1<-2x
(2)
(
1
)
2 3
,
3
25
.
3
(1) 由指数函数性质知 1.80.6 >1.80=1,0.81.6<0.80=1, 所以 1.8 0.6>0.81.6
(2) 由指数函数性质知
(
指数函数的性质及常考题型(含解析)

【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个
)
B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于
数
函
数
︶
如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)
:
(1)底数相同,指数不同:利用指数函数的单调性来判断;
培
优
篇
高
【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).
中
(1)求()的解析式;
数
(2)解不等式( + 3) > (4).
学
︵
指
数
函
数
︶
【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1
指
C.0 < < 1, > 1
D. > 1,0 < < 1
数
函
【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =
高中数学:指数函数的图像和性质练习及答案

高中数学:指数函数的图像和性质练习及答案指数函数的图象与性质1.指数函数y=a x,y=b x,y=c x,y=d x在同一坐标系内的图象如图所示,则a、b、c、d的大小顺序是( )A.b<a<d<cB.a<b<d<cC.b<a<c<dD.b<c<a<d2.已知1>n>m>0,则指数函数①y=m x,②y=n x的图象为( )A.B.C.D.3.函数y=a x-(a>0,且a≠1)的图象可能是( )A.B.C.D.4.把函数y=f(x)的图象向左,向下分别平移2个单位,得到y=2x的图象,则f(x)的解析式是( ) A.f(x)=2x+2+2B.f(x)=2x+2-2C.f(x)=2x-2+2D.f(x)=2x-2-25.若关于x的方程|a x-1|=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)6.已知函数f(x)=|2x-1-1|.(1)作出函数y=f(x)的图象;(2)若a<c,且f(a)>f(c),求证:2a+2c<4.指数函数的定义域7.已知函数f(x)的定义域是(1,2),则函数f(2x)的定义域是( ) A.(0,1)B.(2,4)C.(,1)D.(1,2)8.函数y=的定义域是________.指数函数的值域9.函数y=的值域为________.10.当x∈[0,1]时,函数f(x)=3x+2的值域为________.指数函数的性质11.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数12.关于指数函数,有下列几个命题:①指数函数的定义域为(0,+∞);②指数函数的值域是不包括1的;③指数函数f(x)=2x和f(x)=()x关于y轴对称;④指数函数都是单调函数.其中正确的命题有________(填写正确命题的序号).13.指数函数f(x)=a x(a>0,a≠1)对于任意的x1、x2∈R,都有f(x1)f(x2)________f(x1+x2).(填“>”,“<”或“=”)指数幂的大小比较14.a=与b=()5的大小关系是( )A.a>bB.a<bC.a=bD.大小关系不定15.设<()b<()a<1,那么( )A.a a<a b<b aB.a a<b a<a bC.a b<a a<b aD.a b<b a<a a16.设函数f(x)定义在实数集上,且y=f(x+1)是偶函数,且当x≥1时,f(x)=3x-1,则有( ) A.f()<f()<f()B.f()<f()<f()C.f()<f()<f()D.f()<f()<f()指数方程的解法17.集合M={3,2a},N={a,b},若M∩N={2},则M∪N等于( )A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}18.方程2m·3n-3n+1+2m=13的非负整数解(m,n)=________.19.若方程()x+()x-1+a=0有正数解,则实数a的取值范围是________.指数不等式的解法20.已知不等式为≤3x<27,则x的取值范围( )A.-≤x<3B.≤x<3C.RD.≤x<21.已知f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是( ) A.a>0B.a>1C.a<1D.0<a<122.不等式<2-2x的解集是________.指数函数的单调性23.函数y=的递减区间为( )A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)24.若函数y=(1-2a)x是实数集R上的增函数,则实数a的取值范围为( ) A.(,+∞)B.(-∞,0)C.(-∞,)D.(-,)25.已知函数f(n)=是增函数,则实数a的取值范围是( )A.(0,1)B.(7,8)C.[7,8)D.(4,8)26.函数y=的递增区间是________.27.已知函数f(x)=.(1)若a=1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.指数函数的最值28.已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为( ) A.B.2C.3D.429.已知函数y=9x-2·3x-1,求该函数在区间x∈[-1,1]上的最大值和最小值.30.已知f(x)=9x-2·3x+4,x∈[-1,2].(1)设t=3x,x∈[-1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.与指数函数相关的函数的奇偶性31.函数y=的图象( )A.关于原点对称B.关于直线y=-x对称C.关于y轴对称D.关于直线y=x对称32.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( )A.2B.C.D.a233.函数f(x)=k·a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),(1)求函数f(x)的解析式;(2)若函数g(x)=,试判断函数g(x)的奇偶性,并给出证明.答案1.指数函数y=a x,y=b x,y=c x,y=d x在同一坐标系内的图象如图所示,则a、b、c、d的大小顺序是( )A.b<a<d<cB.a<b<d<cC.b<a<c<dD.b<c<a<d【答案】A【解析】作直线x=1与各图象相交,交点的纵坐标即为底数,故从下到上依次增大.所以b<a<d<c.故选A.2.已知1>n>m>0,则指数函数①y=m x,②y=n x的图象为( )A.B.C.D.【答案】C【解析】由1>n>m>0可知①②应为两条递减指数函数曲线,故只可能是选项C或D,进而再判断①②与n和m的对应关系,不妨选择特殊点,令x=1,则①②对应的函数值分别为m和n,由m<n知选C.故选C.3.函数y=a x-(a>0,且a≠1)的图象可能是( )A.B.C.D.【答案】D【解析】当a>1时,y=a x-为增函数,且在y轴上的截距为0<1-<1,排除A,B.当0<a<1时,y=a x-为减函数,且在y轴上的截距为1-<0,故选D.4.把函数y=f(x)的图象向左,向下分别平移2个单位,得到y=2x的图象,则f(x)的解析式是( ) A.f(x)=2x+2+2B.f(x)=2x+2-2C.f(x)=2x-2+2D.f(x)=2x-2-2【答案】C【解析】y=2x向上,向右分别平移2个单位得f(x)的图象,所以f(x)=2x-2+2.5.若关于x的方程|a x-1|=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)【答案】D【解析】方程|a x-1|=2a(a>0且a≠1)有两个不相等的实数根转化为函数y=|a x-1|与y=2a有两个交点.①当0<a<1时,如图(1),∴0<2a<1,即0<a<.②当a>1时,如图(2),而y=2a>1不符合要求.综上,0<a<.6.已知函数f(x)=|2x-1-1|.(1)作出函数y=f(x)的图象;(2)若a<c,且f(a)>f(c),求证:2a+2c<4.【答案】(1)f(x)=其图象如图所示.(2)证明由图知,f(x)在(-∞,1]上是减函数,在[1,+∞)上是增函数,故结合条件知必有a<1.若c≤1,则2a<2,2c≤2,所以2a+2c<4;若c>1,则由f(a)>f(c),得1-2a-1>2c-1-1,即2c-1+2a-1<2,所以2a+2c<4.综上知,总有2a+2c<4.7.已知函数f(x)的定义域是(1,2),则函数f(2x)的定义域是( )A.(0,1)B.(2,4)C.(,1)D.(1,2)【答案】A【解析】根据题意可知1<2x<2,则0<x<1,所以函数f(2x)的定义域是(0,1).8.函数y=的定义域是________.【答案】(-∞,]【解析】要使函数y=有意义,则必须()3x-1-≥0,即()3x-1≥()3,∴3x-1≤3,解得x≤.∴函数y=的定义域是(-∞,].故答案为(-∞,].9.函数y=的值域为________.【答案】[0,4)【解析】∵2x>0,∴0≤16-2x<16,则0≤<4,故函数y=的值域为[0,4).10.当x∈[0,1]时,函数f(x)=3x+2的值域为________.【答案】[3,5]【解析】因为指数函数y=3x在区间[0,1]上是增函数,所以30≤3x≤31,即1≤3x≤3,于是1+2≤3x+2≤3+2,即3≤f(x)≤5.11.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( )A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数【答案】B【解析】因为f(x),g(x)的定义域均为R,且f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x),所以f(x)为偶函数,g(x)为奇函数,故选B.12.关于指数函数,有下列几个命题:①指数函数的定义域为(0,+∞);②指数函数的值域是不包括1的;③指数函数f(x)=2x和f(x)=()x关于y轴对称;④指数函数都是单调函数.其中正确的命题有________(填写正确命题的序号).【答案】③④【解析】①指数函数的定义域为R,故①错误;②指数函数的值域是(0,+∞),故②错误;③∵f(x)=()x=2-x,∴指数函数f(x)=2x和f(x)=()x关于y轴对称,故③正确;④当a>1时,y=ax是增函数;当0<a<1时,y=ax是减函数,所以指数函数都是单调函数,故④正确.故答案为③④.13.指数函数f(x)=a x(a>0,a≠1)对于任意的x1、x2∈R,都有f(x1)f(x2)________f(x1+x2).(填“>”,“<”或“=”)【答案】=【解析】∵对于指数函数f(x)=a x(a>0,a≠1),任意取x 1、x2∈R,有f(x1)f(x2)===f(x1+x2).故答案为=.14.a=与b=()5的大小关系是( )A.a>bB.a<bC.a=bD.大小关系不定【答案】A【解析】考察函数y=()x与y=()x知,前者是一个增函数,后者是一个减函数,∴>()0=1,()5<()0=1,∴>()5,即a>b,故选A.15.设<()b<()a<1,那么( )A.a a<a b<b aB.a a<b a<a bC.a b<a a<b aD.a b<b a<a a【答案】C【解析】∵<()b<()a<1,且y=()x在R上是减函数.∴0<a<b<1,∴指数函数y=a x在R上是减函数,∴a b<a a,∴幂函数y=x a在R上是增函数,∴a a<b a,∴a b<a a<b a,故选C.16.设函数f(x)定义在实数集上,且y=f(x+1)是偶函数,且当x≥1时,f(x)=3x-1,则有( ) A.f()<f()<f()B.f()<f()<f()C.f()<f()<f()D.f()<f()<f()【答案】B【解析】∵y=f(x+1)是偶函数,故函数的图象关于直线x=1对称,则f()=f(),f()=f(),又∵当x≥1时,f(x)=3x-1为增函数,且<<,故f()<f()<f(),即f()<f()<f(),故选B.17.集合M={3,2a},N={a,b},若M∩N={2},则M∪N等于( )A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}【答案】D【解析】因为2是它们的公共元素,所以2a=2,a=1,b=2,因此M∪N={1,2,3},选D.18.方程2m·3n-3n+1+2m=13的非负整数解(m,n)=________.【答案】(3,0),(2,2)【解析】方程2m·3n-3n+1+2m=13变形为3n(2m-3)+2m=13.(*)∵m,n为非负整数,∴当m=0,1时,经验证无解,应舍去.当m=2时,(*)化为3n+22=13,解得n=2.此时方程的非负整数解为(2,2).当m=3时,(*)化为5·3n+23=13,即3n=1,解得n=0.当m≥4时,2m-3≥13,左边>右边,(*)无非负整数解.综上可知:方程2m·3n-3n+1+2m=13的非负整数解(m,n)=(3,0),(2,2).故答案为(3,0),(2,2).19.若方程()x+()x-1+a=0有正数解,则实数a的取值范围是________.【答案】(-3,0)【解析】令()x=t,∵方程有正根,∴t∈(0,1).方程转化为t2+2t+a=0,∴a=1-(t+1)2.∵t∈(0,1),∴a∈(-3,0).20.已知不等式为≤3x<27,则x的取值范围( )A.-≤x<3B.≤x<3C.RD.≤x<【答案】A【解析】由题意可得≤3x≤33,再根据函数y=3x在R上是增函数,可得-≤x<3,故选A.21.已知f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是( )A.a>0B.a>1C.a<1D.0<a<1【答案】D【解析】∵f(-2)=a2,f(-3)=a3.f(-2)>f(-3),即a2>a3,故0<a<1.选D.22.不等式<2-2x的解集是________.【答案】{x|x>3,或x<-1}【解析】原不等式化为<()2x,又y=()x为减函数,故x2-3>2x,解得{x|x>3,或x<-1}.23.函数y=的递减区间为( )A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)【答案】B【解析】设u=(x+3)2,y=()u,∵u=(x+3)2在(-∞,-3]上递减,在[-3,+∞)上递增,而y=()u在R上递减,∴y=在[-3,+∞)上递减.24.若函数y=(1-2a)x是实数集R上的增函数,则实数a的取值范围为( )A.(,+∞)B.(-∞,0)C.(-∞,)D.(-,)【答案】B【解析】由题意知函数为指数函数,且为实数集R上的增函数,所以底数1-2a>1,解得a<0.25.已知函数f(n)=是增函数,则实数a的取值范围是( )A.(0,1)B.(7,8)C.[7,8)D.(4,8)【答案】D【解析】因为函数f(n)=是增函数,所以解得4<a<8.26.函数y=的递增区间是________.【答案】[2,+∞)【解析】函数y=的单调递增区间即为y=x2-4x+3的单调递增区间,∵y=x2-4x+3的单调递增区间为[2,+∞),故答案为[2,+∞).27.已知函数f(x)=.(1)若a=1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.【答案】(1)a=1,得f(x)=,∵∈(0,1),∴f(x)的外层函数是一个递减的指数函数;令t=x2-4x+3,则其减区间为(-∞,2),增区间为(2,+∞).∴f(x)的增区间为(-∞,2),减区间为(2,+∞)(2)∵f(x)有最大值为3,∈(0,1),函数t=ax2-4x+3有最小值-1,∴函数t=ax2-4x+3在区间(-∞,)上是减函数,在区间(,+∞)上是增函数由此可得,a>0且f()==3,得-+3=-1,解之得a=1.综上所述,当f(x)有最大值3时,a的值为1.28.已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为( ) A.B.2C.3D.4【答案】B【解析】y=a x(a>1)在[1,2]上是增函数,最大值为a2,最小值为a1,所以a2-a1=2,解得a=2或a=-1(舍).29.已知函数y=9x-2·3x-1,求该函数在区间x∈[-1,1]上的最大值和最小值.【答案】令3x=t,∵-1≤x≤1,∴≤t≤3,∴y=t2-2t-1=(t-1)2-2(其中≤t≤3).∴当t=1时(即x=0时),y取得最小值-2,当t=3时(即x=1时),y取得最大值2. 30.已知f(x)=9x-2·3x+4,x∈[-1,2].(1)设t=3x,x∈[-1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.【答案】(1)∵t=3x在[-1,2]是单调增函数,∴t max=32=9,t min=3-1=.(2)令t=3x,∵x∈[-1,2],∴t∈[,9],原方程变为:f(x)=t2-2t+4,∴f(x)=(t-1)2+3,t∈[,9],∴当t=1时,此时x=0,f(x)min=3,当t=9时,此时x=2,f(x)max=67.题组10 与指数函数相关的函数的奇偶性31.函数y=的图象( )A.关于原点对称B.关于直线y=-x对称C.关于y轴对称D.关于直线y=x对称【答案】A【解析】设函数y=f(x)=,则此函数的定义域为R.f(-x)===-f(x),故函数是奇函数,故它的图象关于原点O对称,故选A.32.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( )A.2B.C.D.a2【答案】B【解析】∵f(x)是奇函数,g(x)是偶函数,∴由f(x)+g(x)=ax-a-x+2,①得f(-x)+g(-x)=-f(x)+g(x)=a-x-ax+2,②①+②,得g(x)=2,①-②,得f(x)=ax-a-x.又g(2)=a,∴a=2,∴f(x)=2x-2-x,∴f(2)=22-2-2=.33.函数f(x)=k·a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),(1)求函数f(x)的解析式;(2)若函数g(x)=,试判断函数g(x)的奇偶性,并给出证明.【答案】(1)由已知得∴k=1,a=,∴f(x)=2x.(2)函数g(x)为奇函数.证明:g(x)=,其定义域为R,又g(-x)===-=-g(x),∴函数g(x)为奇函数.。
指数函数练习题及答案

指数函数练习题及答案指数函数是高中数学中的重要内容之一,也是数学建模和应用题中常见的数学模型。
掌握指数函数的性质和解题方法,对于学生来说是非常重要的。
本文将介绍几道常见的指数函数练习题,并给出详细的解答过程。
一、求解指数函数的定义域和值域1. 已知函数 f(x) = 2^x,求函数的定义域和值域。
解答:对于指数函数 f(x) = 2^x,由于指数函数的底数必须大于0且不等于1,所以定义域为全体实数。
而指数函数的值域为正实数集。
二、求解指数函数的图像和性质2. 已知函数 f(x) = 3^x,求函数的图像和性质。
解答:对于指数函数 f(x) = 3^x,我们可以通过绘制函数的图像来观察其性质。
首先,我们选取几个不同的 x 值,计算对应的 y 值,然后将这些点连成一条曲线。
根据计算结果,我们可以看出指数函数 f(x) = 3^x 是递增函数,并且随着 x 的增大,函数值也随之增大。
三、求解指数函数的基本性质3. 求函数 f(x) = 4^x 的对称轴和最小值。
解答:对于指数函数 f(x) = 4^x,我们可以通过求导数来求解其对称轴和最小值。
首先,我们求函数的导数 f'(x) = ln(4) * 4^x。
然后,令导数等于0,解得 x = 0。
所以对称轴为 x = 0。
接下来,我们求解函数在 x = 0 处的函数值,即 f(0) =4^0 = 1。
所以最小值为 1。
四、求解指数函数的变形题4. 已知函数 f(x) = 2^(x+1) - 3,求函数的图像和性质。
解答:对于指数函数 f(x) = 2^(x+1) - 3,我们可以通过绘制函数的图像来观察其性质。
首先,我们选取几个不同的 x 值,计算对应的 y 值,然后将这些点连成一条曲线。
根据计算结果,我们可以看出指数函数 f(x) = 2^(x+1) - 3 是递增函数,并且随着x 的增大,函数值也随之增大。
此外,由于函数中有减法操作,所以整个函数的图像会在 y 轴下方平移 3 个单位。
指数函数经典例题(答案)

指数函数1.指数函数的定义:函数 y a x (a 0且a 1) 叫做指数函数,其中 x 是自变量,函数定义域是 R2. 指数函数的图象和性质:x , y=10 x ,y=1x在同一坐标系中分别作出函数y=2 x,y=1的图象 .2 10x x我 们 观 察 y= 2 x , y=1, y= 10 x , y=1 图象特征,就可以得到 210y a x (a 0且a 1) 的图象和性质。
a>10<a<1图象11(1) 定义域: R性(2)值域:(0,+∞) 质 (3)过点( 0,1),即 x=0 时, y=1(4)在 R 上是增函数 (4)在 R 上是减函数指数函数是高中数学中的一个基本初等函数, 有关指数函数的图象与性质的题目类型较多, 同时也是学习后续数学内容的基础和高考考查的重点, 本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小例 1 已知函数 f (x)x 2 bx c 满足 f (1 x) f (1 x) ,且 f (0) 3 ,则 f (b x ) 与f ( c x ) 的大小关系是_____.分析:先求 b, c 的值再比较大小,要注意b x, c x的取值是否在同一单调区间内.解:∵ f (1 x) f (1 x) ,∴函数 f ( x) 的对称轴是x 1 .故 b 2,又 f (0) 3 ,∴c 3 .∴函数 f ( x) 在∞,1 上递减,在1,∞上递增.若 x ≥ 0 ,则 3x≥ 2x≥ 1 ,∴f(3x)≥f(2x);若 x 0 ,则3x 2 x 1 ,∴f (3x) f (2x ) .综上可得 f (3x )≥ f (2x ) ,即 f (c x ) ≥ f (b x ) .评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式例 2 已知(a22a5)3 x(a22a 5)1 x,则x的取值范围是___________.分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵ a22a 5 ( a 1)24≥4 1,∴函数 y(a22a5)x在(∞,∞)上是增函数,∴ 3x 1x ,解得x 1.∴ x 的取值范围是1,∞.44评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与 1 的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题例 3求函数 y 1 6x 2的定义域和值域.解:由题意可得 16x2≥ 0 ,即 6x 2≤ 1 ,∴ x 2 ≤ 0 ,故 x ≤ 2.∴函数 f (x) 的定义域是∞,2 .令 t6x 2,则 y1t ,又∵ x≤ 2 ,∴ x 2 ≤ 0 .∴ 0 6x 2≤ 1 ,即 0 t ≤ 1 .∴ 0 ≤ 1 t 1,即 0 ≤ y 1 .∴函数的值域是01,.评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.4.最值问题例 4函数y a2x2a x1(a 0且a 1)在区间[ 11],上有最大值14,则 a 的值是 _______.分析:令 t a x可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围.解:令t a x,则t0 ,函数y a2 x2a x 1 可化为y(t1)2 2 ,其对称轴为t1.∴当 a 1 时,∵x11,,∴1≤ a x≤ a ,即1≤ t ≤ a .a a∴当 t a 时,y max(a1)2214.解得 a 3 或 a 5 (舍去);当 0 a 1 时,∵x11,,∴ a ≤ a x≤1,即 a ≤ t ≤1,a a1时, y max12∴ t1214 ,a a解得 a 1或 a1(舍去),∴ a 的值是 3 或1.353评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.5.解指数方程例 5 解方程3x 232x80 .解:原方程可化为9 (3x )280 3x9 0 ,令 t3x (t0),上述方程可化为9t 280t 9 0 ,解得t9或 t1(舍去),∴ 3x9,∴ x 2 ,经检验原方程的9解是 x 2 .评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根.6.图象变换及应用问题例 6 为了得到函数y 9 3x 5 的图象,可以把函数y3x的图象().A.向左平移 9 个单位长度,再向上平移 5 个单位长度B.向右平移 9 个单位长度,再向下平移 5 个单位长度C.向左平移 2 个单位长度,再向上平移 5 个单位长度D.向右平移 2 个单位长度,再向下平移 5 个单位长度分析:注意先将函数 y9 3x 5 转化为t3x 2 5 ,再利用图象的平移规律进行判断.解:∵ y 9 3x 5 3x 2 5 ,∴把函数y 3 x的图象向左平移2个单位长度,再向上平移 5 个单位长度,可得到函数y 93x 5 的图象,故选(C).评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.习题1、比较下列各组数的大小:(1)若,比较与;(2)若,比较与;(3)若,比较与;()若,且,比较 a 与 b;4 a 与 b.()若,且,比较5解:(1)由,故,此时函数为减函数.由,故.( 2)由,故.又,故.从而.而(3)由.,因,故.又,故.从(4)应有.又因.因若,故,则.从而.又,故,这与已知,这样矛盾.(5)应有.又因.因若,且,则,故.又.从而,故,这样有,这与已知矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2,曲线则分别是指数函数与 1 的大小关系是 ( ).,和的图象 ,(分析 : 首先可以根据指数函数单调性 , 确定, 在轴右侧令, 对应的函数值由小到大依次为 ,故应选 .小结 : 这种类型题目是比较典型的数形结合的题目 , 第(1) 题是由数到形的转化 , 第(2) 题则是由图到数的翻译 , 它的主要目的是提高学生识图 , 用图的意识 . 求最值3,求下列函数的定义域与值域 .1(1)y =2 x 3 ; (2)y=4x +2x+1+1.11解:(1) ∵ x-3 ≠0,∴ y =2 x 3 的定义域为{ x | x ∈R 且 x ≠3}. 又∵ ≠x 310,∴ 2 x 3 ≠1,1∴y =2 x 3 的值域为{ y |y>0 且 y ≠1}.(2)y = 4x +2x+1+1 的定义域为 R. ∵ 2x >0, ∴ y = 4x +2x+1+1= (2 x ) 2+2· 2x +1=x2(2 +1) >1.∴ y =4x +2x+1 +1 的值域为{ y | y>1}.4,已知-1≤x ≤2, 求函数 f(x)=3+2 ·3x+1-9 x 的最大值和最小值解:设 t=3 x, 因为 -1 ≤ x ≤ 2,所以1t 9 ,且 f(x)=g(t)=-(t-3)2+12, 故当 t=33即 x=1 时, f(x) 取最大值 12,当 t=9 即 x=2 时 f(x) 取最小值 -24 。
指数函数的图像和性质(分层作业含答案详解)

4.2.2 指数函数的图像和性质(分层作业)(夯实基础+能力提升)【夯实基础】一、单选题1.(2022·全国·高一专题练习)函数e xy -=(e 是自然底数)的大致图像是( )A .B .C .D .【答案】C【分析】根据指数函数的图像与性质即可得出答案.【详解】解析 10ee e 0xxx x y x -⎧⎛⎫≥⎪ ⎪==⎨⎝⎭⎪<⎩,,, 函数exy -=为偶函数,且过()0,1,e0xy -=>,函数在(),0∞-上递增,在()0,∞+上递减,故C 符合. 故选:C.2.(2022·全国·高一课时练习)函数①x y a =;②xy b =;③x y c =;④x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:54313,12中的一个,则a ,b ,c ,d 的值分别是( )A .54313,12B 354,12,13C .12,13354D .13,12,543【答案】C【分析】由直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b 即可求解. 【详解】解:直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而5113423>>>, 所以a ,b ,c ,d 的值分别是12,13,3,54,故选:C.3.(2022·全国·高一课时练习)函数327x y =- ) A .(3⎤-∞⎦ B .()3-∞C .[)3,+∞D .()3,+∞【答案】C【分析】根据二次根式的被开方式非负,列出不等式,求解不等式可得答案. 【详解】由题意得3270x -≥,即333x ≥,解得3x ≥. 故选:C.4.(2022·河南开封·高一期末)已知函数()1232,1,,14,x x f x x x ⎧-⎪=⎨⎪<⎩则函数()f x 值域是( )A .(],2-∞B .(]2,2-C .(]1,4D .(],4∞-【答案】B【分析】结合分段函数的单调性来求得()f x 的值域.【详解】当1x 时,32x y =-单调递增,值域为(]2,1-;当14x <时,12y x =单调递增,值域为(]1,2,故函数值域为(]2,2-. 故选:B5.(2022·全国·高一课时练习)若函数()2021x x f x x ππ-=-+,则不等式(1)(24)0f x f x ++-≥的解集为( ) A .[1,)+∞ B .(,1]-∞ C .(0,1] D .[1,1]-【答案】A【分析】判断出函数的奇偶性和单调性,再利用其性质解不等式即可 【详解】()f x 的定义域为R ,因为()2021(2021)()x x x x f x x x f x ππππ---=-=--+=--, 所以()f x 是奇函数,所以不等式(1)(24)0f x f x ++-≥可化为(1)(42)f x f x +≥-, 因为,,2021x x y y y x ππ-==-=在R 上均为增函数, 所以()f x 在R 上为增函数, 所以142x x +≥-,解得1≥x , 故选:A.6.(2022·湖南省衡南县衡云中学高一开学考试)已知0.130.12,0.3,0.3a b c ===,则,,a b c 的大小关系为( ) A .a b c << B .c b a << C .b c a << D .a c b <<【答案】C【分析】根据指数函数的单调性比较大小.【详解】∵0.3x y =是减函数,30.10>>,所以30.10.30.31<<, 又0.121>, ∴b c a <<. 故选:C .7.(2022·四川宜宾·高一期末)已知a b >,则下列不等式一定成立的是( ) A .11a b< B .22a b > C .22a b > D .a b >【答案】B【分析】根据给定条件,举例说明判断A ,C ,D ;利用指数函数单调性判断B 作答. 【详解】取1,2a b ==-,满足a b >,显然有11a b>、22a b <、a b <成立,即选项A ,C ,D 都不正确; 指数函数2x y =在R 上单调递增,若a b >,则必有22a b >,B 正确. 故选:B8.(2022·全国·高一专题练习)已知0.30.80.81.6, 1.6,0.7a b c ===,则( ) A .c a b << B .a b c << C .b c a >> D .a b c >>【答案】A【分析】根据指数函数的单调性结合中间量法即可得出答案. 【详解】解: 1.6x y =是增函数,故0.30.81.6 1.6a b =<=, 而0.30.81.610.7c >>=,故c a b <<. 故选:A.9.(2022·全国·高一课时练习)若函数()xf x a =(0a >且1a ≠)在区间[]22-,上的最大值和最小值的和为103,则a 的值为( ) A .13B 3C 3D 33【答案】D【分析】分01a <<与1a >两种情况,结合函数单调性表达出最值,列出方程,求出a 的值.【详解】当01a <<时,函数()xf x a =在[]22-,上为减函数, 则()()()()22max min 110223f x f x f f a a +=-+=+=,解得:33a =, 当1a >时,函数()xf x a =在[]22-,上为增函数, 则()()()()22max min 110223f x f x f f a a +=+-=+=,解得:3a =. 综上,33a =或3. 故选:D10.(2022·全国·高一)已知函数()()201xf x a a =-<<,则函数的图像经过( ).A .第一、二、四象限B .第二、三、四象限C .第二、四象限D .第一、二象限【答案】B【分析】根据指数函数的单调性和函数图象的平移变换即可得出结果. 【详解】因为01a <<,所以函数()x f x a =的图象经过一、二象限,又()2x f x a =-的图象是由()x f x a =的图象沿y 轴向下平移2个单位得到, 所以函数()2x f x a =-的图象经过二、三、四象限,如图,故选:B11.(2022·湖北武汉·高一期末)函数y x a =+与x y a =,其中0a >,且1a ≠,它们的大致图象在同一直角坐标系中有可能是( )A .B .C .D .【答案】D【解析】根据y x a =+单调递增可排除AC ,再根据y x a =+与y 轴交点位置可排除B. 【详解】0a >,则y x a =+单调递增,故排除AC ;对于BD ,x y a =单调递减,则01a <<,∴y x a =+与y 轴交于0和1之间,故排除B. 故选:D.12.(2022·江苏·南京市第十三中学高一阶段练习)已知130440.6,,5a b c a -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( ) A .b a c << B .a c b << C .c b a << D .a b c <<【答案】B【分析】根据中间值1比较大小即可.【详解】解:根据题意,01c a ==,134450.61,154a b -⎛⎫=<==> ⎪⎝⎭,所以a c b <<.故选:B .二、多选题13.(2022·全国·高一单元测试)已知函数()33x xf x -=-,则( )A .()f x 的值域为RB .()f x 是R 上的增函数C .()f x 是R 上的奇函数D .()f x 有最大值【答案】ABC【分析】()()30,x g x ∞=∈+,而()()3,0xh x ∞-=-∈-得到()f x 的值域为R ,判断A 正确,D 错误,根据增函数加增函数还是增函数进行判断B 选项,根据函数奇偶性定义判断得到C 选项.【详解】()()30,x g x ∞=∈+,而()()3,0xh x ∞-=-∈-,所以()33x x f x -=-值域为R ,A 正确,D 错误; 因为()3x g x =是递增函数,而()3xh x -=-是递增函数,所以()33x x f x -=-是递增函数,B 正确;因为定义域为R ,且()()33x xf x f x --=-=-,所以()f x 是R 上的奇函数,C 正确;故选:ABC三、填空题14.(2022·全国·高一课时练习)若0a >且1a ≠,则函数()43x f x a -=+的图像恒过的定点的坐标为______.【答案】()4,4【分析】任意指数函数一定过定点(0,1),根据该性质求解.【详解】令40x -=,得4x =,所以()0434f a =+=,所以函数()43x f x a -=+的图像恒过定点()4,4.故答案为:()4,415.(2022·湖南·岳阳市第四中学高一阶段练习)函数()42xf x a -=+(0a >且1a ≠)恒过一定点________ .【答案】()4,3【分析】令40x -=,求出x 的值后,再代入函数解析式,即可得解.【详解】令40x -=可得4x =,则()0423f a =+=,因此,函数()f x 的图象恒过定点()4,3.故答案为:()4,3.16.(2022·广东广州·高一期末)函数1()211xf x x =--的定义域为______. 【答案】[)()0,11,+∞【分析】根据题意,结合限制条件,解指数不等式,即可求解.【详解】根据题意,由2101x x ⎧-≥⎨≠⎩,解得0x ≥且1x ≠,因此定义域为[)()0,11,+∞.故答案为:[)()0,11,+∞.17.(2022·上海市延安中学高一期末)函数()23xy x =<的值域为___________.【答案】(0,8)【分析】根据指数函数的性质,结合自变量范围求值域. 【详解】由3x <,又2x y =递增, ∴函数值域为(0,8). 故答案为:(0,8).四、解答题18.(2022·河北·元氏县第四中学高一开学考试)已知函数21()2x f x -=.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并证明; (3)解不等式()f x 4≥.【答案】(1)R ;(2)详见解析;(3){|3x x ≥或3}x ≤-. 【分析】(1)由指数函数的定义域可得解;(2)由()()f x f x -=可知函数为偶函数; (3)利用对数函数的单调性可知212242x-≥=,得212x -≥,从而得解.【详解】(1)易知函数()212x f x -=,x R ∈. 所以定义域为R . (2)由()()()221122x xf x f x ----===,从而知()f x 为偶函数;(3)由条件得212242x-≥=,得212x -≥,解得3x ≥或3x ≤-.所以不等式的解集为:{|3x x ≥或3}x ≤-.【点睛】本题主要考查了指数型函数的定义域,奇偶性及解指数不等式,属于基础题. 19.(2022·全国·高一课时练习)已知x 满足311x ≥+,求函数142x x y +=-的最大值及最小值. 【答案】max 8y =,min 1y =-【分析】先求x 的范围,再通过换元法求最值.【详解】由311x ≥+可得:201x x -≥+可得:(]1,2x ∈-,令2x t =,(]1,2x ∈-, 则()222(2)22211x x y t t t =-⨯=-=--,1,42t ⎛⎤∈ ⎥⎝⎦,当1t =即0x =时,min 1y =-;当4t =即2x =时,max 8y =.20.(2022·全国·高一课时练习)已知函数()1(1)xf x a a =+>在区间[]0,2上的最大值与最小值之和为7.(1)求a 的值;(2)证明:函数()()()F x f x f x =--是R 上的增函数. 【答案】(1)2a = (2)证明见解析【分析】(1)根据()1(1)xf x a a =+>单调性代入计算即可;(2)根据定义法证明函数为增函数即可. (1)因为()1(1)xf x a a =+>在区间[]0,2上单调递增,所以函数()1(1)xf x a a =+>在区间[]0,2上的最大值与最小值之和为()()207f f +=,所以20117a a +++=,解得2a =±,又因为1a >,所以2a =. (2)由(1)知,()()()22x x F x f x f x -=--=-, 任取12,x x ∈R ,且12x x <,则 ()()()()1122122222x x x x F x F x ---=--- 1221112222x x x x =-+- 121221222222x x x x x x -=-+⋅()122112212x x x x +⎛⎫=-+ ⎪⎝⎭.因为12x x <,所以12220x x -<,211102x x ++>,所以()()120F x F x -<,即()()12F x F x <,所以()()()F x f x f x =--是R 上的增函数. 21.(2022·湖南·高一课时练习)在同一直角坐标系内作出函数3x y =与3x y -=的图象. 【答案】作图见解析【分析】直接在平面直角坐标系中作出两个指数函数的图象即可. 【详解】解:作出函数3x y =与3x y -=的图象如下图所示:22.(2022·全国·高一课时练习)已知函数1,0()21,0xx f x x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩(1)在给出的坐标系中画出函数()f x 的图象. (2)根据图象写出函数的单调区间和值域.【答案】(1)图见解析;(2)函数()f x 的单调递增区间为(,0]-∞,单调递减区间为[0,)+∞,值域为(,1]-∞. 【解析】(1)利用指数函数和一次函数的图象特征即可画出所求分段函数的图象; (2)根据图象观察可知即可得出结果.【详解】(1)利用指数函数和一次函数的图象特征即可画出分段函数1,0()21,0xx f x x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩的图象为:(2)由函数的图像可知,函数()f x 的单调递增区间为(,0]-∞ 单调递减区间为[0,)+∞, 函数()f x 的值域为(,1]-∞23.(2022·广东·东莞市石龙中学高一期中)已知定义域为R 的函数()2122x xf x a =-+是奇函数. (1)求实数a 的值;(2)判断函数()f x 的单调性,并用定义加以证明;(3)若对任意的R x ∈,不等式()()2240f x mx f x -++>成立,求实数m 的取值范围.【答案】(1)1(2)函数在定义域内单调递增,证明见解析(3)()4242,-【分析】(1)由()f x 是奇函数可得()00f =,求出a 的值,再验证此时()f x 是奇函数; (2)()f x 先分离常数,再判断其单调性,利用定义证明函数()f x 在R 上单调递增;(3)利用()f x 的奇偶性和单调性将不等式变成224x mx x ->--,再利用二次函数恒成立求出实数m 的取值范围. (1)因为函数的定义域为R ,所以()110012f a =-=+,∴1a =. 经检验当1a =时,有()()f x f x -=-,所以1a =.()211111111212212221x x x xf x +-=-=--=-+++, 函数在定义域内单调递增,证明如下:设12x x >,所以()()()()12212112112*********x x x x x x f x f x --=-=++++,因为1222x x >,所以()()12f x f x >,所以函数()f x 在R 上单调递增. (3)∵()f x 是奇函数,由已知可得()()()22244f x mx f x f x ->-+=--224x mx x ->--,则2240x mx -+>,∴∆<0,故24240m -⨯⨯<,4242m -<<.∴实数m 的取值范围为()4242,-. 24.(2022·江苏省阜宁中学高一阶段练习)已知函数(0x y a a =>且1)a ≠在[]1,2上最大值和最小值的和为12,令()3x x f x a =+.(1)求实数a 的值.(2)并探究()()1f x f x +-是否为定值,若是定值,写出证明过程;若不是定值,请说明理由; (3)解不等式:()()2121f x f x -+<. 【答案】(1)3a = (2)是定值,证明见解析 (3)1,2⎛⎫-∞ ⎪⎝⎭【分析】(1)由单调性得最大值与最小值的和,从而求得a 值; (2)由(1)所得参数值,直接计算()(1)f x f x +-可得; (3)根据(2)的结果化简不等式求得1()2f x <,再解之可得. (1)因为函数(0x y a a =>且1)a ≠在[]1,2上为单调函数,所以212a a +=,解得3a =或4a =-.因为0a >且1a ≠,所以3a =;由(1)得, ()333xx f x =+,所以()()1133331333333333x x x x x x x f x f x --+-=+=+++++⨯3313333x x x=+=++;(3)由(2)得,()()11f x f x -=-,且()0f x >,所以()()()2211f x f x f x <--=,所以 ()12f x <,所以31233x x<+,整理得,33x <,解得12x <, 所以原不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭.【能力提升】一、单选题1.(2022·江苏省阜宁中学高一阶段练习)已知函数1()323xx f x ⎛⎫=-+ ⎪⎝⎭,若2()(2)4f a f a +->,则实数a的取值范围是( ) A .(,1)-∞ B .(),2(1,)-∞-+∞ C .()2,1- D .(1,2)-【答案】B【分析】构造函数()()2g x f x =-,可证得()g x 是奇函数,且在R 上单调递增. 2()(2)4f a f a +->可化为()()220g a g a +->,进而可解得结果.【详解】令1()()233xxg x f x ⎛⎫=-=- ⎪⎝⎭,(R x ∈),则()11()()23333xxxx g x f x g x --⎛⎫⎛⎫-=--=-=-=- ⎪⎪⎝⎭⎝⎭, 所以()g x 是奇函数;又13,3xxy y ⎛⎫==- ⎪⎝⎭都是R 上增函数,所以()g x 在R 上单调递增.所以2()(2)4f a f a +->可化为()()220g a g a +->,进而有()()22g ag a >-,所以220a a +->, 解得2a <-或1a >. 故选:B.2.(2022·全国·高一课时练习) 若存在正数x ,使得关于x 的不等式()31xx a -<成立,则实数a 的取值范围是( ) A .[)3,+∞ B .[)1,-+∞C .()1,-+∞D .()0,+∞【答案】C【分析】问题转化为13xa x ⎛⎫>- ⎪⎝⎭在()0,+∞上能成立,根据右侧的单调性求值域,进而求参数范围.【详解】由题意知13xx a ⎛⎫-< ⎪⎝⎭成立,即13xa x ⎛⎫>- ⎪⎝⎭成立.令()13xf x x ⎛-⎫⎪⎝⎭=,显然()f x 在()0,+∞上单调递增,所以0x ∀>,()()01f x f >=-, 所以实数a 的取值范围是()1,-+∞. 故选:C二、多选题3.(2022·浙江·杭州四中高一期末)已知函数()2+1x xf x a =(0a >,1a ≠),则下列说法正确的是( )A .函数图象关于y 轴对称B .函数的图像关于(0,0)中心对称C .当1a >时,函数在(0,)+∞上单调递增D .当01a <<时,函数有最大值,且最大值为2a 【答案】AD【分析】根据函数奇偶性可判断A,B,由复合函数的单调性可判断C,D.【详解】()2+1x xf x a=的定义域为{}0x x ≠,当0x ≠时,则()()22+1+1==()x x xxf x aaf x ---=,故()f x 是偶函数,因此图象关于y 轴对称,故A 正确,B 错误, 当0x >时,()2+11x x xxf x a a+==,令1u x x=+,则()u f u a =, 当1a >时,()u f u a =单调递增,1u x x=+在01x <<上单调递减,在1x >上单调递增,由复合函数的单调性可知:()2+11x x xxf x a a+==在01x <<上单调递减,在1x >上单调递增,故C 错误,当01a <<时,当0x >时, 由于()uf u a =单调递减,1u x x=+在01x <<上单调递减,在1x >上单调递增,故()2+11x x x x f x a a +==在01x <<上单调递增,在1x >上单调递减,故当1x =时,()f x 取最大值,且最大值为2(1)f a =,当0x <时,由于()f x 是偶函数,故最大值为()21f a -=,故D 正确,故选:AD4.(2022·全国·高一课时练习)(多选)定义在[]1,1-上的函数()2943x xf x =-⋅+⋅,则下列结论中正确的是( )A .()f x 的单调递减区间是[]0,1B .()f x 的单调递增区间是[]1,1-C .()f x 的最大值是()02f =D .()f x 的最小值是()16f =-【答案】ACD【分析】首先换元,设3x t =,[]1,1x ∈-,()2224212y t t t =-+=--+,再结合复合函数的单调性,判断AB ;根据函数的单调性,再判断函数的最值,判断CD.【详解】设3x t =,[]1,1x ∈-,则3x t =是增函数,且1,33t ⎡⎤∈⎢⎥⎣⎦,又函数()2224212y t t t =-+=--+在1,13⎡⎤⎢⎥⎣⎦上单调递增,在[]1,3上单调递减,因此()f x 在[]1,0-上单调递增,在[]0,1上单调递减,故A 正确,B 错误;()()max 02f x f ==,故C 正确;()1019f -=,()16f =-,因此()f x 的最小值是6-,故D 正确. 故选:ACD .三、填空题5.(2022·全国·高一专题练习)已知函数8()3f x x a x=++关于点(0,12)-对称,若对任意的[1,1]x ∈-,2(2)0x x k f ⋅-≥恒成立,则实数k 的取值范围为_______.【答案】11k ≥【分析】由2(2)0xxk f ⋅-≥得(2)2x xf k ≥使得不等式一边是参数k ,另一边是不含k 关于x 的式子,分离参数.【详解】由83y x x=+为奇函数,可得其图像关于(0,0)对称,所以f x ()的图像关于(0,)a 对称,由题目可知函数8()3f x x a x=++关于点(0,12)-对称,可得12a =-, 对任意的[1,1]x ∈-,2(2)0x x k f ⋅-≥恒成立8[1,1],2(3212)02x x xx k ⇔∀∈-⋅-⋅+-≥恒成立, 即8232122x xxk ⋅≥⋅+-在[1,1]x ∈-恒成立, 所以28123(2)2x x k ≥-+,令12x t =,由[1,1]x ∈-,可得1[,2]2t ∈, 设2233()81238()42h t t t t =-+=--,当2t =时,h t ()取得最大值11, 所以k 的取值范围是11k ≥. 故答案为:11k ≥.【点睛】①分离参数法:遇到类似()()k f x g x ⋅≥或()()k f x g x +≥等不等式恒成立问题,可把不等式化简为()k h x ≥或()k h x ≤的形式,达到分离参数的目的,再求解y h x =()的最值处理恒成立问题;②恒成立问题最终转化为最值问题,而分离参数法,最好之处就是转化后的函数不含参,避免了麻烦的分离讨论.四、解答题6.(2022·浙江·杭州高级中学高一期末)已知实数a 大于0,定义域为R 的函数3()13x x af x a =++是偶函数.(1)求实数a 的值并判断并证明函数()f x 在()0,∞+上的单调性;(2)对任意的t ∈R ,不等式()()212f t f t m -≥-恒成立,求实数m 的取值范围. 【答案】(1)1a =,()f x 在()0,∞+上单调递增,证明见解析; (2)14m =.【分析】(1)利用偶函数的性质求a ,利用单调性的定义证明函数()f x 的单调性即可; (2)利用函数的奇偶性和单调性解不等式即可. (1)因为()313x x a f x a =++为偶函数,且()3113133x x x xa f x a a a ---=++=+⋅+⋅,所以()()f x f x =-,解得1a =±,又0a >,所以1a =,()1313xx f x =++;设120x x >>,则()()()121212121211131313313333x x x x x x x x f x f x ⎛⎫-=++---=-- ⎪⋅⎝⎭,因为120x x >>,所以12330x x ->,1212121133101103333x xx x x x ⋅>⇒<<⇒->⋅⋅,所以()()()()12120f x f x f x f x ->⇒>,所以()f x 在()0,∞+上单调递增. (2)因为()f x 为定义在R 上的偶函数,且在()0,∞+上单调递增,()()212f t f t m -≥-,所以212t t m -≥-,平方得()22344140t m t m +-+-≥,又因为对任意R t ∈不等式恒成立,所以()()224443140m m ∆=--⨯⨯-≤,解得14m =. 7.(2022·全国·高一课时练习)已知函数()()240,12x x a af x a a a a-+=>≠+是定义在R 上的奇函数.(1)求a 的值;(2)求函数()f x 的值域;(3)当()1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.【答案】(1)2a = (2)()1,1- (3)10,3⎡⎫+∞⎪⎢⎣⎭【分析】(1)利用函数是奇函数(0)0f =求解a 即可.(2)利用指数函数的值域以及不等式的性质求解即可.(3)利用函数恒成立,参变分离,利用换元法,结合函数的单调性求解最大值,推出结果即可. (1)因为()f x 是定义在R 上的奇函数,所以()002420022a a a f a a a -+-===++,解得2a =, 当2a =时,()2121x x f x -=+,此时()()21122112x xx x f x f x -----===-++,所以2a =时,()2121x x f x -=+是奇函数.所以2a =; (2)由(1)可得()2121221212121x x x x x f x -+-===-+++,因为20x >,可得211x +>,所以10121x<<+, 所以22021x-<-<+, 所以211121x-<-<+, 所以函数()f x 的值域为()1,1-; (3)由()220x mf x +->可得()22xmf x >-,即122221x x xm ->+-⋅,可得()()212122x xx m +->-对于()1,2x ∈恒成立, 令()211,3xt -=∈,则()()2121t t t t m t -=-++>,函数21y t t=-+在区间()1,3单调递增,所以221013133t t -+<-+=,所以103m ≥, 所以实数m 的取值范围为10,3⎡⎫+∞⎪⎢⎣⎭.【点睛】求不等式恒成立问题常用分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,进而转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.8.(2022·全国·高一课时练习)已知函数()xf x ba =(其中a ,b 为常数,且0a >,1a ≠)的图象经过点()1,1M ,()3,9N .(1)求a b +的值;(2)当3x ≤-时,函数11xy a b ⎛⎫=+ ⎪⎝⎭的图象恒在函数2y x t =+图象的上方,求实数t 的取值范围.【答案】(1)103a b += (2)36t <【分析】(1)将点M N 、代入函数()f x ,即可求出a b 、的值,则可求出答案;(2)当3x ≤-时,函数11xy a b⎛⎫=+ ⎪⎝⎭的图象恒在函数2y x t =+图象的上方可等价于当3x ≤-时,不等式13203x x t ⎛⎫+--> ⎪⎝⎭恒成立,利用参变分离可得当3x ≤-时,min1323x t x ⎡⎤⎛⎫<+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,易知函数1323x y x ⎛⎫=+- ⎪⎝⎭在(],3-∞-上单调递减,由此即可求出答案. (1)∵函数()xf x ba =(其中a ,b 为常数,且0a >,1a ≠)的图象经过点()1,1M ,()3,9N ,∴319ba ba =⎧⎨=⎩∴29a =,∴3a =-(舍)或3a =,13b =,∴103a b +=; (2)由(1)得当3x ≤-时,函数133xy ⎛⎫=+ ⎪⎝⎭的图象恒在函数2y x t =+图象的上方,即当3x ≤-时,不等式13203xx t ⎛⎫+--> ⎪⎝⎭恒成立,亦即当3x ≤-时,min 1323x t x ⎡⎤⎛⎫<+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.设()()13233xg x x x ⎛⎫=+-≤- ⎪⎝⎭,∵13xy ⎛⎫= ⎪⎝⎭在(],3-∞-上单调递减,2y x =-在(],3-∞-上单调递减,∴()1323xg x x ⎛⎫=+- ⎪⎝⎭在(],3-∞-上单调递减,∴()()min 336g x g =-=, ∴36t <.9.(2022·全国·高一单元测试)已知指数函数()xf x a =(0a >且1a ≠)的图像过点3,8⎛⎫ ⎪⎝⎭.(1)设函数()()1=-g x f x ,求()g x 的定义域;(2)已知二次函数()h x 的图像经过点()0,0,()()121+=-+h x h x x ,求函数()()f h x 的单调递增区间. 【答案】(1)[)0,+∞ (2)[)1,+∞【分析】(1)根据条件求出()f x 解析式,再列出不等式即可求得()g x 定义域. (2)由待定系数法求得()h x 解析式,再根据复合函数的单调性即可得到结果. (1)由题意知318a =,解得12a =,所以()12xf x ⎛⎫= ⎪⎝⎭,()112xg x ⎛⎫=- ⎪⎝⎭,令1102x⎛⎫-≥ ⎪⎝⎭,解得0x ≥.所以()g x 的定义域为[)0,+∞.(2)设()()20h x mx bx c m =++≠,则()()()()()221112h x m x b x c mx m b x m b c +=++++=+++++,()()22121h x x mx b x c -+=+-++,由()()121+=-+h x h x x , 得221m b b m b c c +=-⎧⎨++=+⎩,解得12m b =-⎧⎨=⎩,则()22h x x x c =-++, 又()00h c ==,所以()()22211h x x x x =-+=--+,所以()22h x x x =-+在[)1,+∞上单调递减,又()12xf x ⎛⎫= ⎪⎝⎭在R 上是减函数,所以函数()()f h x 的单调递增区间为[)1,+∞.10.(2022·全国·高一课时练习)已知函数x y a =(0a >且1a ≠)在[]1,2上的最大值与最小值之和为20,记()2x x a f x a =+.(1)求a 的值;(2)求证:()()1f x f x +-为定值; (3)求12200201201201f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.【答案】(1)4a = (2)证明见解析 (3)100【分析】(1)函数x y a =在[]1,2上单调,得到220a a +=,排除5a =-,得到答案. (2)()442xx f x =+,代入数据计算得到()()11f x f x +-=,得到证明.(3)根据()()11f x f x +-=,两两组合计算得到答案. (1)解:因为函数x y a =(0a >且1a ≠)在[]1,2上的最大值与最小值之和为20,且函数x y a =(0a >且1a ≠)在[]1,2上单调,所以当1x =和2x =时,函数x y a =(0a >且1a ≠)在[]1,2上取得最值,即220a a +=, 解得4a =或5a =-(舍去),所以4a =. (2)解:由(1)知,4a =,所以()442xx f x =+,故()()11444411424242424x x x x x x xf x f x --+-=+=+=++++⋅.(3)解:由(2)知,()()11f x f x +-=,因为12001201201+=,21191201201+=,,1001011201201+=, 所以12200201201201f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12001192012012020121f f f f ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1001011100100201201f f ⎡⎤⎛⎫⎛⎫+=⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 11.(2022·全国·高一课时练习)已知函数()221x xf x a a =+-(0a >,且1a ≠),求函数()f x 在[)0,+∞上的值域.【答案】答案见解析.【分析】应用换元法,令x t a =则()()212g t t =+-,讨论1a >、01a <<,注意定义域的范围,结合二次函数性质判断g t 单调性,根据单调性求值域即可.【详解】令x t a =,则()f x 可化为()()222112g t t t t =+-=+-.当1a >,0x ≥时,1t ≥,又g t 在[)1,+∞上单调递增, ∴()()12g t g ≥=,即()2f x ≥;当01a <<,0x ≥时,01t <≤,又g t 在(]0,1上单调递增, ∴()12g t -<≤,即()12f x -<≤.综上,当1a >时,函数()f x 在[)0,+∞上的值域是[)2,+∞; 当01a <<时,函数()f x 在[)0,+∞上的值域是1,2.12.(2022·全国·高一课时练习)对于函数1()2(1)+=-x a f x a (0a >且1a ≠).(1)判断函数()f x 的奇偶性;(2)当24a <<时,求函数()f x 在[][]3,11,3--⋃上的最大值和最小值. 【答案】(1)奇函数(2)最大值为11(1)12f a =+-,最小值为11(1)12f a -=---.【分析】(1)利用奇函数的定义判断可得答案;.(2)利用单调性的定义判断可得函数()f x 为减函数,再由奇偶性可得答案. (1)由题意得11()12x f x a =+-, 由10x a -≠,得0x ≠,∴函数()f x 的定义域为(,0)(0,)-∞+∞,关于原点对称, 又11111()()121212x xx x a f x f x a a a --=+=+=--=----, ∴函数()f x 为奇函数; (2)任取1x ,2(0,)x ∈+∞且12x x <,则()()12121111x x f x f x a a -=-=--()()211211x x x x a a a a ---,∵120x x <<,当24a <<时,2101x x a a a >>=, ∴120x x a a ->,110x a ->,210x a ->, ∴()()120f x f x ->,即()()12f x f x >, ∴()f x 在(0,)+∞上单调递减.又函数()f x 为奇函数,其图象关于原点对称,∴当24a <<时,函数()f x 的单调递减区间为(,0)-∞,(0,)+∞, 即函数()f x 在区间[1,3]和[3,1]--上单调递减. ∴当13x ≤≤时,max 11()(1)012f x f a ==+>-,min 311()(3)012f x f a ==+>-, 当31x -≤≤-时,max ()(3)(3)0f x f f =-=-<,min ()(1)(1)0f x f f =-=-<, ∴函数()f x 在[3,1][1,3]--上的最大值为11(1)12f a =+-, 最小值为11(1)12f a -=---. 13.(2022·湖南常德·高一期末)已知()12f x x x -=+-.(1)若0[1,1]x ∃∈-时,()00220x xf k -⋅≥,求实数k 的取值范围;(2)设()2xg x e =-若方程2(())30()kf g x k g x +-=有三个不同的实数解,求实数k 的取值范围. 【答案】(1)(,1]-∞;(2)[14,+∞)【分析】(1)将含参不等式,进行参变分离()212122x xk ≤+-,转换为二次函数求最值即可求函数最值,得k 的取值范围;(2)将原方程转换为()()22232120x x e k e k --+-++=,利用整体换元2xt e =-,结合二次函数的实根分布即可求解. (1)解: ()220xxf k -⋅≥即()2112222,1222x xx x xk k +-≥⋅≤+-,令11,222xt ⎡⎤=∈⎢⎥⎣⎦,记()221F t t t =-+. ∴()()max 21F t F ==,∴1k ≤ 即k 的取值范围是(,1]-∞. (2)解:由()22302xxf e k e ⎛⎫ ⎪-+-= ⎪-⎝⎭得()1222302xx e e k k +-+-+=-, 即()()22232120x x e k e k --+-++=,且20xe -≠,令2x t e =-,则方程化为()()()2231200t k t k t -+++=≠.又方程2(2)302xxf e k e ⎛⎫ ⎪-+-= ⎪-⎝⎭有三个不同的实数解,由2x t e =-的图象可知,()()()2231200t k t k t -+++=≠有两个根1t ,2t 且1202t t <<<或1202,2t t <<=.记()()()22312t t k t k ϕ=-+++,则(0)120(2)410k k ϕϕ=+>⎧⎨=-+<⎩ 或(0)120(2)41023022k k kϕϕ⎧⎪=+>⎪=-+=⎨⎪+⎪<<⎩,解得14k >或14k = 综上所述,k 的取值范围是[14,+∞).14.(2022·河南焦作·高一期末)已知函数()e e x x f x k -=+为奇函数. (1)求实数k 的值;(2)若对任意的[]20,1x ∈,总存在[)1,x t ∈+∞,使21()1e x t f x -≤成立,求实数t 的取值范围. 【答案】(1)1k =- (2)1e 1ln 21t ≤⎛⎫+ ⎪⎝⎭【分析】(1)根据奇函数满足()00f =求解即可;(2)将不等式转换为对任意的[]20,1x ∈,总存在[)1,x t ∈+∞,使1121e e ex xx t--≤-成立,根据单调性只需“对任意的[]20,1x ∈,21e e et t x t--≤-成立”,故考虑21ex t-的最小值,即2x t -在[]20,1x ∈上的最大值,再分当12t ≥与12t 两种情况讨论即可 (1)(1)因为函数()e e x x f x k -=+为奇函数,故()00e e 010f k k =+=+=,故1k =-,此时()e e x x f x -=-为奇函数,故1k =- (2)因为e x y =为增函数,e x y -=为减函数,故()e e x xf x -=-为增函数,故“对任意的[]20,1x ∈,总存在[)1,x t ∈+∞,使1121e e ex x x t--≤-成立”,即“对任意的[]20,1x ∈, 21e e et tx t--≤-成立”,故考虑21ex t-的最小值,即2x t -在[]20,1x ∈上的最大值.①当12t ≥时,2x t -在20x =时取最大值,故1e e e t tt -≤-,即2e 2t ≤,22ln t ≤,因为ln 2122<,故不成立; ②当12t时,2x t -在21x =时取最大值,11e e et tt --≤-成立,即2e 11e t -≤,即1e 1ln 21t ≤⎛⎫+ ⎪⎝⎭,因为111ln 22e 1⎛⎫+< ⎪⎝⎭,故1e 1ln 21t ≤⎛⎫+ ⎪⎝⎭时满足条件. 综上所述,1e 1ln 21t ≤⎛⎫+ ⎪⎝⎭。
指数函数的性质与图像练习题含答案

指数函数的性质与图像练习题(1)1. 下列函数中,既是偶函数又在(−∞, 0)上是单调递减的是( )A.y =−cos xB.y =lg |x|C.y =1−x 2D.y =e −x2. 函数f(x)=cos x x 的图象大致为( )A. B.C.D.3. 指数函数y =a x 的图象经过点(3, 27),则a 的值是( )A.3B.9C.D.4. 已知a =(35)−13,b =(35)−14,c =(23)−14,则a 、b 、c 的大小关系是( )A.c <a <bB.a <b <cC.b <a <cD.c <b <a5. 若P =√2,Q =√6−√2,则P ,Q 中较大的数是________.6. 函数y =lg (4+3x −x 2)的单调增区间为________.7. 函数y =a x+1−2的图象恒过一定点,这个定点是________.8. 已知指数函数f(x)=(3m 2−7m +3)m x 是减函数,求实数m 的值.lg(x+1)的定义域为A,集合B={x||x|≤2}.9. 已知函数f(x)=√2−x(1)求A;(2)求A∩B.10. 已知函数f(x)=x2+(1−a)x−a(a∈R).(1)解关于x的不等式f(x)<0;(2)若∀a∈[−1, 1],f(x)≥0恒成立,求实数x的取值范围.参考答案与试题解析指数函数的性质与图像练习题(1)一、选择题(本题共计 4 小题,每题 5 分,共计20分)1.【答案】B【考点】函数单调性的性质与判断函数奇偶性的性质与判断【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【解答】根据题意,依次分析选项:对于A,y=−cos x,为偶函数,但在区间(−∞, 0)上不是单调函数,不符合题意;对于B,y=lg|x|,既是偶函数又在(−∞, 0)上是单调递减,符合题意;对于C,y=1−x2,为偶函数,但在区间(−∞, 0)上是增函数,不符合题意;对于D,y=e−x,不是偶函数,不符合题意;2.【答案】D【考点】函数的图象与图象的变换【解析】先判断函数的奇偶性,再判断函数值的变化趋势.【解答】f(−x)=cos(−x)−x =−cos xx=−f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=π3时,f(π3)=12π3=6π3.【答案】A【考点】指数函数的单调性与特殊点【解析】此题暂无解析【解答】此题暂无解答4.【答案】D【考点】指数函数的图象与性质【解析】根据指数函数的性质判断即可.【解答】y =(35)x 是减函数,故a =(35)−13>b =(35)−14,而b =(35)−14>c =(23)−14,故c <b <a ,二、 填空题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )5.【答案】P【考点】利用不等式比较两数大小【解析】作差利用幂函数的单调性即可得出.【解答】P −Q =2√2−√6=√8−√6>0,∴ P >Q .6.【答案】(−, 32] 【考点】复合函数的单调性【解析】函数y =lg (4+3x −x 2)的增区间即为函数y =4+3x −x 2的增区间且4+3x −x 2>0,由此即可求得.【解答】解:由4+3x −x 2>0,解得−1<x <4,所以函数的定义域为(−1, 4).函数y =lg (4+3x −x 2)的增区间即为函数y =4+3x −x 2的增区间且4+3x −x 2>0, 因此所求增区间为(−1, 32]. 故答案为:(−1, 32]. 7.【答案】(−1, −1)【考点】指数函数的单调性与特殊点【解析】令解析式中的指数x +1=0求出x 的值,再代入解析式求出y 的值,即得到定点的坐标.【解答】解:令x +1=0解得,x =−1,代入y =a x+1−2得,y =−1,∴ 函数图象过定点(−1, −1),故答案为:(−1, −1).三、 解答题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )8.【答案】解:由题意得,得3m −7m +3=1,解得m =13或m =2, 又f(x)是减函数,则0<m <1,所以m =13.【考点】指数函数的单调性与特殊点【解析】由指数函数的概念得3m −7m +3=1,求出m 的值,再由指数函数的单调性和f(x)是减函数,对m 的值进行取舍.【解答】解:由题意得,得3m −7m +3=1,解得m =13或m =2,又f(x)是减函数,则0<m <1,所以m =13. 9.【答案】解:(1)据题意,得{x +1>0,2−x >0,∴ −1<x <2,∴ A =(−1,2).(2)据(1)求解知 A =(−1,2).又∵ B ={x||x|≤2}={x|−2≤x ≤2},∴ A ∩B =(−1,2).【考点】函数的定义域及其求法交集及其运算【解析】此题暂无解析【解答】解:(1)据题意,得{x +1>0,2−x >0,∴ −1<x <2,∴ A =(−1,2).(2)据(1)求解知 A =(−1,2).又∵ B ={x||x|≤2}={x|−2≤x ≤2},∴ A ∩B =(−1,2).10.【答案】不等式x 2+(1−a)x −a <0等价于(x −a)(x +1)<0,当a <−1时,不等式的解集为(a, −1);当a =−1时,不等式的解集为⌀;当a >−1时,不等式的解集为(−1, a).x 2+(1−a)x −a =−a(x +1)+x 2+x ,设g(a)=−a(x +1)+x 2+x ,a ∈[−1, 1],要使g(a)≥0在a ∈[−1, 1]上恒成立,只需{g(−1)≥0g(1)≥0, 即{x 2+2x +1≥0,x 2−1≥0,解得x ≥1或x ≤−1,所以x 的取值范围为{x|x ≤−1或x ≥1}.【考点】函数恒成立问题【解析】(1)不等式x 2+(1−a)x −a <0等价于(x −a)(x +1)<0,通过a 与−1的大小比较,求解即可.(2)x 2+(1−a)x −a =−a(x +1)+x 2+x ,设g(a)=−a(x +1)+x 2+x ,a ∈[−1, 1],要使g(a)≥0在a ∈[−1, 1]上恒成立,只需{g(−1)≥0g(1)≥0,求解即可. 【解答】不等式x 2+(1−a)x −a <0等价于(x −a)(x +1)<0,当a <−1时,不等式的解集为(a, −1);当a =−1时,不等式的解集为⌀;当a >−1时,不等式的解集为(−1, a).x 2+(1−a)x −a =−a(x +1)+x 2+x ,设g(a)=−a(x +1)+x 2+x ,a ∈[−1, 1],要使g(a)≥0在a ∈[−1, 1]上恒成立,只需{g(−1)≥0g(1)≥0, 即{x 2+2x +1≥0,x 2−1≥0,解得x ≥1或x ≤−1,所以x 的取值范围为{x|x ≤−1或x ≥1}.。
人教版高中数学指数函数的图象及性质(精品题目分类解析)

分析:利用函数单调性,
1.7 2.5 与 1.7 3 的底数是1.7,
当x=2.5和3时的函数值;
5 4.5
1.7 x
函数y=
1.7>1,
1.7 在R上是增函数,
2.5
x
4
3.5
fx = 1.7x
2.5 2 1.5 1
3
而2.5<3,所以
1 .7
<
1.7
3
-2 -1
0.5
1
2
4
5
6
0
-0.5
答案:(1)(8)
a 2 5a 5 1 , 2.由指数函数定义得 解得a=4. , a 0, 且a 1
答案:4
【拓展提升】 1.判断一个函数是指数函数的方法 (1)看形式:只需判定其解析式是否符合y=ax(a>0,且a≠1) 这一结构特征. (2)明特征:指数函数的解析式具有三个特征,只要有一个特 征不具备,则不是指数函数.
2.图中的曲线是指数函数y=ax的图象,已知a的值取 3, 1 , 4 , 3
10 3 5
四个值,则相应的曲线c1,c2,c3,c4的a的值依次为(
A. 4 , 3, 1 , 3
3 10 5 B. 3 , 1 , 3, 4 5 10 3 C. 1 , 3 , 4 , 3 10 5 3 D. 3, 4 , 3 , 1 3 5 10
=21.5,1.8>1.5>1.32. ∴根据指数函数的性质可得, y1>y3>y2.故选D. 【答案】 D
2.5
法一:
1.7
3
1.7
指数相同,底数不同
图象法
法二: 1.作商法 (两个指数式的商与1比较) 7 2.5 2.5 1.7 1.7 ( ) , 3 3
第17讲 指数函数及性质八大题型总结(原卷版)

2.(2021·全国高一课时练习)下列判断正确的是()
A.2.52.5>2.53B.0.82<0.83
C.4 <π D.0.90.3>0.90.5
3.(2022·全国·高一课时练习)已知 , , , ,则()
A. B.
C. D.
题型六:解指数函数不等式
【例1】若 ,则实数a的取值范围是.
2.指数式大小比较方法
①单调性法:化为同底数指数式,利用指数函数的单调性进行比较.
②中间量法:当指数式的底数和指数各不相同时,需要借助中间量“0”和“1”作比较.
③分类讨论法:指数式的底数不定时,需要分类讨论底数的情况,在利用指数函数的单调性进行比较.
④比较法:有作差比较与作商比较两种,其原理分别为:
6.(2022·全国·高一专题练习)已知定义在 上的奇函数 .在 时, .
(1)试求 的表达式;
(2)若对于 上的每一个值,不等式 恒成立,求实数 的取值范围.
7.(2022·福建福州·高二期末)已知 是定义在 上的奇函数,当 时, .
(1)求函数 在 上的解析式;
(2)若 , 恒成立,求实数 的取值范围.
第17讲 指数函数及性质八大题型总结
【知识点梳理】
1.指数函数的定义及图像
图象
性质
①定义域 ,值域
② ቤተ መጻሕፍቲ ባይዱ即时 , ,图象都经过 点
③ ,即 时, 等于底数
④在定义域上是单调减函数
在定义域上是单调增函数
⑤ 时, ; 时,
时, ; 时,
⑥既不是奇函数,也不是偶函数
(1)当底数大小不定时,必须分“ ”和“ ”两种情形讨论.
题型七:指数函数的值域问题
【例1】已知 ,求 的最小值与最大值。
指数函数图象与性质-2019版典型高考数学试题解读与变式(解析版)

一、知识储备汇总与命题规律展望1.知识储备汇总:(1).n次方根概念与表示一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n N*.正数的n次方根是一(2式子na叫做根式,这里n叫做根指数,a叫做被开方数.(3)根式的性质①n a =.||,a n a n ⎧=⎨⎩,为奇数为偶数;(4)分数指数幂①mn a =(0,,a m n N *>∈,且1n >), ②1m n mn a a -=(0,,a m n N *>∈,且1n >). 0的正分数指数幂等于0;0的负分数指数幂没有意义(5)无理数指数幂一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数;(6)实数指数幂的运算性质① (0,,R)r s r s a a a a r s +⋅=>∈. ②()(0,,)r s rs a a a r s R =>∈.③()(0,0,)r r rab a b a b r R =>>∈. (7)指数函数概念:形如0(>=a a y x且1≠a )函数叫指数函数,其中x 是自变量,函数定义域为R . (8)指数函数图象与性质R单调性在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数当x>0时,y>1;x<0时,0<y<1指数函数在第一象限按逆时针方向底数依次增大.2.命题规律展望:指数与指数函数概念、图像、性质是历年的热点和重点,常以指数函数及其图像与性质为载体,考查指数型函数定义域、值域、单调性、奇偶性、对称性等图像与性质,特别是以指数函数为载体的复合函数更是考查的重点,难度既有容易题也有中档题还有难题,分值常为5分.学%科网二、题型与相关高考题解读1.指数运算1.1考题展示与解读x∈-时,例 1 【2017山东,文14】已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当[3,0]()6x=,则f(919)= .f x-【命题意图探究】本题主要考查函数的周期性、奇偶性及指数运算,是容易题.【答案】6【解题能力要求】转化与化归思想、运算求解能力.【方法技巧归纳】对与奇偶性、周期性有关的指数函数求值问题,常利用周期性与奇偶性将所求函数值转化为在给定区域函数的求值问题,代入即可求出值.1.2【典型考题变式】【变式1:改编条件】已知函数,则的值是()。
指数函数专题训练

指数函数专题训练1. 指数函数的定义和特性- 指数函数可以用如下形式表示:f(x) = a^x,其中a是一个常数,称为底数,x是指数。
- 指数函数的定义域是所有实数,值域是正实数。
- 当底数a大于1时,指数函数是增长函数;当0 < a < 1时,指数函数是减少函数。
- 指数函数的图像为一个逐渐增长或减少的曲线,且不会与x 轴相交。
- 指数函数有以下的性质:- a^0 = 1,任何数的0次方都等于1。
- a^x * a^y = a^(x+y),指数相加时,底数相乘。
- a^x / a^y = a^(x-y),指数相减时,底数相除。
2. 指数函数的图像和性质探究- 结合实际情境,探究指数函数的图像和性质。
例如,比较a 为2和a为0.5时的指数函数图像,观察它们的变化趋势。
- 使用计算工具绘制指数函数的图像,并根据图像,讨论指数函数在不同区间上的增长或减少速度。
- 研究指数函数的性质,例如指数函数的导数和二阶导数,沿着它的图像观察变化趋势,并探究导数和二阶导数与指数函数相关的规律。
3. 指数函数的应用- 研究指数函数在实际问题中的应用,如金融领域中的复利计算,人口增长模型等。
- 研究指数函数在自然科学中的应用,如放射性衰变的模型,生态系统中的物种扩张模型等。
- 研究指数函数在工程领域中的应用,如电路中的电流增长和衰减模型,生物医学工程中的光强度计算模型等。
4. 指数函数的变形和拓展- 研究具有不同底数和指数的指数函数,探索它们的图像和性质。
- 研究含有常数和其他函数的指数函数,例如f(x) = a^x + b,探讨对图像和性质造成的影响。
- 考虑复数底数和指数的指数函数,研究它们的图像和性质。
5. 指数函数的计算和求解问题- 学习如何计算和化简含有指数函数的复合函数。
- 学习如何解指数函数的方程和不等式,例如a^x = b,a^x > b 等。
- 学习如何利用指数函数求解实际应用问题,例如利用指数函数计算复利、模拟人口增长等。
专题32 高中数学 指数函数的概念、图象与性质(原卷版)

专题32 指数函数的概念、图象与性质1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R. 温馨提示:指数函数解析式的3个特征: (1)底数a 为大于0且不等于1的常数. (2)自变量x 的位置在指数上,且x 的系数是1. (3)a x 的系数是1.2.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域 R 值域(0,+∞)过定点 (0,1),即当x =0时,y =1单调性 在R 上是增函数在R 上是减函数奇偶性 非奇非偶函数对称性函数y =a x 与y =a -x 的图象关于y 轴对称(1)底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0. 当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1. (2)指数函数的图象都经过点(0,1),且图象都在x 轴上方.(3)当a >1时,x →-∞,y →0;当0<a <1时,x →+∞,y →0.(其中“x →+∞”的意义是“x 趋近于正无穷大”)题型一 指数函数的概念1.下列各函数中,是指数函数的是( )A .y =(-3)xB .y =-3xC . y =3x -1 D .y =⎝⎛⎭⎫13x2.下列函数一定是指数函数的是( )C .y =3·2xD .y =3-x3.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个 D .4个4.下列函数:①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2 D .35.下列函数中,是指数函数的个数是( )①y =(-8)x ;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .06.指出下列哪些是指数函数.(1)y =4x ;(2)y =x 4;(3)y =-4x ;(4)y =(-4)x ;(5)y =πx ;(6)y =4x 2;(7)y =x x ;(8)y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1.7.已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________.8.函数y =(a -2)2a x 是指数函数,则( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠19.函数f (x )=(m 2-m +1)a x (a >0,且a ≠1)是指数函数,则m =________.10.若函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )C .3D .111.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________.12.指数函数f (x )=a x 的图象经过点(2,4),则f (-3)的值是________.13.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________.14.已知函数f (x )为指数函数,且f ⎝⎛⎭⎫-32=39,则f (-2)=________.15.若函数f (x )是指数函数,且f (2)=9,则f (-2)=________,f (1)=________.16.若点(a,27)在函数y =(3)x 的图象上,则a 的值为( )A. 6 B .1 C .2 2 D .017.已知函数f (x )=⎝⎛⎭⎫12ax ,a 为常数,且函数的图象过点(-1,2),则a =________,若g (x )=4-x-2, 且g (x )=f (x ),则x =________.18.已知f (x )=2x +12x ,若f (a )=5,则f (2a )=________.19.若f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2020)f (2019)=( )A .1010B .2020C .2019D .1009题型二 指数函数的图象及其应用1.y =⎝⎛⎭⎫34x的图象可能是( )2.函数y=3-x的图象是()A B C D3.函数y=2-|x|的大致图象是()4.函数y=a-|x|(0<a<1)的图象是()A B C D5.函数y=-2-x的图象一定过第________象限.6.函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<07.已知0<m<n<1,则指数函数①y=m x,②y=n x的图象为()8.若a >1,-1<b <0,则函数y =a x +b 的图象一定在( )A .第一、二、三象限B .第一、三、四象限C .第二、三、四象限D .第一、二、四象限9.若函数y =a x +b -1(a >0,且a ≠1)的图象经过第二、三、四象限,则一定有( )A .0<a <1,且b >0B .a >1,且b >0C .0<a <1,且b <0D .a >1,且b <010.若函数y =a x +m -1(a >0)的图象经过第一、第三和第四象限,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <111.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )12.二次函数y =ax 2+bx 与指数函数y =⎝⎛⎭⎫b a x的图象可能是( )13.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的图象是( )14.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系为()A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c15.方程|2x-1|=a有唯一实数解,则a的取值范围是________.16.函数y=a x-3+3(a>0,且a≠1)的图象过定点________.17.函数y=2a x+3+2(a>0,且a≠1)的图象过定点________.18.当a>0,且a≠1时,函数f(x)=a x+1-1的图象一定过点()A.(0,1) B.(0,-1)C.(-1,0) D.(1,0)19.已知函数y=2a x-1+1(a>0且a≠1)恒过定点A(m,n),则m+n=()A.1 B.3C.4 D.220.函数y=a2x+1+1(a>0,且a≠1)的图象过定点________.21.若函数y=2-|x|-m的图象与x轴有交点,则()A.-1≤m<0 B.0≤m≤1C.0<m≤1 D.m≥022.已知f(x)=2x的图象,指出下列函数的图象是由y=f(x)的图象通过怎样的变化得到:(1)y=2x+1;(2)y=2x-1;(3)y=2x+1;(4)y=2-x;(5)y=2|x|.23.已知函数f(x)=a x+b(a>0,且a≠1).(1)若f(x)的图象如图①所示,求a,b的值;(2)若f(x)的图象如图②所示,求a,b的取值范围;(3)在(1)中,若|f(x)|=m有且仅有一个实数根,求m的取值范围.题型三 指数函数的定义域与值域1.求下列函数的定义域和值域:(1)y =1-3x ;(2)y =21x -4 ; (3)y =⎝⎛⎭⎫23-|x | ; (4)y =⎝⎛⎭⎫12x 2-2x -3;(5)y =4x +2x +1+2.2.(1)求函数y =⎝⎛⎭⎫132x -(2)求函数y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,x ∈[0,2]的最大值和最小值及相应的x 的值.3.函数y =2x -1的定义域是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)4.函数y =1-⎝⎛⎭⎫12x的定义域是________.5.若函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .a <1C .0<a <1D .a ≠16.若函数f (x )=a x -a 的定义域是[1,+∞),则a 的取值范围是( )A .[0,1)∪(1,+∞)B .(1,+∞)C .(0,1)D .(2,+∞)7.y =2x ,x ∈[1,+∞)的值域是( )A .[1,+∞)B .[2,+∞)C .[0,+∞)D .(0,+∞)8.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)9.函数y =⎝⎛⎭⎫12x (x ≥8)的值域是( )A .R B.⎝⎛⎦⎤0,1256 C.⎝⎛⎦⎤-∞,1256 D.⎣⎡⎭⎫1256,+∞10.函数y =1-2x ,x ∈[0,1]的值域是( )A .[0,1]B .[-1,0] C.⎣⎡⎦⎤0,12 D.⎣⎡⎦⎤-12,011.已知函数y =⎝⎛⎭⎫13x在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.12.函数y =⎝⎛⎭⎫1222x x -+的值域是________.13.函数y =⎝⎛⎭⎫12x 2-1的值域是________.14.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f (x )的值域是________.15.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.16.若定义运算a ⊙b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x 的值域是________.17.函数f (x )=3x3x +1的值域是________.18.若函数f (x )=a x -1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.19.已知f (x )=9x -2×3x +4,x ∈[-1,2]. (1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值; (2)求f (x )的最大值与最小值.。
高中试卷-专题4.2 指数函数(含答案)

专题4.2 指数函数1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠12、指数函数的图象和性质0<a<1a>1图像定义域R , 值域(0,+∞)(1)过定点(0,1),即x=0时,y=1(2)在R 上是减函数(2)在R 上是增函数性质(3)当x>0时,0<y<1;当x<0时,y>1(3)当x>0时,y>1;当x<0时,0<y<1图象特征函数性质向x 轴正负方向无限延伸函数的定义域为R 函数图象都在x 轴上方函数的值域为R +图象关于原点和y 轴不对称非奇非偶函数共性函数图象都过定点(0,1)过定点(0,1)自左向右看,图象逐渐下降减函数在第一象限内的图象纵坐标都小于1当x>0时,0<y<1;在第二象限内的图象纵坐标都大于1当x<0时,y>10<a<1图象上升趋势是越来越缓函数值开始减小极快,到了某一值后减小速度较慢;自左向右看,图象逐渐上升增函数在第一象限内的图象纵坐标都大于1当x>0时,y>1;在第二象限内的图象纵坐标都小于1当x<0时,0<y<1a>1图象上升趋势是越来越陡函数值开始增长较慢,到了某一值后增长速度极快;注意: 指数增长模型:y=N(1+p)x 指数型函数: y=ka x 3 考点:(1)a b =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。
(2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。
掌握利用单调性比较幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。
(3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。
例析指数函数的图像与性质问题

ʏ欧阳亮指数函数是高中数学的重要内容,也是高考的考查重点㊂下面举例分析指数函数的图像与性质的常见题型,供大家学习与提高㊂题型1:根据函数判断图像例1已知1>n>m>0,则指数函数:①y=m x,②y=n x的图像为()㊂解:由0<m<n<1,可知y=m x与y= n x都是减函数,排除A,B㊂对于C,D,作直线x=1与两个图像相交,交点在下面的是函数y=m x的图像㊂应选C㊂评注:识别函数图像可从以下几个方面入手:(1)从函数的定义域,判断图像的左右位置,从函数的值域,判断图像的上下位置;(2)从函数的单调性,判断图像的变化趋势;(3)从函数的奇偶性,判断图像的对称性;(4)从函数的周期性,判断图像的循环往复;(5)从函数的特征点,排除不合要求的图像㊂题型2:函数的图像恒过定点例2函数f(x)=a x-2021+2022(a> 0,且aʂ1)恒过的定点为㊂解:函数y=a x(a>0,且aʂ1)的图像恒过定点(0,1)㊂令x-2021=0得x= 2021,所以f(2021)=1+2022=2023㊂故函数f(x)=a x-2021+2022(a>0,且aʂ1)恒过定点为(2021,2023)㊂评注:本题也可令a=2和a=4,得到两个关于x,y的方程,解出方程组可得图像经过的定点坐标㊂题型3:求参数的取值范围例3若分段函数f(x)=a(x-1)+1,x<-1,a-x,xȡ-1{(a>0,且aʂ1)是R上的单调函数,则实数a的取值范围是()㊂A.0,13() B.13,1()C.0,13(]D.13,1[)解:当a>1时,f(x)在(-ɕ,-1)上是增函数,在[-1,+ɕ)上是减函数,则函数f(x)在R上不是单调函数,可知a>1不合题意;当0<a<1时,f(x)在(-ɕ,-1)上是增函数,在[-1,+ɕ)上是增函数㊂因为f(x)在R上是单调函数,所以a(-1-1)+1ɤa-(-1),解得aȡ13㊂又0< a<1,所以13ɤa<1㊂应选D㊂评注:对数函数的底数中含有参数,解题时要注意分类讨论,且分类要全面,做到不重不漏㊂题型4:利用图像比较大小例4已知实数a,b满足等式2a=3b,给出下列五个关系式:①0<b<a,②a<b< 0,③0<a<b,④b<a<0,⑤a=b㊂所有可能成立的关系式的序号为㊂解:在同一直角坐标系中作出函数f(x)=2x,g(x)=3x的图像,如图1所示㊂图1由图可知,当直线A B位于y=1下方5数学部分㊃知识结构与拓展高一使用2021年11月Copyright©博看网. All Rights Reserved.时,交点A,B的函数值相等(2a=3b),但a< b<0,②正确㊂当直线C D位于y=1上方时,交点C,D的函数值相等(2a=3b),但0< b<a,①正确㊂当a=b=0时,2a=3b=1,⑤正确㊂答案为①②⑤㊂评注:比较指数式的大小的两种方法:当底数相同时,运用指数函数的单调性求解;当底数不同时,利用一个中间量做比较进行求解,或借助于同一坐标系中的图像求解㊂题型5:指数函数图像的平移变换例5为了得到函数y=e x-3+1的图像,只需把函数y=e x的图像上所有的点()㊂A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度解:函数y=e x的图像向右平移3个单位长度到得函数y=e x-3的图像,再向上平移1个单位长度得到函数y=e x-3+1的图像㊂应选A㊂评注:把y=f(x)的图像向左平移a (a>0)个单位长度得到函数y=f(x+a)的图像;把y=f(x)的图像向右平移a(a>0)个单位长度得到函数y=f(x-a)的图像;把y=f(x)的图像向上平移a(a>0)个单位长度得到函数y=f(x)+a的图像;把y= f(x)的图像向下平移a(a>0)个单位长度得到函数y=f(x)-a的图像㊂题型6:求函数的单调区间例6函数f(x)=13()-x2+2x+1的单调减区间为㊂解:设u=-x2+2x+1㊂因为函数y= 13()u在R上为减函数,所以f(x)= 13()-x2+2x+1的减区间即为函数u=-x2+ 2x+1的增区间㊂又因为u=-x2+2x+1的增区间为(-ɕ,1],所以函数f(x)的减区间为(-ɕ,1]㊂评注:求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉及值域㊁单调区间㊁最值等问题时,都要借助 同增异减 的法则进行判断㊂1.若函数y=a x+b-1(a>0,且aʂ1)的图像经过第二㊁三㊁四象限,则一定有()㊂A.0<a<1,且b>0B.a>1,且b>0C.0<a<1,且b<0D.a>1,且b<0提示:由题意得0<a<1,f(0)<0,{由此代入得0<a<1,1+b-1<0,{所以0<a<1,b<0㊂{应选C㊂2.偶函数f(x)满足f(x-1)=f(x+ 1),且当xɪ[0,1]时,f(x)=x,则关于x的方程f(x)=110()x在xɪ[0,4]上解的个数是㊂提示:由f(x-1)=f(x+1),把x用x+1替代得f(x)=f(x+2),可知函数f(x)的周期T=2㊂当xɪ[0,1]时,f(x)=x,由f(x)是偶函数且周期为2,可作出函数f(x)的图像以及函数y=110()x的图像,如图2所示㊂图2由图可知,关于x的方程f(x)=110()x 在xɪ[0,4]上解的个数是4㊂编者注:本文依托于河南省教育科学 十三五 规划课题 新课程理念下中学生批判性思维能力培养策略研究 ,编号:2020Z J30㊂作者单位:河南大学附属中学(责任编辑郭正华)6数学部分㊃知识结构与拓展高一使用2021年11月Copyright©博看网. All Rights Reserved.。
高考数学难点之指数函数、对数函数问题

高考数学难点之指数函数、对数函数问题指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.●难点磁场(★★★★★)设f (x )=log 2xx-+11,F (x )=x -21+f (x ).(1)试判断函数f (x )的单调性,并用函数单调性定义,给出证明;(2)若f (x )的反函数为f -1(x ),证明:对任意的自然数n (n ≥3),都有f -1(n )>1+n n; (3)若F (x )的反函数F -1(x ),证明:方程F -1(x )=0有惟一解. ●案例探究[例1]已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1)证明:点C 、D 和原点O 在同一条直线上; (2)当BC 平行于x 轴时,求点A 的坐标.命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.知识依托:(1)证明三点共线的方法:k OC =k OD .(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A 点坐标. 错解分析:不易考虑运用方程思想去解决实际问题.技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A 的坐标.(1)证明:设点A 、B 的横坐标分别为x 1、x 2,由题意知:x 1>1,x 2>1,则A 、B 纵坐标分别为log 8x 1,log 8x 2.因为A 、B 在过点O 的直线上,所以228118log log x x x x =,点C 、D 坐标分别为(x 1,log 2x 1),(x 2,log 2x 2),由于log 2x 1=2log log 818x ===2log log log ,log 38282218x x x 3log 8x 2,所以OC 的斜率:k 1=118212log 3log x x x x =, OD 的斜率:k 2=228222log 3log x x x x =,由此可知:k 1=k 2,即O 、C 、D 在同一条直线上. (2)解:由BC 平行于x 轴知:log 2x 1=log 8x 2 即:log 2x 1=31log 2x 2,代入x 2log 8x 1=x 1log 8x 2得:x 13log 8x 1=3x 1log 8x 1,由于x 1>1知log 8x 1≠0,∴x 13=3x 1.又x 1>1,∴x 1=3,则点A 的坐标为(3,log 83).[例2]在xOy 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )…,对每个自然数n 点P n 位于函数y =2000(10a )x(0<a <1)的图象上,且点P n ,点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.(1)求点P n 的纵坐标b n 的表达式;(2)若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值X 围; (3)设=lg(b n )(n ∈N *),若a 取(2)中确定的X 围内的最小整数,问数列{}前多少项的和最大?试说明理由.命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级 题目.知识依托:指数函数、对数函数及数列、最值等知识.错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口.技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.解:(1)由题意知:a n =n +21,∴b n =2000(10a )21+n .(2)∵函数y =2000(10a )x(0<a <10)递减,∴对每个自然数n ,有b n >b n +1>b n +2.则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n ,即(10a )2+(10a )-1>0,解得a <-5(1+2)或a >5(5-1).∴5(5-1)<a <10.(3)∵5(5-1)<a <10,∴a =7∴b n =2000(107)21+n .数列{b n }是一个递减的正数数列,对每个自然数n ≥2,B n =b n B n -1.于是当b n ≥1时,B n <B n -1,当b n <1时,B n ≤B n -1,因此数列{B n }的最大项的项数n 满足不等式b n ≥1且b n +1<1,由b n =2000(107)21+n ≥1得:n ≤20.8.∴n =20.●锦囊妙计本难点所涉及的问题以及解决的方法有:(1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.(2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力.(3)应用题目.此类题目要求考生具有较强的建模能力. ●歼灭难点训练 一、选择题1.(★★★★)定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x +1),其中x ∈(-∞,+∞),那么( )A.g (x )=x ,h (x )=lg(10x +10-x +2) B.g (x )=21[lg(10x +1)+x ],h (x )=21[lg(10x +1)-x ] C.g (x )=2x ,h (x )=lg(10x +1)-2x D.g (x )=-2x ,h (x )=lg(10x +1)+2x2.(★★★★)当a >1时,函数y =log a x 和y =(1-a )x 的图象只可能是( )二、填空题3.(★★★★★)已知函数f (x )=⎩⎨⎧<<--≥)02( )(log )0( 22x x x x .则f --1(x -1)=_________.4.(★★★★★)如图,开始时,桶1中有a L 水,t 分钟后剩余的水符合指数衰减曲线y = ae-nt ,那么桶2中水就是y 2=a -ae-nt,假设过5分钟时,桶1和桶2的水相等,则再过_________分钟桶1中的水只有8a . 三、解答题5.(★★★★)设函数f (x )=log a (x -3a )(a >0且a ≠1),当点P (x ,y )是函数y =f (x )图象上的点时,点Q (x -2a ,-y )是函数y =g (x )图象上的点.(1)写出函数y =g (x )的解析式;(2)若当x ∈[a +2,a +3]时,恒有|f (x )-g (x )|≤1,试确定a 的取值X 围.6.(★★★★)已知函数f (x )=log a x (a >0且a ≠1),(x ∈(0,+∞)),若x 1,x 2∈(0,+∞),判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明. 7.(★★★★★)已知函数x ,y 满足x ≥1,y ≥1.log a 2x +log a 2y =log a (ax 2)+log a (ay 2)(a >0且a ≠1),求log a (xy )的取值X 围.8.(★★★★)设不等式2(log21x )2+9(log21x )+9≤0的解集为M ,求当x ∈M 时函数f (x )=(log 22x )(log 28x)的最大、最小值. 参考答案难点磁场解:(1)由xx-+11>0,且2-x ≠0得F (x )的定义域为(-1,1),设-1<x 1<x 2<1,则 F (x 2)-F (x 1)=(122121x x ---)+(11222211log 11log x x x x -+--+) )1)(1()1)(1(log )2)(2(212122112x x x x x x x x -++-+---=, ∵x 2-x 1>0,2-x 1>0,2-x 2>0,∴上式第2项中对数的真数大于1. 因此F (x 2)-F (x 1)>0,F (x 2)>F (x 1),∴F (x )在(-1,1)上是增函数.(2)证明:由y =f (x )=x x -+11log 2得:2y =1212,11+-=-+y y x x x ,∴f -1(x )=1212+-x x ,∵f (x )的值域为R ,∴f --1(x )的定义域为R .当n ≥3时,f -1(n )>1221111221112121+>⇔+->+-⇔+>+-⇔+n n n n n n n n n n . 用数学归纳法易证2n >2n +1(n ≥3),证略.(3)证明:∵F (0)=21,∴F -1(21)=0,∴x =21是F -1(x )=0的一个根.假设F -1(x )=0还有一个解x 0(x 0≠21),则F -1(x 0)=0,于是F (0)=x 0(x 0≠21).这是不可能的,故F -1(x )=0有惟一解. 歼灭难点训练一、1.解析:由题意:g (x )+h (x )=lg(10x +1)①又g (-x )+h (-x )=lg(10-x +1).即-g (x )+h (x )=lg(10-x +1)②由①②得:g (x )=2x ,h (x )=lg(10x +1)-2x . 答案:C2.解析:当a >1时,函数y =log a x 的图象只能在A 和C 中选,又a >1时,y =(1-a )x 为减函数.答案:B二、3.解析:容易求得f --1(x )=⎩⎨⎧<-≥)1( 2)1( log 2x x x x ,从而:f -1(x -1)=⎩⎨⎧<-≥--).2( ,2)2(),1(log 12x x x x答案:⎩⎨⎧<-≥--)2( ,2)2(),1(log 12x x x x4.解析:由题意,5分钟后,y 1=ae -nt,y 2=a -ae-nt,y 1=y 2.∴n =51l n 2.设再过t 分钟桶1中的水只有8a ,则y 1=ae -n (5+t )=8a ,解得t =10. 答案:10三、5.解:(1)设点Q 的坐标为(x ′,y ′),则x ′=x -2a ,y ′=-y .即x =x ′+2a ,y =-y ′.∵点P (x ,y )在函数y =log a (x -3a )的图象上,∴-y ′=log a (x ′+2a -3a ),即y ′=log aax -21,∴g (x )=log aax -1. (2)由题意得x -3a =(a +2)-3a =-2a +2>0;ax -1=a a -+)3(1>0,又a >0且a ≠1,∴0<a <1,∵|f (x )-g (x )|=|log a (x -3a )-log aax -1|=|log a (x 2-4ax +3a 2)|·|f (x )-g (x )|≤1,∴-1≤log a (x 2-4ax +3a 2)≤1,∵0<a <1,∴a +2>2a .f (x )=x 2-4ax +3a 2在[a +2,a +3]上为减函数,∴μ(x )=log a (x 2-4ax +3a 2)在[a +2,a +3]上为减函数,从而[μ(x )]max =μ(a +2)=log a (4-4a ),[μ(x )]mi n =μ(a +3)=log a (9-6a ),于是所求问题转化为求不等式组⎪⎩⎪⎨⎧≤--≥-<<1)44(log 1)69(log 10a a a aa 的解.由log a (9-6a )≥-1解得0<a ≤12579-,由log a (4-4a )≤1解得0<a ≤54, ∴所求a 的取值X 围是0<a ≤12579-. 6.解:f (x 1)+f (x 2)=log a x 1+log a x 2=log a x 1x 2,∵x 1,x 2∈(0,+∞),x 1x 2≤(221x x +)2(当且仅当x 1=x 2时取“=”号),当a >1时,有log a x 1x 2≤log a (221x x +)2, ∴21log a x 1x 2≤log a (221x x +),21(log a x 1+log a x 2)≤log a 221x x +, 即21[f (x 1)+f (x 2)]≤f (221x x +)(当且仅当x 1=x 2时取“=”号) 当0<a <1时,有log a x 1x 2≥log a (221x x +)2, ∴21(log a x 1+log a x 2)≥log a 221x x +,即21[f (x 1)+f (x 2)]≥f (221x x +)(当且仅当x 1=x 2时取“=”号).7.解:由已知等式得:log a 2x +log a 2y =(1+2log a x )+(1+2log a y ),即(log a x -1)2+(log a y -1)2=4,令u =log a x ,v =log a y ,k =log a xy ,则(u -1)2+(v -1)2=4(uv ≥0),k =u +v .在直角坐标系uOv 内,圆弧(u -1)2+(v -1)2=4(uv ≥0)与平行直线系v =-u +k 有公共点,分两类讨论.(1)当u ≥0,v ≥0时,即a >1时,结合判别式法与代点法得1+3≤k ≤2(1+2); (2)当u ≤0,v ≤0,即0<a <1时,同理得到2(1-2)≤k ≤1-3.x 综上,当a >1时,log a xy 的最大值为2+22,最小值为1+3;当0<a <1时,log a xy 的最大值为1-3,最小值为2-22.8.解:∵2(21log x )2+9(21log x )+9≤0∴(221log x +3)(21log x +3)≤0.∴-3≤21log x ≤-23. 即21log (21)-3≤21log x ≤21log (21)23-∴(21)23-≤x ≤(21)-3,∴22≤x ≤8即M ={x |x ∈[22,8]}又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴23≤log 2x ≤3∴当log2x=2,即x=4时y mi n=-1;当log2x=3,即x=8时,y max=0.。
高中试卷-4.2.2 指数函数的图像和性质 练习(含答案)

第四章 指数函数与对数函数4.2.2 指数函数的图像和性质一、选择题1.(2019·全国高一课时练)已知函数f (x )=a x (0<a <1),对于下列命题:①若x >0,则0<f (x )<1;②若x <1,则f (x )>a ;③若f (x 1)>f (x 2),则x 1<x 2.其中正确命题的个数为( )A .0个 B .1个 C .2个 D .3个【答案】D【解析】因为0<a <1 ,所以函数f (x )=a x 在(―∞,+∞) 上递减,可得③正确;x >0 时,0<f (x )<a 0=1,可得①正确;x <1 时,f (x )>a 0=1,可得②正确;即①②③都正确,故选D.2.(2019·安徽马鞍山二中高一期中考试)若2535a æö=ç÷èø,3525b æö=ç÷èø,2525c æö=ç÷èø,则()A .b c a <<B .c b a<<C .a c b<<D .b a c<<【答案】A 【解析】因为25xy æö=ç÷èø在(0,)+¥上单调递减,所以32552255æöæö<ç÷ç÷èøèø,则b c <;又因为25y x =在(0,)+¥上单调递增,所以22553255æöæö>ç÷ç÷èøèø,所以a c >;则b c a <<,故选:A.3.(2019·全国高一课时练)函数y =a x ,y =x +a 在同一坐标系中的图象可能是( )A .B .C .D .【答案】D【解析】函数y =x +a 单调递增.由题意知a >0且a ≠1.当0<a <1时,y =a x 单调递减,直线y =x +a,在y 轴上的截距大于0且小于1;当a >1时,y =a x 单调递增,直线y =x +a 在y 轴上的截距大于1.故选D.4.(2019·全国高一课时练)函数f(x)=a x―3 +1(a>0,a≠1)的图象恒过点( )A .(0,1)B .(1,2)C .(2,2)D .(3,2)【答案】D【解析】当x -3=0,即x =3时,=1;f(3)=1+1=2,故选D.5.(2019·全国高一课时练)函数xx y a x=(01)a <<的图象的大致形状是A .B .C .D .【答案】D【解析】因为0,0x x x a x xa y x a x ì>==í-<î,且01a <<,所以根据指数函数的图象和性质,(0,)x Î+¥函数为减函数,图象下降;(,0)x Î-¥函数是增函数,图象逐渐上升,故选D.6.(2019·全国高一课时练)函数11()()3x f x -=在区间[2,1]--上的最大值是().A.1B.3C.9D.27【答案】D【解析】()[]x 11f x 2,13-æö=--ç÷èø在区间上单调递减,当x=-2时取得最大值为27.二、填空题7.(2019·江苏高一课时练)若指数函数f(x)=(2a +1)x 是R 上的减函数,则a 的取值范围是__________.【答案】―12<a <0【解析】因为f(x)为减函数,所以0<2a +1<1,解得―12<a <0,填。
指数函数的图像及性质的应用

例4.讨论函数 的单调性,并求其值域.
任取x1,x2∈(-∞,1],且x1< x2 ,
∵f(x1)>0, f(x2)>0,
解:
则
复合函数的单调性
所以 f( x ) 在 (-∞,1]上为增函数.
又 x2 - 2x =(x -1)2 -1≥-1,
解:
例7.求证函数 是奇函数
证明:函数的定义域为R,
所以f(x)在R上是奇函数.
01
02
03
指数形式的复合函数的奇偶性
利用 f(0)= 0
1
解:若 f ( x ) 为奇函数,则 f(-x )=-f (x),
2
设a是实数, (2)试确定a的值,使f(x)为奇函数.
02
复合函数:
复合函数的单调性
内u=g(x)
增函数
减函数
增函数
减函数
外y=f(u)
增函数
减函数
减函数
增函数
复y=f[g(x)]
规律: 当内外函数的单调性相同时,其复合函数是增函数; 当内外函数的单调性不相同时,其复合函数是减函数 “同增异减”
增函数
增函数
减函数
减函数
“异”“同” 指内外函数单调性的异同
3
∴ a = 1.
4
变式练习
练习:
的定义域均为R
变式 1 、 函数 的单调增区间是
2、函数 的增区间为 ________. 值域为_________.
(-∞,1]
(0,81]
B
指数形式的复合函数的定义域与值域
2
O
x
y
7
6
5
4
3
2
高三指数函数总结知识点

高三指数函数总结知识点一、指数函数的基本性质指数函数是由形如f(x)=a^x的函数所构成,其中a称为底数,a>0且a≠1。
指数函数在数学和自然科学中有广泛的应用,具有以下基本性质:1. 当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。
2. 当x取无穷大时,指数函数趋于正无穷;当x取无穷小时,指数函数趋于0。
3. 指数函数的图像关于y轴对称且过点(0,1)。
二、指数函数的图像与特征1. 当底数a大于1时,指数函数的图像呈现上升的趋势,且越接近y轴,函数值变化越剧烈;当底数a介于0和1之间时,指数函数的图像呈现下降的趋势,且越接近y轴,函数值变化越剧烈。
2. 特殊情况:当底数a等于1时,指数函数退化成常函数f(x)=1;当底数a小于0时,指数函数在定义域产生缺失,图像不连续。
3. 指数函数的图像经过点(0,1),即f(0)=1。
这是因为a^0=1。
三、指数函数的性质与运算1. 指数运算法则:a^x·a^y=a^(x+y)、(a^x)^y=a^(xy)。
2. 指数函数的垂直伸缩与平移:对于函数f(x)=a^x,若k>0,则f(x)的图像上下伸缩,a^x的绝对值增大;若k<0,则f(x)的图像上下伸缩,a^x的绝对值减小。
若c>0,则f(x)的图像平移c个单位向上;若c<0,则f(x)的图像平移|c|个单位向下。
3. 对数与指数函数的互为反函数关系:若f(x)=a^x,则反函数f^(-1)(x)=log_a(x)。
四、指数函数的应用指数函数在实际问题中具有广泛的应用,以下列举几个常见的应用领域:1. 经济增长模型:指数函数可以用来描述经济增长的速度,例如GDP增长率。
2. 生物科学:指数函数可以用来描述细菌、病毒等物种的繁殖速度。
在生物学中,指数增长模型被广泛应用于人口统计、生态学等领域。
3. 物理学中的放射性衰变:放射性物质的衰变过程可以用指数函数模型来描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学-指数函数图像和性质及经典例题
【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s
r r a
a += ),,0(Q s r a ∈>; (2)rs
s
r a a =)( ),,0(Q s r a ∈>;
(3)s
r
r
a a a
b =)(
),0,0(Q r b a ∈>>.
正数的分数指数幂的意义
)1,,,0(*>∈>=n N n m a a a
n m n
m
)1,,,0(1
1*>∈>=
=
-
n N n m a a a
a
n
m
n
m n
m
二、指数函数
1.指数函数的概念:一般地,函数)1a ,0a (a y x
≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质
1.在同一坐标系中画出下列函数的图象: (1)x )31(y
= (2)x )2
1
(y = (3)x
2y = (4)x
3y = (5)x
5y =
【指数函数性质应用经典例题】 例1.设a 是实数,
2
()()21
x f x a x R =-
∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则
12()()f x f x -12
22()()2121
x x a a =-
--++ 21222121
x x =
-
++ 121
22(22)(21)(21)
x x x x -=++, 由于指数函数2x
y =在R 上是增函数, 且12x x <, 所以1222x
x <
即1
2220x
x -<,
又由20x
>, 得1
1
20x +>,2120x +>,
∴12()()0f x f x -< 即12()()f x f x <,
所以,对于任意,()a f x 在R 上为增函数.
例2.已知函数2
()1
x
x f x a x -=+
+(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.
证明:(1)设121x x -<<, 则1212121222
()()11
x
x x x f x f x a a x x ---=+
--++ 121212*********()
11(1)(1)
x x x x x x x x a a a a x x x x ---=-+
-=-+++++, ∵121x x -<<,∴110x +>,210x +>,120x x -<, ∴
12123()
0(1)(1)
x x x x -<++;
∵121x x -<<,且1a
>,∴1
2
x x a a <,∴1
2
0x x a a -<,
∴12()()0f x f x -<,即12()()f x f x <,∴函数()f x 在(1,)-+∞上为增函数; (2)假设0x 是方程()0f x =的负数根,且01x ≠-,则0
002
01
x x a
x -+
=+, 即0
0000023(1)3
1111
x x x a
x x x --+=
==-+++, ① 当010x -<<时,0011x <+<,∴0331x >+,∴03
121
x ->+,而由1a >知01x a <, ∴①式不成立;
当01x <-时,010x +<,∴0301x <+,∴03111
x -<-+,而00x a >, ∴①式不成立.
综上所述,方程()0f x =没有负数根.
针对性练习
1. 已知函数f (x )=a x +b 的图象过点(1,3),且它的反函数f -
1(x )的图象过(2,0)点, 试确定f (x )的解析式.
2. 已知,32
12
1=+-x x 求
3
2
12
32
3++++--
x x x x 的值.
3. 求函数y =33
22++-x x 的定义域、值域和单调区间.
4. 若函数y =a 2x +
b +1(a >0且a ≠1,b 为实数)的图象恒过定点(1,2),求b 的值.
5. 设0≤x ≤2,求函数y =12
24
2
2
1++⋅--a a x
x 的最大值和最小值.
针对性练习答案
1解析: 由已知f (1)=3,即a +b =3 ①
又反函数f -
1(x )的图象过(2,0)点 即f (x )的图象过(0,2)点.即f (0)=2 ∴1+b =2
∴b =1代入①可得a =2 因此f (x )=2x +1 2解析:由,9)(2
212
1=+-
x x
可得x +x -
1=7
∵27)(3
212
1=+-
x x
∴2
31
2
12
12333-
--++⋅+x
x x x x x =27
∴2
32
3-+x
x =18,
故原式=2
3解析:(1)定义域显然为(-∞,+∞).
(2)u
y x x x x f u 3.4)1(423)(2
2
=∴≤--=-+==Θ是u 的增函数,
当x =1时,y max =f (1)=81, 而y =3
223
++-x x >0.
∴]81,0(,3304
即值域为≤<u .
(3) 当x ≤1 时,u =f (x )为增函数,
u
y 3=是u 的增函数,由x ↑→u ↑→y ↑
∴即原函数单调增区间为(-∞,1]; 当x >1时,u =f (x )为减函数,
u y 3=是u 的增函数, 由x ↑→u ↓→y ↓ ∴即原函数单调减区间为[1,+∞).
4解析:∵x =-
2
b
时,y =a 0+1=2
∴y =a 2x +
b +1的图象恒过定点(-2
b
,2) ∴-
2
b
=1, 即b =-2 5解析:设2x =t , ∵0≤x ≤2, ∴1≤t ≤4 原式化为:y =
2
1
(t -a )2+1 当a ≤1时,y min =942,2322
max 2+-=+-a a y a a ; 当1<a ≤2
5
时,y min =1,y max =2322+-a a ; 当a ≥4时,y min =2
3
2,9422max 2+-=+-a a y a a .。