10第十章 酶作用机理和调节
酶的作用机理有哪些
酶的作用机理有哪些酶是一类具有生物催化功能的蛋白质,它在生物体内起着至关重要的作用。
酶通过降低反应的活化能,加速了生物体内的化学反应,实现了生物体内的新陈代谢、生长和繁殖等生命活动。
那么,酶的作用机理究竟是如何实现的呢?1. 酶的底物亲和力酶的底物亲和力是酶催化反应的基础。
酶能够特异性地结合其底物形成酶-底物复合物,并在复合物中使底物发生化学变化。
酶与底物之间的结合是通过酶的活性部位与底物的亲和作用实现的,这种亲和力保证了酶只在特定的底物上发挥作用。
2. 酶的催化作用酶能够降低反应的活化能,使底物之间更容易发生反应。
酶与底物结合后,通过调整底物的构型或提供辅助功能团,降低了化学反应的能量峰值,促使底物之间的键合和断裂更容易进行。
这种催化作用使得生物体内的反应能够在较温和的条件下进行,节省了能量消耗。
3. 酶的稳定性酶在反应中本身并不消耗,反复使用并保持稳定是酶作用的重要机理之一。
酶在一定的温度和pH范围内能够保持其催化活性,这得益于酶分子的空间构象稳定以及酶的特定结构对环境条件的适应性。
4. 酶的调控机制酶的活性往往受到多种调控因素的影响,如温度、pH值、离子浓度、辅因子、抑制物等。
这些因素能够改变酶的构象或与酶结合,进而影响酶的活性。
酶在生物体内往往处于动态平衡状态,在不同的条件下能够调整自身的活性以适应生物体的需要。
综上所述,酶的作用机理主要包括底物亲和力、催化作用、稳定性和调控机制等几个方面。
了解酶的作用机理有助于我们更好地理解生物体内的化学反应过程,同时也为生物医学和生物工程领域的研究提供了重要理论基础。
酶的作用机理
酶的作用机理
酶是一类生物大分子催化剂,能够在生物体内加速化学反应速度,并在反应结束后不被消耗或改变。
酶在生物体内扮演着至关重要的角色,而其作用机理是通过一系列复杂的过程来实现的。
酶的结构
酶通常由蛋白质组成,蛋白质是由氨基酸组成的多肽链。
酶的活性部位是其结构中特定的区域,这里的氨基酸序列决定了酶的特定催化活性。
酶在反应过程中与底物结合形成酶-底物复合物,通过与底物分子的作用来催化反应。
酶的作用过程
酶的作用过程可以分为几个关键步骤:
1.底物结合:酶通过与底物特定的结合方式形成酶-底
物复合物。
2.过渡态形成:酶通过调整底物分子的构象,降低反
应所需的活化能,促进反应速率。
3.反应催化:酶引导底物分子以特定方式相互作用,
使得反应发生特定的化学变化。
4.产物释放:反应结束后,酶释放产生的产物,准备
接受新的底物继续催化反应。
酶与底物的相互作用
酶与底物之间的相互作用是通过亲和性来实现的。
亲和力越高,酶对底物的结合效率就越高,反之亦然。
酶结合底物后会发生构象变化,从而稳定底物分子在合适的位置和构象以促进反应的进行。
酶的催化机理
酶催化反应的机理可以分为两种:锁-键模型和诱导拟合模型。
在锁-键模型中,酶和底物之间的结合就像锁和钥匙的关系,具有高度特异性。
而在诱导拟合模型中,酶在与底物结合后发生构象变化,从而调整底物的构象以促进反应。
总的来说,酶通过其特殊的结构和活性部位,在生物体内实现了高效的催化作用,从而调节并加速生物体内的代谢和生化反应,对维持生命活动起着至关重要的作用。
生物化学讲义第十章物质代谢的联系和调节
生物化学讲义第十章物质代谢的联系和调节 【目的与要求】1.熟悉三大营养物质氧化供能的通常规律与相互关系。
2.熟悉糖、脂、蛋白质、核酸代谢之间的相互联系。
3.熟悉代谢调节的三种方式。
掌握代谢途径、关键酶(调节酶)的概念;掌握关键酶(调节酶)所催化反应的特点。
熟悉细胞内酶隔离分布的意义。
熟悉酶活性调节的方式。
4.掌握变构调节、变构酶、变构效应剂、调节亚基、催化亚基的概念;5.掌握酶的化学修饰调节的概念及要紧方式。
6.熟悉激素种类及其调节物质代谢的特点。
7.熟悉饥饿与应激状态下的代谢改变。
【本章重难点】1.物质代谢的相互联系2.物质代谢的调节方式及意义3.酶的变构调节、化学修饰、阻遏与诱导4.作用于细胞膜受体与细胞内受体的激素学习内容第一节物质代谢的联系第二节物质代谢的调节第一节物质代谢的联系一、营养物质代谢的共同规律物质代谢:机体与环境之间不断进行的物质交换,即物质代谢。
物质代谢是生命的本质特征,是生命活动的物质基础。
二、三大营养物质代谢的相互联系糖、脂与蛋白质是人体内的要紧供能物质。
它们的分解代谢有共同的代谢通路—三羧酸循环。
三羧酸循环是联系糖、脂与氨基酸代谢的纽带。
通过一些枢纽性中间产物,能够联系及沟通几条不一致的代谢通路。
对糖、脂与蛋白质三大营养物质之间相互转变的关系作简要说明:㈠糖可转变生成甘油三酯等脂类物质(除必需脂肪酸外),甘油三酯分解生成脂肪酸,脂肪酸经β-氧化生成乙酰CoA,乙酰CoA或者进入三羧酸循环或者生成酮体,因此甘油三酯的脂肪酸成分不易生糖,但甘油部分能够转变为磷酸丙糖而生糖,但是甘油只有三个碳原子,只占甘油三酯的很小部分。
㈡多数氨基酸是生糖或者生糖兼生酮氨基酸。
因此氨基酸转变成糖较为容易。
糖代谢的中间产物只能转变成非必需氨基酸,不能转变成必需氨基酸。
㈢少数氨基酸能够生酮,生糖氨基酸生糖后,也可转变为脂肪酸(除必需脂肪酸外),因此氨基酸转变成脂类较为容易。
脂肪酸经β-氧化生成乙酰CoA进入三羧酸循环后,即以CO2形式被分解。
酶的作用和作用机理有哪些
酶的作用和作用机理有哪些
酶是一种生物催化剂,能够加速生物体内化学反应的进行。
在生物体内,酶起着至关重要的作用,以下将详细探讨酶的作用和作用机理。
酶的作用
1. 促进反应速率
酶能够降低化学反应所需的能量,进而加快反应速率。
这种加速作用使生命体系得以维持正常生理机能。
2. 特异性
酶对底物的选择性极高,能够识别特定的底物并在特定的条件下与其结合,并对底物发生特定的化学反应。
3. 调节代谢
酶在生物体内调节代谢速率,根据生物体的需要合理调整底物的利用和生成,保持代谢平衡。
4. 可逆性
酶对反应的控制是可逆的,可以在需要时启动或停止特定反应。
这种可逆性使生物体能够根据内外环境灵活调整代谢活动。
酶的作用机理
1. 底物结合
酶的作用机理首先涉及酶与底物的结合。
酶具有活性位点,能够与底物结合形成酶底物复合物。
2. 降解或合成反应
酶在酶底物复合物中,通过调控底物的空间结构,促进化学反应的进行。
有些酶能够催化底物的降解,有些酶则能够促进底物的合成。
3. 效率与特异性
酶的作用机理受到酶催化效率和特异性的影响。
酶通过特定的空间结构和功能基团,能够高效地催化特定的底物反应。
4. 辅助因子
酶的活性还受到辅助因子的调节,如辅酶和金属离子等,能够增强酶的催化效
率或改变酶的特异性。
综上所述,酶在生物体内发挥着多种作用,通过其特定的作用机理,调节代谢
活动,维持生物体正常功能。
对于理解生命现象和开发生物工艺过程具有重要意义。
酶的作用机理是什么
酶的作用机理是什么酶是一种生物大分子,广泛存在于生命体内,是生物体内化学反应的催化剂。
酶在生物体内的作用是非常广泛的,它参与了几乎所有生物体内的代谢过程。
酶能够在生物体内加速和调节化学反应的速率,降低反应所需的能量,使生物体得以维持生命活动。
那么,酶的具体作用机理又是什么呢?酶的结构与功能首先,了解酶的基本结构对探究其作用机理至关重要。
酶通常由蛋白质构成,在其特定的活性中心具有高度特异性。
酶的活性中心是一个能够识别特定底物并催化化学反应的部位。
酶与底物之间的结合是基于酶的空间构象与底物的化学结构之间的配对作用。
酶的作用过程酶的作用可分为多个步骤,包括底物与酶的结合、化学反应过程、生成产物和酶的解离。
在酶的作用过程中,酶通过提供一种受控的环境,降低底物之间的结合能,促使底物之间形成过渡态并加速反应速率。
酶的催化机制酶的催化作用是通过两种主要机制来实现的:酶-底物互作和酶的构象变化。
在酶-底物互作机制中,酶通过辅助底物之间的结合,使底物中的键易于断裂或形成。
而在酶的构象变化机制中,酶通过在底物结合后发生构象变化,使其更容易进行化学反应。
酶的调节和活性酶的活性通常可以受到多种调节因素的影响,包括温度、pH值、离子强度等。
这些调节因素可以改变酶的构象和活性中心的特性,影响酶与底物之间的相互作用。
此外,一些辅助因子如辅酶、金属离子等也可以增强酶的催化活性。
结语综上所述,酶的作用机理是多方面因素共同作用的结果,其重要性不可低估。
深入研究酶的作用机理有助于揭示生物体内代谢过程的本质,为生物技术和医药领域的发展提供重要参考。
对酶的作用机理有更深入的理解,将为探索生命的奥秘提供更广阔的视野。
10第十章 酶的作用机制和酶的调节
第十章酶的作用机制和酶的调节目的和要求:理解、掌握酶活性部位的相关概念和特点;掌握酶催化高效性的相关机理;了解几种酶的催化机制,理解结构和功能的适应性;了解酶活性的调节方式,掌握酶活性的别构调节、可逆共价调节和酶原激活调节方式及生物代谢中的作用。
一、酶的活性部位㈠酶的活性部位的特点1、概念:三维结构上比较接近的少数特异的氨基酸残基参与底物的结合与催化作用,这一与酶活力直接相关的区域称酶的活性部位。
结合部位:专一性催化部位:催化能力,对需要辅酶的酶分子,辅酶或其一部分就是活性中心的组成部分;组成酶活性部位的氨基酸数目对不同酶而言存在差异,占整个酶氨基酸残基小部分酶活性部位的基团:亲核性基团,丝氨酸的羟基,半胱氨酸的巯基和组氨酸的咪唑基。
酸碱性基团:天冬氨酸和谷氨酸的羧基,赖氨酸的氨基,酪氨酸的酚羟基,组氨酸的咪唑基和半胱氨酸的巯基等。
2、特点⑴活性部位在酶分子的总体中只占相当小的部分(1%~2%)⑵酶的活性部位是一个三维实体⑶酶的活性部位并不是和底物的形状互补的⑷酶的活性部位是位于酶分子表面的一个裂隙内⑸底物通过次级键结合到酶上⑹酶活性部位具有柔性㈡研究酶活性部位的方法1、酶分子基团的侧链化学修饰⑴非特异性共价修饰:活力丧失程度与修饰剂浓度有正比关系;底物或可逆的抑制剂可保护共价修饰剂的修饰作用。
⑵特异性共价修饰:分离标记肽段,可判断活性部位的氨基酸残基,如二异丙基氟磷酸(DFP)专一性与胰凝乳蛋白酶活性部位丝氨酸残基的羟基结合。
⑶亲和标记:利用底物类似物和酶活性部位的特殊亲和力将酶加以修饰标记来研究酶活性部位的方法。
修饰剂的特点:①结构与底物类似,能专一性引入到酶活性部位;②具活泼化学基团,能与活性部位某一氨基酸共价结合,相应的试剂称“活性部位指示剂”。
胰凝乳蛋白酶和胰蛋白酶,TPE是酶的底物,TPCK是酶的亲和试剂,当酶与TPCK温浴后,酶活性丧失,这种结合具有空间结构的需求,同时也阻止其他试剂如DFP结合。
酶的作用和作用机理是什么
酶的作用和作用机理是什么
酶是一种特殊的蛋白质,它在生物体内起着至关重要的作用。
酶是生物体内催
化化学反应的催化剂,能够加速反应速率而不改变反应所引发的方向。
酶的作用机理涉及到酶与底物的结合、反应过渡态的形成以及产物释放等多个步骤。
在生物体内,酶扮演着“生命的工厂”角色。
酶能够在生体温下加速化学反应,
从而维持生物体内繁复的代谢过程顺利进行。
酶选择性地作用于特定的底物,使得生物体内的代谢通路高效而有序。
酶的作用机理主要包括底物结合、催化反应和产物释放三个主要步骤。
首先,
酶通过其特定的活性位点与底物结合形成酶-底物复合物。
这种结合能够使底物的
化学键变得更容易断裂,从而促进反应的进行。
接着,酶通过提供合适的环境和催化功能,促使底物发生化学反应,形成反应过渡态。
最后,酶释放产物,使得反应达到平衡状态。
酶的催化活性受到多种因素的影响,包括底物浓度、温度、pH值等。
酶活性
一般随着底物浓度的增加而增加,但在一定浓度范围内会达到最大值。
温度和pH
值也会影响酶的构象和活性,过高或过低的温度及异常的pH值都会影响酶的活性。
总之,酶作为生物体内化学反应的催化剂,发挥着重要的作用。
通过理解酶的
作用机理,可以更好地认识生物体内代谢的调控和调节机制,对于人类健康和医学研究具有重要意义。
酶的作用和作用机理
酶的作用和作用机理
在生物化学领域中,酶是一类高效的催化剂,对生物体内各种生物化学反应起着至关重要的作用。
酶在细胞内起到了调控代谢途径、合成分子和分解废物等重要功能。
本文将探讨酶的作用与作用机理。
酶的作用
酶在生物体内参与了各个生物化学反应,可以加速反应速率,降低活化能,从而促进生物体的正常代谢。
以消化系统为例,唾液中的唾液淀粉酶可以催化淀粉分解成葡萄糖,使得食物中的多糖得以被吸收。
类似地,胃蛋白酶可以将蛋白质分解成氨基酸,以供生物体合成自身所需的蛋白质。
此外,酶还可以通过调控代谢路径来维持细胞内的稳态。
例如,ATP合成酶和ATP分解酶协调合成和分解ATP,保持细胞内ATP的水平,从而满足细胞对能量的需求。
酶的作用机理
酶的作用机理主要是通过诱导适当的环境条件,使得底物能够更容易地进入酶的活性中心,并促使反应发生。
酶的活性中心通常是一个具有特定结构的裂解活性相对较高的部分。
酶的活性中心与底物结合后形成酶底物复合物,而这个复合物的形成使得反应能够以更少的活化能发生。
此外,酶的活性会受到温度、pH值等环境条件的影响。
一般来说,酶对于适宜的温度和pH值会有最高的活性,当环境条件偏离适宜范围时,酶的活性会受到影响。
这也是为什么在一些生物学实验中,需要严格控制温度和pH值的原因。
总的来说,酶作为生物体内重要的催化剂,在调控细胞代谢、合成和分解各种生物分子等方面发挥着非常重要的作用。
通过了解酶的作用和作用机理,可以更好地理解生物体内种种生物化学过程的本质。
生物化学(第三版)第十章 酶的作用机制和酶的调节课后习题详细解答_ 复习重点
第十章酶的作用机制和酶的调节提要酶的活性部位对于不需要辅酶的酶来说,就是指酶分子中在三维结构上比较靠近的几个氨基酸残基负责与底物的结合与催化作用的部位,对于需要辅酶的酶来说,辅酶分子或辅酶分子上的某一部分结构,往往也是酶活性部位的组成部分。
酶活性部位有6个共同特点。
研究酶活性部位的方法有:酶分子侧链基团的化学修饰法,动力学参数测定法,X射线晶体结构分析法和定点诱变法,这些方法可互相配合以判断某个酶的活性部位。
酶是催化效率很高的生物催化剂,这是由酶分子的特殊结构所决定的。
经研究与酶催化效率的有关因素有7个,即底物和酶的邻近效应与定向效应,底物的形变与诱导契合,酸碱催化,共价催化,金属离子催化,多元催化和协同效应,活性部位微环境的影响。
但这些因素不是同时在一个酶中其作用,也不是一种因素在所有的酶中起作用,对于某一种酶来说,可能分别主要受一种或几种因素的影响。
研究酶催化的反应机制,始终是酶学研究的一个重点,通过大量的研究工作,已经对一些酶的作用机制有深入了解,该章对溶解酶、胰核糖核酸酶A、羧肽酶A、丝氨酸蛋白酶、天冬氨酸蛋白酶等的催化作用机制进行了详尽的讨论。
酶活性是受各种因素调节控制的,除了在第8章中已介绍的几种因素外,主要还有①别构调节,例如ATCase。
②酶原的激活,如消化系统蛋白酶原的激活及凝血系统酶原的激活。
③可逆共价修饰调控,如蛋白质的磷酸化,一系列蛋白激酶的作用。
通过以上作用,使酶能在准确的时间和正确的地点表现出它们的活性。
别构酶一般都是寡聚酶,有催化部位和调节部位,别构酶往往催化多酶体系的第一步反应,受反应序列的终产物抑制,终产物与别构酶的调节部位相结合,由此调节多酶体系的反应速率。
别构酶有协同效应,[S]对υ的动力学曲线呈S形曲线(正协同)或表现双曲线(负协同),两者均不符合米氏方程。
ATCase作为别构酶的典型代表,已经测定了其三维结构,详细研究了别构机制和催化作用机制。
为了解释别构酶协同效应的机制,有两种分子模型受到人们重视,即协同模型和序变模型。
第10章 酶的作用机制和酶的调节
溶菌酶 胰凝乳蛋白酶 胃蛋白酶 木瓜蛋白酶 羧肽酶A 129 241 348 212 307 Asp52, Glu35 His57, Asp102, Ser195 Asp32, Asp215 Cys25, His159 Arg127, Glu270,Tyr248,Zn 2+
(一)别构调控
1、别构酶的概念 别构酶也称变构酶,它是代谢过程中的关键酶。除了具有酶的 活性部位外,还有一个调节部位。通过效应物(调节物)和酶 的别构部位的结合来调节其活性,从而调节酶反应速度和代谢 过程。
2、别构效应(allosteric effect):调节物或效应物
与酶分子上的别构中心结合后,诱导出或稳定住酶分子的某种 构象,使酶活性中心对底物的结合和催化作用受到影响,从而 调节酶反应速度及代谢过程,此效应即为酶的别构效应。 凡能使酶分子发生别构作用的物质称为效应物或别构剂,通常为小 分子代谢物或辅因子。如因别构导致酶活性增加的物质称为正效应 物或别构激活剂。反之称为负效应物或别构抑制剂。
在非极性环境中两个带电基团之间的静电作用比在极性 环境中显著增高。当底物分子与酶的活性部位相结合, 就被埋没在疏水环境中,这里底物分子与催化基团之间 的作用力将比活性部位极性环境的作用力要强得多。这 一疏水的微环境大大有利于酶的催化作用。
三、
52
五、酶活性的调节控制
(三)研究酶活性部位的方法
1.酶分子侧链基团的化学修饰法
(1)非特异性共价修饰
某些化学试剂能和酶蛋白中氨基酸残基的侧链基团反应而 引起共价结合、氧化或还原等修饰反应,使基团的结构和 性质发生改变。如果某基团修饰后不引起酶活力的变化, 可以初步认为,此基团可能是非必需基团。反之,如修饰 后引起酶活力的降低或丧失,则此基团可能是酶的必需基 团。 修饰剂已和活性都位基团结合的鉴别标准有两个: ①酶活力的丧失速率和修饰剂浓度成正比。 ②底物或与活性部位结合的可逆抑制剂可保护共价修饰剂 的抑制作用。
酶作用机制
酶活性中心示意图
S- S
活性中心外 必需基团 活 性 中 心 必 需 基 团
底物
结合基团
催化基团 肽链
活性中心
多肽链 底物分子 活性 中心 以外 必需 基团 酶活性中心 活性 催化基团 中心 必需 结合基团 基团
有的酶的必需基团 兼有两者的功能
胰凝乳蛋白酶活性部位示意图
一些酶活性中心的氨基酸残基
酶
糖原磷酸化酶 磷酸化酶b激酶 糖原合成酶 丙酮酸脱羧酶 磷酸果糖激酶 丙酮酸脱氢酶 HMG-CoA还原酶 HMG-CoA还原酶激酶 乙酰CoA羧化酶 脂肪细胞甘油三脂脂肪酶 黄嘌呤氧化酶
化学修饰类型
磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 -SH/-S-S-
1
(接近过渡 CH 2 CH 2 态) 108
O
三)酸碱催化
酸碱催化是通过瞬间的向反应物提供质子或 从反应物接受质子以稳定过渡态,加速反应 的一类催化机制。
狭义的酸碱催化 H+、OH-
酸碱催化
广义的酸碱催化,质子受体和供体
酶蛋白中具有广义的酸碱催化的功能基:氨 基、羧基、巯基、酚羟基、咪唑基等。
His存在于许多酶的活性中心;咪唑基是催化中很活泼的一个催化 功能基,它既能供出质子又能接受质子,且速度十分迅速,所 以,His在Pr的含量虽小,往往位于活性中心。
研究酶活性部位的方法
1.分子侧链基团的化学修饰法 2、动力学参数测定法 3、射线晶体结构分析法 4、定点诱变法
二、酶反应的独特性质
• 酶反应;一类反应仅涉及电子转移,另一类 反应涉及电子和质子两者或其他基团的转移 • 酶催化作用以残基上的功能基团和辅酶为媒 介,如His, Ser, Cys, Lys, Glu, Asp • 酶催化反应的最适pH范围狭小 • 酶活性部位比底物稍大 • 酶除进行催化反应所必需的活性基团外,还 有其他因素,如使底物产生张力等作用因素
第10章酶的作用机制和酶的调节
第10章酶的作用机制和酶的调节第10章酶的作用机制和酶的调节教学目的:掌握酶的活性部位结构与功能、酶活性的别构调节、酶原激活,了解酶高效性原因教学重点:酶活性部位的结构与功能及酶的活性的别构调节教学难点:酶活性的别构调节教学方法:多媒体教学内容:一、酶的活性部位及确定方法(一)酶活性部位概念及特点1、酶的活性中心(活性部位):指酶分子中的表面有一个必需基团比较集中、并构成一定空间结构的微小区域。
酶活性中心的基团,按其功能可分为结合基团和催化基团。
活性中心的基团都是维持酶活性的必需基团,2、酶活性部位的共同点:(1)酶活性部位仅占酶体积的很小一部分,通常只占整个酶分子体积的1~2%,酶分子是大分子物质,由很多氨基酸构成,而活性部位仅由几个氨基酸残基组成催化部位一般由2~3个氨基酸残基组成。
结合部位氨基酸残基数目,不同的酶有所不同。
可能是一个,也可能是多个。
(2)酶的活性部位具有三维结构,构成酶活性中心的基团,可位于同一条肽链上,也可位于不同的肽链上,在一级结构上可能相距甚远,但在空间结构上位置必须相互靠近;酶的空间结构受物理或化学因素影响时,酶的活性部位可能会遭破坏,酶会失活。
(3)活性中心的结合基团与底物专一性结合,这需要活性部位的基团精确排列。
活性部位具有一定的柔韧性,活性部位的结构并不是与底物的结构正好互补。
在酶与底物结合过程中,酶活性中心的构象在底物的诱导下可发生形变,然后嵌合互补形成中间产物,而底物在酶活性中心的诱导下也可发生形变,变的易与酶结合,有时是两者的构象同时发生变化后才互补契合(诱导契合学说)。
(4)酶活性部位位于酶分子表面的一个裂缝内,底物分子或底物分子的一部分结合到裂缝中,裂缝内的非极性基团较多,形成一个疏水环境,提高与底物的结合能力,也有极性的氨基酸残基,以便与底物结合并催化底物发生反应。
(5)底物通过较弱的次级键与酶结合。
组成酶活性中心的氨基酸残基,常见的有:组氨酸、赖氨酸、天冬氨酸、谷氨酸、丝氨酸、半胱氨酸和酪氨酸3、研究酶活性部位的方法(1)共价修饰(2)亲和标记法(3)切除法(4)X射线晶体结构分析法二、酶促反应机制(一)基元催化的分子机制:酶的催化作用包括若干基元催化。
第10章_酶动力学
2.5 12.0 32.0
22
②可以判断酶的专一性和天然底物
已知,Km=(K2+K3)/K1 当:k3<<k2 (k3为限速步骤的速率常数) Km≈K2/K1 即,Km相当于ES分解为E+S的解离常数(Ks), Km代表酶对底物的亲和力。
Km值大表示亲和程度小,酶的催化活性低; Km值小表示亲和程度大,酶的催化活性高。
酶的转换数(k3)
定义 :当酶被底物充分饱和时,单位时间内 每个酶分子催化底物转变为产物的分 子数。 意义 :可用来比较每单位酶的催化能力。
30
3、 Km与V的求取
31
Km值与Vmax值可以通过作图法求取
(1)双倒数作图法(double reciprocal plot), 又称为 林-贝氏(Lineweaver- Burk)作图法 Vmax[S] Km+[S] 两边同取倒数 Km 1/V= 1/[S] + 1/Vmax Vmax (林-贝氏方程)
51
(1) 非专一性不可逆抑制剂
①重金属离子 Ag+ 、 Cu2+ 、 Hg2+ 、 Pb2+ 、 Fe3+ 高浓度时可使酶蛋白变性失活; 低浓度时对酶活性产生抑制。
——通过加入EDTA解除
52
②烷化剂(多为卤素化合物)
E+S
两个假设:
•
k1
k2
ES
k3
E+P
E与S形成ES复合物的反应是快速平衡反应,而 ES分解为E及P的反应为慢反应,反应速率取决 于慢反应即 V = k3[ES]。 (1)
•
S的总浓度远远大于E的总浓度,因此在反应的 初始阶段,S的浓度可认为不变即[S] =[St]。
酶的活性部位
的羟基,半胱氨酸的 H2N CH C OH
N
巯基和组氨酸的咪唑
CH2
N
基。
H
N
NH
O
H2N CH C OH O
CH2 H2N CH C OH
COOH
酸、碱性基团:
CH2 CO
CH2 CO
天冬氨酸和谷氨
OH
O OH
酸的羧基,酪氨 O H2N CH C OH源自NH 2酸的酚羟基
H2N CH C OH CH2
广义酸-碱催化是指通过质子酸提供部分质子, 或是通过质子碱接受部分质子的作用,达到降 低反应活化能的过程。
酶分子中可以作为广义酸、碱的基团
广义酸基团 (质子供体)
+
-COOH, -NH 3, -SH,
广义碱基团
(质子受体)
-COO -,
..
-NH 2,
-S ,-
+
OH HN NH
O- :N NH
结合部位决定酶的专一性, 催化部位决定酶所催化反应
的性质。
补:酶活性中心的必需基团
顺便复习一些重要AA的R基 O
H2N CH C OH
OH
酶必需基团指酶活性
CH2
中心实现催化作用的
OH O
必需的些氨基酸基团。 H2N CH C OH
SH
主要包括:
CH2
亲核性基团:丝氨酸
O SH
第十章 酶的催化作用 机制和酶的调节
一、酶的活性部位:与酶活 性直接相关的氨基酸构成的 部位。包括:
1.结合部位 Binding site
酶分子中与底物结合 的部位或区域一般称 为结合部位。
2.催化部位 catalytic site
酶的活性调节
(二)E 的活性中心特点 1 几个氨基酸残基,1%〜2 %酶分子体积
384
(二) E 的活性中心特点
2 3
三维实体 表面或接近表面
裂缝(crevice)
疏水区域
4 柔性或可运动性
E 诱导契合和 S底物的形变
5
ES 是由次级键形成
384
酶的活性中心示意图
酶的结构
活性中心
必需基团
结合部位 催化部位 活性中心以外的必需基团
长的凹穴。最适底物正好与
酶分子的凹穴相结合,凹穴
中的Glu35和Asp52 是活性中 心的氨基酸残基。
2. 催化作用机理 • 溶菌酶底物与酶活性中心的关系
溶菌酶活性中心上的Asp52氧 原子距离底物敏感键(C-O键)中 碳原子只有0.3nm,活性中心 上另一个氨基酸 Glu35的羧基 距离底物敏感键(C-O键)中氧原 子也只有0.3nm,溶菌酶的活 性中心的氨基酸残基与底物敏 感键既靠近又定向。
接有关,即与酶活力直接相关的区域称为酶的活性部位。
酶的活性部位是酶分子进行催化反应的一个场所,是酶分子的一小 部分区域,在这个区域上的少数几个特异的氨基酸参与结合底物催化底 物,把酶分子上的这个区域称为酶的活性部位。
结合部位
负责酶与底物的结合,决定
活性 部位
催化部位
酶 的专一性
负责催化底物,决定酶
酶活性中心的羧基与水形成氢键,导 致酶活性中心羧基表面有一层水化层,水 分子的屏蔽作用,大大削弱了酶分子与底 物离子间的静电相互引力,不利于酶促反 应。
酶催化作用机理: 综上所述:
酶与底物结合时,由于酶的变形(诱导契合) 或底物变形使二者相互适合,并依靠离子键、氢 键、范德华力的作用和水的影响,结合成中间产 物,在酶分子的非极性区域内,由于酶与底物的 邻近、定向,使二者可以通过亲核\亲电催化、
第10章 酶动力学
24
kcat值越大,表示酶的催化速率越高 kcat/Km常用来比较酶催化效率的参数
(四)米-曼氏方程的线性化作图求Km和Vmax
1. 双倒数(Lineweaver-Burk)作图
v0
Vmax[S ] Km [S]
1 Km 1 1 v0 Vmax [S ] Vmax
26
E+S
k 2
ES
k -1
E+P
Ks
Kcat
在低底物浓度时:反应速度与 底物浓度成正比,表现为一级 反应特征。
随着底物浓度的增高 反应速度不再成正比例加速; 反应为混合级反应。
当底物浓度达到一定值
反应速度达到最大值(Vmax),
此时再增加底物浓度,反应速度不 再增加,表现为零级反应。
(二)米-曼氏方程所确定的图形是直 角双曲线
单分子反应 A P v k[ A]
一级反应
AB P 双分子反应 v k[ A][B] 二级反应
2A P v k[ A]2
7
二、底物浓度对酶促反应速率的影响 (一)米-曼氏方程
k1 E+S
k-1
ES k2
E+P
8
米-曼氏方程的推导
26
k1 E+S
ES k2
E+P
k-1
27
d[ES] dt
2.Eadie-Hofstee作图法
第十章 酶动力学
Enzyme kinetics
本章内容
1. 有关的化学动力学概论(了解) 2. 底物浓度对酶促反应速率的影响(重点) 3. 多底物的酶促反应(了解) 4. 影响酶促反应速率的其他因素(了解) 5. 酶的抑制作用(重点、难点)
生物化学第10章 酶的作用机理和酶的调节
别够调节可发生在底物-底物、调节物-底物、调节物-调节 物之间,可以是正协同也可以是负协同。
2.别构酶的动力学
别构酶的[S]对V0的动力学曲线不是双曲线,而是S形曲线(正协 同)或表观双曲线(负协同),二者均不符合米氏方程。
定向效应: 底物会诱导酶分子构象改变,使酶活性中心的相 关基团和底物的反应基团正确定向排列,使反应基团之间 的分子轨道以正确方向严格定位,使酶促反应易于进行。
2. 底物的形变(distortion)与诱导契合
当酶遇到其底物时,酶中某些基团或离子可以使底物分子 内敏感键中的某些基团的电子云密度增高或降低,产生“电子 张力”,使敏感键的一端更加敏感,底物分子发生形变,底物 比较接近它的过渡态,降低了反应活化能,使反应易于发生。
[S] (10-4molL-1)
(NAG)2 (NAG)3 (NAG)4 (NAG)5 (NAG)6 (NAG)8
相对水解率
0 1 8 4000 30000 30000
××
ABCDEF
NAG-NAM-NAG-NAM-NAG-NAM
××
NAG-NAG-NAG
NAG-NAG-NAG-NAG NAG-NAG-NAG-NAG-NAG NAG-NAM-NAG-NAM-NAG-NAM
酶与底物给合时构象变化的示意图
3.多元催化和协同效应
在酶催化反应中,几个基元催化反应配合在一起起作用, 如:胰凝乳蛋白酶是通过Asp102, His57,Ser195组成电荷中继网 催化肽键水解,包括亲核和酸碱共同催化共同作用。
4. 活性部位微环境的影响
酶的作用和作用机理有哪些
酶的作用和作用机理有哪些
酶是一类生物大分子催化剂,在生物体内发挥着重要的作用。
酶通过降低活化能,加快化学反应速率,促进生物体内的代谢活动和生长发育过程。
酶的作用机理涉及酶与基质的结合、底物的结合与转化等关键步骤。
酶的作用
生物催化剂
酶作为生物体内的催化剂,能够在较低的温度和压力条件
下加速生物体内的化学反应,降低能量消耗,提高反应速率。
底物特异性
不同的酶对应不同的底物,具有底物特异性,只能催化特
定的反应。
反应后酶的再生
酶在反应中不消耗,反应后可以再次参与催化其他底物反应,实现循环利用。
酶的作用机理
酶与基质的结合
酶在活性位置与基质形成酶-基质复合物,通过特定的结合
方式促进底物分子准确定位到酶的活性部位。
底物结合与转化
酶与底物结合后,通过特异性的催化作用,降低化学反应
的活化能,促进底物分子的转化。
酶的构象变化
在底物与酶结合后,酶发生构象的变化,使底物更容易发生化学反应,从而加速反应速率。
不改变反应自由能变化
酶催化过程中不改变反应自由能变化,只是加速反应的过程,达到快速平衡。
综上所述,酶通过特定的作用机理促进生物体内复杂的代谢过程,加速化学反应速率,实现生命活动的正常进行。
对于生物体的生长、发育以及代谢过程都具有不可或缺的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三个氨基酸残基依赖
键产生的。
⒊ 一般别构酶分子结构中都包括
和 部位,其反应速度对底物浓度的曲线呈
形。
解释别构酶作用机理的假说有
模型和
模型。
⒋ 酶原激活的本质是
的形成和暴露的过程。
⒌ 常用的化学修饰剂 DFP 可以修饰
残基,TPCK 常用来修饰
残基。
⒍ 谷氨酰胺合成酶的活性可以被
共价修饰调节,糖原合成酶、白质的磷酸化是可逆的,蛋白质磷酸化时,需要
酶,而蛋白质去磷酸化需要 酶。
四、名词解释
⒈ 酶活性部位;⒉ 酶活性部位必需基团;⒊ 别构酶和异构酶;⒋ 酶共价修饰调节;⒌同工酶、
诱导酶;⒍ 催化三联体;⒎ 酶原激活;⒏ 酸碱催化;⒐ 共价催化;⒑ 蛋白激酶
五、问答题
⒈ 什么是酶的活性中心?有何特点?
用。
⒒ 所有别构酶都是寡聚酶,寡聚蛋白(酶)基本上都是别构酶。
三、填空题
⒈ 酶活性中心往往处于酶分子表面的
中,形成
区,从而使酶与底物之间的作用力
加强;酶活性中心包括
和
两个功能部位,其中
与底物结合,决定酶的专
一性,
是发生化学变化的部位,决定催化反应的性质。
⒉ 胰凝乳蛋白酶活性中心的电荷转接系统是由
、
、
⒉ 酶降低反应活化能实现高效率的重要因素是什么?
⒊ 解释酶的催化机理。
⒋ 别构酶有何特点?调节机制是怎样的?
⒌ 在很多酶的活性中心均有 His 残基参与,请解释。
⒍ 天冬氨酸转氨甲酰酶催化的反应,其反应速度与底物浓度的关系呈 S 曲线,为什么?
⒎ 简述关于酶作用专一性的学说。
-2-
-1-
中国海洋大学海洋生命学院
生物化学习题
2008 年修订
⒏ 所有别构酶的 v 对[S]曲线均为 S 形。
⒐ 胰脏分泌的酶原,如胰凝乳蛋白酶原、弹性蛋白酶原、羧肽酶原等,都是经胰蛋白酶作用活化成
各自相应的酶。
⒑ 酶催化反应是发生在酶的活性部位,酶之所以具有高效率是由于活性部位存在多种催化基团,起
着多元催化的作用,其它部分只是维持酶的催化基团具有合适的位置,对催化作用不起什么作
中国海洋大学海洋生命学院
生物化学习题
2008 年修订
第十章 酶作用机理和调节
一、选择题 ⒈ 关于酶活性中心的描述,哪一项正确?( )
A、所有的酶都有活性中心;B、所有酶的活性中心都含有辅酶;C、酶的必须基团都位于酶的 活性中心内;D、所有的抑制剂都是由于作用于酶的活性中心;E、所有酶的活性中心都含有金 属离子 ⒉ 酶分子中使底物转变为产物的基团是指:( ) A、结合基团;B、催化基团;C、疏水基团;D、酸性基团;E、碱性基团 ⒊ 酶原的激活是由于:( ) A、氢键断裂,改变酶分子构象;B、酶蛋白和辅助因子结合;C、酶蛋白进行化学修饰;D、亚 基解聚或亚基聚合;E、切割肽键,酶分子构象改变 ⒋ 同工酶是指( ) A、辅酶相同的酶;B、活性中心的必需基团相同的酶;C、功能相同而分子结构不同的酶;D、 功能和性质都相同的酶;E、功能不同而酶分子结构相似的酶 ⒌ 有关别构酶的结构特点,哪一项不正确?( ) A、有多个亚基;B、有与底物结合的部位;C、有与调节物结合的部位;D、催化部位和别构部 位都位于同一亚基上;E、催化部位与别构部位既可以处于同一亚基也可以处于不同亚基上。 ⒍ 属于酶的可逆性共价修饰,哪项是正确的? A、别构调节;B、竞争性抑制;C、酶原激活;D、酶蛋白和辅基结合;E、酶的丝氨酸羟基磷 酸化 ⒎ 溶菌酶在催化反应时,下列因素中除哪个外,均与酶的高效率有关?( ) A、底物形变;B、广义酸碱共同催化;C、临近效应与轨道定向;D、共价催化;E、无法确定 ⒏ 对具有正协同效应的酶,其反应速度为最大反应速度 0.9 时底物浓度([S]0.9)与最大反应速度为 0.1 时的底物浓度([S]0.1)二者的比值[S]0.9/[S]0.1 应该为( ) A、>81;B、=81;C、<81;D、无法确定 ⒐ 以 Hill 系数判断,则具负协同效应的别构酶( ) A、n>1;B、n=1;C、n<1;D、n≥1;E、n≤1 ⒑ 蛋白质的别构效应( ) A、是蛋白质分子普遍存在的效应;B、总是和蛋白质的四级结构紧密联系的;C、和蛋白质的 四级结构关系不大;D、有时与蛋白质的四级结构有关,有时无关 二、判断是非 ⒈ 组成酶活性中心的各个基团可能来自同一条多肽链,也可能来自不同的多肽链。 ⒉ 底物与酶的活性中心靠共价键结合,以提高催化效率。 ⒊ π -胰凝乳蛋白酶是无活性的,α -胰凝乳蛋白酶是有活性的。 ⒋ 别构酶的反应速度对底物浓度的关系呈 S 形曲线,因此它的 Km 值变大。 ⒌ 所有的酶都遵循米氏方程,其反应速度对底物浓度的曲线均是双曲线。 ⒍ 用双倒数作图法可以求出别构没的 Km 值。 ⒎ 在酶的活性中心,只有侧链带电荷的氨基酸残基直接参与酶的催化作用。