(完整版)对称、平移和旋转测试题

合集下载

【苏教版】三年级上册数学 6.平移、旋转和轴对称测试卷_含答案

【苏教版】三年级上册数学 6.平移、旋转和轴对称测试卷_含答案

三年级上册数学单元测试- 6.平移、旋转和轴对称一、单选题1.下列现象中,既有平移现象又有旋转现象的是()A. 正在工作的电扇叶片B. 行驶中的汽车C. 扔出去的铅球D. 放飞的风筝2.如图。

将图1中的三角形甲平移到图2中所示的位置,与三角形乙拼成一个长方形,那么,下面的平移方法中,正确的是( )。

A. 先向下平移3格,再向右平移1格B. 先向下平移3格.再向右平移2格C. 先向下平移2格,再向F平移2格D. 先向有平移3格.再向F平移2格3.电风扇的运动是()A. 平移B. 旋转C. 既平移又旋转4.图①绕点O()变为图②。

A. 顺时针旋转90°B. 逆时针旋转180°C. 逆时针旋转90°5.一个图形经过平移变换后,有以下几种说法,其中不恰当的说法是( )A. 平移后,图形的形状和大小都不改变B. 平移后的图形与原图形的对应线段、对应角都相等C. 平移后的图形形状不变,但大小可以改变D. 利用基本图形的平移可以设计美丽的图案6.从12时到12时30分,分针绕中心点()。

A. 逆时针旋转了90°B. 顺时针旋转了90°C. 顺时针旋转了180°7.下列哪种运动可以看成平移()A. 升国旗B. 电风扇叶片转动C. 钟摆的运动8.下列每组中的前后两个图形,()组通过平移就可以重合。

A. B. C. D.9.补全轴对称图形的时候,要先找到()A. 边界B. 对称轴C. 端点10.下列现象中,不属于平移的是()A. 乘直升电梯从一楼上到二楼B. 钟表的指针嘀嗒嘀嗒地走C. 火车在笔直的轨道上行驶D. 汽车在平坦笔直的公路上行驶二、判断题11.平移必须在水平方向上移动。

12.收费站转杆打开,旋转了180度。

13.电风扇转动是平移现象。

14.左图是由连续两次向右平移2个方格组成的图案。

15.小朋友们玩跷跷板是平移现象。

三、填空题16.看图回答图形B可以看作图形A绕点________顺时针方向旋转90°得到的。

【小学】五年级上册数学单元测试 2.图形的平移、旋转和对称(含答案)

【小学】五年级上册数学单元测试 2.图形的平移、旋转和对称(含答案)

五年级上册数学单元测试-2图形的平移、旋转和对称一、单选题1小聪推门进了教室,推门时门在()A 平移B 旋转C 对称2教室门的打开和关上,门的运动是()A 平移B 旋转C 既平移又旋转3在图1对折好的纸上剪下一个三角形和一个半圆,打开后得到的是()。

A B C4下列现象中属于平移现象的是。

A 风扇转动B 电车前行C 晃动呼拉圈D 转动风车二、判断题5在对称图形中,对称轴两侧相对的点到对称轴的距离相等。

6旋转中,对应点划过的痕迹是一条圆弧。

7从6时到9时,时针按顺时针方向旋转了90°()8判断对错.左图是五边形,每条边都相等,它有三条对称轴.三、填空题开始,顺时针旋转90°到________ .指针从B开始,逆时针旋转90°到________ .10下面现象中,________是平移,________是旋转11时针从12时开始,顺时针旋转90 º后是________时。

12图1中两个三角形均为等边三角形,你知道小三角形的面积是大三角形面积的________.图2给出了解决这个问题的一个巧妙的办法,你知道答案了吗?图中的三角形绕它的中心旋转了________度.你能用这个办法求出图3中小正方形的面积占大正方形面积的________吗?在图上画一画小正方形需绕它的中心旋转________度?四、解答题13在点子图上画出你喜欢的对称图形.14请在轴对称图形的下面打“√”,并画出它的对称轴。

五、综合题15看图填一填(1)图①绕点O旋转________度得到图②。

(2)图③绕点A经过________时针旋转________度得到图④。

(3)图⑤经过________得到图⑥。

(4)图⑦经过________时针旋转________度,再平移________格得到图⑧。

六、应用题16从3时到3时15分,分针旋转了多少度?参考答案一、单选题1【答案】B【解析】【解答】推门时门是沿着门轴转动,属于旋转故答案为:B【分析】平移是物体沿着直线运动的现象;旋转是物体绕一个点或轴转动的现象;对称是沿着一条直线对折后能完全重合的图形2【答案】B【解析】【解答】教室门的打开和关上,门的运动是旋转。

五年级数学图形的平移旋转与对称试题

五年级数学图形的平移旋转与对称试题

五年级数学图形的平移旋转与对称试题1.风扇扇叶的转动是平移现象..(判断对错)【答案】×【解析】解:据分析可知:风扇扇叶的转动是旋转现象,所以题干的说法是错误的.故答案为:×.【点评】此题是考查对平移与旋转的理解及在实际当中的运用.2.门的开关运动属于运动.【答案】旋转【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.根据平移与旋转定义判断即可.解:据分析可知:门的开关运动属于旋转运动.故答案为:旋转.【点评】此题是考查对平移与旋转的理解及在实际当中的运用.3.画出下面图形的轴对称图形.【答案】见解析【解析】根据轴对称图形的特点和性质,每组对应点到对称轴的距离相等,每组对应点的连线垂直于对称轴,先描出每组对应点,然后顺次用直线连接各点即可.解:先描出每组对应点,然后顺次用直线连接各点.作图如下:【点评】此题主要根据轴对称图形的特点和性质解决问题.4.一间会议室长12米,宽7.2米,如果用边长3分米的正方形地面砖铺地,一共需要多少块?【答案】960块.【解析】先根据“长方形的面积=长×宽”计算出教室的面积,进而根据“正方形的面积=边长×边长”计算出正方形方砖的面积,继而用“教室的面积÷正方形方砖的面积”进行解答即可.解:3分米=0.3米,(12×7.2)÷(0.3×0.3),=86.4÷0.09,=960(块);答:一共需要960块.【点评】解答此题的关键是根据长方形的面积计算公式计算出教室的面积,进而根据正方形的面积计算公式计算出方砖的面积,继而用“教室的面积÷正方形方砖的面积”进行解答即可.5.平行四边形是轴对称图形..(判断对错)【答案】×【解析】依据轴对称图形的定义即可作答.解:因为平行四边形无论沿哪一条直线对折,对折后的两部分都不能完全重合,所以平行四边形不是轴对称图形.答:平行四边形是轴对称图形,这种说法是错误的.故答案为:×.【点评】此题主要考查轴对称图形的定义.6.指针从“1”绕点O顺时针旋转60度后指向.【答案】3.【解析】这里是关于中钟表的问题,不难得出钟面被平均分成了12份,那么1份所对的圆心角就是360°÷12=30°;由此即可解决问题.解:指针从“1”绕点O顺时针旋转60°时,是经过了60°÷30°=2个格,那么此时指针指向3,故答案为:3.【点评】抓住钟面上的一个大格所对的圆心角的度数是30°,是解决本题的关键,这里还要注意逆时针旋转和顺时针旋转的意义.7.五角星是轴对称图形,它只有1条对称轴..【答案】×【解析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可判断五角星的对称轴条数.解:根据轴对称图形的定义可知:五角星是轴对称图形,它有5条对称轴,所以原题说法错误.故答案为:×.【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴的条数的灵活应用.8.画出下图中的轴对称图形.【答案】【解析】根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连结即可.解:画出下图中的轴对称图形:【点评】求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点,然后依次连结各对称点即可.9.下面各图形中,对称轴最少的是()A. B. C.【答案】BC【解析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.解:A,有3条对称轴;B,有2条对称轴;C,有2条对称轴;故选:B、C.【点评】解答此题的主要依据是:轴对称图形的概念及特征,借助画图,更容易解答.10.(1)画出图形A绕点O顺时针旋转90°后得到图形B.(2)把图形B先向右平移9格,再向下平移3格得到图形C.【答案】【解析】(1)先找出以点O为旋转中心,顺时针旋转90度的其它三个顶点的对应点,再依次连接起来即可得出图形B;(2)把图形B的四个顶点分别向右平移9格,再向下平移3格,依次连接起来,即可得出图形C.解:根据题干分析画图如下:【点评】此题考查了利用图形旋转、平移的方法进行图形变换的方法.。

图形的平移,对称与旋转的经典测试题附答案

图形的平移,对称与旋转的经典测试题附答案
即点 的坐标为
∵点A向右平移 个单位,向下平移6个单位得到点
∴ 的坐标为 .
故选:D.
【点睛】
本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.
16.观察下列图形,其中既是轴对称又是中心对称图形的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
∴在Rt∆A′】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
2.如图,在 中, , , ,将 绕一逆时针方向旋转 得到 ,点 经过的路径为弧 ,则图中阴影部分的面积为( )
A. B. C. D.
【答案】D
D、能够通过平移得到,故符合题意,
故选D.
【点睛】
本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.
6.如图,在平面直角坐标系中, 的顶点 在第一象限,点 在 轴的正半轴上, , ,将 绕点 逆时针旋转 ,点 的对应点 的坐标是()
A. B. C. D.
【答案】D
【详解】
由旋转的性质可知, ,
∵ , ,
∴ 为等边三角形,
∴ ,
∴ ,
故选:A.
【点睛】
此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB
19.下列图形中,既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题1.下列运动中,是平移的是()A.开门时,门的移动B.走路时手臂的摆动C.移动电脑的鼠标时,显示屏上鼠标指针的移动D.移动书的某一页时,这一页上的某个图形的移动【答案】C.【解析】根据平移的定义,对题中给出的选项进行分析,选择正确答案:A.开门时,门的移动,属于旋转现象;B.走路时手臂的摆动,属于旋转现象;C.移动电脑的鼠标时,显示屏上鼠标指针的移动,属于平移现象;D.移动书的某一页时,这一页上的某个图形的移动,属于旋转现象.故选C.【考点】生活中的平移现象.2.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形.【答案】6、3【解析】因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形3.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等【答案】D【解析】因为全等三角形对应边上的高、对应边上的中线、对应角的平分线相等,A、B、C项没有“对应”,所以错误,而D项有“对应”,D是正确的.故选D.4.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.【答案】2,4,有2.【解析】与三角形1成轴对称图形是三角形2与三角形4,对称轴有2条.【考点】轴对称的性质.5.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.7.小亮在镜中看到身后墙上的时钟如图,你认为实际时间最接近八点的是()【答案】D.【解析】根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.【考点】镜面对称.8.在以下四个图形中,对称轴条数最多的一个图形是()A. B. C. D.【答案】B【解析】由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.轴对称图形的定义是图形按照某条直线对折后,图形重合,这条直线叫做图形的对称轴,由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.【考点】对称轴.9.如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1).(1)在图中作出关于轴对称的.(2)写出点的坐标.A1 _________ B1________ C1________.【答案】(1)详见解析;(2)【解析】已知三点坐标,根据在平面直角坐标系中,关于轴对称的点的坐标特点直接确定出的坐标,然后连线即可.试题解析:解:(1)如图,即为所求关于轴对称的图形.考点:画轴对称图形.10.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析11.如图,在正方形网格中每个小正方形的边长都是单位长度1,△的顶点都在格点上,且△与△关于点成中心对称.(1)在网格图中标出对称中心点的位置;(2)画出将△沿水平方向向右平移5个单位后的△.【答案】【解析】(1)连CF、BE后,所得交点即为O点(2)将A、B、C点各平移5个单位后,所得到的3个新的点互相连接,所得到的的图形即为所求图形【考点】图形的对称与平移点评:题目难度不大,学生可以通过多做此类题得出12.下列现象属于图形平移的是()A.轮船在大海上航行B.飞速转动的电风扇C.钟摆的摆动D.迎面而来的汽车【答案】D【解析】平移的定义:把一个图形沿一定的方向移动一定的距离叫做图形的平移,简称平移. A、轮船在大海上航行,B、飞速转动的电风扇,C、钟摆的摆动,均不属于平移;D、迎面而来的汽车,符合平移的定义,本选项正确.【考点】平移的定义点评:本题属于基础应用题,只需学生熟练掌握平移的定义,即可完成.13.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A.75°B.60°C.45°D.15°【答案】B【解析】旋转角的定义:旋转对应边的夹角是旋转角。

2023年苏教版四年级数学下册第一单元平移、旋转和轴对称测试卷含答案

2023年苏教版四年级数学下册第一单元平移、旋转和轴对称测试卷含答案

《平移、旋转和轴对称》学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题(共10分)1.(本题1分)平移所给图形可得()。

A.B.C.D.2.(本题1分)下面图形中,对称轴条数最多的是()。

A.B.C.D.3.(本题1分)街心花园的花圃进行了园艺造型设计(如下图),涂色部分种植月季花,其余部分种植郁金香,从示意图中可以看出种植月季花的面积是整个花圃的()。

A.13B.无法确定C.14D.124.(本题1分)钟表上时针指向2,分针指向12,3小时后,时针旋转了()°。

A.30B.90C.120D.1505.(本题1分)再画一个小正方形,使下图成为轴对称图形,共有()种不同的画法。

A.2B.3C.4D.56.(本题1分)下图都是常见的安全标记,其中()是轴对称图形。

A.B.C.D.7.(本题1分)从6:00到9:00,时针旋转了()度。

A.90°B.180°C.360°D.120°8.(本题1分)下列图形中,()是轴对称图形。

A.B.C.D.9.(本题1分)如图,在图形中再给2个格子涂上颜色,使整个图形成为一个轴对称图形。

有()种不同的涂法。

A.6B.7C.8D.910.(本题1分)这是一个电风扇开关,数字表示风速档。

现在风扇在“1”档运行,如果要关闭,可将旋钮()。

A.按顺时针方向旋转90°B.按顺时针方向旋转120°C.按逆时针方向旋转90°D.按逆时针方向旋转120°评卷人得分二、填空题(共10分)11.(本题1分)下面的图形是绕( )点按( )方向旋转的。

12.(本题1分)(1)图1笑脸平移后得到的图形是( );(2)图2小船平移后得到的图形是( )。

13.(本题1分)如图,指针从“12”出发,绕点O顺时针旋转( )°到“4”。

图形的平移,对称与旋转的经典测试题含答案

图形的平移,对称与旋转的经典测试题含答案
故选B.
【点睛】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
故选:D.
12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()
A. B. C. D.4
【答案】A
【解析】

三年级数学平移旋转和对称试题

三年级数学平移旋转和对称试题

三年级数学平移旋转和对称试题1.电梯的升降是现象,钟面上时针和分针的运动是现象,拉开抽屉时,抽屉做运动.【答案】平移,旋转,平移.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心,所以,它并不一定是绕某个轴的,根据平移与旋转定义判断即可.解答:解:电梯的升降是平移现象,钟面上时针和分针的运动是旋转现象,拉开抽屉时,抽屉做平移运动;故答案为:平移,旋转,平移.点评:本题是考查图形的平移与旋转的意义,关键是看方向是否改变.2.推拉窗户的运动是;风车的运动是.【答案】平移,旋转.【解析】(1)平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;(2)旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心,所以,它并不一定是绕某个轴的;依此根据平移与旋转定义判断即可.解:推拉窗户的运动是平移;风车的运动是旋转;故答案为:平移,旋转.【点评】此题是对平移与旋转理解及在实际当中的运用.3.下列图形中,不是轴对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.解:根据轴对称图形的意义可知:下列图形中,不是轴对称图形的是,其它三个选项中的图形都是轴对称图形;故选:D.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.4.周一升国旗时,国旗的上升是现象;拧水龙头是现象.【答案】平移,旋转.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的;然后根据平移与旋转定义判断即可.解:周一升国旗时,国旗的上升是平移现象;拧水龙头是旋转现象;故答案为:平移,旋转.【点评】本题是考查图形的平移与旋转.平移与旋转关键是看图形的方向是否改变,平移不改变方向,旋转改变方向.5.在横线里填上“平移”或“旋转”.(1)自行车车轮的转动是现象,人骑车前行是现象;(2)风扇叶片的运动是现象;(3)钟面上分针不停地走动是现象;(4)升国旗时,国旗的升降运动是现象;(5)拉开抽屉是现象,拧水龙头是现象.【答案】旋转,平移;旋转;旋转;平移;平移,旋转.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的;由此根据平移与旋转定义判断即可.解:(1)自行车车轮的转动是旋转现象,人骑车前行是平移现象;(2)风扇叶片的运动是旋转现象;(3)钟面上分针不停地走动是旋转现象;(4)升国旗时,国旗的升降运动是平移现象;(5)拉开抽屉是平移现象,拧水龙头是旋转现象.故答案为:旋转,平移;旋转;旋转;平移;平移,旋转.【点评】此题是对平移与旋转理解及在实际当中的运用.6.下列现象属于平移现象的是()A.风扇转动B.写字C.晃动呼啦圈D.转动风车【答案】B【解析】根据平移不改变图形的形状、大小和方向,结合图形对选项进行一一分析,选出正确答案.解:A.图形的方向发生变化,不符合平移的性质,不属于平移得到,故本选项错误;B.图形的形状和大小没有变化,符合平移的性质,属于平移得到,故本选项正确;C.图形的方向发生变化,不符合平移的性质,不属于平移得到,故本选项错误;D.图形的方向发生变化,不符合平移的性质,不属于平移得到,故本选项错误.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.7.“里,一,五”都是轴对称的汉字.(判断对错)【答案】错误【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.解:根据轴对称图形的意义可知:“里,一”都是轴对称的汉字,而“五”不是轴对称图形;故答案为:错误.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.8.动手画一画、比一比在方格中画出一个轴对称图形。

初一数学图形的对称平移与旋转试题

初一数学图形的对称平移与旋转试题

初一数学图形的对称平移与旋转试题1.下列交通标志中,不是轴对称图形的是【答案】C【解析】A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.符合题意;D、是轴对称图形,不符合题意.【考点】轴对称图形2.如图是一个图案的一半,其中虚线是这个图案的对称轴,请你画出这个图案的另一半.【答案】作图见解析.【解析】利用轴对称图形的性质得出对应点位置,进而得出答案.试题解析:如图所示:【考点】利用轴对称设计图案.3.在正方形网格中,每个小正方形的边长均为1个单位长度,△的三个顶点的位置如图所示,现将△平移,使点对应点,点分别对应点.(1) 画出平移后的△.(2) △的面积是_ ;(3) 连接,则这两条线段之间的关系是__ __.【答案】(1)作图见解析;(2)3.5;(3)平行且相等.【解析】(1)由图可得将△ABC先向左平移了3个单位长度,又向下平移了1个单位长度,则可画出图形;(2)△A′B′C′的面积等于边长为3的正方形的面积减去直角边长为2,1的直角三角形的面积,减去边长为1,3的直角三角形面积,减去直角边长为3,2的直角三角形的面积;(3)根据平移前后对应点的连线平行且相等判断即可.试题解析::(1)如图:=3×3-×1×2-×1×3-×2×3=3.5;(2)S△A′B′C′(3)平行且相等.【考点】作图—平移变换.4.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为。

【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;(4)8.【解析】(1)连接BB′,过A、C分别做BB′的平行线,并且在平行线上截取AA′=CC′=BB′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB的垂直平分线找到中点D,连接CD,CD就是所求的中线.(3)从A点向BC的延长线作垂线,垂足为点E,AE即为BC边上的高;(4)根据三角形面积公式即可求出△A′B′C′的面积.试题解析:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD就是所求的中线;(3)如图所示:AE即为BC边上的高;(4)4×4÷2=16÷2=8.故△A′B′C′的面积为8.【考点】作图—复杂作图.5.一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为。

轴对称平移、旋转、多边形组卷参考答案与试题解析

轴对称平移、旋转、多边形组卷参考答案与试题解析

轴对称、平移、旋转、多边形组卷一.选择题(共15小题)1.如图所示,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连结BF、CE,下列说法:①△ABD和△ACD面积相等②△BDF≌△CDE ③CE=BF ④BF∥CE,其中正确的有()A.1个 B.4个 C.3个 D.2个2.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周长为()A.8 B.9 C.10 D.113.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.在三角形的三个外角中,锐角最多只有()个.A.0 B.1 C.2 D.35.下列命题中,其中是真命题的个数有()①形状相同的两个三角形是全等形;②全等三角形对应边上的高、中线及对应角平分线分别相等;③在两个三角形中,相等的角是对应角,相等的边是对应边;.A.3个 B.2个 C.1个 D.0个.6.三角形的两边长分别为5cm和7cm,下列长度的四条线段中能作为第三边的是()A.14cm B.13cm C.8cm D.2cm7.等腰三角形的两边长是7cm,5cm,它的周长是()A.19cm B.17cm C.17cm或19cm D.无法确定8.已知三角形的两边长分别为3cm和7cm,则下列长度的四条线段中能作为第三边的是()A.2cm B.3cm C.4cm D.5cm9.下面有4个汽车标致图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④10.下列多边形中,能够铺满地面的是()A.正五边形B.正六边形C.正七边形D.正八边形11.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分成15和18两部分,则这个三角形底边的长为()A.9 B.13 C.9或13 D.10或1212.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°13.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.1614.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或1015.下列标志中,是旋转对称图形但不是轴对称的有()A.2个 B.3个 C.4个 D.5个二.填空题(共13小题)16.一个两位数,十位数字是a,个位数字是b,把两位数的个位数字与十位数字交换位置,所得的数减去原数,差为72,则这个两位数是.17.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的钝角为130°,则∠B等于度.18.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC=度.19.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于cm.20.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.21.一个多边形的内角和等于2340°,它的边数是.22.写出命题“角平分线上的点到这个角两边的距离相等”的逆命题是.23.把命题:“正方形的四条边相等”的逆命题改写成“如果…,那么…”的形式为:.24.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,则∠CDB=度.25.△ABC中,当∠A:∠B:∠C=1:2:3时,这个三角形是三角形.(填“锐角”“直角”“钝角”)26.下列四组多边形中,能铺满地面的是.①正六边形与正三角形;②正十二边形与正三角形;③正八边形与正方形;④正三角形与正方形.27.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=度.28.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠AA′B′=20°,则∠B的度数为°.三.解答题(共12小题)29.如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.(1)求证:AD=CE,AD⊥CE;(2)若△DBE绕点B旋转到△ABC的外部其他条件不变,则(1)中结论是仍然成立?画出图形,证明你结论.30.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.31.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.32.如图所示,E是∠AOB的平分线上一点,EC⊥OA,垂足为C,D为OB上一点,且OD=OC,连结ED,连结CD交OE于点F,求证:(1)ED⊥OB;(2)OE平分线段CD.33.如图:107国道OA和320国道OB在某市交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、OB的距离相等,且PC=PD.请在∠AOB的内部画出货站的位置(不写画法,保留画图痕迹,写出结论)34.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.35.已知,如图,O是△ABC高AD与高BE的交点,∠C=50°,求∠AOB的度数.36.如图1,点D为△ABC边BC的延长线上一点.(1)若∠A:∠ABC=3:4,∠ACD=140°,求∠A的度数;(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P.求证:∠MCP=90°﹣∠A;(3)在(2)的条件下,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC 的角平分线与∠NCB的角平分线交于点Q(如图2),试探究∠BQC与∠A有怎样的数量关系,请写出你的猜想并证明.37.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多少?38.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C1P+C2P的值最小.39.如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交OB于N.(1)若CD的长为18厘米,求△PMN的周长;(2)若∠AOB=28°,求∠MPN.40.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC交BC于D,DE∥AB,交AC于E,EF是△ADE的高.求∠DEF的度数.轴对称、平移、旋转、多边形组卷参考答案与试题解析一.选择题(共15小题)1.如图所示,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连结BF、CE,下列说法:①△ABD和△ACD面积相等②△BDF≌△CDE ③CE=BF ④BF∥CE,其中正确的有()A.1个 B.4个 C.3个 D.2个【分析】根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE,最后根据等底等高的三角形的面积相等判断出①正确.【解答】解:∵AD是△ABC的中线,∴BD=CD,在△BDF和△CDE中,∴△BDF≌△CDE(SAS),故②正确∴CE=BF,∠F=∠CED,故③正确,∴BF∥CE,故④正确,∵BD=CD,点A到BD、CD的距离相等,∴△ABD和△ACD面积相等,故①正确,综上所述,正确的是①②③④共4个.故选:B.【点评】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,平行线的判定,熟练掌握三角形全等的判定方法并准确识图是解题的关键.2.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周长为()A.8 B.9 C.10 D.11【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为7的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=9.故选:B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.3.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.在三角形的三个外角中,锐角最多只有()个.A.0 B.1 C.2 D.3【分析】利用三角形的内角和外角之间的关系分析.【解答】解:根据三角形的内角和是180°可知,三角形内角最多只能有1个钝角,所以在三角形的三个外角中,锐角最多只有1个.故选:B.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.5.下列命题中,其中是真命题的个数有()①形状相同的两个三角形是全等形;②全等三角形对应边上的高、中线及对应角平分线分别相等;③在两个三角形中,相等的角是对应角,相等的边是对应边;.A.3个 B.2个 C.1个 D.0个.【分析】利用全等形的定义、对应角及对应边的定义,全等三角形的性质分别判断后即可确定正确的选项.【解答】解:①形状相同的两个三角形是相似形,但不一定是全等形,故错误;②全等三角形对应边上的高、中线及对应角平分线分别相等,正确;③在在两个三角形中,相等的角是对应角,相等的边是对应边,对应边和对应角不一相等,故错误;故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.三角形的两边长分别为5cm和7cm,下列长度的四条线段中能作为第三边的是()A.14cm B.13cm C.8cm D.2cm【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边求出第三边的取值范围,然后选择答案即可.【解答】解:∵5+7=12cm,7﹣5=2cm,∴2cm<第三边<12cm,∵14cm、13cm、8cm、2cm中只有8cm在此范围内,∴能作为第三边的是8cm.故选:C.【点评】本题考查了三角形的三边关系,熟记关系式求出第三边的取值范围是解题的关键.7.等腰三角形的两边长是7cm,5cm,它的周长是()A.19cm B.17cm C.17cm或19cm D.无法确定【分析】等腰三角形两边的长为5cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是5cm,底边是7cm时,能构成三角形,则其周长=5+5+7=17cm;②当底边是5cm,腰长是7cm时,能构成三角形,则其周长=5+7+7=19cm.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.应向学生特别强调.8.已知三角形的两边长分别为3cm和7cm,则下列长度的四条线段中能作为第三边的是()A.2cm B.3cm C.4cm D.5cm【分析】△ABC的两边a、b之和是10,a、b之差是4.根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长c的范围,然后由c 的范围来作出选择.【解答】解:设三角形的两边长分别为a、b,第三边是c.则:a+b=10cm、a﹣b=4cm,∴4cm<c<10cm.故选:D.【点评】本题考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.9.下面有4个汽车标致图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④【分析】根据轴对称图形的概念结合4个汽车标志图案的形状求解.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选:A.【点评】本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图象折叠后可重合.10.下列多边形中,能够铺满地面的是()A.正五边形B.正六边形C.正七边形D.正八边形【分析】正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺.正七边形,正八边形同理可知不能密铺.正六边形的每个内角是120°,能整除360°,能密铺.【解答】解:正六边形的每个内角是120°,能整除360°,能密铺;正五边形,正七边形,正八边形的一个内角不能整除360°,所以都不能单独进行密铺.故选:B.【点评】根据镶嵌的条件,判断一种正多边形能否镶嵌,要看周角360°能否被一个内角度数整除:若能整除,则能进行平面镶嵌;若不能整除,则不能进行平面镶嵌.11.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分成15和18两部分,则这个三角形底边的长为()A.9 B.13 C.9或13 D.10或12【分析】题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列方程求解,然后结合三角形三边关系验证答案.【解答】解:设等腰三角形的底边长为x,腰长为y,则根据题意,得或,解得或,经检验,这两组解均能构成三角形,所以底边长为9或13.故选:C.【点评】本题考查的是等腰三角形的性质,根据题意画出图形,列出关于x、y 的方程组是解答此题的关键.12.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D ﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.13.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【解答】解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.【点评】本题考查了多边形内角与外角,多边形的内角和公式是解题关键.14.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【分析】先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.【点评】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.15.下列标志中,是旋转对称图形但不是轴对称的有()A.2个 B.3个 C.4个 D.5个【分析】根据轴对称图形与中心对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转一定的角度后能够与自身重合,那么这个图形就叫做旋转对称图形,这个点叫做旋转中心.对各图形分析后即可得解.【解答】解:第1个图形,既是旋转对称图形,也是轴对称图形,第2个图形,是旋转对称图形,不是轴对称图形,第3个图形,不是旋转对称图形,是轴对称图形,第4个图形,既是旋转对称图形,也是轴对称图形,第5个图形,是旋转对称图形,不是轴对称图形.所以,是旋转对称图形但不是轴对称图形的有:第2个,第5个共2个.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念,理解概念是解答此题的关键.二.填空题(共13小题)16.一个两位数,十位数字是a,个位数字是b,把两位数的个位数字与十位数字交换位置,所得的数减去原数,差为72,则这个两位数是19.【分析】首先要分别用a,b表示两个两位数,它们分别是10a+b,10b+a,然后根据所得的数减去原数,差为72就可以列出等式,然后根据等式和数字的特点就可以求出a,b.【解答】解:依题意得原数是10a+b,新数是10b+a,∴10b+a﹣(10a+b)=72,∴b﹣a=8,而a、b可能取的值只有0至9的整数,它们的最大差只有9,并且a≠0,∴a=1,b=9,∴所求两位数是19.【点评】此题考查了组成数的数字的特点,也考查了用数字如何表示几位数.17.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的钝角为130°,则∠B等于70或20度.【分析】首先根据题意作图,然后由AB的垂直平分线与AC所在直线相交所得的锐角为52°,即可得∠ADE=52°,∠AED=90°,然后直角三角形的两锐角互余,①当三角形是锐角三角形时,即可求得∠A的度数,②当三角形是钝角三角形时,可得∠A的邻补角的度数;又由AB=AC,根据等边对等角与三角形内角和的定理,即可求得底角B的大小.【解答】解:∵AB的垂直平分线与AC所在直线相交所得的钝角为130°即∠EDC=130°,∠ADE=50°,∠AED=90°,①如图1,当△ABC是锐角三角形时,∠A=40°,∵AB=AC,∴∠B=∠C==70°,②如图2,当△ABC是钝角三角形时,∠BAC=∠ADE+∠AED=50°+90°=140°,∵AB=AC,∴∠B=∠C==20°.综上所述,底角B的度数是70°或20°.故答案为:70或20.【点评】此题考查了等腰三角形与线段垂直平分线的性质.此题难度不大,解题的关键是注意数形结合思想的应用,要注意分情况讨论.18.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC=108度.【分析】根据等腰三角形的性质,依题意首先求出∠B=∠C=∠1.然后由已知∠4是△ABD的外角,可知道∠2=∠4=2∠C.最后可得出∠1+∠2=∠C+2∠C.【解答】解:如图:∵△ABC中,AB=AC,∴∠B=∠C,∵AD=BD,∴∠B=∠C=∠1,∵∠4是△ABD的外角,∴∠4=∠1+∠B=2∠C,∵AC=CD,∴∠2=∠4=2∠C,在△ADC中∠4+∠2+∠C=180°,即5∠C=180°∠C=36°,∴∠1+∠2=∠C+2∠C=3×36°=108°,即∠BAC=108°.故填108.【点评】本题考查的是等腰三角形的性质及三角形内角与外角的关系;题目中相等的量较多,有效的进行等量代换是正确解答本题的关键.19.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于7cm.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等【解答】解:由折叠的性质知,AE=CE,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故答案为:7.【点评】本题考查了翻折变换的知识,利用了折叠的性质.20.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.21.一个多边形的内角和等于2340°,它的边数是15.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设多边形边数为n.则2340°=(n﹣2)•180°,解得n=15.故答案为:15.【点评】本题考查了多边形内角与外角,根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.22.写出命题“角平分线上的点到这个角两边的距离相等”的逆命题是到角的两边距离相等的点在角平分线上.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“角平分线上的点到这个角两边的距离相等”的逆命题是“到角的两边距离相等的点在角平分线上”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.23.把命题:“正方形的四条边相等”的逆命题改写成“如果…,那么…”的形式为:如果一个四边形的四条边相等,那么这个四边形是正方形.【分析】把原命题的题设与结论交换即可.【解答】解:“正方形的四条边相等”的逆命题改写成“如果…,那么…”的形式为:如果一个四边形的四条边相等,那么这个四边形是正方形.故答案为:如果一个四边形的四条边相等,那么这个四边形是正方形.【点评】本题考查了命题与定理,也考查了逆命题.如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.24.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,则∠CDB=60度.【分析】根据角平分线的定义和直角三角形的两个锐角互余计算.【解答】解:∠CBD=∠ABC=30°,∠BDC=90°﹣∠CBD=60°.【点评】此题运用了角平分线的定义以及直角三角形的两个锐角互余的性质.25.△ABC中,当∠A:∠B:∠C=1:2:3时,这个三角形是直角三角形.(填“锐角”“直角”“钝角”)【分析】根据三角形内角和定理和题目中三个内角的比值可以求得各个内角的度数,从而可以解答本题.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,设∠A=x,则x+2x+3x=180°,解得,x=30°,∴∠A=30°,∠B=60°,∠C=90°,∴这个三角形是直角三角形,故答案为:直角.【点评】本题考查三角形内角和定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形内角和解答.26.下列四组多边形中,能铺满地面的是①②③④.①正六边形与正三角形;②正十二边形与正三角形;③正八边形与正方形;④正三角形与正方形.【分析】能够密铺地面的关键是看一看拼在同一顶点处的几个角能否构成周角.【解答】解:①正三角形内角为60°,正六边形内角120°,可由2个正三角形2个正六边形密铺;②正十二边形一个内角150°,两个正十二边形与一个正三角形可平密铺;③正八边形内角为135°,正方形内角为90°,2个正八边形和1个正方形可以密铺.④正三角形内角为60°,正方形内角为90°,可以由3个正三角形和2个正方形可以密铺;综上可得①②③④正确.故答案为:①②③④.【点评】本题考查了平面密铺的知识,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.27.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.【分析】分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【解答】解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.【点评】本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.28.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠AA′B′=20°,则∠B的度数为65°.【分析】由将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,可得△ACA′是等腰直角三角形,∠CAA′的度数,然后由三角形的外角的性质求得答案.【解答】解:∵将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,∴AC=A′C,∠ACA′=90°,∠B=∠AB′C,∴∠CAA′=45°,∵∠AA′B′=20°,∴∠AB′C=∠CAA′+∠AA′B=65°,∴∠B=65°.答案为:65°.【点评】此题考查了旋转的性质以及等腰直角三角形的性质.此题难度不大,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想的应用.三.解答题(共12小题)29.如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.(1)求证:AD=CE,AD⊥CE;(2)若△DBE绕点B旋转到△ABC的外部其他条件不变,则(1)中结论是仍然成立?画出图形,证明你结论.【分析】(1)根据等式的性质,可得∠ABD与∠CBE的关系,根据全等三角形的判定与性质,可得AD与CE的关系,根据余角的性质,可得∠CGF与∠GCF的关系,根据直角三角形的判定,可得答案;(2)根据等式的性质,可得∠ABD与∠CBE的关系,根据全等三角形的判定与性质,可得AD与CE的关系,根据余角的性质,可得∠CGF与∠GCF的关系,根据直角三角形的判定,可得答案.【解答】(1)证明:如图1,∵∠ABC=∠DBE=90°,∴∠ABC﹣∠CBD=∠DBE﹣∠DBC,即∠ABD=∠CBE.在△ABD和△CBE中,∴△ABD≌△CBE(SAS),∵AD=CE,∠BAD=∠BCE.∵∠AGB与∠CGF是对顶角,∴∠AGB=∠CGF.∵∠BAD+∠AGB=90°,∴∠GCF+∠CGF=90°,∴∠CFG=90°,∴AD⊥CE;(2)AD=CE,AD⊥CE,理由如下如图2:,∵∠ABC=∠DBE=90°,∴∠ABC+∠CBD=∠DBE+∠DBC,即∠ABD=∠CBE.在△ABD和△CBE中,∴△ABD≌△CBE(SAS),∴AD=CE,∠BAD=∠BCE.∵∠AGB与∠CGF是对顶角,∴∠AGB=∠CGF.∵∠BAD+∠AGB=90°,∴∠GCF+∠CGF=90°,∴∠CFG=90°,∴AD⊥CE.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,直角三角形的判定.30.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.。

对称平移旋转练习题

对称平移旋转练习题

对称、平移和旋转测试题
一、填一填。

1、假如一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()
图形,那条直线就是()。

2、正方形有()条对称轴。

3、这些现象哪些是“平移”现象,哪些是“旋转”现象:
(1)张叔叔在笔直的公路上开车,方向盘的运动是()现象。

(2)升国旗时,国旗的升降运动是()现象。

(3)妈妈用拖布擦地,是()现象。

(4)自行车的车轮转了一圈又一圈是()现象。

4、移一移,说一说。

(1)向()平移了()格。

(2)向()平移了()格。

(3)向()平移了()格。

二、画出下列图形的对称轴。

四、请画出对称图形的另一半。

按给出的对称轴画出第一个图形的对称图形,第二个图形请向上移动4格,
六、按对称轴画出下面图形的另一半。

七、把下列图形向左平移8格。

初三数学图形的对称平移与旋转试题

初三数学图形的对称平移与旋转试题

初三数学图形的对称平移与旋转试题1.如图,在Rt△ABC中,,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C 逆时针旋转,使点A落在CB的延长线处,点D落在点处,则长为.【答案】【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为:.【考点】旋转的性质.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D.【解析】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是轴对称图形,不是中心对称图形,故此选项错误;C、此图形不是轴对称图形,是中心对称图形,故此选项错误;D、此图形是轴对称图形,也是中心对称图形,故此选项正确;故选:D.【考点】中心对称图形;轴对称图形3.下列四个图形中,既是轴对称图形,又是中心对称图形是A.⑴、⑵B.⑴、⑶C.⑴、⑷D.⑵、⑶【答案】B.【解析】(1)是轴对称图形,也是中心对称图形,符合题意;(2)不是轴对称图形,也不是中心对称图形,不符合题意;(3)是轴对称图形,也是中心对称图形,符合题意;(4)是轴对称图形,不是中心对称图形,不符合题意.故选B.【考点】1.中心对称图形;2.轴对称图形.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.矩形B.平行四边形C.角D.等边三角形【答案】A.【解析】等边三角形、角是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;矩形是轴对称图形,也是中心对称图形.故选A.【考点】1.轴对称图形;2.中心对称图形.5.在平面直角坐标系中,∆ABC的顶点坐标是A(-7,1)、B(1,1)、C(1,7),线段DE的端点坐标是D(7,-1)、E(-1,-7)(1)试说明如何平移线段AC,使其与线段ED重合将线段AC先向______(上,下)平移_______个单位,再向_______(左,右)平移 _______个单位;(2)将∆ABC绕坐标原点逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的∆DEF,并和∆ABC 同时绕坐标原点O逆时针旋转90o,画出旋转后的图形.【答案】(1)下,8,右,6;(2)F(-l,-1);(3)画图见解析.【解析】(1)将线段AC先向右平移6个单位,再向下平移8个单位即可得出符合要求的答案;(2)根据A,C对应点的坐标特点,即可得出F点的坐标;(3)分别将D,E,F,A,B,C绕坐标原点O逆时针旋转90°,画出图象即可.试题解析:(1)将线段AC先向下平移8个单位.,再向右平移6个单位(其它平移方式也可以);(2)根据A,C对应点的坐标即可得出F(-l,-1);(3)画出如图所示的正确图形.考点: 1.作图-旋转变换;2.作图-平移变换.6.在Rt△POQ中,OP=OQ,M是PQ的中点,把一三角尺的直角顶点放在M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.求证:MA=MB.【答案】证明见解析.【解析】过点M作ME⊥OP于点E,作MF⊥OQ于点F,可得四边形OEBF是矩形,根据三角形的中位线定理可得ME=MF,再根据同角的余角相等可得∠AME=∠BMF,再利用“角边角”证明△AME和△BMF全等,根据全等三角形对应边相等即可证明.试题解析:证明:如图,过点M作ME⊥OP于点E,作MF⊥OQ于点F,∵∠O=90°,∴四边形OEMF是矩形,∵M是PQ的中点,OP=OQ=4,∠O=90°,∴ME=OQ=2,MF=OP=2,∴ME=MF,∴四边形OEMF是正方形,∵∠AME+∠AMF=90°,∠BMF+∠AMF=90°,∴∠AME=∠BMF,在△AME和△BMF中,,∴△AME≌△BMF(ASA),∴MA=MB;考点: 1.旋转的性质;2.全等三角形的判定与性质;3.等腰直角三角形.7.下列图形中,是中心对称图形的是 ( )A.B.C.D.【答案】C.【解析】中心对称图形是图形沿对称中心旋转180度后与原图重合,因此符合的是选项C.故选C.【考点】中心对称图形.8.如图所示,直角坐标系内,A(-4,3),B(-2,0),C(-1,2),请你在图中画出△ABC 关于原点O的对称的图形即△A′B′C′,并写出A′、B′、C′的坐标,求出△A′B′C′的面积.【答案】作图见解析,A′(4,-3)、B′(2,0)、C′(1,-2),.【解析】试题解析:作图如下:A′(4,-3)、B′(2,0)、C′(1,-2).△A′B′C′的面积=3×3-×1×2-×1×3-×2×3=.【考点】1.作图-中心对称变换;2.转换思想的应用.9.已知四边形ABCD和四边形CEFG都是正方形 ,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形ABCD的边长为,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG//BD,BG=BD.①求的度数;②请直接写出正方形CEFG的边长的值.【答案】(1)BG=DE;(2)①②正方形的边长为.【解析】解:(1)证明:∵四边形和为正方形,∴,,.∴..∴△≌△.∴.(2)①连接BE .由(1)可知:BG="DE."∵,∴.∴.∵,∴.∴∵,∴△≌△.∴.∵,∴.∴△.∴②正方形的边长为.【考点】三角形全等.10.如图所示,△ABC与△A’B’C’关于点O成中心对称,则下列结论不成立的是()A.点A与点A’是对称点B.BO=B’O’C.∠ACB=∠C’A’B’D.△ABC≌△A’B’C’【答案】C.【解析】成中心对称的图形的性质:中心对称的两个图形全等,对称点到对称中心的距离相等,由题,A正确;B正确;C根据OA=OA′,OB=OB′,∠AOB=∠A′OB′,得到△AOB≌△A′OB′.则∠ACB=∠A’C’B’,C不正确;D正确,故选C.【考点】1.中心对称;2.平行线的判定;3.全等三角形的判定与性质.11.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针方向旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,CD的长为.【答案】1.6.【解析】由旋转的性质得到AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,因为BC=3.6,所以CD=BC-BD=3.6-2=1.6.故填1.6.【考点】旋转的性质.12.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)请直接写出点A关于y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【答案】(1)(2,3);(2)作图见试题解析,B(0,﹣6);(3)D的坐标为(﹣7,3)或(﹣5,﹣3)或(3,3).【解析】(1)关于y轴的轴对称问题,对称点的坐标特点是:横坐标互为相反数,纵坐标相等;(2)坐标系里旋转90°,充分运用两条坐标轴互相垂直的关系画图;(3)分别以AB,BC,AC为平行四边形的对角线,考虑第四个顶点D的坐标,有三种可能结果.试题解析:(1)点A关于y轴对称的点的坐标是(2,3);(2)图形如下,点B的对应点的坐标是(0,﹣6);(3)以A、B、C为顶点的平行四边形的第四个顶点D的坐标为(﹣7,3)或(﹣5,﹣3)或(3,3).【考点】1.作图-旋转变换;2.作图题.13.下列图形中,不是中心对称图形的是( ).A. B. C. D.【答案】D【解析】根据中心对称图形的定义:如果把一个图形绕某一点旋转180度后能与原来的图形重合,这个图形就是中心对称图形。

(完整版)平移与旋转练习题精选(有答案)

(完整版)平移与旋转练习题精选(有答案)

22 、如下图, E 是正方形 ABCD 中 CD 边上任一点,以点 A 为中心,把△ ADE 顺时针旋转 90°,在给出图
形中画出旋转后的图形,并完成下列填空. ( 1)因为点 A 是对称中心,所以它的对应点是 (
);
( 2 )正方形 ABCD 中, AD=AB ,∠ DAB=90° ,所以旋转后点 D 与点 (
)重合.
23 、如图所示, E、 F 分别是△ ABC 的边 AB 、 AC 的两定点,在 BC 上求一点 M ,使△ MEF 的周长最短。
26、如图:若∠ AOD= ∠ BOC=60 °,A 、O、C 三点在同一条线上,△
求:( 1)旋转中心, ( 2)旋转角度数,
( 3)图中经过旋转后能重合的三角形共有几对?若
( 3)∵∠ FDE=45° ,∠ ADC=9°0 ,∴∠ ADF+ ∠ EDC=9°0 -45°=45°,∵∠ GDF= ∠ GDA+ ∠ADF,∠ GDA= ∠EDC, ∴∠ GDF= ∠EDC+ ∠ADF=45° .
26 、( 1) .O 点 (2).60 度 (3).3 对,成立,因为角 AOD为 60 度,角 DOC为 120 度,向加 180 度,所以成立 (4).90 因为角 BOC=角 AOD=45度,所以应旋转 90 度 (5).120 度
二、填空题
11、 O 12 、C
∠ EOB 顺时针
AO=DO 90°
∠ AOD= ∠BOE .
13 、由图可知, OB 、OD 是对应边,∠ BOD 是旋转角,所以,旋转角∠ BOD= ∠AOD- ∠AOB=127° -90 °=37 度
14 、解:∵ AD∥ BC,∠ EFB=65°,∴ DEF=65° ,又∵∠ DEF= ∠ D′ EF,∴∠ D′ EF=65°,∴∠ AED′ =50°

图形的平移,对称与旋转的真题汇编含答案

图形的平移,对称与旋转的真题汇编含答案
图形的平移,对称与旋转的真题汇编含答案
一、选择题
1.如图,在矩形 中, 将其折叠使 落在对角线 上,得到折痕 那么 的长度为()
A. B. C. D.
【答案】C
【解析】
【分析】
由勾股定理求出AC的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x,则CE= ,利用勾股定理,即可求出x的值,得到BE的长度.
【点睛】
本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
A.主视图B.左视图C.俯视图D.主视图和左视图
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.
故选D.
边关系是解题关键.
16.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )
A.70°B.80°C.84°D.86°
【答案】BAB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.
∵AC是∠DAB的平分线,E是AB的中点,
∴E′在AD上,且E′是AD的中点,
∵AD=AB,
∴AE=AE′,

图形的平移,对称与旋转的经典测试题含答案解析

图形的平移,对称与旋转的经典测试题含答案解析
下列说法中错误的是( )
A.勒洛三角形是轴对称图形
B.图1中,点A到 上任意一点的距离都相等
C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心 的距离都相等
D.图2中,勒洛三角形的周长与圆的周长相等
【答案】C
【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴.鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.
A. B. C. D.
【答案】D
【解析】
【分析】
根据轴对称图形的概念对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项正确.
故选:D.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
D.等腰直角三角形是轴对称图形,不符合题意.
故选C.
19.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()
A.3个B.4个C.5个D.2个
【答案】A
【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.
故选:A.
20.如图,将 绕点 逆时针旋转 得到 点 的对应点分别为 则 的长为()
A. B. C. D.【答案】C【解Fra bibliotek】【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.

图形的平移,对称与旋转的经典测试题及解析

图形的平移,对称与旋转的经典测试题及解析
3.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数 ,那么所得的图案与原来图案相比
A.形状不变,大小扩大到原来的 倍
B.图案向右平移了 个单位
C.图案向上平移了 个单位
D.图案向右平移了 个单位,并且向上平移了 个单位
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
图形的平移,对称与旋转的经典测试题及解析
一、选择题
1.如图所示的网格中各有不同的图案,不能通过平移得到的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.
【详解】
A、可以通过平移得到,不符合题意;
∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,
∴∠D=∠CAD=60°、AD=BD,
∴AC∥BD,
∴∠CBD=∠C,
∴∠CBD=∠E,
则A、B、D均正确,
故选C.
【点睛】
本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.
9.如图, 是由 经过平移后得到的,则平移的距离不是( )
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.如图, 是等边三角形 内一点,将线段 绕点 顺时针旋转 得到线段 ,连接 .若 , , ,则四边形 的面积为()

轴对称、平移与旋转测试题(含答案)

轴对称、平移与旋转测试题(含答案)

轴对称、平移与旋转测试题(含答案)一、选择题(本大题共7小题,每小题5分,共35分;在每小题给出的四个选项中,只有一项符合题意)1.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( ) A.B B.J C.4 D.0图12.如图1,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B 的度数为( )A.48°B.54°C.74°D.78°3.将一张长方形的纸片对折,然后用笔尖在上面扎出字母“B”,再把它展开铺平,你可以看到的图形是( )图24.如图3,在△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为( )A.56° B.50° C.46° D.40°图3 图45.如图4所示,将边长为2 cm的等边三角形ABC沿BC的方向向右平移1 cm得到△DEF,则四边形ABFD的周长为( )A.6 cm B.8 cm C.10 cm D.12 cm6.4张扑克牌如图5①所示放在桌面上,小敏把其中一张牌旋转180°得到图②,那么她所旋转的牌是从左数( )图5A.第一张 B.第二张 C.第三张 D.第四张7.下列说法正确的有( )图6(1)全等图形的面积相等,反过来,面积相等的两个图形是全等图形;(2)如图6所示的两个图形,放在一起能完全重合,但是图甲和图乙不全等;(3)如图7所示,△ABC与△DEF 是全等的,点A与点D是对应点,点B与点E是对应点,所以可以记为:△ABC≌△DEF;(4)如果两个图形的形状一样,大小一样,那么它们是全等图形.图7A.1个 B.2个 C.3个 D.4个二、填空题(本大题共7小题,每小题5分,共35分)8.如图8,下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行平移变换的是________,进行旋转变换的是________,进行轴对称变换的是________,进行中心对称变换的是________.(填序号)图89.如图9所示,在正方形网格中,格点三角形DEF是由格点三角形ABC平移得到的,则点B向右移动了________格.图910.如图10所示,大长方形的长为8 cm,宽为4 cm,则阴影部分的面积是________.图1011.如图11,将长方形纸片ABCD的一角沿EF折叠,使点C落在长方形ABCD的内部点C′处.若∠EFC=35°,则∠DEC′=________°.图11 图1212.如图12是4×4的正方形网格,其中已有3个小方格涂成了黑色.现要在其余13个白色小方格中选出一个也涂成黑色,使整个黑色的小方格图案是轴对称图形,这样的白色小方格有________个.13.数轴上的点A表示-2,将数轴上到点A的距离为3的点B向右平移5个单位长度得到点C,再把点C绕点A旋转180°得到点D,则AD的长为________.图1314.如图13,在直角三角形ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的度数为________.三、解答题(本大题共3小题,共30分)15.(8分)在如图14所示的网格中有四边形ABCD.(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2是否对称?若对称,请在图中画出对称轴或对称中心.图1416.(10分)如图15所示,在△ABC中,∠C=90°,将△ABC沿直线DE对折,点B刚好与点A重合,连结AD,∠DAE与∠DAC的度数之比为2∶1,求∠B的度数.图1517.(12分)取一副三角尺按图16①所示的方式放在一起,∠ACD=30°,∠BAC=45°,固定三角尺ADC,将三角尺ABC以点A为中心按顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图②所示.(1)当α为多少度时,能使得AB∥DC?(2)连结BD,当0°<α≤45°时,探究∠DBC′+∠CAC′+∠BDC的值的大小变化情况,并说明理由.图16教师详解详析1.[解析] D A.B不是中心对称图形,是轴对称图形,故本选项错误;B.J不是中心对称图形,也不是轴对称图形,故本选项错误;C.4不是中心对称图形,也不是轴对称图形,故本选项错误;D.0既是中心对称图形又是轴对称图形,故本选项正确.2.[答案] B3.[答案] C4.[解析] C∵点C′在边BC上,∴∠BC′C为平角.由于旋转不改变图形的大小,∴∠AC′B′=∠C=67°,AC′=AC,∴∠AC′C=∠C=67°,∴∠B′C′B=180°-∠AC′C-∠AC′B′=180°-67°-67°=46°.5.[解析] B由题意知△ABC≌△DEF,AD=BE=1 cm,DF=AC=2 cm,四边形ABFD的周长=AB+BF+DF+AD=8 cm.6.[答案] A7.[答案] B8.[答案] ③①④②④9.[答案] 5[解析] 注意点B的对应点是点E,从点B到点E向右平移了5格.10.[答案] 8 cm2[解析] 通过平移、旋转,可知阴影部分的面积是大长方形总面积的错误!.11.[答案] 7012.[答案] 413.[答案] 8或2[解析] 数轴上到点A的距离为3的点表示的数有两个:1和-5,向右平移5个单位长度得到的数分别是6和0,所以AC绕点A旋转180°得AD=8或2.14.[答案] 2α15.解:(1)四边形A1B1C1D1如图所示.(2)四边形A2B2C2D2如图所示.(3)四边形A1B1C1D1与四边形A2B2C2D2对称,对称轴为图中的直线EF.16.解:由翻折的性质知,DE平分∠ADB,所以∠ADE=∠BDE,∠DAB=∠B.又因为∠DAE与∠DAC的度数之比为2∶1,所以设∠DAC=x°,则∠B=∠DAB=2x°.因为∠C=90°,根据三角形的内角和为180°,得x°+2x°+2x°=90°,解得x=18,所以∠B=36°.17.解:(1)由题意得∠CAC′=α,要使AB∥DC,须∠BAC=∠ACD=30°,∴α=∠CAC′=∠BAC′-∠BAC=45°-30°=15°,即α=15°时,能使得AB∥DC.(2)如图,连结BD,∠DBC′+∠CAC′+∠BDC的值的大小没有变化,总是105°.理由:当0°<α≤45°时,总有△EFC′存在.∵∠EFC′=∠BDC+∠DBC′,∠CAC′=α,∠FEC′=∠CAC′+∠C,∠EFC′+∠FEC′+∠C′=180°,∴∠BDC+∠DBC′+∠C+α+∠C′=180°.又∵∠C′=45°,∠C=30°,∴∠DBC′+∠CAC′+∠BDC=105°.。

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题1.如图,在△ABC中,∠ACB=90°,∠A=35°,若以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,则θ值等于.【答案】70【解析】∵∠ACB=90°,∠A=35°,∴∠ABC=90°﹣35°=55°,∵以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,∴∠DEC=∠ABC=55°,∠ACD=∠BCE=θ°,CB=CE,∴∠CBE=∠BEC=55°,∴∠BCE=180°﹣∠CBE﹣∠BEC=70°,∴θ值为70.故答案为:70.【考点】旋转的性质2.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为,若∠1=110°,则∠= 度.【答案】20°.【解析】如图所示∵∠1=110°,∴∠2=∠1=110°(两直线相交,对顶角相等),∵四边形ABCD为矩形,∴∠D=∠B’ =∠BAD=90°,∴∠4+∠2=360°-∠D-∠B’="180°" (四边形内角和为360°),∵∠2=110°,∴∠4=70°,∵∠BAD=90°,∴∠3=∠=20°.【考点】1.对顶角;2.余角;3.四边形内角和.3.如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】∵△和△都是等腰直角三角形,∴∠∠.又∵△绕着点沿逆时针旋转度后能够与△重合,∴旋转中心为点,旋转角度为45°,即45.若把图(1)作为“基本图形”绕着点沿逆时针旋转度可得到图(2),则454590,故选A.4.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等【答案】D【解析】因为全等三角形对应边上的高、对应边上的中线、对应角的平分线相等,A、B、C项没有“对应”,所以错误,而D项有“对应”,D是正确的.故选D.5.如图,△绕点旋转一定角度后得到△,若,,则下列说法正确的是()A.B.C.∠是旋转角D.∠是旋转角【答案】D【解析】∵△绕点旋转一定角度后得到△,且,,∴是旋转角,故选D.6.剪纸艺术是我国文化宝库中的优秀遗产.下面四幅剪纸作品中,属于轴对称图形的是()【答案】D.【解析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.考点: 轴对称图形.7.∠AOB=45°,其内部有一点P,OP=8,在∠AOB的两边分别有两点Q,R(不同与点0),则△PQR的最小周长是。

中考数学专题复习卷:轴对称、平移与旋转(含解析)

中考数学专题复习卷:轴对称、平移与旋转(含解析)

轴对称、平移与旋转一、选择题1.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C、平行四边形是中心对称图形不是轴对称图形,故不符合题意;D、矩形是轴对称图形,有两条对称轴,故符合题意,故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据轴对称图形的定义,再一一判断即可。

2.下列图形中,是轴对称图形但不是中心对称图形的是()A. 正三角形B. 菱形C. 直角梯形D. 正六边形【答案】C【解析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A符合题意;B.菱形既是轴对称图形,又是中心对称图形,故错误,B不符合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误,C不符合题意;D.正六边形既是轴对称图形,又是中心对称图形,故错误,D不符合题意;故答案为:A.【分析】根据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x +l向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为().A. y=-5(x+1) -1B. y=-5(x-1) -1C. y=-5(x+1) +3D. y=-5(x-1) +3【答案】A【解析】:将抛物线y=-5x+l向左平移1个单位长度,得到的抛物线解析式为:y=-5(x+1)2+1再向下平移2个单位长度得到的抛物线为:y=-5(x-1)+1-2即y=-5(x+1)-1故答案为:A【分析】根据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m个单位,再向左或向右平移n个单位即得到y=a(x±n)2±m。

根据平移规则即可得出平移后的抛物线的解析式。

即可求解。

4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【解析】:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。

图形的平移,对称与旋转的经典测试题含解析

图形的平移,对称与旋转的经典测试题含解析
∴4a=20,
∴a=5,
∴c=5,
∴a+b+c=5+7+5=17,
故选C.
【点睛】
本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.
8.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
∴四边形答案为C.
【点睛】
本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.
15.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()
【答案】B
【解析】
【分析】
平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定
【详解】
∵△DEF是△ABC平移得到
∴A和D、B和E、C和F分别是对应点
∴平移距离为:线段AD、BE、CF的长
故选:B
【点睛】
本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.
10.如图,将 绕点 逆时针旋转 得到 点 的对应点分别为 则 的长为()
A.0B.4C.8D.16
【答案】B
【解析】
【分析】
作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM= ,进而即可得到结论.
【详解】
作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)2(2)b-a(3)a-b(4)b-a+2
4、当a=5、b=4时,ab+3的值是( )。
(1)5+4+3=12 (2)54+3=57 (3)5×4+3=23
5、甲数是a,比乙数的4倍少b,乙数是()。
(1)a÷4-b(2)(a-b)÷4(3)(a+b)÷4
三、用含有字母的式子表示下面各题的数量关系(每题4分)
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
第十单元用计算器探索规律测试题
班级姓名等第
一、填表(每空2分)
1、
一个因数
24
24
8
24
4
另一个因数
15
30
15
150
15

360
我发现:
2、
被除数
480
960
4800
240
80
除数
12
24
120
5
2

40
我发现:
二、填空(每空2分)
2、欣欣农机厂要制造300台机器,原来每台用钢材1430千克,技术革新后,每台比原来节约钢材200千克,现在一共要用钢材多少千克?(用计算器计算)合多少吨?
3、一个文具厂原计划每月生产3000枝钢笔,技术革新后,一年的生产任务10个月就完成了,实际平均每月生产钢笔多少枝?
第十一单元解决问题的策略测试题
420÷70= 800÷50= 510÷30= 210÷70=
2、用简便方法计算下面各题,并且并且验算(每题5分)
580÷20 760÷60 1000÷90
3、用简便方法计算下面各题(每题5分)
110÷55 630÷42 720÷48
五、解决问题(第3题4分,其余每题5分)。
1、新飞手机厂平均每月生产手机6210部,全年生产手机多少部?(用计算器计算)
125×(8+20) 68×48+68×2 5×27+63×5
16×401 48×101-48 98×32
三、填一填(每题5分)
1、按下表的数量买橘子和香蕉,共要付92元,你能填出括号里的数吗?
橘子
8千克
每千克6元
香蕉
( )千克
每千克4元
2、一个修路队修了600米长的水渠,你能填出括号里的数吗?
水渠全长600米
1、甲数÷乙数=2,如果甲数乘4,乙数乘4,那么商是()。
2、甲数×乙数=800,如果甲数乘2,乙数不变,那么积是()。
3、如果A÷B=60,那么(A×3)÷B=( );
如果A×B=300,那么(A×2)×(B×2)=( )。
4、如果A×B=600,那么(A×5)×(B÷5)=( );
如果A÷B=75,那么(A×10)÷(B×5)=( );
(1)根据图中的数据完成下表。
某地冷饮厂2004年每月冷饮生产变化情况统计图
月份
一月
二月
三月
四月
五月
六月
七月
八月
九月
十月
十一月
十二月
产量(吨)
(2)( )月份的冷饮产量最高,( )月份的冷饮产量最低。
(3)( )月份至( )月份之间的冷饮产量上升得最快;( )月份至( )月份之间冷饮产量下降得最快。
1、在一个三角形中,∠1=a°,∠2=b°,用含有字母的式子表示∠3的度数。
2、在一个等腰三角形中,底角是a°,用含有字母的式子表示顶角的度数。
3、一个正方形的周长是C,用含有字母的式子表示这个正方形的边长。
4、比x的5倍多20的数。
5、比x多20的数是5的多少倍?
四、根据要求完成下面各题(每题12分)
第一周
每天挖64米
已挖5天
第二周
每天挖70米
还要挖()天
3、丁丁和芳芳同时从校门反方向出发,向各自家走去,你能填出括号里的数吗
丁丁和芳芳相距
()米
丁丁从学校到家
每分钟走70米
走了4分钟
芳芳从学校到家
每分钟走65米
走了4分钟
四、解决问题(每题7分)
1、小强和小明家相距2400米,两人同时从家中出发相向而行,小强每分钟走50米,小明每分钟走70米,他们经过多长时间相遇?(先画图整理,再解答)
第八单元 对称、平移和旋转测试题
班级姓名分数
一、画出下面图形的对称轴(每题3分)
二、画出下面每个图形所有的对称轴(每题5分)
三、选择(将正确答案的序号填在括号里)(每题2分)
1.下面图形不是轴对称图形的是( )。
①长方形 ②等腰梯形 ③平行四边形 ④等边三角形
2.长方形有( )条对称轴,圆有( )条对称轴,正方形有( )条对称轴。
2、指针从B开始,顺时针旋转90°到( )。指针从B开始,逆时针旋转90°到( )
五、按要求画一画1.将六边形先向下平移4格,再向右平移5格。(10分)
2.将小旗图围绕A点顺时针旋转90°。(9分)
A
倍数和因数测试题
班级姓名等级
一、填空(每空2分)
1.在18÷3=6中,( )和( )是( )的因数。在3×9=27中,( )是( )和( )的倍数。
二、丁丁同学在6~10岁的每年生日时都要测体重,下面就是他测量体重的统计表(20分)
年龄
6岁
7岁
8岁
9岁
10岁
体重(千克)
19
21
25
28
31
根据表中数据,完成下面的统计图。
从统计图中你知道了什么?
三、下面是某地9月18日白天气温情况统计表(20分)
时间
7:00
9:00
11:00
13:00
15:00
6.在20以内的自然数中,是奇数又是合数的数是( )。
二、判断(在括号里对的打“√”,错的打“×” )(每题2分)
1.1是奇数也是素数。…………………………………………( )
2.所有的偶数都是合数。………………………………………( )
3.18的因数有6个,18的倍数有无数个。…………………( )
4.一个数是6的倍数,这个数一定是2和3的倍数。………( )
3.组成的数既是2和5的倍数,又是3的倍数。
五、按要求在□里填数(每题2分)
1.3□6是3的倍数,□里最大填( )。
2.17□是2的倍数,□里最大填( )。
3.45□是3和5的倍数,□里最大填( )。
六、在括号里填上合适的素数(每空1分)
9=( )+( ) 15=( )+( )
21=( )+( ) 39=( )+( )
17:00
19:00
温度(℃)
12
18
23
26
22
18
15
要反映这一天气温变化的情况,用()统计图更合适。
从统计图中你知道了什么?
四、下面是六个地区9月18日白天11:00气温情况统计表(20分)
地区
酒泉
南京
北京
海口
乌鲁木齐
济南
温度(℃)
8
30
26
28
20
24
要比较各个城市白天11:00温度的高低,用()统计图更合适。
2、一辆公共汽车和一辆小轿车同时从相距480千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行50千米,5小时后两车还相距多少千米?
3、在一张长20厘米、宽15厘米的长方形纸上剪去一个最大的正方形,剩余部分的面积是多少?(先在图上画一画,再解答)
4、在一个边长是8米的正方形草坪四周有一条1米宽的花圃。在花圃里栽有牡丹花,每棵占地1平方米,一共要栽多少棵?(先画出示意图,再解答)
从统计图中你知道了什么?
五、解决问题(第3题6分,其余每题7分)
1、修路队修一条路,第一天修了800米,第二天上午修了600米,下午修了400米,平均每天修多少米?
2、小玲上学期语文、数学、外语三门功课的平均分是92分,已知语文得了87分,外语得了91分,数学得了多少分?
3、明明做口算前3分钟平均每分钟做8题,后2分钟一共做了21题,明明平均每分钟做多少题口算?
1、青青林场栽了梧桐树和雪松各x排,已知梧桐树每排12棵,雪松每排14棵。
2.24的所有因数有( ),从小到大15的5个倍数有( )。
3.7是7的( )数,也是7的( )数。
4.在15、18、25、30、19中,2的倍数有( ),5的倍数有( ),3的倍数有( ),既是2、5又是3的倍数有( )。
5.一个数的最大因数是12,这个数是( );一个数的最小倍数是18,这个数是( )。
5、一本故事书,丁丁前3天平均每天看23页,后6天平均每天看28页,这本故事书有多少页?
五、附加题
甲乙两人同时从两地骑车相向而行,甲每小时行驶20千米,乙每小时行驶18千米,两人相遇时距离全程中点3千米,求全程长多少千米?(先画图整理,再解答)
第十二单元统计测试题
班级姓名等第
一、下面是某地冷饮厂2004年每月冷饮生产变化情况统计图(20分)
8、学校买来x盒红粉笔,买来白粉笔的盒数是红粉笔的10倍,学校买来()盒粉笔;当x=10时,学校买来()盒粉笔。
二、选择(将正确答案的序号填在括号里)(每题2分)
1、a2与()相等。
(1)a×2 (2)a+2 (3)a×a
2、2x一定()x2。
(1)大于(2)小于(3)等于(4)不能确定
3、丁丁比昕昕小,丁丁今年a岁,昕昕今年b岁,2年后丁丁比昕昕小()岁。
5、每袋面粉重a千克,每袋大米重b千克,8袋面粉和5袋大米共重()千克。
相关文档
最新文档