八年级数学 二次根式的化简求值 练习题及答案

合集下载

新人教版八年级下二次根式的化简与求值练习题

新人教版八年级下二次根式的化简与求值练习题

新人教版八年级下二次根式的化简与求值练习题一、化简根式1. 化简根式 $\sqrt{12}$。

2. 将根式 $\sqrt{18}$ 化简为最简根式。

3. 化简根式 $\sqrt{\frac{27}{8}}$。

4. 将根式 $\sqrt{\frac{20}{3}}$ 化简为最简根式。

二、求值1. 计算 $\sqrt{25}$ 的值。

2. 利用近似计算的方法,求出 $\sqrt{7}$ 的值(保留两位小数)。

3. 计算 $\sqrt{16 - 9}$ 的值。

4. 计算 $\sqrt{50} - \sqrt{32}$ 的值。

三、综合练1. 将根式 $\sqrt{24}$ 化简为最简根式,再求它的值。

2. 计算 $\sqrt{34} + \sqrt{8}$ 的值(保留两位小数)。

3. 将根式 $\sqrt{\frac{50}{3}}$ 化简为最简根式,再求它的值(保留两位小数)。

4. 计算 $3\sqrt{5} + 2\sqrt{20}$ 的值。

四、挑战练1. 将根式 $\sqrt{\frac{125}{16}}$ 化简为最简根式。

2. 将根式 $\sqrt{1 - \frac{1}{4}}$ 化简为最简根式。

3. 将根式 $\sqrt{\frac{2}{3} - \frac{1}{6}}$ 化简为最简根式。

4. 计算 $2\sqrt{12} - \sqrt{27} + \sqrt{48}$ 的值。

以上为《新人教版八年级下二次根式的化简与求值练习题》的内容。

请按照题目进行练习,如有疑问,请及时咨询老师或同学。

祝您学习进步!。

专题训练 二次根式化简求值有技巧(含答案)

专题训练   二次根式化简求值有技巧(含答案)

专题练习(一)二次根式化简求值有技能(含答案)【1 】► 类型之一 应用二次根式的性质a2=|a|化简 对于a2的化简,不要盲目地写成a,而应先写成绝对值的情势,即|a|,然后再依据a 的符号进行化简.即a2=|a|=⎩⎨⎧a (a >0)0(a =0)-a (a <0).1.已知a =2-3,则a2-2a +1=( )A .1-3B.3-1 C .3-3D.3-32.当a <12且a ≠0时,化简:4a2-4a +12a2-a=________. 3.当a <-8时,化简:|(a +4)2-4|.4.已知三角形的双方长分离为3和5,第三边长为c,化简:c2-4c +4-14c2-4c +16. ► 类型之二 逆用二次根式乘除法轨则化简 5.当ab <0时,化简a2b 的成果是( ) A .-a bB .a -bC .-a -bD .a b6.化简:(1)(-5)2×(-3)2;(2)(-16)×(-49); (3) 2.25a2b;(4)-25-9;(5)9a34. ► 类型之三 应用隐含前提求值7.已知实数a 知足(2016-a )2+a -2017=a,求a -12016的值. 8.已知x +y =-10,xy =8,求x y +y x 的值. ► 类型之四 巧用乘法公式化简9.盘算:(1)(-4-15)(4-15);(2)(26+32)(32-26); (3)(23+6)(2-2);(4)(15+4)2016(15-4)2017.► 类型之五 巧用整体思惟进行盘算10.已知x =5-26,则x2-10x +1的值为( )A .-306B .-186-2C .0D .10611.已知x =12(11+7),y =12(11-7),求x2-xy +y2的值. 12.已知x >y 且x +y =6,xy =4,求x +yx -y 的值.► 类型之六 巧用倒数法比较大小13.设a =3-2,b =2-3,c =5-2,则a,b,c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a_详解详析1.[解析]B a2-2a +1=|a -1|.因为a -1=(2-3)-1=1-3<0,所以|a -1|=-(1-3)=3-1.故选B.2.[答案] -1a[解析] 原式=(2a -1)2a (2a -1)=|2a -1|a (2a -1). 当a <12时,2a -1<0,所以|2a -1|=1-2a. 所以原式=1-2a a (2a -1)=-1a. 3.解:当a <-8时,a +4<-4<0,a +8<0,∴|a +4|=-(a +4),|a +8|=-(a +8).∴原式=|-(a +4)-4|=|-a -8|=|a +8|=-(a +8)=-a -8.4.[解析] 由三角形三边关系定理可得2<c <8,将这两个二次根式的被开方数分化因式,就可以应用二次根式的性质化简了.解:由三角形三边关系定理,得2<c <8.∴原式=(c -2)2-(12c -4)2=c -2-(4-12c)=32c -6. 5.[解析]A 由ab <0,可知a,b 异号且a ≠0,b ≠0.又因为a2≥0,且a2b ≥0,所以a <0,b>0.所以原式=-a b.[点评] 逆用二次根式的乘除法轨则进行化简时,症结是留意轨则成立的前提,还要留意二次根式的总体性质符号,即化简前后符号要一致.6.解:(1)原式=(-5)2×(-3)2=5×3=15.(2)原式=16×49=16×49=4×7=28.(3)原式= 2.25×a2·b =1.5a ·b =3a 2b. (4)原式=259=259=53. (5)原式=9a34=3a 2 a. 7.解:依题意可知a -2017≥0,即a ≥2017.所以原前提转化为a -2016+a -2017=a,即a -2017=2016.所以a =20162+2017. 所以a -12016=20162+20162016=2017. [点评] 解决此题的症结是从已知前提中发掘出隐含前提“a -2017≥0”,如许才干对(2016-a )2进行化简,从而求出a 的值.8.解:依题意可知x <0,y <0. 所以原式=x2xy +y2xy =-x xy +-y xy =-(x +y )xy . 因为x +y =-10,xy =8,所以原式=-(-10)8=522. [点评] 解决此题的症结是从已知前提中剖析出x,y 的正负性,如许才干对请求的式子进行化简和求值.假如盲目地化简代入,那么将会得出-522这个错误成果. 解答此题还有一个技能,那就是对x y +y x进行变形时,不要按通例化去分母中的根号,而是要依据已知前提的特色对它进行“通分”. 9.解:(1)原式=(-15)2-42=15-16=-1.(2)原式=(32)2-(26)2=18-24=-6. (3)原式=3(2+2)(2-2)=3(4-2)=2 3.(4)原式=(15+4)2016(15-4)2016(15-4)=[(15+4)(15-4)]2016(15-4)=15-4.[点评] 应用乘法公式化简时,要擅长发明公式,经由过程符号变形.地位变形.公因式变形.联合变形(添括号).指数变形等,变出乘法公式,就可以应用公式进行化简与盘算,事半功倍.10.[解析]C 原式=(x -5)2-24. 当x =5-26时,x -5=-26,∴原式=(-26)2-24=24-24=0.故选C.[点评] 解答此题时,先对请求的代数式进行配方,然后视x -5为一个整体代入求值,这比直接代入x 的值进行盘算要简略得多. 11.解:因为x +y =11,xy =14[(11)2-(7)2]=1, 所以x2-xy +y2=(x +y)2-3xy =(11)2-3=8.[点评] 这类问题平日视x +y,xy 为整体,而不是直接代入x,y 的值进行盘算.12.解:因为(x -y)2=(x +y)2-4xy =20,且x >y,所以x-y=20=25,所以原式=(x+y)2(x)2-(y)2=x+y+2xyx-y=6+425= 5.[点评] 此题需先整体求出x-y的值,然后再整体代入变形后的代数式盘算.13.[解析]A 因为(3-2)(3+2)=1,所以a=3-2=13+2.同理,b=12+3,c=15+2.当分子雷同时,分母大的分式的值反而小,所以a>b>c.故选A.[点评] 这里(3-2)(3+2)=1,即3-2与3+2互为倒数.是以,比较大小时,可把3-2转化为13+2,从而转化为分母大小的比较。

二次根式化简练习题含答案

二次根式化简练习题含答案

20. . . 下载可编辑二次根式化简练习题含答案(培优)一)判断题: (每小题 1 分,共 5分)( 2)2ab =- 2 ab .⋯⋯⋯⋯⋯3 -2 的倒数是 3 + 2.( )(x 1) = ( x 1) .⋯( )132 aa 3b 、 是同类二次根式.⋯(3 x b1, 9 x 2 都不是最简二次根式. (3每小题 2 分,共 20 分) 1______ 时,式子 1 有意义.x31.2. 3.4. 5. ab 、8x ,二)填空题: 6.当x 10 25化简-15 2 ÷a - a 21的有理化因式是 当 1<x <4时, |x -4|+ x 22x 1=10.方程 2(x -1)=x +1的解是 _______ 7.8. 9.27 12a 3ab c 2d 211.已知 a 、b 、c 为正数, d 为负数,化简ab c 2d 212.比较大小:- 1 ____________ - 1 .2 7 4 313.化简: (7-5 2 ) 2000· ( -7- 5 2 ) 2001= ___ 14.若 x 1+ y 3=0,则(x -1) 2+( y +3) 2=15.x ,y 分别为 8- 11 的整数部分和小数部分,则 三)选择题: (每小题 3 分,共 15 分)16.已知 x 3 3x (A )x ≤02=- x x 3 ,则⋯⋯⋯⋯⋯⋯B )x ≤- 3 (C )x ≥- 317.若 x < y < 0,(A )2x18.若 0< x < 1,19.A )化简2 2xy - y=)D )- 3≤x ≤0 x 22xy y 2+ x 22xy y 2=⋯⋯B )2y(C )-2x(D )- 2y12(x )24 等于⋯⋯⋯x(xxB )- 2 x( a < 0) 得A )当 a < 0 , b < 0 时,- a + 24-C) - 2xD )2xB )- a( C )- a ab- b 可变形为⋯⋯⋯D ) aA )( a b )2 (B )- ( a b )2(C )( a b )2 (D ) (a b )2四)计算题: (每小题 6 分,共 24分)21.( 5 3 2 )( 5 3 2 );22.五)求值: (每小题 7分,共 14 分)3724.( a +b ababa+bab b ab aa b)(a ≠ b ). ab25.已知 x =y =32 32,求xy32x xy 3 2 2 32x y x y的值.26.当 x =1- 2 时,求2x x 2a 2+1 2 2 2 2 2x x x a x a的值.2x六、解答题: (每小题 8分,共 16 分)27.计算( 2 5 +1)( 1 + 1 + 1 +⋯+ 1 ).1 2 2 3 3 4 99 100(一)判断题: (每小题 1 分,共 5分)1、【提示】 ( 2) =| - 2| = 2.【答案】×.2、【提示】 1 = 3 2 =-( 3 + 2).【答案】×.3 2 3 43、【提示】 (x 1)2 =|x -1|,( x 1) 2 =x - 1( x ≥ 1).两式相等,必须 x ≥1.但等式左边 x 可取任何数.【答案】×.132 a4、【提示】 1 a 3b 、化成最简二次根式后再判断. 【答案】√.3 x b5、9 x 2是最简二次根式. 【答案】×.(二)填空题: (每小题 2 分,共 20分)6、【提示】 x 何时有意义? x ≥0.分式何时有意义?分母不等于零. 【答案】 x ≥0且 x ≠9.7、【答案】- 2a a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】( a - a 21 )( ______ )= a 2- ( a 21)2.a +a 21 .【答案】 a +a 21.9、【提示】 x 2-2x +1=( )2,x -1.当 1<x <4时,x -4,x -1 是正数还是负数?x - 4是负数, x -1是正数.【答案】 3.10、【提示】把方程整理成 ax = b 的形式后, a 、b 分别是多少? 2 1, 2 1.【答案】 x =3+2 2 . . . 下载可编辑 . .28.若 x ,y 为实数,且1y = 1 4x + 4x 1 +2xy2y的值.x11、【提示】c2d2=|cd|=-cd.【答案】ab +cd.【点评】∵ ab=( ab)2(ab>0),∴ ab-c2d2=(ab cd )(ab cd ).12、【提示】 2 7=28 ,4 3=48 .1 1 1【答案】<.【点评】先比较28,48 的大小,再比较1,1的大小,最后比较-1与28 48 28 1-的大小.4813、【提示】(-7-5 2 )2001=(-7-5 2 )2000·(______ )[ -7-5 2.](7-5 2)·(-7-5 2 )=?[1 .] 【答案】-7-5 2.【点评】注意在化简过程中运用幂的运算法则和平方差公式.14、【答案】40.【点评】x 1≥0,y 3≥0.当x 1+y 3=0 时,x+1=0,y-3=0.15、【提示】∵ 3< 11 <4,∴ ___________ < 8-11 <__________ .[4 ,5] .由于8-11 介于 4 与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-11 ] 【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题 3 分,共15 分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x<y<0,∴ x-y<0,x+y<0.∴ x22xy y2=(x y)2=|x-y| =y-x.x22xy y2=(x y)2=| x+y| =-x-y.【答案】C.【点评】本题考查二次根式的性质a2=|a| .1 2 1 2 1 2 1 218、【提示】(x-)+4=(x+),(x+)-4=(x-).又∵ 0<x< 1,x x x x11∴ x+ >0,x- < 0.【答案】D.xx【点评】本题考查完全平方公式和二次根式的性质.(A)不正确是因为用性质时没有注意当0< x<1时,x-1< 0.x19、【提示】 a =a a =a · a =| a| a =- a a .【答案】C.20、【提示】∵ a<0,b<0,∴ -a>0,-b>0.并且-a=( a)2,-b=( b)2,ab=( a)( b).【答案】C.【点评】本题考查逆向运用公式( a)2=a(a≥0)和完全平方公式.注意(A)、(B)不正确是因为a<0,b<0时,a 、b 都没有意义.(四)计算题:(每小题 6 分,共24分)21、【提示】将5 3 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=( 5 3)-( 2)=5-2 15 +3-2=6-2 15 .22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4 11)-4( 11 7)-2(3 7)=4+11-11-7-3+7=1.16 11 11 7 9723、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.解】原式=( a 2 n - ab m m 1n b 21 2a 2b 2 m 1 2 - + b 2 ab 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式= a ab b ab ÷ a a( a b) b b( a b) (a b)(a b) a a 2b 2 ab ab ab ab b ab( a b)( a b) a 2 a ab b ab b 2 a 2 b 2ab( a b)( a b) ab( a b)( a b) =- aab(a b) 【点评】本题如果先分母有理化,那么计算较烦琐. (五)求值: (每小题 7分,共 14 分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x = 3 2 = ( 3 2) 32 2 = 5+ 2 6 , y = 3 2 = ( 3 2)2 =5-2 6 . 32 ∴ x +y =10,x -y =4 6,xy =52-(2 6 )2=1. x 3 xy 2 = x(x y)(x y) = x y x 2 y 3 x 2 y(x y)2 xy(x y) 化简后,根据解题的需要,先分别求出“ 4 3 2 x y 2x y 【点评】本题将 x 、 y 过程更简捷. 4 6 =1 10x +y ”、26 . 5x -y ”、“xy ”.从而使求值的26、【提示】注意: 22x +a = x 2+a 2-x x 2 ( x 2 a 2 )2, a 2 =x 2 22a x 2 x 2 a 2(2xx2 2 2 2x a ( x aa 2) x( xx 2a 2 (x 2 a 2 -x ),x 2- x x -2x x 2a 2+1x) x( x 2 a 2 x)x 2 a 22a 2x)=- x ( x 2a 2- x ).a 2 ( x x 22x x 2 a 2 ( x 2 a 2 )2x x2 a 2( x 2 a 2x x 21.当 x x =1- 2 时,原式= 2a 2x)x x 2a 2x 2=(x 2 a 2)2 x x 2 a 2 =x 2 a 2( x 2a 2 x) x) xx 2a 2(x 2a 2x) x x 2a 2( x 2a 2x)1=- 1 - 2 .【点评】本题如果将前两个“分式”分拆成两个“分12式”之差, 那么化简会更简便.即原式=11 =( ) 2 2 2 2 x a x x ax 2- ( 122xax a 2 ( x 2 a 2 x) 1)+1 = 1 xx 2 a 2x2x x 2 a2+ 1 x( x 2 a 2 x)x a六、解答题: (每小题 8分,共 16 分)27、 提示】先将每个部分分母有理化后,再计算. 2 1 3 2 4 3解】原式=( 2 5 + 1) 21 [ ( 2 100 + + +⋯+ 3 2 4 3 1 )+( 3 2 )+ 1) 100 99 ) 100 994 3 )+⋯+( 100 99 ) ]=(2 5 +1) =(2 5 +1) =9(2 5 +1). 【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为 整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 28、 提示】要使 y 有意义,必须满足什么条件? 1 4x 4x 0] 你能求出 x , 0. y 的值吗? 141.]2. 1 4x解】要使 y 有意义,必须 [4x 1 ,即14∴1.4.(x y )2( yx )1 y =2 x = 1 .当 4 x = 1 时, 41 y = 2(y y x|∵ x = 2 y 原式= 2 114 = 2 .【点评】解本题的关键是利用二次根式的意义求出 又∵ x2 yyx-xyy x |-|x原式= x y - yxxyyxy )2-x) -1x = 4y当xx<y .yx y = 1时,212x 的值,进而求出 y 的值.。

八年级初二数学二次根式练习题含答案

八年级初二数学二次根式练习题含答案
(2)
=
=
=
∵ ,

=
=

∵ , ,
∴ .
【点睛】
本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.
23.先阅读下列解答过程,然后再解答:
形如 的化简,只要我们找到两个正数 ,使 , ,使得 , ,那么便有:
例如:化简
解:首先把 化为 ,这里 ,由于 ,即: , ,
【答案】(1)4 ;(2)10
【分析】
(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;
(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.
【详解】
(1)∵a= + ,b= - ,
∴a+b= + + ﹣ =2 ,
A.m>﹣2B.m>﹣2且m≠1C.m≥﹣2D.m≥﹣2且m≠1
10.下列计算正确的是( )
A. B. C. D.
二、填空题
11.已知 ,则 ________.
12.已知a=﹣ ,则代数式a3+5a2﹣4a﹣6的值为_____.
13.已知 可写成 的形式( 为正整数),则 ______.
14.若 ,则 ______.
15.把 根号外的因式移到根号内,得_____________.
16.若 的整数部分为 ,小数部分为 ,则 的值是___.
17.化简二次根式 的结果是_____.
18.已知:x= ,则 可用含x的有理系数三次多项式来表示为: =_____.
19.把 的根号外的因式移到根号内等于?
20.最简二次根式 与 是同类二次根式,则 =________.

考点02 二次根式的运算与化简求值专项练习(解析版)

考点02 二次根式的运算与化简求值专项练习(解析版)

人教版2020——2021年八年级下册新题二次根式的运算与化简求值专项练习1.(2020秋•遵化市期末)计算:(1)﹣(1﹣);(2)(2+6)×÷2.【分析】(1)根据二次根式的乘法和加减法可以解答本题;(2)根据二次根式的乘除法和加法可以解答本题.【解答】解:(1)﹣(1﹣)=﹣+3=3;(2)(2+6)×÷2=(2×+6×)×=(4+18)×=2+9.2.(2020秋•太平区期末)计算题:(1);(2)×﹣;(3)(+3)×(3﹣)﹣(﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后约分即可;(2)利用二次根式的乘除法则运算;(3)根据平方差公式和完全平方公式计算.【解答】解:(1)原式==6;(2)原式=﹣(﹣)=10﹣(2﹣)=8+;(3)原式=9﹣5﹣(3﹣2+1)=4﹣4+2=2.3.(2020秋•市中区期末)计算:(1)﹣4+2;(2)﹣.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的除法法则运算,然后化简后合并即可.【解答】解:(1)原式=3﹣2+4=5;(2)原式=+﹣4=2+3﹣4=1.4.(2020秋•项城市期末)计算:(1);(2).【分析】(1)根据二次根式的乘法法则运算;(2)根据平方差公式计算.【解答】解:(1)原式=2××+5=3+5;(2)原式=(2)2﹣()2=12﹣6=6.5.(2020秋•织金县期末)计算下列各题:(1)﹣+;(2)﹣(3﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的除法法则和完全平方公式计算.【解答】解:(1)原式=3﹣+=;(2)原式=+﹣(18﹣6+1)=2+4﹣19+6=6﹣13.6.(2020秋•沈河区期末)计算:(1)﹣+2÷;(2)﹣×.【分析】(1)直接利用二次根式的混合运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.【解答】解:(1)﹣+2÷=2﹣+2=+2;(2)﹣×=1+﹣2=﹣1.7.(2020秋•碑林区校级期末)计算:(1)2﹣2+;(2)(﹣2)2﹣.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和二次根式的除法法则运算.【解答】解:(1)原式=6﹣+=6;(2)原式=3﹣4+4﹣(﹣)=7﹣4﹣3+2=6﹣4.8.(2020秋•武侯区期末)计算:(1)(π﹣2020)0﹣2++|1﹣|.(2)﹣(﹣)(+).【分析】(1)根据零指数幂、立方根的定义和绝对值的意义计算;(2)根据二次根式的除法法则和平方差公式计算.【解答】解:(1)原式=1﹣﹣2+﹣1=﹣2;(2)原式=+﹣(3﹣2)=2+3﹣1=4.9.(2020秋•郫都区期末)计算:(1)÷+×﹣;(2)(+2)2﹣(+2)(﹣2).【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用二次根式的混合运算法则化简得出答案.【解答】解:(1)原式=+5﹣3=3;(2)原式=5+4+4﹣(5﹣4)=9+4﹣1=8+4.10.(2020秋•龙华区期末)计算题(1)+(+2)(﹣2);(2)6+|1﹣|﹣(+1)÷.【分析】(1)先化简二次根式,利用平方差公式计算,再进一步计算即可;(2)先化简二次根式、去绝对值符号、除法转化为乘法,再计算乘法,最后计算加减即可.【解答】解:(1)原式=+()2﹣22=2+3﹣4=1;(2)原式=6×+﹣1﹣(+1)×=3+﹣1﹣3﹣=﹣1.11.(2020秋•新化县期末)已知a=1+,b=1﹣,求:(1)求a2﹣2a﹣1的值;(2)求a2﹣2ab+b2的值.【分析】(1)根据完全平方公式把原式变形,把a的值代入计算即可;(2)根据完全平方公式把原式变形,把a、b的值代入计算即可.【解答】解:(1)原式=a2﹣2a+1﹣2=(a﹣1)2﹣2,当a=1+时,原式=(1+﹣1)2﹣2=0;(2)a2﹣2ab+b2=(a﹣b)2,当a=1+,b=1﹣时,原式=(1+﹣1+)2=8.12.(2020秋•永年区期末)已知x=.(1)求代数式x+;(2)求(7﹣4)x2+(2﹣)x+的值.【分析】(1)根据分母有理化把x的值化简,计算即可;(2)根据二次根式的混合运算法则计算,得到答案.【解答】解:(1)x===2+,则=2﹣,∴x+=2++2﹣=4;(2)(7﹣4)x2+(2﹣)x+=(7﹣4)(2+)2+(2﹣)(2+)+=(7﹣4)(7+4)+(2﹣)(2+)+=49﹣48+4﹣3+=2+.13.(2020春•遵义期末)已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2;(2).【分析】(1)原式利用完全平方公式变形,把a与b的值代入计算即可求出值;(2)原式通分并利用同分母分式的减法法则变形,把a与b的值代入计算即可求出值.【解答】解:(1)∵x=+1,y=﹣1,∴原式=(x+y)2=(+1+﹣1)2=(2)2=8;(2)∵x=+1,y=﹣1,∴原式====2.14.(2020春•浦北县期末)已知:m=+2,n=﹣2,求(1)m﹣n的值;(2)mn的值.【分析】(1)把m与n的值代入原式计算即可求出值;(2)把m与n的值代入原式计算即可求出值.【解答】解:(1)当m=+2,n=﹣2时,m﹣n=(+2)﹣(﹣2)=+2﹣+2=4;(2)当m=+2,n=﹣2时,mn=(+2)×(﹣2)=5﹣4=1.15.(2020春•和县期末)已知x=2+,y=2﹣,求代数式x2﹣y2的值.【分析】根据二次根式的加减法法则分别求出x+y、x﹣y,根据平方差公式把原式变形,代入计算即可.【解答】解:∵x=2+,y=2﹣,∴x+y=4,x﹣y=2,∴x2﹣y2=(x+y)(x﹣y)=8.16.(2020春•潮南区期末)已知a=+2,b=﹣2.求下列式子的值:(1)a2b+ab2;(2)(a﹣2)(b﹣2).【分析】(1)将所求式子因式分解,然后将a+b和ab的值代入即可解答本题;(2)将a、b的值代入所求式子,即可解答本题.【解答】解:(1)∵a=+2,b=﹣2,∴a+b=2,ab=1,∴a2b+ab2=ab(a+b)=1×2=2;(2)∵a=+2,b=﹣2,∴(a﹣2)(b﹣2)=(+2﹣2)×(﹣2﹣2)=×(﹣4)=5﹣4.17.(2020春•姑苏区期末)已知:a=,b=.求值:(1)ab;(2)a2﹣3ab+b2;【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)ab=(+)(﹣)=5﹣3=2.(2)a﹣b=+﹣+=2,∴a2﹣3ab+b2=(a﹣b)2﹣ab=12﹣2=10.18.(2020春•临邑县期末)已知x=,y=.(1)计算x+y=2;xy=4;(2)求x2﹣xy+y2的值;【分析】(1)先将知x=,y=进行分母有理化.然后代入求值;(2)将x2﹣xy+y2的化成(x+y)2﹣3xy,然后将(1)中数据代入求值.【解答】解:∵已知x=,y=.∴x==,y==﹣1.(1)x+y=+1+﹣1=2,xy=(+1)(﹣1)=4.故答案为2,4;(2)x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×4=20﹣12=8.19.(2020春•鱼台县期末)先化简,再求值:+(x﹣2)2﹣6,其中,x=+1.【分析】原式第一项约分,第二项利用完全平方公式化简,第三项利用二次根式性质计算得到最简结果,把x的值代入计算即可求出值.【解答】解:∵x=+1>0,∴原式=+x2﹣4x+4﹣2x=4x+x2﹣4x+4﹣2x=x2﹣2x+4=(x﹣1)2+3=5+3=8.20.(2020春•马山县期末)已知:x=+,y=﹣,求代数式x2﹣y2+5xy的值.【分析】首先把代数式利用平方差公式因式分解,再进一步代入求得答案即可.【解答】解:∵x=+,y=﹣,∴x2﹣y2+5xy=(x+y)(x﹣y)+5xy=2×2+5(+)(﹣)=4+5.。

(完整版)二次根式化简练习题含答案,推荐文档

(完整版)二次根式化简练习题含答案,推荐文档

(-2)2 ab ab 3 3 (x -1)2 ab a 3b 9 + x 2 x - 32512a 3a 2 -1 x 2 - 2x+1 24 32 2 y -3 11 x 3 + 3x 2 x + 3 x 2 - 2xy + y 2 x 2 + 2xy + y 2 (x - 1 )2 +4 x (x + 1 )2- 4 x- a 3- a - a a ab a a - a - a •二次根式化简练习题含答案(培优)(一)判断题:(每小题 1 分,共 5 分)1. =-2 .…………………( )2. -2 的倒数是 +2.() 3. = ( x -1)2.…()4. 、1 、 - 31是同类二次根式.…( )5 , 都不是最简二次根式.( ) 3(二)填空题:(每小题 2 分,共 20 分)16. 当 x时,式子有意义.15 7. 化简- 8÷ = . 8. a -的有理化因式是.9.当 1<x <4 时,|x -4|+ = .10.方程 (x -1)=x +1 的解是 .ab - c 2d 211.已知 a 、b 、c 为正数,d =.1112.13.化简:(7-5 )2000·(-7-5 )2001=.14. 若 x +1 + =0,则(x -1)2+(y +3)2= .15. x ,y 分别为 8-的整数部分和小数部分,则2xy -y 2= .(三)选择题:(每小题 3 分,共 15 分)16.已知 =-x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0 17.若 x <y <0,则 + =………………………()(A )2x (B )2y (C )-2x (D )-2y18.若 0<x <1,则 -等于………………………()2 2(A )(B )-(C )-2x(D )2xx x19.化简 a( a <0 ) 得………………………………………………………………()(A ) (B )- (C )- (D ) 20.当 a <0,b <0 时,-a +2 -b 可变形为………………………………………( )(A ) ( + b )2(B ) - (- b )2(C ) (+ - b )2(D ) (- - b )22 ax b 2 10 27 a5325324 - 11 11 -7aa ab -a3 + 2 3 - 2 3 - 2 3 + 223 +7mnab(四)计算题:(每小题6 分,共24 分)21.(-+)(--);22.5-4-2;ab n2 2n23.(a-+m ma b ;m24.(+a)÷(b a +b+-)(a≠b).(五)求值:(每小题7 分,共14 分)x3 -xy225.已知x=,y=,求x4 y + 2x3 y2 +x2 y3的值.x 2x -x2 +a2 1 26.当x=1-六、解答题:(每小题8 分,共16 分)b ab +b5 (-2)2 3 (x -1)2 a 3b 9 + x 2 x a a 2 -1 a 2 -1 a 2 -1 2 c 2d 2ab ab ab 7 28 3 48 28 48 2 2 2 2 2 2 x - 2 + yy x2 111127.计算(2 +1).28.若 x ,y 为实数,且 y = 1- 4x + 4x -1 + 1.求2 - 的值.(一)判断题:(每小题 1 分,共 5 分) 1、【提示】 =|-2|=2.【答案】×. 1 2、【提示】=3 + 2 =-(+2).【答案】×. 3 - 43、【提示】 =|x -1|, ( 数.【答案】×. x -1)2 =x -1(x ≥1).两式相等,必须 x ≥1.但等式左边 x 可取任何4、【提示】1 、- 3化成最简二次根式后再判断.【答案】√. 5、 是最简二次根式.【答案】×.(二)填空题:(每小题 2 分,共 20 分) 6、【提示】 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0 且 x ≠9. 7、【答案】-2a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a - )( )=a 2- ( a 2 -1)2 .a + .【答案】a + . 9、【提示】x 2-2x +1=( )2,x -1.当 1<x <4 时,x -4,x -1 是正数还是负数?x -4 是负数,x -1 是正数.【答案】3. 10、【提示】把方程整理成 ax =b 的形式后,a 、b 分别是多少? 11、【提示】 =|cd |=-cd .-1, +1.【答案】x =3+2 . 【答案】 +cd .【点评】∵ ab = ( ab )2 (ab >0),∴ ab -c 2d 2=( + cd ) ( - cd ).12、【提示】2 = ,4 = .1 1 1 【答案】<.【点评】先比较 ,113、【提示】(-7-5 )2001=(-7-5 )2000·()[-7-5 .](7-5 )·(-7-5 )=?[1.]【答案】-7-5 .x + 2 + y y x 3 - 22a x b2y - 3 y - 3 11 11 11 11 x 2 - 2xy + y 2 (x - y )2 (x + y )2 a 2- a 3 - a ⋅ a 2 - a a 2- a - a ab (-a )(-b ) a b 3 15 15 11 11 7 7 n ⋅ m m n a + ab + b - ab a + b 5 5 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】 x +1 ≥0, ≥0. 当 x +1 + =0 时,x +1=0,y -3=0. 15、【提示】∵ 3< <4,∴<8- <.[4,5].由于 8- 介于 4 与 5之间,则其整数部分 x =?小数部分 y =?[x =4,y =4- ]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题 3 分,共 15 分) 16、【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴= =|x -y |=y -x .= =|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质 =|a |.18、【提示】(x - 1 )2+4=(x + 1 )2,(x + 1 )2-4=(x - 1)2.又∵ 0<x <1,x x x x1 1 ∴ x + >0,x - <0.【答案】D .xx【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当 0<x <1 1 时 ,x - <0.x19、【提示】 = = · =|a | =-a .【答案】C . 20、【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a = ( - a )2 ,-b =( - b )2 , = . 【答案】C .【点评】本题考查逆向运用公式( a )2 =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为 a <0,b <0 时, 、 都没有意义.(四)计算题:(每小题 6 分,共 24 分)21、【提示】将 - 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=( - )2- ( 2)2 =5-2 +3-2=6-2 . 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4 + 11) - 4( 11 + 7 ) - 2(3 - 7 ) =4+ - - -3+ =1. 16 -1111- 79 - 723、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2ab n - m m 1 )· a 2b 2 = 1- 1 mn ⋅ m + n b 2 mab n ma 2b 2 11 1 a2 - ab +1=-+ = .b 2aba 2b 2a 2b224、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式= ÷3 m n m nm ⋅m n nx 2 + 2xy + y 2 a a ( a - b ) - b b ( a + b ) - (a + b )(a - b )ab ( a + b )( a - b )a b3 63 - 23 + 23 664 6x2 +a2x2 +a2x2 +a2x2 +a2x2 +a222xx2 +a2 ( x2 +a2 -x)2x -x2 +a2x( x2 +a2 -x) x2 +a253 3 99555ab ( a - b )( a + b )-ab (a +b)4 100= a =a +b=a +ba +b=·=-+.【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7 分,共14 分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.2【解】∵x( +2) =5+2 ,y==( -2)2 =5-2 .∴ x+y=10,x-y=4 6 ,xy=52-(2 )2=1.x3 -xy 2 x(x +y)(x -y) x -y 2=x 4 y + 2x3 y 2 +x 2 y 3x2 y(x +y)2=== 6 .xy(x +y) 1⨯10 5【点评】本题将x、y 化简后,根据解题的需要,先分别求出“x+y”、“x-y”、“xy”.从而使求值的过程更简捷.26、【提示】注意:x2+a2=( x2+a2 )2,∴ x2+a2-x =(-x),x2-x =-x(-x).x 1=x 2 - 2x x 2 +a 2 + ( x 2 +a 2 )2 +x x 2 +a 2 -x 2 ( x2 +a2 )2 -x x2 +2x x 2 +a 2 (1x 2 +a 2 -x)1x x2 +a2 ( x2 +a2 -x)=.当x=1-1-.【点评】本题如果将前两个“分式”分拆成两个“分x式”之差,那么化简会更简便.即原式=-+1=( 1 1 --1 ) 1 1 .六、解答题:(每小题8 分,共16 分)x x27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(2 +1)( 2 -1 + 3 - 2 + 4 - 3 +…+100 - 99 )2 -1 3- 2 4 -3 100 - 99=(2 +1)[(=(2 +1)(=9(2 +1).2 -1)+(--1 ))+(-)+…+(-)]【点评】本题第二个括号内有99 个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.a +bx2 +a2 ( x2 +a2 -x)x x2 +a2 ( x2 +a2 -x)2100x yy xy x y x x y xy⎧x = 128、【提示】要使 y 有意义,必须满足什么条件?⎧[1⎨- 4x ≥ 0 ] 你能求出 x ,y 的值吗?[⎨ 4 ]⎩4x -1 ≥0. ⎧ 1⎪ y = 1 . ⎩ 2 x ≤ ⎧1 - 4x ≥ 0 4 1 1 1 【解】要使 y 有意义,必须[⎨⎩4x - 1 ≥ 0 , 即⎨⎪ 1 x ≥ .∴ x = 4.当 x = 时4 ,y = .2又∵=| + - |-| =- |∵ ⎩ 4 -x = 1 ,y = 1 ,∴x y< . 42 yx∴ 原式= - =2 当 x 1 y 1 + + = , = 时 , 421 原式=2 4 =1 2.【点评】解本题的关键是利用二次根式的意义求出 x 的值,进而求出 y 的值.x y 2 ( y )2 y x x + x + 2 + y y x x - 2 + y y x ( y )2y x x - y xx y“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

人教版初中八年级上册数学解题技巧专题练习:二次根式中的化简求值

人教版初中八年级上册数学解题技巧专题练习:二次根式中的化简求值

解题技巧专题:二次根式中的化简求值——明确计算便捷渠道◆类型一 利用二次根式的非负性化简求值1.若y =x -3+3-x +2,求x y 的值.【方法22】◆类型二 利用乘法公式化简求值2.计算:(1)(2+3)2;(2)(3+2)2-(3-2)2;(3)(2+5)11·(2-5)10.3.已知x +1x =5,求x 2x 4+x 2+1的值.◆类型三 利用整体代入求值4.已知a -b =5-1,ab =3,则12a 2+2ab +12b 2=________. 5.已知x +y =2-10,求代数式(x +y )2-4(x +y )-6的值.6.已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值.7.已知x =12(7+3),y =12(7-3),求代数式x 2+y 2-xy 的值.参考答案与解析1.解:由题意有x -3≥0,3-x ≥0,∴x =3,∴y =2,∴x y =9.2.解:(1)原式=7+4 3. (2)原式=(3+2+3-2)(3+2-3+2)=4 6. (3)原式=[(2+5)(2-5)]10(2+5)=2+ 5.3.解:原式取倒数得x 4+x 2+1x 2=x 2+1x 2+1=⎝⎛⎭⎫x +1x 2-1=(5)2-1=4,∴原式=14. 4.12-5 解析:原式=12(a 2+4ab +b 2)=12[(a -b )2+6ab ].∵a -b =5-1,ab =3,∴原式=12[(5-1)2+6×3]=12- 5. 5.解:(x +y )2-4(x +y )-6=(x +y -2)2-10=(2-10-2)2-10=0.6.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2)(1+2)=-1,∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-22)2-2×(-22)+(-1)=7+4 2.7.解:因为x =12(7+3),y =12(7-3),所以x +y =12(7+3)+12(7-3)=7,xy =12(7+3)×12(7-3)=1,所以x 2+y 2-xy =(x +y )2-3xy =(7)2-3×1=4.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。

最新二次根式化简练习题含答案

最新二次根式化简练习题含答案

(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( ) 2.3-2的倒数是3+2.( )3.2)1(-x =2)1(-x .…( )4.ab 、31b a 3、bax 2-是同类二次根式.…( ) 5.x 8,31,29x +都不是最简二次根式.( ) (二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a= . 8.a -12-a 的有理化因式是____________.9.当1<x <4时,|x -4|+122+-x x =________________. 10.方程2(x -1)=x +1的解是____________. 11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.12.比较大小:-721_________-341.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( )(A )x 2 (B )-x2(C )-2x (D )2x 19.化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(四)计算题:(每小题6分,共24分)21.(235+-)(235--);22.1145--7114--732+;23.(a 2mn -m ab mn +m nn m )÷a 2b 2mn ;24.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).(五)求值:(每小题7分,共14分)25.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.26.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.六、解答题:(每小题8分,共16分)27.计算(25+1)(211++321++431++…+100991+).28.若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-xyy x +-2的值.(一)判断题:(每小题1分,共5分) 1、【提示】2)2(-=|-2|=2.【答案】×. 2、【提示】231-=4323-+=-(3+2).【答案】×.3、【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4、【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5、29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6、【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9.7、【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9、【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3. 10、【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22. 11、【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12、【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13、【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15、【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分) 16、【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17、【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18、【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1, ∴ x +x 1>0,x -x 1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19、【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20、【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)计算题:(每小题6分,共24分)21、【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215. 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -m ab mn +m n n m )·221b a nm=21b n m m n ⋅-mab 1n m mn ⋅+22b ma n nmn m ⋅=21b-ab 1+221b a =2221b a ab a +-.24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7分,共14分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷.26、【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++ =x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x 1.六、解答题:(每小题8分,共16分) 27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--) =(25+1)[(12-)+(23-)+(34-)+…+(99100-)] =(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.28、【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x -=|xy yx +|-|xy y x -|∵ x =41,y =21,∴ yx <xy.∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

二次根式化简练习题含答案

二次根式化简练习题含答案

二次根式化简练习题含答案•二次根式化简练习题含答案(培优)(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( ) 2.3-2的倒数是3+2.( ) 3.2)1(-x =2)1(-x .…( )4.ab 、31b a 3、bax 2-是同类二次根式.…( ) 5.x8,31,29x +都不是最简二次根式.( )(二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a = .8.a -12-a 的有理化因式是____________. 9.当1<x <4时,|x -4|+122+-x x =________________. 10.方程2(x -1)=x +1的解是____________. 11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.12.比较大小:-721_________-341.13.化简:(7-52)2000·(-7-52)2001=______________.14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( )(A )x 2 (B )-x 2(C )-2x (D )2x 19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( ) (A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(四)计算题:(每小题6分,共24分) 21.(235+-)(235--);(一)判断题:(每小题1分,共5分) 1、【提示】2)2(-=|-2|=2.【答案】×.2、【提示】231-=4323-+=-(3+2).【答案】×.3、【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√.5、29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6、【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7、【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用. 8、【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9、【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3. 10、【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22. 11、【提示】22d c =|cd |=-cd . 【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -). 12、【提示】27=28,43=48. 【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小.13、【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0. 15、【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分) 16、【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17、【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴ 222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18、【提示】(x -x 1)2+4=(x +x 1)2,(x +x1)2-4=(x -x1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D . 【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x 1<0. 19、【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20、【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)计算题:(每小题6分,共24分) 21、【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215. 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1. 23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -m ab mn +m n n m )·221b a nm=21b n mm n ⋅-mab1nmmn ⋅+22b ma n nm n m ⋅=21b -ab1+221b a =2221b a ab a +-.24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-ba +.【点评】本题如果先分母有理化,那么计算较烦琐. (五)求值:(每小题7分,共14分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xyx ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 26、【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221a x +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x-++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22xx a x --++221a x +=x1.六、解答题:(每小题8分,共16分) 27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.28、【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21. 又∵xyy x ++2-xy y x +-2=2)(xy y x+-2)(xy y x -=|xy yx +|-|xy y x -|∵ x =41,y =21,∴ yx <x y .∴ 原式=xy yx +-yx xy+=2yx 当x =41,y =21时, 原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。

二次根式化简练习题含答案

二次根式化简练习题含答案

二次根式化简练习题含答案二次根式化简练题含答案(培优)一)判断题:(每小题1分,共5分)1.(−2)2ab=-2ab.(正确)2.3-2的倒数是3+2.(错误)3.(x-1)2=(x-1).(错误)4.ab、xb、1/3a3b、-2a/xb是同类二次根式.(正确)5.8x、1/9+ x2都不是最简二次根式.(正确)二)填空题:(每小题2分,共20分)6.当x=0时,式子1/(x-3)有意义.7.化简-15/8÷1025/2712a3= -3a3/205.8.a-a2-1的有理化因式是a/(a+1).9.当1<x<4时,|x-4|+x2-2x+1= (x-3)2.10.方程2(x-1)=x+1的解是x=3.11.已知a、b、c为正数,d为负数,化简(ab-c2d2)/(ab+cd2)2= (ab-cd2)/(ab+cd2)2.12.比较大小:-1/27-1/43<0<-1/27+1/43.13.化简:(7-5√2)2000·(-7-5√2)2001= 1/5.14.若x+1+y-3=0,则(x-1)2+(y+3)2=26.15.x,y分别为8-11的整数部分和小数部分,则2xy-y2=-0.15.三)选择题:(每小题3分,共15分)16.已知x3+3x2=-xx+3,则x≤-3.17.若x<y<√2,则x-2xy+y+x+2xy+y=2y.18.若0<x<1,则(x-√2)2+4-(x+√2)2-4=-2x.19.化简a/(a3-b3)=-1/b.20.当a<1/2,b<1/2时,-a+2ab-b可变形为-(a-b)2.四)计算题:(每小题6分,共24分)21.(5-3+2)(5-3-2)=0.22.5/(4-11)-24/(11-7)=-1/3.23.(a2-1)/(a-1)+(a-1)/(a2-1)=2a/(a-1).24.(a+5)/(4-11)-(11-7)/(24-7)=-a/3b.第一段没有明显的格式错误,但需要改写:给定一个分式 $\frac{m^2n}{a^2b^2}$,将其化简得到$\frac{n}{a+b} \cdot \frac{m}{a-b}$(当 $a \neq b$ 时)或者$\frac{2m}{a+b}$(当 $a=b$ 时)。

二次根式练习题50道(含答案)

二次根式练习题50道(含答案)

二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。

初二数学下册知识点《二次根式的化简求值150题含解析》

初二数学下册知识点《二次根式的化简求值150题含解析》

初二数学下册知识点《二次根式的化简求值150题含解析》一、选择题(本大题共34小题,共102.0分)1.满足的整数x的个数是( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题主要考查的二次根式的化简,将不等式的左边分子分母同乘以(),将不等式的右边分子分母同乘以(),最后对化简后的根式进行估计其整数范围,进而求出问题的解,本题解题关键是二次根式的化简以及常见根式的值.【解答】解:将不等式的左边分子分母同乘以,右边分子分母同乘以,得:,即<x<,,满足<x<的整数x只有4、5、6、7、8、9,即满足的整数x的个数有6个,故选C.2.若,,则a2b-ab2的值是( )A. 6B.C.D. 17【答案】B【解析】【分析】本题主要考查的是代数式的值,因式分解的应用,二次根式的化简求值的有关知识,由题意将给出的式子进行变形,然后代入求值即可.【解答】解:原式=ab(a-b),把,代入原式,原式===,故选B.3.已知m、n是方程x2+2x+1=0的两根,则代数式的值为()A. 9B. ±3C. 3D. 5【答案】C【解析】解:∵m、n是方程x2+2x+1=0的两根,∴m+n=-2,mn=1,∴====3.故选C.根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到m+n=-2,mn=1,再变形得,然后把m+n=-2,mn=1整体代入计算即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两根分别为x1,x2,则x1+x2=-,x1•x2=.也考查了二次根式的化简求值.4.化简的结果是( )A. 6x-6B. -6x+6C. -4D. 4【答案】D【解析】【分析】本题考查了因式分解-运用公式法,二次根式的化简,完全平方公式的运用等相关知识点.熟练掌握完全平方公式解本题的关键.【解答】解:∵有意义∴3x-5≥0∴3x-1>0原式==3x-1-3x+5=4故选D.5.下列计算:①;②;③;④.其中结果正确的个数为( )A. 1B. 2C. 3D. 4【答案】D【解析】【分析】本题考查了二次根式的乘法、二次根式的化简求值、平方差公式的知识点,解题关键点是熟练掌握这些运算法则.根据二次根式的性质对(1)(2)(3)进行判断;根据二次根式的乘法和平方差公式对(4)进行计算后判断.【解答】解:①,计算结果正确;②,计算结果正确;③,计算结果正确;④,计算结果正确.∴正确的个数有4个.故选D.6.已知a=2,b=-1,则代数式的值为( )A. B. C. D.【答案】C【解析】【分析】本题考查的是二次根式的化简求值有关知识,解决本题的关键是先根据二次根式的性质对其进行化简.首先对该式进行化简,然后再代入求值即可.【解答】解:∵a=2,b=-1,∴原式====.故选C.7.若,则的值为( )A. 1B. -1C. ±1D. 以上结果均不正确【答案】A【解析】【分析】本题主要考查的是二次根式的化简求值的有关知识,由题意将式子进行变形,最后代入求值即可.【解答】原式==,把代入原式,原式====1.故选A.8.若,,则的值为( )A. B. C. D.【答案】D【解析】【分析】本题考查的根式的化简求值,掌握好化简求值的方法是解题关键.因为,所以可以先求y-x和xy的值,再整体代入求值即可.解:∵,,∴y-x=,xy=,,故选D.9.设,,用含a,b的式子表示,下列表示正确的是( )A. B. 3ab C. D.【答案】A【解析】【分析】此题主要考查二次根式的化简,直到被开方数开不尽为止.先把化为、的形式,再把a、b代入计算即可.【解答】解:∵=0.3,∵=a,=b,∴=0.3ab=.故选A.10.若,x≥1,则( )A. ±2B.C.D.【答案】C【解析】【分析】本题主要考查了二次根式的化简求值,理解完全平方公式的结构,根据已知求得()2是解题的关键.把=两边平方求得的值,然后求得()2的值,最后开方即可.【解答】解:∵,∴,即,∴,∴,∵x≥1,∴,∴.11.若,则的值为()A. B. C. D. 或【答案】A【解析】【分析】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.先根据已知代入x2-x=1,再整体代入所求计算.【解答】解:∵∴x2-x=(x-1)x===1∴原式===.故选A.12.若a=1+,b=1-,则代数式的值为()A. 3B. ±3C. 5D. 9【答案】A【解析】【分析】本题考查了二次根式的化简求值,正确对所求的式子进行变形是关键.首先把所求的式子化成的形式,然后代入数值计算即可.【解答】解:原式====3.故选A.13.已知x=,y=,则x2+xy+y2的值为()A. 16B. 20C. 2D. 4【答案】A【解析】解:∵x=,y=,∴x+y=2,xy=()()=4,由题可知:=x2+y2+2xy-xy,=(x+y)2-xy,=(2)2-4=16.故选:A.先把所求式子变形为完全平方式,再把题中已知条件代入即可解答.本题考查了二次根式的化简求值,需要同学们对完全平方公式灵活运用能力.14.已知,,,则的结果是A. B. C. D.【答案】B【解析】解:∵x+y=-5,xy=3,∴x<0,y<0,∴原式=x+y=+(x<0,y<0)=+=-2,当xy=3时,原式=-2.故选B.由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式=+=-2,然后把xy=3代入计算即可.本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.15.已知,则的值为()A. 5B. 6C. 3D. 4【答案】A【解析】【分析】此题主要考查代数式求值以及二次根式的混合运算.首先把a和b化简,然后代入计算即可.【解答】解:∵a==,b==,∴==5.故选A.16.若,,则代数式的值为A. B. C. D. 4【答案】B【解析】解:∵a+=6,0<a<1,∴-<0,则(-)2=a-2=6-2=4,∴-=-2;故选B.根据a+=6,0<a<1,判断出-<0,再把要求的式子进行配方,即可求出答案.此题考查了二次根式的化简求值,关键是根据已知条件判断出-<0,从而得出正确答案.17.化简的结果是:()A. 1B. 2x-3C. 3D. 3-2x【答案】A【解析】【分析】本题主要考查了二次根式的非负性、二次根式的化简的知识点,解题关键点是熟练掌握这些计算法则.先利用二次根式的非负性得出x≤1,从得可知x-2≤-1,再进行化简,即可解答.【解答】解:∵1-x≥0,∴x≤1,∴x-2≤-1,∴原式=-(x-2)-(1-x)=-x+2-1+x=1.故选A.18.已知,则的值为()A. a2-2B. a2C. a2-4D. 不确定【答案】A【解析】解:∵∴()2=a2即x+2+=a2∴x+=a2-2故选A.把已知的式子两边同时平方即可求解.本题主要考查了二次根式的化简和完全平方公式,对公式的正确理解运用是解决本题的关键.另外,本题还可对x+进行配方来解答,即.所以在二次根式的化简求值题中,若能根据题目的特点灵活选择适当的方法,将会给解题带来很大的简便.19.已知则 =()A. B. ﹣ C. D.【答案】C【解析】【分析】本题主要考查完全平方公式及二次根式的化简求值,由平方关系:()2=()2-4,先代值,再开平方.【解答】解:∵,∴()2=()2-4=()2-4=7-4=3,∴=,故选C.20.若,0<x<1,则()A. B. -2 C. ±2 D.【答案】A【解析】【分析】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.把已知条件两边平方得到(+)2=6,再根据完全平方公式得到(-)2+4=6,则利用二次根式的性质得|-|=,然后根据0<x<1,去绝对值即可.【解答】解:∵+=,∴(+)2=6,∴(-)2+4=6,∴|-|=,∵0<x<1,∴-=-.故选A.21.已知,则的值是( )A. B. 2 C. 1 D. -1【答案】A【解析】【分析】本题考查的是二次根式的定义有关知识,首先根据题意求出x,y,然后再进行计算即可解答.【解答】解:由题意可得:,解得x=1,把x=1代入求出y=2,原式=.故选A.22.一次函数y=ax+b在直角坐标系中的图象如图所示,则化简-|a+b|的结果是()A. 2aB.C. 2bD.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系以及二次根式的化简求值,观察函数图象找出a >0、b<0、a+b>0是解题的关键.根据一次函数图象与系数的关系结合当x=1时y>0,即可得出a>0、b<0、a+b>0,进而可得出a-b>0,依此即可得出-|a+b|=(a-b)-(a+b)=-2b,此题得解.【解答】解:观察函数图象可知:a>0,b<0,a+b>0,∴a-b>0,∴-|a+b|=(a-b)-(a+b)=-2b.故选D.23.若a=,b=,则a2+b2+ab的值是()A. 2B. 4C. 5D. 7【答案】B【解析】解:∵a=,b=,∴a+b=+=,ab=•=1,∴a2+b2+ab=(a+b)2-ab=()2-1=5-1=4,故选B.根据a、b的值可以求得a+b和ab的值,从而可以解答本题.本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.24.阅读下面的解题过程:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,即,,则(a≥b).根据上述的方法化简为()A. B. C. D.【答案】A【解析】【分析】此题主要考查了二次根式的化简,正确应用完全平方公式是解题关键.直接利用完全平方公式化简求出答案.【解答】解:===.故选A.25.已知x=-6,则代数式x2+5x-6的值为()A. 2+3B. 5-5C. 3-2D. 5-7【答案】D【解析】解:∵x=-6,∴x2+5x-6=(x+6)(x-1)=(-6+6)×(-6-1)=×(-7)=5-7.故选:D.直接把x的值代入进而求出答案.此题主要考查了二次根式的化简求值,正确应用公式是解题关键.26.已知a=2,则代数式的值等于()A. -3B. 3-C. 4-3D. 4【答案】A【解析】解:当a=2时,=2-=2-=2-3-2=-3.故选A.27.已知x+y=+,xy=,则x2+y2的值为()A. 5B. 3C. 2D. 1【答案】A【解析】【分析】本题考查了二次根式的化简求值,解答本题的关键在于先对原式进行恰当的化简然后代入求值,由(x+y)2=x2+y2+2xy,得出x2+y2=(x+y)2-2xy,再带入已知数据求解即可.【解答】解:x2+y2=(x+y)2-2xy=()2-2=3+2+2-2=5.故选A.28.计算的值是()A. -2B. 2或-2C. 4D. 2【答案】D【解析】解:=2,故选:D.直接利用二次根式的性质化简求出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.29.当x=-1时,代数式x2-1的值是()A. 1B. 2C. 2-D. -2【答案】C【解析】解:当x=-1时,x2-1=(-1)2-1=3-2-1=2-2.故选C.先把x的值代入x2-1中,然后利用完全平方公式计算.本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.30.已知,则的值为()A. B. C. D.【答案】D【解析】【分析】本题考查了代数式的值,根据可得,再求平方根可得答案.【解答】解:根据可得,则的值为.故选D.31.如图,数轴上与1,对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-|+=()A. B. C. D. 2【答案】C【解析】解:由题意得:x=1-(-1)=2-,∴原式=-x+=-2++=2-2+=2-2+=2-2+=2-2+2+=3.故选:C.根据对称的性质:对称点到对称中心的距离相等,得到x的值后代入代数式化简求值.要能根据对称的性质确定x的值,熟练进行绝对值的化简和二次根式的分母有理化以及加减乘除运算.32.设S1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=,其中n为正整数,用含n的代数式表示S为()A. nB.C. n2D.【答案】D【解析】【分析】本题考查了二次根式的化简求值,求出S1,S2,S3,…的值,代入后根据二次根式的性质求出每一部分的值,再求出最后结果即可【解答】解:∵S1=1,S2=1+3=4,S3=1+3+5=9,…,S n=1+3+5+…+(2n﹣1),∴S=,=,=,=,故选D.33.如果等式()2=x成立,那么x为()A. x≤0B. x=0C. x<0D. x≥0【答案】B【解析】【分析】本题考查了二次根式的概念和偶次方的非负性.式子叫二次根式,运用定义可以求出x≤0,又因为平方具有非负性,因此x≥0,所以可得x=0,从而得出答案.【解答】解:∵成立,∴,∴x=0,故选B.34.已知a=2+,则(a-1)(a-3)的值为()A. 24B.C. 2D. 4【答案】D【解析】解:∵a=2+,∴(a-1)(a-3)=a2-4a+3=(a-2)2-1=(2+-2)2-1=5-1=4,故选D.先根据多项式乘以多项式进行计算,再根据完全平方公式变形,最后代入求出即可.本题考查了整式的乘法,二次根式的混合运算的应用,主要考查学生的化简和计算能力,题目比较典型,难度适中.二、填空题(本大题共29小题,共87.0分)35.当-1<a<0时,则________.【答案】2a【解析】【分析】本题主要考查因式分解的应用和二次根式的化简求值。

(完整版)八年级数学二次根式的化简求值练习题及答案

(完整版)八年级数学二次根式的化简求值练习题及答案
A.-5B.5C.-9D.9
解析:由m=1+ 可得m-1= ,两边平方得m2-2m+1=2,所以m2-2m=1;
7m2-14m+a=7(m2-2m)+a=7+a;
同理可得n2-2n=1,3n2-6n-7=3(n2-2n)-7=3-7=-4;
所以(7+a)×(-4)=8,解得a=-9.
答案:C
小结:观察所给等式和m,n的值,我们可以发现,对m,n稍作变形便可整体代入.整体思想是解决这类较复杂求值问题常用的思想方法.当然我们也可以直接把m,n的值直接代入,然后解方程求出a的值,这样计算量要大很多.
答案:解:(1)( - )2=11-2× × +3=14-2 ,
( -2)2=10-2× ×2+4=14-2 .
∵33<40,∴ < ,∴-2 >-2 ,∴14-2 >14-2 ,
∴( - )2>( -2)2.又∵ - >0, -2>0,∴ - > -2.
(2) = = ,
= = .
∵ = < ,
∴ < ,
二次根式的化简求值
练习题
温故而知新:
分母有理化
分母有理化是二次根式化简的一种常用方法,通过分子、分母同乘一个式子把根号中的分母化去或把分母中的根号化去叫分母有理化.
例 1计算:(1) ;
(2) ;
(3) .
解析:(1)式进行简单分组,然后利用平方差公式和完全平方公式计算;(2)利用平方差公式计算;(3)先将分子、分母在实数范围内因式分解,然后再约分.
∴ - > - .
小结:比较两个二次根式大小的方法很多,最常用的是平方法和取倒数法,还可以将根号外因子移到根号内比较,但这时要注意:(1)负号不能移到根号内;(2)根号外正因子要平方后才能从根号外移到根号内.

八下数学每日一练:二次根式的化简求值练习题及答案_2020年解答题版

八下数学每日一练:二次根式的化简求值练习题及答案_2020年解答题版
八下数学每日一练:二次根式的化简求值练习题及答案_2020年解答题版
2020年 八 下 数 学 : 数 与 式 _二 次 根 式 _二 次 根 式 的 化 简 求 值 练 习 题
~~第1题~~
(2018越秀.八下期中) 已知,

,求
的值。
考点: 完全平方式;二次根式的化简求值;
答案
~~第2题~~ (2017路南.八下期中) 当x= ﹣ 时,求代数式x2﹣ x+ 的值.
考点: 二次根式的化简求值;
答案
~~第3题~~ (2017洪湖.八下期中) 已知x= ﹣1,y= +1,求代数式x2+xy+y2的值.
考点: 二次根式的化简求值;
答案
~~第4题~~
(2017苏州.八下期中) 已知

,求下列各式的值:
(1)

(2)

考点: 二次根式的混合运算;二次根式的化简求值;
答案
~~第5题~~ (2017高密.八下期中) 已知a= +1,b= ﹣1,求a2+ab+b2 .
考点: 二次根式的化简求值;
答案
2020年 八 下 数 学 : 数 与 式 _二 次 根 式 _二 次 根 式 的 化 简 求 值 练 3.答案:
4.答案: 5.答案:

八年级数学_二次根式的化简求值_练习题及答案之令狐采学创编

八年级数学_二次根式的化简求值_练习题及答案之令狐采学创编

二次根式的化简求值令狐采学练习题温故而知新:分母有理化分母有理化是二次根式化简的一种常用方法,通过分子、分母同乘一个式子把根号中的分母化去或把分母中的根号化去叫分母有理化.例 1 计算:(1);(2);(3).解析:(1)式进行简单分组,然后利用平方差公式和完全平方公式计算;(2)利用平方差公式计算;(3)先将分子、分母在实数范围内因式分解,然后再约分.答案:解:(1)原式===12-+6-18=.(2)原式===.(3)原式==.小结:(1)二次根式的混合运算常常用到幂的运算法则和乘法公式,有时题目中条件不明显,要善于变形,使之符合乘法公式,幂的运算法则特点,从而简化计算.(2)二次根式的计算和化简灵活运用因式分解能使计算简便.举一反三:1.若,,则xy的值是( )A. B.C. m + nD. m - n解析:xy===.?????? ??????????,像这样,通过分子、分母同乘一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.(1)4+的有理化因式是___________.解析:因为(4+)(4-)=42-()2=9,所以4+的有理化因式是4-.答案:4-;(2)计算:.解析:,,.答案:解:原式=2-+-=2.(3)计算:.解析:,将各个分式分别分母有理化后再进行计算.答案:解:原式=()()=()()=()2-12=2012-1=2011.(4)已知a=,b=,求的值.解析:a=,同理b=;a + b=+=10,a b=()()=1,然后将所要求值的式子用a + b和a b表示,再整体代入求值即可.答案:解:因为a=,b=,所以a + b=+=10,a b=()()=1.所以===.小结:分母有理化是我们处理二次根式问题时常用的一种方法,在有关二次根式化简求值的题目中我们经常会用到.利用平方差公式进行分母有理化是常用方法.如:(+)(????ab a??a????a b??b????b????ab举一反三:如图数轴上与对应的点分别为AB,点B关于点A的对称点为C设点C表示的数为x则|x|+=()A. B.C. D. 2解析:因为点B和点C关于点A对称,点A和点B所表示的数分别为1,,所以点C表示的数为2-,即x=2-,故|x-|??| |?? ????与-2;(2)-与-.解析:(1)用平方法比较大小;(2)用倒数法比较大小.答案:解:(1)(-)2=11-2××+3=14-2,(-2)2=10-2××2+4=14-2.∵33<40,∴<,∴-2>-2,∴14-2>14-2,∴(-)2>(-2)2.又∵->0,-2>0,∴->-2.(2)==,==∵??,∴,∴-.小结:比较两个二次根式大小的方法很多,最常用的是平方法和取倒数法,还可以将根号外因子移到根号内比较,但这时要注意:(1)负号不能移到根号内;(2)根号外正因子要平方后才能从根号外移到根号内.3.已知,,,则下列结论中正确的是()A.a>b>cB.c>b>aC.b>a>cD. b>c>a解析:,,;∵0<,∴a>b>c.例4(2013·襄阳)先化简,再求值:,其中,.答案:解:原式===.∵,,∴a+b=2,a-b=,∴原式==.例5已知实数x,y满足,则3x2-2y2+3x-3y-2011的值为()A.-2012B.2012C.-1D.1解析:观察所给等式特点可将等式变形为,将等式右边分母有理化得①;同理可得②;①+②得,所以;①-②得,所以;3x2-2y2+3x-3y-2011=3x2-2x2+3x-3x-2011=x2-2011= 2012-2011= 1.答案:D小结:本题有一定的技巧性,解题关键在于对所给等式进行变形,然后对变形所得到的两个等式进行简单的加减运算便可得到我们所需要的条件.本题也可以根据变形得到的两个等式的特点得出x=y 的结论,然后代入原来的等式,进而求出x,y的值,最后带入求值.举一反三:5.观察分析下列数据,寻找规律:0,,,3,2,,,……那么第10个数据应是_________.解析:0=,=,=,=,2=,=,=,…,,所以第10个数据是.6.(2013·孝感)先化简,再求值:,其中x=,y=.例6已知m=1+,n=1-,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于()A.-5B.5C.-9D.9解析:由m=1+可得m-1=,两边平方得m2-2m+1=2,所以m2-2m=1;7m2-14m+a=7(m2-2m)+a=7+a;同理可得n2-2n=1,3n2-6n-7=3(n2-2n)-7=3-7=-4;所以(7+a)×(-4)=8,解得a=-9.答案:C小结:观察所给等式和m,n的值,我们可以发现,对m,n稍作变形便可整体代入.整体思想是解决这类较复杂求值问题常用的思想方法.当然我们也可以直接把m,n的值直接代入,然后解方程求出a的值,这样计算量要大很多.举一反三:4.设a=-1,则3a3+12a2-6a-12=()A. 24B. 25C.D.解析:由a=-1得a+1=,两边平方得a2+2a+1=7,所以a2+2a=6,所以3a3+12a2-6a-12=3a (a2+2a)+6a2-6a-12=3a×6+6a2-6a-12=6a2+12a-12=6(a2+2a)-12=6×6-12=24.。

八年级数学下册二次根式练习及答案(含答案)

八年级数学下册二次根式练习及答案(含答案)

二次根式(A卷)一、填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数范围内分解因式:a4-4 =____________.二、选择题(每题4分,共20分)15.下列说法正确的是( ).(A) x≥1 (B)x>1且x≠-2 (C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三、计算题(各小题6分,共30分)四、化简求值(各小题5分,共10分)五、解答题(各小题8分,共24分)29. 有一块面积为(2a+ b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径多少?30.已知正方形纸片的面积是32cm2,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?二次根式(B卷)一、填空题(每题3分,共54分)2.-27的立方根= .二、选择题(每题4分,共20分)15.下列式子成立的是( ).17.下列计算正确的是( ).三、计算题(各小题6分,共30分)四、化简求值(各小题8分,共16分)五、解答题(各小题8分,共24分)二次根式(A卷)答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x-y13. x≤414.15. B 16. A 17. D 18. A 19. A 20. D23. 2430. 1.80二次根式(B卷)答案2. -33. -a-66. 07. 18. ≤012. 200315. D 16. C 17. C 18. C 19. B 20. A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的化简求值
练习题
m n,y m n,则
m B. 2
m + n D. m
)n()
m n=2
(()n=n.
13 33=
3
23
23
=
2
3)
(23)(23)
=743,像这样
把分母中的根号化去或把根号中的分母化去,叫做分母有理化
(1)4+7的有理化因式是___________.
1
276
3
23
.
23
23
23(23)(23)
,2733,623.
答案:解:原式=2-3+33-23=2.
1111(20121)21
3
2
4
3
2012
2011
.
1111
(1)(1
)
n n
n n n n
n n n n ,将各个分式分别分母有理化
1
3
2
4
3
2012
2011)(1)
1)(20121)=(2012)2-12=2012-1=2011.
已知a=
3
232,b=32
32
,求223ab b 的值. 2
2(32)5263
2
(32)(32)
,同理b=
252632

26+ 526=10,a b=(526)(526)=1,然后将所要求值的式子用表示,再整体代入求值即可.
252632
,b=
252632

26+ 526=10,a b=26)(526)=23ab b =2()5a b ab =1051=95.
举一反三:
2.如图,数轴上与1,2对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数
为x,则|x-2|+2
x
=()
A.2
B.22
C.32
D. 2
解析:因为点B和点C关于点A对称,点A和点B所表示的数分别为1,2,所以点C表
示的数为2-2,即x=2-2,故|x-2|+2
x
=|2-2-2|+
2
22
=22-2+22=32.
例3 比较大小:(1)11-3与10-2;(2)22-5与10-7.
解析:(1)用平方法比较大小;(2)用倒数法比较大小.
答案:解:(1)(11-3)2=11-2×11×3+3=14-233,
(10-2)2=10-2×10×2+4=14-240.
∵33<40,∴33<40,∴-233>-240,∴14-233>14-240,
∴(11-3)2>(10-2)2.又∵11-3>0,10-2>0,∴11-3>10-2.
(2)
1
225
=
225
(225)(225)
=
225
3

1 107=
107
(107)(107)
=
107
3
.
5 3=
85
3
<
107
3

1
5<
1
107

-5>10-7.
222012)(2012)2012x y y ,
则3A.-2012 B.2012 C.-1 D.1 22
20122012
2012
x y
y
,将等式右边分母有
222012
2012x y y ①; 同理可得222012
2012y
y x
x ②;22201220120x y ,所以2
2012y ;
0y ,所以x y ;
x -3y -2011=3x 2-2x 2+3x -3x -2011=x -2011= 2012-2011
3,3=13,63,3=3,2343,15
63,…,3(1)
n,所以第10个数据是9333.
·孝感)先化简,再求值:
1
x-
x=32
+,
1012
,两边平+2a+1=7,。

相关文档
最新文档