初中平面几何中的定值问题
定值问题的证法
四、定值问题的证法定值问题在初中平面几何中已经多次遇到,只不过没有明确它们是“定值”而已!如:底边固定,顶点在与底边的直线上移动,则三角形的面积为定值; 点在弓形弧上移动,则对底边所张的视角为定值;过圆内一定点任意作弦,则弦被该点所分的两部分之积为定值; ……由此可见,定值问题反映出某种“动态”之下不变的量,正是这种不变的量,才使我们深刻地理解并掌握该“动态”的规律,因此,定值问题有着十分丰富的内容,由它还可以引发出一些生动的故事,引起人们对几何产生浓厚的兴趣.许多定值问题有时摇身一变,而成为我们欲定的轨迹,有些定值命题又可用来求极大、极小值,由于这多种用途,很有必要掌握它们的证法.定值问题常用的证明思路:定值问题,实质上也是一个等量问题.因此,前面介绍的各种方法,都可运用在定值问题中,但针对定值的特点,还应注意以下几个方面.1、探求有时,定值问题中并没有具体给出定值来,这时就需要以特殊位置先求这个定值.特殊情况随题而异,通常以动线处于平行、垂直的位置较易算之;对变动的三角形,则又以正的、等腰、直角为宜;涉及到圆,则圆心、切线、公共弦……又有很多性质好为我们利用.2、转化设法转化成已知的定值问题. 3、途径当定值问题不能转化时,通常可沿如下三条途径去试着论证. (1)证任一情形与某特殊情形有相同之值; (2)证任二情形有相同之值;(3)把任一情形的值用题中给定的常量表示出来.这最后一条,正是以前所讲的计算方法,不过在这里,计算之初,有时要先设一个参变量,以体现“动态”之动,然后以参变量为媒介,计算欲定之值,最后化简得出欲算之值不含该参变量,就表明它在“动态”之中确实不变.例3.12 已知⊙O 1、⊙O 2,每一圆的圆心在另一圆周上,A 、B 是二圆之交点,过B 任作一割线分别交二圆于M 、N ,B 在M 、N 之间. 试求:切圆于M 、N 之二切线间的夹角.探索:从题意看,随割线的位置不同,所求之角若变化,这样是求不出的,因此所求之角应与割线无关,故不妨以特殊位置先定其大小.相对于公共弦AB ,宜取与它垂直的割线M 0N 0,如图3-83,这时,由∠ABM 0=∠ABN 0=90o可知,AM 0、AN 0分别过各圆之圆心.故△AM 0N 0是正△,因而易知所求之角应为120o.依此证之如下:证法1:与特殊值皆等如上之探索,先作一特殊割线M 0N 0,再作任一割线MN ,如图3-84.图 3-83图 3-84∵ ∠M 0AM =∠M 0BM =∠N 0BN =∠N 0AN ,∴ ∠MAN =∠M 0AN 0=60o.由弦切角定理,∠TMN +∠TNM =∠MAB +∠NAB =∠MAN =60o.∴ ∠MTN =120o(定值). 证法2:任二值相等将上述证法中的M 0N 0换成任意位置M 1N 1,如图3-85,则照搬上述过程,可证出∠MTN =∠M 1T 1N 1,即二切线之夹角为定值.证法3:算出任一个由每个圆心在另一圆上可知:∠AO 1B =∠AO 2B =120o. 对任一割线MN ,如图3-86,皆有:o 11602AMN AO B ∠=∠=,o 21602ANM AO B ∠=∠=,∴ △AMN 是正三角形⇒∠MAN =60o.∴ αβ+=60o ⇒∠MTN =120o(定值).本例的三种证法,体现了上面所述的证定值问题的三种途径.不过,单凭第二种,只能肯定是定值,而未能定出具体值,但任二情形当然也包括特殊的,故如探索,即可定出.最后补充一点:如图3-87,B 不在M 、N 之间.∵ ∠AMN =180o -∠AMB =180o-∠AO 2B =180o -120o =60o,o 21602ANB AO B ∠=∠=,∴ △AMN 是正三角形⇒∠MAN =60o.又 ∠AMT =∠ABM ,∠ANT =∠ABM ,∴ A 、M 、N 、T 四点共圆⇒∠MTN =∠MAN =60o.即,如果题中省略“B 在M 、N 之间”,则二切线MT 、NT 的夹角是60o或120o.例3.13 定长的弦ST 在一个以AB 为直径的半圆周上滑动,SP ⊥AB 于P ,M 是ST 之中点.求证:不管ST 滑到什么位置,∠SPM 是一定角. 探索:题中没给出角的大小,故应以特殊位置S 0T 0探求. 相对于AB ,以S 0T 0∥AB 为宜,因为这时具有对称性,如图3-88,容易看出:∠S 0P 0M 0=∠S 0OM 012=∠S 0OT 0.图3-85图3-86图3-870图 3-88依此看来,弦长一定,所对的圆心角也定,而定角正是这弦长一定的产物.依此,可得如下两种证法.证法1:化归为圆心角如图3-89,连结OM 、OS 、OT ,则有:OM ⊥ST ⇒S 、P 、O 、M 四点共圆⇒SPM SOM ∠=∠,而 12SOM SOT ∠=∠.∴ 12SPM SOT ∠=∠=定值.证法2:化归为圆周角为使定角移至圆周角,先画出全圆周,再延长SP 交另一半圆周于Q ,再连TQ ,如图3-90,则由中位线定理知:PM ∥QT .故 ∠SPM =∠SQT =定值.例3.14 已知:正△ABC 的边长为1,如图3-91,等腰△DBC 的顶角∠BDC =120o ,以D 为顶点任作一个60o的角,角的两边分别交AB 、AC 于M 、N .求证:△AMN 的周长等于2.分析:因2AB BC +=,容易看出:△AMN 的周长等于2⇔MN BM CN =+, 于是,只需证后式即可.为此,在MN 上取点E ,无论是使M DE M DB ∠=∠,还是使ME MB =,或是使DE ⊥MN ,企望直接用全等形去证:E 把MN 分成的两段恰与BM 、CN 分别相等,因缺一条件而遇到困难.既然直接去证困难,我们改用间接去证.证法1:同一法如图3-92,作M D E M D B ∠=∠,且使DE DB =,则有:△MDE ≌△MDB ⇒M ED M BD ∠=∠=90o. ∵ DB DC =, ∴ DE DC =. 又 NDE MDE MDN ∠+∠=∠=60o.NDC MDB ∠+∠=120o MDN -∠=60o.∴ NDE NDC ∠=∠. ∴ △NDE ≌△NDC ⇒NED NCD ∠=∠=90o.∴ M 、E 、N 三点共线,即E 在MN 上. 再由两组全等形知:BM EM =,CN EN =, ∴ MN BM CN =+.证毕.既然把MN 分成两段去证有难度,何不反过来,把BM 、CN 合成一段!即有:证法2:作出线段和如图3-93,延长MB 至F ,使BF CN =,连结DF .则易知:Rt △BDF ≌Rt △CDN ⇒BDF CDN ∠=∠,DF DN =.从而有 MDF MDN ∠=∠=60o.图 3-89图3-90图3-91图 3-92图 3-93∴ △MDF ≌△MDN ,∴ MN MF BM CN ==+.证毕.作出图3-93中的辅助线还有下列方式:作BDF CDN ∠=∠,使DF DN =(或使DF 交MB 的延长线于F ),或将△CDN 绕点D 逆时针旋转120o,然后去证都行的通,自行不妨一试.当然,也可在NC 的延长线上作出MB ,但无本质区别.如果一时引不出辅助线,也可采用计算的办法,因为本例中含有直角等一些特殊角.证法3:计算如图3-94,设BM a =,CN b =,在△CDN 中,由余弦定理:222o 2cos60MN AM AN AM AN =+-⋅⋅22(1)(1)(1)(1)a b a b =-+---- 221()a b a b ab =++-+-在△BDC 中,易算得BD CD ==故tan α,tan β=.又tan 60tan()o αβ==+=,∴ 1()3a b ab -+=,∴ 22222()MN a b ab a b =++=+,即 MN BM CN =+. 引申:对本例细加分析,就可看出它的来源,并加以推广.首先,从证法1中容易看出:自D 作DE ⊥MN于E ,如图3-95,则有DE DB DC ==,故以D 为圆心,以DB 为半径画圆,则BMNC 正是与此圆相切的折线,切点为B 、E 、C .于是,原题的条件和结论:12MDN BDC ∠=∠,△AMN 的周长等于2AB ,都是十分显然的,因此,原命题之逆也是一个定值问题,即有:例3.15 已知:正△ABC 的边长为1,如图3-91,等腰△DBC 的顶角∠BDC =120o,∠MDN 的两边分别交AB 、AC 于M 、N .若△AMN 的周长等于2,则∠MDN 为定值(60o).从图3-95中进一步可看出,保持相切关系不变,当切点B 或C 在圆上滑动时,如图3-96,则正三角形变为等腰三角形,此时,12MDN BDC ∠=∠,△AMN 的周长等于2AB ,仍然成立.再隐去相切之圆,可得到如下推广:例3.16 已知等腰△ABC 中,AB AC =,D 与A 在BC 之异侧,且BD ⊥AB ,CD ⊥AC ,M 、N 分别在AB 、AC 上.则12MDN BDC ∠=∠⇔△AMN 的周长等于2AB .这再一次表明:深挖一下题目的背景和来源,有利于我们加深理解并加以推广.图3-94图3-95图 3-96如前所述,定值问题也可用来解决极值问题,对此,请看一道赛题. 例3.17 设定点A 位于定圆⊙O 外,自A 引⊙O 的二切线AB 、AC ,再在劣弧 BC上任取一点P ,过P 引切线分别与AB 、AC 相交于M 、N ,如图3-97.试问:P 点在劣弧 BC上移动到何处时,△AMN 的面积最大?并证明之.证法1:利用定值 由上例可知:△AMN 的周长为定值.而周长为定值的三角形以正三角形的面积为最大.又因∠MAN 为定角,故△AMN 只能以等腰时的面积为最大,因此,当P 处于 BC的中点时,△AMN 的面积为最大. 证法2:计算如图3-97,设⊙O 的半径为r ,△AMN 的面积为S .则:S ABOC BMNCO =-四边形的面积五边形的面积2MNO ABOC S ∆=-四边形的面积,由于四边形ABOC 的面积为定值,12MNO S r MN ∆=⋅,故当MN 最小时,S最大.记BOM α∠=,CON β∠=,则有:tan MP BM r α==,tan PN CN r β==, 所以,(tan tan )tan()(1tan tan )MN MP PN r r αβαβαβ=+=+=+-,其中,1tan()tan tan 2r r BOC r BOA αβ+=∠=∠AB =为定值,而cos cos sin sin 2cos()1tan tan cos cos cos()cos()αβαβαβαβαβαβαβ-+-==-++,故知当αβ=时,MN 达到最小值.此时易知,P 是 BC的中点. 所以,当P 滑动到 BC的中点时,△AMN 的面积最大. 进而,我们还可以求出△AMN 面积的最大值来: 如图3-98,当△AMN 的面积S 最大时,易知P 也是MN 与AO 的交点.设AO a =,则cos()cos OB rBOA OA aαβ+=∠==, ∴ 221tan tan 1r a rr a a rαβ-==++. 又tan()tan AB BOA OB αβ+=∠= ∴2r MN r a r ==+最小图 3-97图 3-98∴ 12S AP MN =⋅=最大最小 当然,MN 的最小值也可由△AMP ∽△AOB 求出:MP APBO AB =⇒BO AP MP AB ⋅===⇒2MN MP ==最小.此外,还有定位问题,即在动态之中,某些动线恒过定点等,它们也很有趣.请看下节的例3.26.。
人教版九年级数学竞赛专题:平面几何的定值问题(含答案)
(第 3 题图)
(第 4 题图)
4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在 AB 上滚动,切点为 T,⊙O 交 AO,BO 于 M,N,则 弧 MTN( )
A.在 0°到 30°变化
B.在 30°到 60°变化
C.保持 30°不变
D.保持 60°不变
5.如图,AB 是⊙O 的直径,且 AB=10,弦 MN 的长为 8.若 MN 的两端在圆上滑动时,始终与 AB 相交, 记点 A,B 到 MN 的距离分别为 h1,h2,则∣h1-h2∣等于( )
A
C
(P) O
D
B
①
D
A
C P O
B D ①
D
C
PB O
D ①
O
C A
P
①
B
O
C
P
A (B)
①
O
(D)C
A(B)
P ①
(2)已知⊙O 的半径为一定值 r,若点 P 是不在⊙O 上的一个定点,请你过点 P 任作一直线交⊙O 于 不重合的两点 E,F. PE·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文 字叙述出来.
(第 7 题图)
(第 8 题图)
8.如图,设 H 是等腰三角形 ABC 两条高的交点,在底边 BC 保持不变的情况下让顶点 A 至底边 BC 的 距离变小,这时乘积 S△ABC·S△HBC 的值变小、变大,还是不变?证明你的结论.
9.如图,在平面直角坐标系 xOy 中,抛物线 y 1 x 2 4 x 10 与 x 轴的交点为点 A,与 y 轴的交点 18 9
人教版九年级数学竞赛专题:平面几何的定值问题(含答案)
【例 1】 如图,已知 P 为正方形 ABCD 的外接圆的劣弧A⌒D上任意一点.求证: PA PC 为定值. PB
人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)
人教版 初三数学竞赛专题:平面几何的定值问题(含答案)【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD⌒上任意一点.求证:PA PC PB为定值.【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变C.等分DB⌒ D.随C 点的移动而移动【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角.【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3CH 2是定值.P AB CDAPB【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;(2)连接MG ,BC ,求证:MG ∥BC ;(3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.(图1)(图2)【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值.【能力训练】1.如图,点A ,B 是双曲线xy 3上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则BOACE HG D A=+21S S _______.(第1题图) (第3题图) (第4题图)2.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.3.如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4.如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A.30°B.40°C.50°D.60°5.如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP .连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( ) A .在平分AB 的某直线上移动 B.在垂直AB 的某直线上移动 C.在弧AMB 上移动 D.保持固定不移动(第5题图) (第6题图) 6.如图,A ,B 是函数xky =图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形.若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A.3 B.6 C.9 D.127.(1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况.在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来.请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.A ABCDEFAB'(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.8.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转.旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.⑥⑤④③②①P(B )A PB9.如图,AB 是半圆的直径,AC ⊥AB ,AC =AB .在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等.指出这两条相等的线段,并予证明.(第9题图) (第10题图)(第11题图)10.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O 的半径为R .求证: (1)2222DK CK BK AK +++是定值; (2)2222DA CD BC AB +++是定值.11.如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:DPCP BPAP ++的值为定值.1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心.当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2.已知A ,B ,C ,D ,E 是反比例函数xy 16=(x >0)图象上五个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).P D CB A A折叠,使点A ,B 落在六边形ABCDEF 的内部,记∠C +∠D + )A. ∠1+∠2=900°-2α B. ∠1+∠2=1080°-2α C. ∠1+∠2=720°-α D. ∠1+∠2=360°-21α(第3题图) (第4题图)4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在AB 上滚动,切点为T ,⊙O 交AO ,BO 于M ,N ,则弧MTN ( )A.在0°到30°变化B.在30°到60°变化C.保持30°不变D.保持60°不变5.如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8.若MN 的两端在圆上滑动时,始终与AB 相交,记点A ,B 到MN 的距离分别为h 1,h 2,则∣h 1-h 2∣等于( )A.5B.6C.7D.8(第5题图) 12GF EDCHBAB6.如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A ,C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B ,D . (1)求点A 的坐标(用m 表示) (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连接PQ 并延长交BC 于点E ,连接BQ 并延长交AC 于点F .试证明:FC (AC +EC )为定值.7.如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A ,B 的点M .设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N .证明线段AK 和BN 的乘积与M 点的选择无关.(第7题图) (第8题图)8.如图,设H 是等腰三角形ABC 两条高的交点,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.9.如图,在平面直角坐标系xOy 中,抛物线10941812--=x x y 与x 轴的交点为点A ,与y 轴的交点为点B .过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动.点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒). (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当290<<t 时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程.NKMB AC HCBA(第9题图) (第10题图) 10.已知抛物线C 1:12121+-=x x y ,点F (1,1). (1)求抛物线C 1的顶点坐标;(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:211=+BFAF . (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点 Q (x Q ,y Q ),试判断211=+QFPF 是否成立?请说明理由.11.已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG .求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变. 参考答案例 1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故PA PC CE PC PEPB PB PB++=== 例2 B 提示:连结AC ,BC ,可以证明P 为APB 的中点. 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =12∠SOT 为定角. 例4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四边形. (2)DG 不变.DE =OC =OA =3 .DG =13DE =13×3=1. (3)设CD =x ,延长OG 交CD 于N ,则CN =DN =12 x ,229CE x =- , 2214DN x = .∴22394ON x =-,而ON =32CH ,∴22143CH x =-.故CD 2+3CH 2=x 2+3(4-13x 2)=x 2+12-x 2为定值. 例5 ⑴C (0,4) ⑵先求得AM =CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得OG AO MN AN =,O G =32,38OG OM OC OB ==,又∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM •OP ,OP =163.动点F 在⊙M 的圆周上运动时,从特殊位置探求OFPF的值.当F 与点A 重合时,2316523OF AO PF AP ===-;当点F 与点B 重合时,8316583OF OB PF PB ===+;当点F 不与点A ,B 重合时,连接OF 、PF 、MF ,∴DM 2=MO •MP ,∴FM 2=MO •MP ,即FM MPOM FM=,又∠OMP =∠FMP ,∴△MFO ∽△MPF ,35OF MO PF MF ==,故OF PF 的比值不变,比值为35. 例6 ∠BPC =120°,在△BPC 中,由余弦定理得BC 2=PB 2+PC 2-2PB •PC =BC 2,又由上托勒密定理得BC •P A +PC •AB ,而AB =BC =AC ,∴P A =PB +PC ,从而P A 2+ PB 2+ PC 2= (PB +PC )2+ PB 2+ PC 2=2 (PB 2+PC 2+PB •PC )=2BC 2=2×()23=6.故P A 2+PB 2+PC 2为定值.A 级 1.4提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4.2.273 提示:1+3+5=9是等边三角形的高. 3.r 2提示:先考查OB 与OA 垂直的情形.4.D 提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D 提示:A′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD •OC =A A x y k ==6,∴S OEBF =OE •OF =x B •y B k ==6. 7.⑴略⑵当点P在⊙O 内时,过P 作直径CD ,则PE •PF =PD •PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE •PF 为定值22OP r -.结论:过不在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴2π⑵22.5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=()()221122BK DK CK AK ⎡⎤⎡⎤-++⎢⎥⎢⎥⎣⎦⎣⎦,又AK •CK =BK •DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值. 11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP •a =AP •a +BP •2a ,DP •a =BP •a +AP •2a ,两式相加并整理得(CP +DP )a =(AP +BP )(a +2a ),从而21AP BPCP DP+=-+为定值.B 级1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,H 为垂心,由AB =AC 知∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC DC HD =,即AD •HD =DC 2=14BC 2=1.∴S △ABC •S △HBC =2111224BC AD BC HD BC ⎛⎫⎛⎫⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭=1.当∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比例函数y =16x(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是2221111112211122222444424242πππ⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=5π-10+8π-16=13π-26. 3.B 提示:如图,设F A 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得OD =2254-=3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴12OD FO GE FG ==.∴E G =2OD =6,∴12h h AF BE -=-=E G =6. 6.⑴A (3-m ,0) ⑵y =x 2-2x +1 ⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN=3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴QM PMEC PC=,即()2112x x EC--=,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴QN BN FC BC =,即()24134x x FC ---=,得FC =41x +.又AC =4,∴FC (AC +EC )=()44211x x +-⎡⎤⎣⎦+=8为定值. 7.提示:易证△ABK ∽△BNA ,故AK •BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC •S △HBC =116BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC •S △HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-989)⑵若四边形PQCA 为平行四边形,由于QC ∥P A ,故只要QC =P A 185. ⑶即可,而P A =18-4t ,CQ =t ,故18-4t =t ,得t =设点P 运动t s ,则OP =4t ,CQ =t ,0<t <4.5.说明P在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t ===.同理QC ∥AF ,故14QC CE AF EA ==,即14t AF =,∴AF =4t =OP .∴PF =P A +AF =P A +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =12•PF •d =12×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),F (18+4t ,0),Q (8-t ,-10),0≤t ≤4.5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=24425.∵2≤t +2≤6.5,∴t +2=244414255=.∴t = 4145-2. ②若QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4.5的t 满足. ③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=224.由于224≈15,又0≤5t ≤22.5,∴-8≤5t -8≤14.5,14.52=22984124⎛⎫= ⎪⎝⎭<224.故没有t (0≤t ≤4.5)满足此方程.综上所述,当t =4145-2时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,12). ⑵略 ⑶作PM ⊥AB 于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =12x P 2-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易证△PMF ∽△QNF ,则PM QN PF QF =,∴11Q P y y PF QF --=,即11PF QF PF QF --=,∴11PF QF+=2. 11.先从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB的距离为12AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过C ,E ,G 分别作直线AB 的垂线CH ,EM ,G N ,垂足分别是H ,M ,N .容易证明△AEM ≌△ACH ,△B G N ≌△BCH .从而有AM =CH =BN ,EM =AH ,G N =BH .这样,线段AB 的中点O 也是线段MN 的中点,连接OP ,则OP 是梯形EMN G 的中位线,从而OP ⊥AB ,OP =12(EM +G N )= 12(AH +BH )=12AB .∴无论点C 在AB 同一侧的位置如何,E G 中点P 的位置不变.。
平面几何中的定值问题初探
。
:
法)
,
已知 尸 为 正 方 体对 角 线 的 六等分 点 例6 过 只点且 与 对 角 线 垂 直 的 截面
.
.
,
试画
2 ) 过M (
R
作直 线 交 A B
。
,
BC于F
G
.
则
D B
,
分析 与画 法
:
,
:
如图
,
因 截 面刁 B I C 垂直对 角 线
:
.
F 口 F 尸 确 定 的截 面 为所 画 的截 面
,
,
2
.
5尸
,
,
S Q
所确定 的 平 面
,
,
截面
,
平面ABC
,
面上三点 分析
、
试 画 过这 三 点 的 截 面
.
。
两两相交
.
画法
。
:
且 交线 易 于确 定 O ) 作 过 S 尸 S Q 的 截面 交 A B
.
E
.
令 DE
尸
Q 交于 M 〔若 尸 Q 刀 E D
,
,
读 者 考虑 作
,
C B
于0
,
若将 棱柱 理 解为 顶 点在 无 限 远 处 的 棱 淮 此 题 解 法就 与 例 4 完全 相 似 了 只 是 辅 助 平面 便 由过 R Q 作平 行 于 侧棱 的两 平行 线所 确定
,
·
·
等 于 其它 两 边 的 积
AC
·
A D = ZR A C A刀 月E A F
·
A
H
A E
·
A F = R卜 A H 二
初中数学-平面几何的定值问题
平面几何的定值问题【阅读与思考】所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的元素的量保持不变(或几何元素间的某些几何性质或位置关系不变).几何定值问题的基本特点是:题设条件中都包含着变动元素和固定元素,变动元素是指可变化运动的元素,固定元素也就是“不变量”,有的是明显的,有的是隐含的,在运动变化中始终没有发生变化的元素,也就是我们要探求的定值. 解答定值问题的一般步骤是: 1.探求定值; 2.给出证明.【例题与求解】【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD⌒上任意一点.求证:PA PC PB为定值. 解题思路:线段的和差倍分考虑截长补短,利用圆的基本性质,证明三角形全等.P AB CD【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A .到CD 的距离保持不变 B .位置不变C .等分DB⌒ D .随C 点的移动而移动 解题思路:添出圆中相关辅助线,运用圆的基本性质,用排除法得出结论.AP【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角.解题思路:不管ST 滑到什么位置,∠SOT 的度数是定值.从探寻∠SPM 与∠SOT 的关系入手.B【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3CH 2是定值.解题思路:延长OG 交CD 于N ,利用题中的三等分点、平行四边形和三角形中位线的性质,实现把线段ON 转化成线段CH 的倍分关系,再以Rt △OND 为基础,通过勾股定理,使问题得以解决.BOACE HGD 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;(2)连接MG ,BC ,求证:MG ∥BC ;(3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF的比值是否发 生变化?若不变,求出比值;若变化,说明变化规律.解题思路:对于(3)从动点F 达到的特殊位置时入手探求定值.(图1) (图2)【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值.解题思路:当点P 与C 点重合时,P A 2+PB 2+PC 2=2BC 2为定值,就一般情形证明.A【能力训练】A 级1.如图,点A ,B 是双曲线xy 3=上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则=+21S S _______.AABCDEF(第1题图) (第3题图) (第4题图)2.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.3.如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4.如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A .30°B .40°C .50°D .60° 5.如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP .连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( )A .在平分AB 的某直线上移动 B .在垂直AB 的某直线上移动C .在弧AMB 上移动D .保持固定不移动AB'B(第5题图) (第6题图)6.如图,A ,B 是函数xky图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形.若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A .3 B .6 C .9 D .127.(1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况.在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来.请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.⑥⑤④③②①)P (B )PB(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.8.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转.旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.9.如图,AB 是半圆的直径,AC ⊥AB ,AC =AB .在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等.指出这两条相等的线段,并予证明.(第9题图) (第10题图)(第11题图)10.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O 的半径为R .求证: (1)2222DK CK BK AK +++是定值;(2)2222DA CD BC AB +++是定值.PD CB A A11.如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:DPCP BPAP ++的值为定值.。
解析几何中定值和定点问题
解析几何中定值与定点问题【探究问题解决的技巧、方法】(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.【实例探究】题型1:定值问题:例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于(Ⅰ)求椭圆C的标准方程;(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若为定值.解:(I)设椭圆C的方程为,则由题意知b= 1.∴椭圆C的方程为(II)方法一:设A、B、M点的坐标分别为易知F点的坐标为(2,0).将A点坐标代入到椭圆方程中,得去分母整理得方法二:设A、B、M点的坐标分别为又易知F点的坐标为(2,0).显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是将直线l的方程代入到椭圆C的方程中,消去y并整理得又例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0).1)求椭圆方程2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值(1)a²-b²=c² =1设椭圆方程为x²/(b²+1)+y²/b²=1将(1,3/2)代入整理得4b^4-9b²-9=0 解得b²=3 (另一值舍)所以椭圆方程为x²/4+y²/3=1(2)设AE斜率为k则AE方程为y-(3/2)=k(x-1)①x ²/4+y ²/3=1 ②①,②联立得出两个解一个是A (1,3/2)另一个是E (x1,y1) ①代入②消去y 得(1/4+k ²/3)x ²-(2k ²/3-k )x+k ²/3-k-1/4=0 根据韦达定理 x1·1=(k ²/3-k-1/4)/(1/4+k ²/3)③ 将③的结果代入①式得y1=(-k ²/2-k/2+3/8)/(1/4+k ²/3)设AF 斜率为-k ,F (x2,y2) 则AF 方程为y-(3/2)=-k (x-1)④ x ²/4+y ²/3=1 ② ②④联立同样解得x2=(k ²/3+k-1/4)/(1/4+k ²/3) y2=(-k ²/2+k/2+3/8)/(1/4+k ²/3) EF 斜率为(y2-y1)/(x2-x1)=1/2所以直线EF 斜率为定值,这个定值是1/2。
初中数学培优之平面几何的定值问题
【阅读与思考】
所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内 变化时,与它有关的元素的量保持不变(或几何元素间的某些几何性质或位置关系不变). 几何定值问题的基本特点是:题设条件中都包含着变动元素和固定元素,变动元素是指可变化运动 的元素,固定元素也就是“不变量” ,有的是明显的,有的是隐含的,在运动变化中始终没有发生变化 的元素,也就是我们要探求的定值. 解答定值问题的一般步骤是: 1.探求定值; 2.给出证明.
5
y A M y=x B O N C
(济宁市中考试题) 9.如图,AB 是半圆的直径,AC⊥AB,AC=AB.在半圆上任取一点 D,作 DE⊥CD,交直线 AB 于点 E, BF⊥AB,交线段 AD 的延长线于点 F. (1)设弧 AD 是 x°的弧,若要点 E 在线段 BA 的延长线上,则 x 的取值范围是_______. (2)不论点 D 取在半圆的什么位置,图中除 AB=AC 外,还有两条线段一定相等.指出这两条相等的线 段,并予证明. (江苏省竞赛试题)
解题思路:延长 OG 交 CD 于 N,利用题中的三等分点、平行四边形和三角形中位线的性质,实现把线 段 ON 转化成线段 CH 的倍分关系,再以 Rt△OND 为基础,通过勾股定理,使问题得以解决.
B
E O
C H G D A
【例 5】 如图 1,在平面直角坐标系 xOy 中,点 M 在 x 轴的正半轴上,⊙M 交 x 轴于 A,B 两点,交 y 轴于 C,D 两点,且 C 为弧 AE 的中点,AE 交 y 轴于 G 点.若点 A 的坐标为(-2,0) ,AE=8. (1)求点 C 的坐标; (2)连接 MG,BC,求证:MG∥BC; (3)如图 2,过点 D 作⊙M 的切线,交 x 轴于点 P.动点 F 在⊙M 的圆周上运动时, 生变化?若不变,求出比值;若变化,说明变化规律.
解析几何中五类定点定值问题的研究与拓展解答
专题:解析几何中五类定点定值问题的研究与拓展【问题提出】1.无论k 取任何实数,直线(1 +4k)x-(2 -3k)y+(2 -14k) =0必经过一个定点,则这个定点的坐标为2.已知直线丨:2ax +by-a +b =0 ;圆C : x 2 + y 2 - 2x-1 = 0 ,则直线I 与圆C 的位置关系为=1(a >■ b A 0),点A,F 分别是椭圆C 的左顶点和左焦点,点P 是圆PA 若 ——为常数,则椭圆的离心率为PF过点(1, 0).若对任意的实数 m ,定直线 l 被圆C 截得的弦长为定值,则直线 I 的方程为.2x + y — 2= 0【探究拓展】2探究1:已知F 1、F 2分别为椭圆 G :詁+詁=1(a Ab 》。
)的上、下焦点,其中F 1也是抛物线C 2:x 2=4y 的5焦点,点M是C 1与C 2在第二象限的交点,且阿七.(1) 求椭圆C 1的方程.(2)已知点P(1,3)和圆O :X 2 +y 2 =b 2,过点P 的动直线I 与圆0相交于不同的两点 A,B ,在线段AB 上取一 点Q ,满足:AP = -A P B ,瓷=Z QB ,( A H 0且A H ±1).求证:点Q 总在某定直线上.4.平面直角坐标系 xOy 中,已知圆C : x 2+ y 2— (6 — 2m)x — 4my + 5m 2— 6m = 0,直线 I 经 2 2x y3.已知椭圆C : —2 + —2a b2 2 2 O : x + y =b 上的动点,1 4变式1 :在平面直角坐标系 xOy 中,已知定点A( — 4,0)、B(4,0),动点P 与A 、B 两点连线的斜率之积为①求O M 的方程;直线AF i , AF 2分别交椭圆于点 (1 )求证直线BO 平分线段AC ;(2) 设点P (m , n ) ( m , n 为常数)在直线BO 上且在椭圆外,过P 的动直线(1)求点 p 的轨迹方程;(2)设点 P 的轨迹与y 轴负半轴交于点 C.半径为r 的圆M 的圆心M 在线段 AC 的垂直平分线上,且在 y轴右侧,圆 M 被y 轴截得的弦长为a②当r 变化时,是否存在定直线 I 与动圆M 均相切?如果存在,求出定直线I 的方程;如果不存在,说明理由.2 2X y 变式2 :已知椭圆E : —2 + a b= 1(a Ab >0)的离心率为 弓3 ,它的上顶点为A ,左、右焦点分别为F 1,F 2 ,MP N ,在线段MN 上取点Q ,满足—PN=器,试证明点Q 恒在一定直线上.B ,C .I 与椭圆交于两个不同点 M ,P探究2:平面直角坐标系xoy 中,圆G:(x + 3)2+(y -1)2=4和圆C2:(X-4)2+(y-5)2=4.(1)若直线I过点A(4,0),且被圆C I截得的弦长为2J3,求直线I的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线|1和|2,它们分别与圆C1和圆C2相交,且直线|1被圆C1截得的弦长与直线12被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.-- ----------- ►A H变式1:在直角坐标系xOy中,点M到点F i(-J3,0),F2(J3,O)的距离之和为4,点M的轨迹是C,与x轴的负半轴交于点A,轨迹C上有不同的两点P和Q,且AP-AQ-O(1)求轨迹C的方程;(2)直线PQ是否过x轴上的一定点,若过定点,请给出证明,并求出该定点?若不过定点,请说明理由.变式2:已知圆C:x2+y2=9,点A(—5,0),直线l :x-2y = 0.(1)求与圆C相切,且与直线I垂直的直线方程;PB (2)在直线OA上(O为坐标原点),存在定点B (不同于点A),满足:对于圆C上任一点P ,都有——PA 为一常数,试求所有满足条件的点B的坐标.变式3 :在平面直角坐标系xOy中,已知直线1: 2岳—y+ 3+ 8返=0和圆C1: x2+ y2+ 8x + F= 0.若直线I被圆C i截得的弦长为2j3 .设圆C i和x轴相交于A, B两点,点P为圆C i上不同于A, B的任意一点,直线FA, PB交y轴于M, N两点.当点P变化时,以MN为直径的圆C?是否经过圆C1内一定点?请证明你的结论;变式4:如图,椭圆的中心为原点 O ,离心率e =¥,—条准线的方程为x = 2{2.(1)求该椭圆的标准方程; (2)设动点P 满足:O P = OM + 2ON ,其中M , N 是椭圆上的点,直线 0M 与ON 的斜率之积为一2,问: 是否存在两个定点 F i , F 2,使得|PFJ +|PF 2I 为定值?若存在,求出 F i , F 2的坐标;若不存在,说明理由.5:已知左焦点为F(— 1 , 0)的椭圆过点E(1 , 亜).过点P(1 , 1)分别作斜率为k i , k 2的椭圆的动弦 3 CD ,设M , N 分别为线段AB , CD 的中点. 求椭圆的标准方程; 若P 为线段AB 的中点,求k i ;若k i + k 2=1,求证直线MN 恒过定点,并求出定点坐标.变式 AB ,2 2 X y探究 3 :已知椭圆p +笃=1(a;>bA0)的左顶点为a b+ y2+ J3x -3y -6 = 0过A, F2两点求椭圆标准的方程; A,左、右焦点分别为F1,F2,且圆X2(2) 设直线PF2的倾斜角为a,直线PF1的倾斜角为3,当a,3- a= I n时证明:点P在一定圆上;3变式设椭圆的上顶点为Q,在满足条件(2)的情形下证明: PQ = PF i + PF2 .1:在平面直角坐标系xOy中,圆C的方程为(X—1)2+ y2= 4, P为圆C上一点•若存在一个定圆过P作圆M的两条切线PA, PB,切点分别为A, B,当P在圆C上运动时,使得/ APB恒为60。
平面几何中的定值问题
心, 射线 AO 交 BC 于点 D , 动直线 l 交 AB 、 AC 于点 E 、 F . 如果 A 、 E、 D、 F 四点共圆 , 那 么, 线段 EF 在 BC 上的正射影恒为定值 . 讲 解: 如 图 6, 作 DM L AB 于 点 M , DN L AC 于 点 N , MMc L BC 于 点 Mc, NNc L BC 于点 Nc. 显然, Mc N c是定 值. 作 EE c L BC 、 FFc L BC . 易证 A 、 M、 D、 N 四点共圆 . 从而 , N DEM = N DFN . 所以 , v DEM V v DFN . EM DM sin A cos C 故 FN = DN = sin B= cos B .
2
=
3 2 2 3 ( R - r )+ Rr cos( 60 b- B) 4 2 1 Rr #2sin A + B#cos A - B 2 2 2
2 2 = 3 ( R - r ) + 3 Rr cos( 60 b- B) 4 2
3 Rr cos( 60 b- B) 2 = 3 2 2 ( R - r ) ( 定值) . 4
AB = a + b , QM = QA = QB = QD = 1 ( a- b ) . 2 1 ( a+ b ) - x . 2
2 2
1 ( a + b) , 2
令 OD = x , 则 OQ =
2 2 2
由 OQ = OD + QD , 得 1 ( a + b) - x 2 解得 x = ab . a+ b = x + 1 ( a - b) 2
PP 2 = PP 3 =
2
PA #PB , 2R PB #PC 2R .
第二十三讲 平面几何的定值与最值问题(含解答)-
第二十三讲平面几何的定值与最值问题【趣题引路】传说从前有一个虔诚的信徒,他是集市上的一个小贩.••每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,•而周围上的点都是供信徒朝拜的顶礼地点如图1.这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,•然后再到集市的路程最短呢?(1) (2)解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短.证明如图2,在圆周上除P点外再任选一点P′.连结BP•′与切线MN•交于R,AR+BR>AP+BP.∵RP′+AP′>AR.∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP.不过,用尺规作图法求点P的位置至今没有解决.•“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”.【知识延伸】平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.•所谓几何定值问题就是要求出这个定值.在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变.例1如果△ABC的外接圆半径R一定,求证: abcS是定值.(S表示△ABC的面积)解析由三角形面积S=12absinC和正弦定理sincC=2R,∴c=2RsinC.∴abcS=2sincC=4sinsinR CC=4R是定值.点评通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值.平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,•某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,•这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式).例2 如图,已知⊙O的半径R=33,A为⊙O上一点,过A作一半径为r=3的⊙O′,问OO′何时最长?最长值是多少?OO′何时最短?最短值是多少?解析当O′落在OA的连线段上(即⊙A与线段OA的交点B时)OO′最短,且最短长度为33-3 ;当O′落在OA的延长线上(即⊙O与OA的延长线交点C时)OO′最长,且最长的长度为33+3 .点评⊙O′是一个动圆,满足条件的⊙O′有无数个,但由于⊙O′过A点,所以⊙O′的圆心O′在以A为圆心半径为3的⊙A上.【好题妙解】佳题新题品味例1 如图,已知P为定角O的角平分线上的定点,过O、P•两点任作一圆与角的两边分别交于A、B两点.求证:OA+OB是定值.证明连结AP、BP,由于它们为有相同圆周角的弦,AP=PB,不妨记为r.•另记x1=OA,x2=OB.对△POA应用余弦定理,得x12+OP2-2OP·cos∠AOP·x1=r2.故x1为方程x2-2OP·cos 12∠AOB·x+(O P2-r2)=0的根,同理x2亦为其根.因此x1,x2为此方程的两根,由韦达定理,得x1+x2=2OP(12∠AOB)是定值.点评当x 1=x 2时,x 1+x 2为此定值,事实上此时OP 一定是直径.例2 如图,在矩形ABCD 中,AB=8,BC=9,⊙O 与外切,且⊙O 与AB 、BC•相切.⊙O ′与AD 、CD 相切,设⊙O 的半径为x,⊙O 与⊙O ′的面积的和为S,求S•的最大值和最小值. 解析 设⊙O ′的半径为y,过O 与O ′分别作CD 与BC 的垂线OH,O ′F,•垂足分别为H,F,OH 、O ′F 交于点E,则有:O ′E=8-(x+y),OE=9-(x+y) 由勾股定理可得:(x+y)2=[8-(x+y)]2+[9-(x+y)]2. 整理,得(x+y-29)(x+y-5)=0,由题意知1≤x ≤4,∴x+y=5,y=-x+5,∴S=πx+πy=π(2x-10x+25),=2π[(x-52)2+254], 故当x=52时,S min =252π; 当x=4时,S=17π.点评先由已知求出⊙O ′的半径也⊙O 的半径x 之间的关系,然后再根据面积公式写出S 与x 之间的关系,这个关系就是一个函数关系,再通过函数的性质得解.中考真题欣赏例 (南京市中考题)如图,⊙O 1与⊙O 2内切于点P,又⊙O 1切⊙O 2•的直径BE 于点C,连结PC 并延长交⊙O 2于点A,设⊙O 1,⊙O 2的半径分别为r 、R,且R ≥2r.•求证:PC ·AC 是定值.解析 若放大⊙O 1,使⊙O 1切⊙O 2的直径于点O 2(如图), 显然此时有PC ·AC=PO 2·AO 2=2r ·R(定值). 再证明如图的情况:连结C O 1,PO 2,• 则PO 2•必过点O 1,•且O 1C ⊥BE,得CO 2=22121O O O C -=22R Rr -,从而BC=R+22R Rr -,EC=R-22R Rr -.所以PC ·AC=EC ·BC=2Rr,故PC ·AC 是定值. 点评解答几何定值问题时,可先在符合题目条件的前提下用运动的观点,从特殊位置入手,找出相应定值,然后可借助特殊位置为桥梁,完成一般情况的证明.竞赛样题展示例1 (第十五届江苏省初中数学竞赛题)如图,正方形ABCD的边长为1,•点P为边BC 上任意一点(可与点B或点C重合),分别过点B、C、D作射线AP的垂线,•垂足分别为点B′、C′、D′.求BB′+CC′+DD′的最大值和最小值.解析∵S△DPC= S△APC =12 AP·CC′,得S 四边形BCDA= S△ABP+ S△ADP+ S△DPC= 12AP(BB′+DD′+CC′),于是BB′+CC′+DD′=2 AP.又1≤AP≤2,故2≤BB′+CC′+DD•′≤2,∴BB′+CC′+DD′的最小值为2,最大值为2.点评本题涉及垂线可考虑用面积法来求.例2 (2000年“新世纪杯”广西竞赛题)已知△ABC内接于⊙O,D是BC•或其延长线上一点,AE是△ABC外接圆的一条弦,若∠BAE=∠CAD.求证:AD.AE为定值.证明如图 (1),当点D是BC上任意一点且∠BAE=∠CAD时,连结BE,则∠E=∠C,∠BAE=∠CAD,∴△ABE∽△ADC.∴AB AEAD AC=,即AD·AE=AB·AC为定值.如图 (2),当点D在BC的延长线上时,∠BAE=∠CAD.此时,∠ACD=∠AEB.∴△AEB∽△ACD,∴AB AE AD AC=即AD·AE=AB·AC为定值.综上所述,当点D在BC边上或其延长线上时,只要∠CAD=∠BAE,总有AD·AE为定值. 点评先探求定值,当AD⊥BC,AE为圆的直径时,满足∠BAE=∠CAD这一条件,•不难发现△ACD ∽△AEB,所以AD·AE=AB·AC,因为已知AB,AC均为定值.•再就一般情况分点D•在BC上,点D在BC的延长线上两种情况分别证明.全能训练A级1.已知MN是⊙O的切线,AB是⊙O的直径.求证:点A、B与MN的距离的和为定值.2.已知:⊙O与⊙O1外切于C,P是⊙O上任一点,PT与⊙O1相切于点T.求证:PC:PT是定值.3.⊙O 1与⊙O 2相交于P 、Q 两点,过P 作任一直线交⊙O 1于点E,交⊙O 2于点F.求证:∠EQF 为定值.4.以O 为圆心,1为半径的圆内有一定点A,过A 引互相垂直的弦PQ,RS.求PQ+RS 的最大值和最小值.5.如图,已知△ABC 的周长为2p,在AB 、AC 上分别取点M 和N,使MN•∥BC,•且MN 与△ABC 的内切圆相切.求:MN 的最值.CABMNA 级(答案)1.定长为圆的直径;2.利用特殊位置探求定值(当PC 构成直径时)是两圆的半径). 3.因∠E,∠F 为定角(大小固定)易得∠EQF 为定值.4.如图,设OA=a(定值),过O 作OB ⊥PQ,OC ⊥RS,B 、C 为垂足, 设OB=x,OC=y,0≤x ≤a,(0≤y ≤a),且x 2+y 2=a 2. 所以所以∴(PQ+RS)2=4(2-a 2+而x 2y 2=x 2(a 2-x 2)=-(x 2-22a )2+44a . 当x 2=22a 时,(x 2y 2)最大值=44a .此时;当x 2=0或x 2=a 2时,(x 2y 2)最小值=0,此时(PQ+RS )最小值=2(). 5.设BC=a,BC 边上的高为h,内切圆半径为r. ∵△AMN ∽△ABC,2MN h r BC h -=,MN=a(1-2rh),• 由S △ABC =rp,∴r=2ABC S ahp p∆=, ∴MN=a(1-a p )=p ·a p (1-a p )≤p 2(1)2aa p p⎡⎤+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=4p ,当且仅当a p =1-a p ,即a=2p 时,取等号,∴MN 的最大值为4p.B级1.如图1,已知正方形ABCD的边长为3,点E在BC上,且BE=2,点P在BD上,则PE+PC的最小值为( )A.23B. 13C. 14D.15E D CAB PSQA B PM(1) (2) (3)2.用四条线段a=14,b=13,c=9,d=7.作为四条边构成一个梯形,•则在所构成的梯形中,中位线长的最大值是__________.3.如图2,⊙O的半径为2,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB•延长线上任一点,QS⊥OP于S,则OP·OS=_______.4.已知,如图3,线段AB上有任一点M,分别以AM,BM为边长作正方形AMFE•、•MBCD.正方形AMFE、MBCD的外接圆⊙O、⊙O′交于M、N两点,则直线MN的情况是( •)A.定直线B.经过定点C.一定不过定点D.以上都有可能5.如图,已知⊙O的半径为R,以⊙O上一点A为圆心,以r为半径作⊙A,•又PQ与⊙A 相切,切点为D,且交⊙O于P、Q.求证:AP·AQ为定值.6.如图,⊙O 1与⊙O 2相交于A 、B 两点,经过点B•的一直线和两圆分别相交于点C 和D,设此两圆的半径为R 1,R 2.求证:AC:AD=R 1:R 2.B 级(答案)1.B.∵A 、C 关于BD 对称,连结AE 交BD 于P,此时PE+PC=AE 最短.2.11.5 (1)当上底为7,下底分别为14,13,9时,中位线长分别为10.5,10,8; (2)当上底为9和13时,均构不成梯形.3.连结OQ 交AB 于M,则OQ ⊥AB.连结OA,则OA ⊥AQ. ∵∠QMP=∠QSP=90°,∴S,P,•Q,M 四点共圆,故OS ·OP=OM ·OQ. 又∵OM ·OQ=OA 2=2,∴OS ·OP=2.4.B.由图可知直线MN 可看作⊙O 和⊙O ′的割线, 当M 在点A 时,直线MN 变为⊙O•′的切线, 当M 在点B 时,直线MN 变为⊙O 的切线.这两种情况是以AB•为直角边的等腰直角三角形的两直角边所在的直线,交点是第三个顶点M.M 是AB 的中点时,MN 是AB•的垂直平分线,也过第三个顶点,所以选B. 5.如图,作⊙O 的直径AB,连结AD. ∵PQ 切⊙A 于D,∴AD ⊥PQ, ∴AP ·AQ=AD ·AB.•而AD=r,AB=2R,∴AP ·AQ=2Rr 为定值.6.作AN ⊥CD,垂足为点N,连结AB,有AC.AB=AN.2R1,① AB ·AD=AN ·2R 2 .② ①÷②,得12R AC AD R ,∴AC:A D=R 1:R 2.。
几何模型之二图形中的最短距离定值及不等式问题
学生: 科目: 数 学 教师: 谭 前 富知识框架在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。
最值问题的解决方法通常有两种: (1) 应用几何性质:① 三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ② 两点间线段最短;③ 连结直线外一点和直线上各点的所有线段中,垂线段最短; ④ 定圆中的所有弦中,直径最长。
⑵运用代数证法:① 运用配方法求二次三项式的最值; ② 运用一元二次方程根的判别式。
【例题精讲】一. 最短路径和几何不等式问题: 考查知识点----:“两点之间线段最短”,“两边之和大于第三边”,“斜边大于直角边”,“垂线段最短”,“点关于线对称”,“线段的平移”。
原型----“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
最短路径和几何不等式问题的两种基本模型----:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值Ⅱ、归于几何模型,这类模型又分为两种情况:(1)归于“两点之间的连线中,线段最短”。
凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。
(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。
解题总思路----找点关于线的对称点实现“折”转“直”,较难的会出现“三折线”转“直”等变式问题考查。
二.最短距离中的数形结合:例:求代数式9)12(422+-++x x 的最小值.课 题几何模型之二:图形中的最短距离、定值及不等式问题教学内容三.立体几何中的最短路径问题:(1)台阶问题 如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?(2)圆柱问题 有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为多少?变式1:有一圆柱形油罐,已知油罐周长是12m ,高AB 是5m ,要从点A 处开始绕油罐一周建造梯子,正好到达A 点的正上方B 处,问梯子最短有多长?变式2: 桌上有一个圆柱形玻璃杯(无盖),高为12厘米,底面周长18厘米,在杯口内壁离杯口3厘米的A 处有一滴蜜糖,一只小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3厘米的B 处时,突然发现了蜜糖。
解析几何中定值和定点问题
解析几何中的定值定点问题(一)与直线x -y 2=0相切. ⑴求椭圆C 的方程;⑵设P(4, 0) , M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结 PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线 ME 与x 轴相交于定点. 解:⑴由题意知e =£3,所以e 2 =与=a ;b=3,即玄2 =4b 2,又因为b ! 1,所以a 2a a 4J l +1222X2a =4,b =1,故椭圆C 的方程为C : - y =1 .4⑵由题意知直线 PN 的斜率存在,设直线 PN 的方程为y =k(x _4)①+y 二k(x 一4)联立 X 2 2 消去 y 得:(4k 2 -1)x 2 -32k 2x 4(16k 2-1) =0 ,4 y T由,;=(32k 2)2 _4(4k 2 1)(64k 2 —4) 0 得 12k 2 -1 :::0,又k =0不合题意,所以直线PN 的斜率的取值范围是3::: k :::0或0 ::: k 3 .6 6⑶设点 N(N ,yj E(X 2, y 2),则 M (为,-yj ,直线 ME 的方程为 y-y ?二 一(x-x ?),X 2 —X 1令 y=0,得 x=X 2——X^) , 将 射=k(X 1 - 4), y 2 = k(X 2 - 4)代入整理,得 x = _4(XX 2). ②y 2 +y 1X 1 +血 一82 2由得①X 1 X 2二卫!J, X 1X 2二竺 4代入②整理,得X=1 ,4k -+1 4k +1 所以直线ME 与x 轴相交于定点(1, 0).【针对性练习1]在直角坐标系xOy 中,点M 到点F 1 i 、3,0 , F 2 .3,0的距离之和是4,点M 的轨 迹是C 与x 轴的负半轴交于点 A ,不过点A 的直线l : ^ kx b 与轨迹C 交于不同的两点 P 和Q . ⑴求轨迹C 的方程;⑵当AP AQ =0时,求k 与b 的关系,并证明直线l 过定点.解:⑴•••点M 到.[73,0 , . 3 ,0的距离之和是4 , ••• M 的轨迹C 是长轴为4 ,焦点在x 轴上焦中为2 32的椭圆,其方程为-y 2 =1 .、定点问题【例1 ].已知椭圆C : 2 2孚 Z =1(a b 0)的离心率为a b仝,以原点为圆心,椭圆的短半轴长为半径的圆 2AO J7—⑵将y=kx・b,代入曲线C的方程,整理得(1 4k2)x28 2kx ^0,因为直线|与曲线C交于不同的两点P 和Q,所以厶=64kb -4(1 4k )(4b — 4) =16(4k -b 1) 0 ①设P X i , y i ,Q| x2 , y2 ,则X i :' X? 2 ,X i X? 2 ②f' 1+4k 1+4k且y i y^(kX i b)(kX? ■ b^(k2X i X?) kb(X i X?)b2,显然,曲线C与X轴的负半轴交于点 A -2 , 0,所AP = X 2 , y ,AQ = X? 2 , y?.由AP AQ = 0,得(x「2)(x? 2) y y? = 0 .将②、③代入上式,整理得12k? -16kb • 5b? =0.所以(2k -b) (6k -5b) = 0 ,即b = 2k或b .经检验,5都符合条件①,当b=2k时,直线I的方程为y =kx・2k •显然,此时直线I经过定点-2 , 0点•即直线|b =6k时,直线I的方程为y = kx ■ 6k =k经过点A,与题意不符.当5 5b = @ k,且直线I经过定点5【针对性练习2】在平面直角坐标系xoy中,如图,已知椭圆? ?—-匚=1的左、右顶点为A、B,右焦点9 5为F。
九年级数学奥数知识点专题精讲---平面几何中的定值问题
知识点,重点,难点所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的某种几何量却始终保持不变(或几何元素间的某种几何性质或位置关系不变)。
平面几何定值一般可分为两类:一类是定量问题(如定长度、定角、定比、平方和或倒数和为定值等);一类是定形问题(如定点、定线、定圆或弧、定方向等),它们有共同的基本特点,即给定条件中一般由固定条件和变动条件两部分组成。
一般来说,求解定值问题的方法有:图形分析法。
画出符合条件的图形后,分析图中几何元素的数量关系及位置关系,直接寻求出定值并证明。
特殊位置法。
不论图形如何变动,定值这一共性始终不变,因此可选择图形的特殊位置(如极限位置、临界位置)加以探求。
参数计算法。
图形运动中,选取其中的变量(如线段长、角度、面积等)作为参数,将要求的定值用参数表出,然后消去参数即得定值。
例题精讲例1:如图,已知⊙O 及弦AB ,P 为⊙O 上任一点,PA 、PB 分别交AB 中垂线于E 、F ,求证:OE ·OF 为定值。
分析 若在⊙O 上的点P 运动到特殊位置点Q ,则点E ,点F 都和Q 点重合,于是得到OE ·OF =OQ ,由此可推想,该定值可能为⊙O 2半径的平方。
证明 因为OE 是弦AB 的中垂线,所以,所以∠AOE=∠BOE , AQ BQ=所以又因为∠EPB =∠PAB 1.2mAOE AB ∠= 1,2m PAB BP ∠=1,2m PBA AP ∠=+∠ABP ,所以∠AOE = ∠EPB ,所以A 、O 、F 、P 四点共圆,所以∠OFB =∠OAE .又因为∠FOB =∠AOE ,所以△FOB ∽△OAE ,所以即OE ·OF =OA ·OB .因为OA =OB ,所以OE ·OF =OA (定,OF OBOA OE=2值)。
例2:如图,设AB 、CD 是圆O 的两条定直径,P 是圆周上的任一点,过P 作AB 垂线,过P 作CD 的垂线,其垂足分别为Q 、R ,DT ⊥AB ,垂足为T ,求证:QR 是定长。
解析几何中的定点和定值问题
解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考查重点。
此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。
考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。
一、定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
例1、已知A 、B 是抛物线y 2=2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β=4π时,证明直线AB 恒过定点,并求出该定点的坐标。
解析: 设A 〔121,2y p y 〕,B 〔222,2y py 〕,则 212tan ,2tan y py p==βα,代入1)tan(=+βα得221214)(2p y y y y p -=+ 〔1〕 又设直线AB 的方程为b kx y +=,则022222=+-⇒⎩⎨⎧=+=pb py ky pxy bkx y ∴kpy y kpby y 2,22121=+=,代入〔1〕式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点〔-)2,2p p说明:此题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。
例2.已知椭圆C :22221(0)x y a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -相切. ⑴求椭圆C 的方程;⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解析:⑴由题意知c e a ==22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ① 联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ∆=-+->得21210k -<, 又0k =不合题意,所以直线PN的斜率的取值范围是0k <<或0k <<. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x x y y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0).【针对性练习1】 在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.解:⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦中为的椭圆,其方程为2214x y +=.⑵将y kx b =+,代入曲线C的方程,整理得22(14)40k x +++= ,因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ① 设()11,P x y ,()22,Q x y,则12x x +=,122414x x k=+ ②且2212121212()()()()y y kx b kx b k x x kb x x b ⋅=++=+++,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+,()222,AQ x y =+.由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650k kb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①,当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点.即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不过点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点. 【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。
初中平面几何中的定值问题
平面几何中的定值问题开场白:同学们,动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查同学们的综合分析和解决问题的能力。
这类问题中就有一类是定值问题,下面我们来看几道题:【问题1】已知一等腰直角三角形的两直角 边AB=AC=1,P 是斜边BC 上的一动点,过P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF= 。
方法1:特殊值法:把P 点放在特殊的B 点或C点或BC 中点。
此种方法只适合小题。
方法2:等量转化法:这是绝大部分同学能够想到的方法,PF=AE,PE=BE,所以PE+PF=BE+AE 。
方法3:等面积法:连接AP ,ABC ABP APC S S S AB AC AB PE AC PF ∆∆∆=+⇒⋅=⋅+⋅AB PE PF ⇒=+总结语:这虽然是一道动态几何问题,难吗不难,在解决过程中(方法2抓住了边长AB 的不变性和PE,PF 与BE,AE 的不变关系;方法3抓住了面积的不变性),使得问题迎刃而解。
设计:大部分学生都能想到方法2,若其他两种方法学生没有想到,也不要深究,更不要自己讲掉。
此题可叫差生或中等偏下的学生回答(赛比艳,艾科)(设计意图:由简到难,让程度最差的同学也有在课堂上展示自我的机会。
)过渡:这道题太简单了,因为等腰直角三角形太特殊了,我若把等腰直角三角形换成一般的等腰三角形,问题有没有变化,又该如何解决请看:【变式1】若把问题1中的等腰直角三角形改为 等腰三角形,且两腰AB=AC=5,底边BC=6,过P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF 还是定值吗若是,是多少 若不是,为什么 方法1:三角形相似进行量的转化 ABM PBE PCF∆∆∆,AM PE PF AM PB AM PC PE PF AB PB PC AB AB⋅⋅⇒==⇒== ()462455AM PB PC AM BC PE PF AB AB +⋅⋅⇒+==== (板书) (M 为BC 中点)(解题要点:等腰三角形中,底边上的中线是常作的辅助线,抓住这条线的长度是不变量这个特点,建立PE,PF 与AM 之间的联系,化动为静)方法2:等面积法:ABC ABP APC S S S BC AM AB PE AC PF ∆∆∆=+⇒⋅=⋅+⋅642455BC AM PE PF AB ⋅⋅⇒+===(M 为BC 中点) (板书) (解题要点:抓住三角形面积是个不变量,用等面积法求解,这是在三角形中求解与垂线段有关的量的常用方法。
定值
例:如图,已知∠POQ=900知,点 A,B分别在射线 OP,OQ上移动, ∠OAB 的平分线与∠OBA的外角平分线相交于点 C,求证: ∠ACB 的大小为定值。 证明:由于∠ACB是ABC的一个内角,所以可利用三角形的内角和定理 以及内外角平分线定义直接计算∠ACB的大小。 ∵ ∠BAC+ ∠ABC =1/2 ∠OAB+ ∠OBA + ∠OBC =1/2 ∠OAB+ ∠OBA+ 1/2(1800- ∠OBA ) = 1/2 (∠OAB+ ∠OBA)+900 = 1/2× 900+ 900 =1350 Q ∴∠ACB=1800-(∠ACB+ ∠ABC)=450 为定值
1
E B
Q
D
F
证明如图:设⊙O 切AB于点 D,切 ⊙Q于点M,显然Q,O,M 三点共线,且OD⊥AB.AD=a. BD=b (a>b). 则AB=a + b, QM=QA=QB= 1 (a +b ), QD= 1 (a - b) 2 2 令OD=X 则OQ= 2 1 ,由 OQ 2 2 OD 2
• 例3: 如图⊙Q, 的直径AB=d(定值). ⊙o, ⊙o1
是两个动圆,它们既与⊙Q内切,又同时与AB相 切,过点B作⊙Q,的切线交射线AO,AO1于点E,F; 过点A作 ⊙Q 的切线交射线BO,BO1于点G,H.证明
不论⊙Q, ⊙o1的位置,大小怎样变化,S△AEF+S △BGH恒为定值.
G M O A H O
AM
D A E B M P
C
CM
PE MG
CP CM
MG PF ( AM MG )
F G
∴PE+PD=PF+PD=DF=AG=2AM(定值)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何中的定值问题开场白:同学们,动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查同学们的综合分析和解决问题的能力。
这类问题中就有一类是定值问题,下面我们来看几道题:【问题1】已知一等腰直角三角形的两直角边AB=AC=1,P 是斜边BC 上的一动点,过P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则PE+PF= 。
方法1:特殊值法:把P 点放在特殊的B 点或C 点或BC 中点。
此种方法只适合小题。
方法2:等量转化法:这是绝大部分同学能够想到的方法,PF=AE,PE=BE,所以PE+PF=BE+AE 。
方法3:等面积法:连接AP ,ABC ABP APC S S S AB AC AB PE AC PF ∆∆∆=+⇒⋅=⋅+⋅AB PE PF ⇒=+总结语:这虽然是一道动态几何问题,难吗?不难,在解决过程中(方法2抓住了边长AB 的不变性和PE,PF 与BE,AE 的不变关系;方法3抓住了面积的不变性),使得问题迎刃而解。
设计:大部分学生都能想到方法2,若其他两种方法学生没有想到,也不要深究,更不要自己讲掉。
此题可叫差生或中等偏下的学生回答(赛比艳,艾科)(设计意图:由简到难,让程度最差的同学也有在课堂上展示自我的机会。
)过渡:这道题太简单了,因为等腰直角三角形太特殊了,我若把等腰直角三角形换成一般的等腰三角形,问题有没有变化,又该如何解决?请看:【变式1】若把问题1中的等腰直角三角形改为 等腰三角形,且两腰AB=AC=5,底边BC=6, 过P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则PE+PF 还是定值吗?若是,是多少?若不是,为什么?方法1:三角形相似进行量的转化ABM PBE PCF∆∆∆,AM PE PF AM PB AM PCPE PF AB PB PC AB AB⋅⋅⇒==⇒==()462455AM PB PC AM BC PE PF AB AB +⋅⋅⇒+====(板书) (M 为BC 中点)(解题要点:等腰三角形中,底边上的中线是常作的辅助线,抓住这条线的长度是不变量这个特点,建立PE,PF 与AM 之间的联系,化动为静)方法2:等面积法:ABC ABP APC S S S BC AM AB PE AC PF ∆∆∆=+⇒⋅=⋅+⋅642455BC AM PE PF AB ⋅⋅⇒+===(M 为BC 中点) (板书)(解题要点:抓住三角形面积是个不变量,用等面积法求解,这是在三角形中求解与垂线段有关的量的常用方法。
)(若学生想不到,可提示:在此题中,不变的东西是什么?不变的这个量和变量PE,PF 之间有什么联系,能不能用一个等式来表示?学生会三角形的边长,角度,周长,面积等都是不变量。
(设计意图:由特殊到一般,引出求垂线段长度的常用方法:等面积法)(教师行为:出示题之后,让学生做,教师下去看。
叫用方法1的同学先站起来回答,然后再叫用方法2的同学。
以达到过渡到下一题的目的。
)问:我把题中的5改为a ,6改为b ,PE+PF 还是定值吗?你能求出这个定值吗? 答:是定值,求解方法不变。
问:由这题,你能得出等腰三角形的一个一般性结论吗? 结论:等腰三角形底边上任意一点到两腰的距离之和为定值PE+PF=bh a⋅(a 为腰长,b 为底边长,h 为的边上的高)(等面积法可以求解,注意当顶角为钝角的情况)(设计意图:培养学生探究的精神,养成勤总结的习惯) 问题:通过前面几题,你能说说在解答动态几何问题时解题的关键是什么?应该注意什么问题?答:不要被"动"、"变"迷惑,通过观察,分析,动中窥静,变化之中求不变,从而明确图形之间的在联系,找到不变量或不变关系,找到解题的途径。
在解题过程中要注意点或线在运动的过程中,是否需要讨论。
过渡:上面两题中的动点都是在一定线段或直线上运动,有些同学可能还是觉得不够刺激,下面再来一道刺激一点的,让点在一个区域运动,请看: 【变式2】已知P 为边长为a 的等边三角形ABC 任意一动点, P 到三边的距离分别为h 1,h 2,h 3,则P 到三边的距离之和是否为定值?为什么?(由上题的启示,学生可能很容易想到等面积法)ABC ABP ACP BCP S S S S BC AM AB PE AC PF BC∆∆∆∆=++⇒⋅=⋅+⋅+⋅PE PF PD AM ⇒++= 为定值 (M 为BC 中点)(板书)可以用几何画板度量长度,进行演示(设计意图:使学生更深一步理解等面积法的应用)过渡:研究完了P 在三角形部运动的情况,我们不防降低对P 点的约束,让这个好动的点P 动到三角形外部去,情况又会有何变化? 【变式3】已知P 为边长为a 的等边三角形ABC 外任意一点,P 到三边的距离分别为h 1,h 2,h 3,则P 到三边的距离之间有何关系?为什么?图1 图2 图3CCC在几何画板中操作,发现当点P 移出三角形时,h 1+h 2+h 3发生改变,那么h 1,h 2,h 3有没有什么一定的关系呢?等面积法还可以用吗?△PAB ,△PBC ,△PAC 的面积有何关系?这三个三角形的面积和不变的三角形ABC 的面积有何关系?(直需讲解一种情况,其它让学生自己去补充)图1:ABC ABP ACP BCP S S S S BC AM AB PE AC PF BC PD ∆∆∆∆=+-⇒⋅=⋅+⋅-⋅PE PF PD AM ⇒+-=为定值 (板书)图2:ABC ACP BCP ABP S S S S BC AM AC PF BC PD AB PE ∆∆∆∆=+-⇒⋅=⋅+⋅-⋅PF PD PE AM ⇒+-=为定值 (只把结论板书)图3:ABC ABP BCP ACP S S S S BC AM AB PE BC PD AC PF ∆∆∆∆=+-⇒⋅=⋅+⋅-⋅PE PD PF AM ⇒+-=为定值 (只把结论板书)图1 图2 图3 图1:ABC ACP ABP BCP S S S S BC AM AC PE AB PF BC PD ∆∆∆∆=--⇒⋅=⋅-⋅-⋅PF PE PD AM ⇒--=为定值 (板书)图2:ABC ABP BCP ACP S S S S BC AM AB PE BC PD AC PF ∆∆∆∆=--⇒⋅=⋅-⋅-⋅PE PD PF AM ⇒--=为定值 (只把结论板书)图3:ABC BCP ABP ACP S S S S BC AM BC PD AB PE AC PF ∆∆∆∆=--⇒⋅=⋅-⋅-⋅PD PE PF AM ⇒--=为定值 (只把结论板书)(设计意图:渗透分类讨论思想在平面几何中的应用。
)(教师行为:在几何画板中作出个三角形,填充部,让学生直观地发现几个三角形之间的面积关系。
)过渡:前面我们研究的都是以三角形为背景的动态几何定值问题,下面再看一道以圆为背景的定值问题。
C【问题2】 已知:已知弧AB 为120度,在以AB 为弦的弓形劣弧上取一点M(不包括A 、B 两点),以M 为圆心作圆M 和AB 相切,分别过A ,B 作⊙M 的切线,两条切线相交于点C. 求证:∠ACB 有定值,并求出这个定值.分析: 问:这个图形中不变的是什么?不变的角是那一个? 答: 此题中的不变量是弧AB ,因此∠AMB 也是不变量;不变关系是相切。
问:已知直线和圆已经相切,我们会想到什么? 答:连接圆心与切线方法1:问:要证∠ACB 有定值,可以转化为求什么为定值? 答:要证∠ACB 有定值,只需证∠CAB+∠CBA 是定值,只需证∠MAB+∠MBA 是定值,只要∠AMB 是定值即可。
证明:在△ABC 中,∠MAB+∠MBA=180-∠AMB , ∵M 是△ABC 的心,∴∠CAB+∠CBA=2(180-∠AMB).∴∠ACB=180-(∠CAB+∠CBA )=180-2(180-∠AMB)= 2∠AMB -180=60. ∴∠ACB 有定值60.方法2:问:要证∠ACB 有定值,可以转化为求什么为定值? 答:要证∠ACB 有定值,只需证∠EMF 是定值,只需证∠EMD+∠FMD 是定值,只要∠AMD+∠BMD 即∠AMB 是定值即可。
证明:在四边形CEMF 中,∠C+∠EMF=180, ∵M 是△ABC 的心,∴∠DMA=∠EMA, ∠FMB=∠DMB ∴∠EMD+∠FMD=2∠AMB =240∴∠EMF=120∴∠C =180-∠EMF=60总结:若要证的不变量比较困难,你可以先找找题中比较容易看出的不变量,然后建立两者之间的联系。
(设计意图:多角度,多方位地研究动态几何中的定值问题,本题以圆为背景,研究角的定值问题。
)过渡:上题是道有关定值的证明题,也就是已经明确方向肯定是定值了,若不是证明题呢?【问题3】已知:O是如图同心圆的圆心,AB是大圆的直径?点P是小圆上的一动点,大小圆半径分别为R与r?问:PA2+PB2是否有定值,若有,求出定值;若没有,说明理由.分析:这道题是探索定值的问题,可以先用特位定值法,探索以下是否可能是定值。
①点P放在直径AB上.得PA2+PB2=(R+r)2+(. R-r)2=2(R2+r2).②点P放在与直径AB垂直的另一条直径上也可得PA2+PB2= R2+r2+R2+r2=2(R2+r2).说明PA2+PB2非常有可能是定值,而且这个值为2(R2+r2)证明:(直角三角形计算法)PA2+PB2=HA2+PH2+PH2+HB2=2PH2+(OH+R)2+(R-OH)2 =2PH2+2OH2+2R2=2(PH2+OH2) +2R2=2r2+2R2解答动态几何定值探索问题的方法,一般有两种:第一种是分两步完成:①先探求定值. 它要用题中固有的几何量表示.②再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.结束语:数学因运动不再枯燥,数学因运动而充满活力。
希望同学们能够把握动态几何的解题规律。
【小结】问:这节课我们学习了一类怎么样的问题?用什么方法解决?答:动态几何中的定值问题特点:图形中的某个元素,按某种规律在运动类型:(1)点动(2)线动(3)旋转、平移(4)形变解题思路:不要被"动"、"变"迷惑,通过观察,分析,动中窥静,变化之中求不变,从而明确图形之间的在联系,找到解题的途径。