单招数学模拟试题
2023年山东高职单招数学模拟题
山东高职单招数学模拟题(1)第1题:设集合M={-1,0,1},N={-1,1},则.)A.M..B.M⊂.C.M=.D.N⊂M第3题:函数y=sinx旳最大值是.)A.-.B..C..D.2第4题:设a>0,且|a|<b,则下列命题对旳旳是.)A.a+b<.B.b-a>.C.a-b>.D.|b|<a第5题:一种四面体有棱.)条A..B..C..D.12第6题:“|x-1|<2成立”是“x(x-3)<0成立”旳.)A.充足而不必要条.B.必要而不充足条件C.充足必要条.D.既不充足也不必要条件:第9题:在等差数列{an}中,已知a5+a7=18,则a3+a9.()A.1.B.1.C.1.D.20第10题:将5封信投入3个邮筒,不一样旳投法共有.)A.53.B.35.C.3.D.15种第11题:(1+2x)5旳展开式中x2旳系数是.)A.8.B.4.C.2.D.10第12题:甲乙两人进行一次射击,甲击中目旳旳概率为0.7,乙击中旳概率为0.2,那么甲乙两人都没击中旳概率为.)A.0.2.B.0.5..C.0.0..D.0.86第13题:函数y=x2在x=2处旳导数是.)A..B..C..D.4第15题:假如双曲线旳焦距为6,两条准线间旳距离为4,那么双曲线旳离心率为.)第16题:已知集合,M={2,3,4},N={2,4,6,8},则M∩N=.)。
A.{2.B..{2,4.C.{2,3,4,6,8.D.{3,6,8}第17题:设原命题“若p则.”真而逆命题假,则p是q旳(.)A.充足不必要条.B.必要不充足条.C.充要条.D.既不充足又不必要条件第18题:不等式x <x²旳解集为.)A.{x|x>1.B.{x|x<0.C.{x|0<x<1.D.{x|x<0或x>1}第19题:数列3,a,9为等差数列,则等差中项a等于.)A.-.B..C.-.D.6[第20题:函数y=3x+2旳导数是.)A.y=3.B.y=.C.y=.D.3[第21题:从数字1、2、3中任取两个数字构成无反复数字旳两位数旳个数是.)A.2.B.4.C.6.D.8个第24题:在同一直角坐标系中,函数y=x+.与函数y=ax旳图像也许是.)第25题:函数y=loga(3x−2)+2旳图像必过定点.)语..第1题:在过去旳四分之一世纪里,这种力量不仅增大到了令人不安旳程度,并且其性质亦发生了变化。
高职单招数学模拟题押题试卷附答案
高职单招数学模拟题押题试卷附答案(一)一、单项选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个备选答案中,选出一个正确答案)1、A ≠ф是A∩B=ф的( )A.充分条件B.必要条件C.充要条件D.无法确定2、若f(x)=a2+bx(ab≠0),且f(2) = f(3),则f(5)等于( )A.1B.-1C.0D.23、己知|x-3|<a的解集是{x|-3<x<9},则a=()A.-6B.6C.±6D.04、对于数列0,0,0,...,0,...,下列表述正确的是()A.是等比但不是等差数列B.既是等差又是等比数列C.既不是等差又不是等比数列D.是等差但不是等比数列5、若a0.6<a0.4,则a的取值范围为()A.a>1B.0C.a>0D.无法确定6、在△ABC中,“x2 =1”是“x =1”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7、在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是( )A.30°B.60°C.45°D.90°8、设函数f(x) = x2+1,则f(x)是( )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数9、己知向量a = (2,1),b =(-1,2),则a,b之间的位置关系为( )A.平行B.不平行也不垂直C.垂直D.以上都不对10、若函数f(x) = kx + b,在R上是增函数,则( )A.k>0B.k<0C.b<0D.b>1-5、ACBDB 6-10、BCBCA 11、2/12、2x+3y+1=0 13、6 14、2 15、x2+2 16、1417、20 18、919、22、23、24、。
单招模拟数学试题及答案
单招模拟数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是整数?A. 3.14B. -2C. 0.5D. π2. 已知函数f(x) = 2x - 3,求f(4)的值。
A. 5B. 2C. -1D. 33. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 84. 以下哪个不等式是正确的?A. 2 > 3B. 3 < 2C. 3 ≤ 3D. 3 ≥ 45. 求下列哪个数的平方根是正数?A. -4B. 0C. 16D. 1二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可以是________。
7. 一个圆的半径为7,其面积为________。
8. 如果一个数的平方是25,那么这个数可以是________。
9. 已知等差数列的首项a1=3,公差d=2,求第5项a5的值。
10. 一个二次方程x^2 - 5x + 6 = 0的根是________。
三、解答题(每题5分,共20分)11. 求函数y = x^2 - 4x + 4在x=2时的导数值。
12. 解不等式2x - 5 < 3x + 1。
13. 证明:对于任意实数x,都有x^2 + 3x + 2 ≥ 2。
14. 已知等比数列的首项a1=2,公比q=3,求前5项的和S5。
四、综合题(每题10分,共20分)15. 一个工厂生产了x个产品,每个产品的成本是c元,销售价格是p 元。
如果工厂希望获得至少10000元的利润,求x的最小值。
16. 一个班级有40名学生,其中20名学生参加了数学竞赛,15名学生参加了物理竞赛,5名学生同时参加了数学和物理竞赛。
求没有参加任何竞赛的学生人数。
答案:一、选择题1. B2. A3. A4. C5. C二、填空题6. ±57. 49π8. ±59. 1110. 2, 3三、解答题11. 412. x > 613. 证明略14. 162四、综合题15. x ≥ 10000 / (p - c)16. 10。
河北省高职单招考试数学模拟卷(答案解析)
河北省高职单招考试数学模拟卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1 B.[)0,+∞ C.(){}1,1 D.()0,+¥3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.944.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或 D.{}|03x x <<5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种B.36种C.24种D.18种7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()xf xg x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞ B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae -=+在定义域上是奇函数”的充分不必要条件11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.14.如图,在正方体''''ABCD A B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.15.在()()5122x x -+展开式中,4x 的系数为______.16.关于x 的方程ln 10xkx x--=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.河北省高职单招考试数学模拟卷答案解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】利用复数除法运算求得z ,从而求得z ,由此得到z 对应的坐标,进而求得z 在复平面内对应的点所在象限.【详解】因为()()()2(1)2221322255i i i i i i iz i i i -+++--+--+====--⨯+,所以3155z i =--,z 对应点为31,55⎛⎫-- ⎪⎝⎭,所以z 在复平面内对应的点位于第三象限.故选:C.【点睛】本小题主要考查复数的除法运算,共轭复数,考查复数对应点所在象限的判断,属于基础题目.2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1B.[)0,+∞C.(){}1,1 D.()0,+¥【答案】B 【解析】【分析】先求出集合,A B ,即可求出交集.【详解】{}|21A x y x R ==-= ,{}[)2|0,B y y x ===+∞,[)0,A B ∴=+∞ .故选:B.【点睛】本题考查函数定义域和值域的求法,考查集合交集运算,属于基础题.3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.94【答案】A【分析】根据4124yx -⎛⎫= ⎪⎝⎭可得24x y +=,之后利用基本不等式得到2112(2)(2222x y xy x y +=⋅≤=,从而求得结果.【详解】因为(),0,x y ∈+∞,且421224yx y --⎛⎫== ⎪⎝⎭,所以42x y -=-,即24x y+=,所以有2112(2)(2222x y xy x y +=⋅≤=,当且仅当22x y ==时取得最大值2,故选:A.【点睛】该题考查的是有关应用基本不等式求最值的问题,涉及到的知识点有利用基本不等式求积的最大值,属于简单题目.4.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或D.{}|03x x <<【答案】C 【解析】【分析】由题意得0a <,利用韦达定理找到,,a b c 之间的关系,代入所求不等式即可求得.【详解】不等式20ax bx c ++>的解集为{}|12x x -<<,则1x =与2x =是方程20ax bx c ++=的两根,且0a <,由韦达定理知121b a -=-+=,122ca=-⨯=-,即=-b a ,2c a =-,则不等式()()2112a x b x c ax ++-+<可化简为()()21122a x a x a ax +---<,整理得:230ax ax -<,即(3)0ax x -<,由0a <得0x <或3x >,故选:C.【点睛】本题主要考一元二次不等式,属于较易题.5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-【答案】D 【解析】【分析】根据三角函数的导函数和已知定义,依次对其求导,观察得出4()(),n n f x f x n N +=∈,可得解.【详解】1()sin f x x = ,()''1()sin cos f x x x ∴==,'12()()cos f x f x x ==,()23'()(cos )sin f x f x x x '===-,()34'()(sin )cos f x f x x x '==-=-,()45'()(cos )sin f x f x x x '==-=,由此可知:4()(),n n f x f x n N +=∈,24201()()cos f x f x x ∴==-.故选:D.【点晴】本题考查三角函数的导数,依次求三角函数的导数找到所具有的周期性是解决此问题的关键,属于中档题.6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种【答案】B 【解析】【分析】根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有1233339C C =⨯=,其余的分到乙村,若甲村有2外科,1名护士,则有2133339C C =⨯=,其余的分到乙村,则总共的分配方案为2×(9+9)=2×18=36种,故选B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()x f x g x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 【答案】A 【解析】【分析】设()f x x α=,代入点求出α,再求出()g x 的导数()g x ',令()0g x '>,即可求出()g x 的递增区间.【详解】设()f x x α=,代入点122⎛⎫ ⎪ ⎪⎝⎭,则122α⎛⎫= ⎪ ⎪⎝⎭,解得2α=,()2x x g x e∴=,则()2222()x x xxx x xe x e g x e e --'==,令()0g x '>,解得02x <<,∴函数()g x 的递增区间为()0,2.故选:A.【点睛】本题考查待定系数法求幂函数解析式,考查利用导数求函数的单调区间,属于基础题.8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭【答案】A 【解析】【分析】由题意变量分离转为231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,求出最大值即可得到实数m 的取值范围.【详解】由题意,()2f x m >-+可得212mx mx m ->-+-,即()213m x x +>-,当[]1,3x ∈时,[]211,7x x -+∈,所以231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,当1x =时21x x -+有最小值为1,则231x x -+有最大值为3,则3m >,实数m 的取值范围是()3,+∞,故选:A【点睛】本题考查不等式恒成立问题的解决方法,常用变量分离转为求函数的最值问题,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--【答案】ABC 【解析】【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为()()()2122211i 1i 12i i z i i --====-++-,对于A:z 的虚部为1-,正确;对于B:模长z =,正确;对于C:因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D:z 的共轭复数为1i +,错误.故选:ABC.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件【答案】BD 【解析】【分析】根据不等式的性质可判断A;根据含有量词的否定可判断B;根据基本不等式的适用条件可判断C;根据奇函数的性质可判断D.【详解】对于A,当1a >时,可得11a<,故“1a >”是“11a<”的充分条件,故A 错误;对于B,由特称命题的否定是存在改任意,否定结论可知B 选项正确;对于C,若0ab <时,2b a a b +≤-=-,故C 错误;对于D,当1a =时,1()1xx e f x e -=+,此时()()f x f x -=-,充分性成立,当()1xxa e f x ae -=+为奇函数时,由1()1x x xx a e ae f x ae e a-----==++,()()f x f x -=-可得1a =±,必要性不成立,故D 正确.故选:BD.【点睛】本题考查充分条件与必要条件,考查命题及其关系以及不等关系和不等式,属于基础题.11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小【答案】ACD【分析】根据二项式系数的性质即可判断选项A;由n 为奇数可知,展开式中二项式系数最大项为中间两项,据此即可判断选项BC;由展开式中第6项的系数为负数,且其绝对值最大即可判断选项D.【详解】对于选项A:由二项式系数的性质知,11()a b -的二项式系数之和为1122048=,故选项A 正确;因为11()a b -的展开式共有12项,中间两项的二项式系数最大,即第6项和第7项的二项式系数最大,故选项C 正确,选项B 错误;因为展开式中第6项的系数是负数,且绝对值最大,所以展开式中第6项的系数最小,故选项D 正确;故选:ACD【点睛】本题考查利用二项式定理求二项展开式的系数之和、系数最大项、系数最小项及二项式系数最大项;考查运算求解能力;区别二项式系数与系数是求解本题的关键;属于中档题、常考题型.12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED ⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 【答案】AC【解析】A 中利用折前折后不变可知PD AD =,根据222PD CD PC +=可证CD PD ⊥,可得线面垂直,进而证明面面垂直;B 选项中AED ∠不是直角可知,PD ED 不垂直,故PC ED ⊥错误;C 中二面角P DC B --的平面角为PDE ADE ∠=∠,故正确;D 中PC 与平面PED 所成角为CPD ∠,计算其正切值即可.【详解】A 中,PD AD ===,在三角形PDC 中,222PD CD PC +=,所以PD CD ⊥,又CD DE ⊥,可得CD ⊥平面PED ,CD ⊂平面EBCD ,所以平面PED ⊥平面EBCD ,A 选项正确;B 中,若PC ED ⊥,又ED CD ⊥,可得ED ⊥平面PDC ,则ED PD ⊥,而EDP EDA ∠=∠,显然矛盾,故B 选项错误;C 中,二面角P DC B --的平面角为PDE ∠,根据折前着后不变知=45PDE ADE ∠=∠︒,故C 选项正确;D 中,由上面分析可知,CPD ∠为直线PC 与平面PED 所成角,在t R PCD V 中,2tan 2CD CPD PD ∠==,故D 选项错误.故选:AC【点睛】本题主要考查了线面垂直的判定,二面角,线面角的求法,属于中档题.三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.【答案】2【解析】【分析】ξ的可能值为1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】ξ的可能值为1,2,3,则()124236115C C p C ξ===;()214236325C C p C ξ⋅===;()3436135C p C ξ===.故分布列为:ξ123p 153515故()1311232555E ξ=⨯+⨯+⨯=.故答案为:2.【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.14.如图,在正方体''''ABCDA B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.【答案】90︒【解析】【分析】取CC '中点E ,连接ME ,连接ED 交D N '于F ,可知即DFN ∠为异面直线AM 与'D N 所成的角,求出即可.【详解】取CC '中点E ,连接ME ,连接ED 交D N '于F ,在正方体中,可知ME BC AD ∥∥,∴四边形AMED 是平行四边形,AM ED ∴ ,即DFN ∠为异面直线AM 与'D N 所成的角,可知在Rt ECD △和Rt NDD ' 中,,,90EC ND CD DD ECD NDD ''==∠=∠= ,ECD NDD '∴≅ ,CED FND ∴∠=∠,90CED EDC ∠+∠= ,90FND FDN ∴∠+∠= ,90DFN ∴∠= ,即异面直线AM 与'D N 所成的角为90 .故答案为:90 .【点睛】本题考查异面直线所成角的求法,属于基础题.15.在()()5122x x -+展开式中,4x 的系数为______.【答案】80【解析】【分析】将原式化为()()5521212x x x -+-,根据二项式定理,求出()512x -展开式中3x ,4x 的系数,即可得出结果.【详解】()()()()55512221212x x x x x -+=-+-,二项式()512x -的展开式的第1r +项为()152rr r r T C x +=-,令3r =,则()333345280T C x x =-=-,令4r =,则()444455280T C x x =-=,则()()5122x x -+展开式中,4x 的系数为2808080⨯-=.故答案为:80.【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于基础题型.16.关于x 的方程ln 10x kx x --=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.【答案】21,1e e +⎡⎫⎪⎢⎣⎭【解析】【分析】分离参数,构造函数2ln 1(),(0,]x f x x e x x =+∈,利用导数讨论()f x 的单调性,再结合关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,即可求出k 的取值范围.【详解】ln 10x kx x --= ,2ln 1x k x x ∴=+,设2ln 1(),(0,]x f x x e x x =+∈,312ln ()x x f x x --∴=',设()12ln ,(0,]g x x x x e =--∈,2()10g x x∴=--<',即()g x 在(]0,e 是减函数,又(1)0g =,∴当01x <<时,()0>g x ,即()0f x '>,当1x e <<时,()0<g x ,即()0f x '<,()f x ∴在()0,1为增函数,在()1,e 为减函数,当0x →时,()f x →-∞,21()(1)1,e e f f e =+=,关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,由上可知211e k e +< ,∴实数k 的取值范围为21,1e e +⎡⎫⎪⎢⎣⎭.故答案为:21,1e e +⎡⎫⎪⎢⎣⎭.【点睛】本题考查利用导数解决方程根的问题,属于较难题.。
单招模拟试题数学及答案详解
单招模拟试题数学及答案详解一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. -1答案:B解析:最小的正整数是1,因为正整数是大于0的整数。
2. 如果函数f(x) = 2x^2 + 3x + 5的图像关于直线x = -3/4对称,那么二次函数的对称轴是什么?A. x = -3/4B. x = 0C. f(x) = 0D. x = 3/4答案:A解析:二次函数的对称轴是x = -b/2a,其中a和b分别是二次项和一次项的系数。
在这个函数中,a = 2,b = 3,所以对称轴是x = -3/4。
3. 以下哪个数是无理数?A. 3B. πC. 1/2D. 0.5答案:B解析:π是一个无限不循环小数,因此是无理数。
其他选项都是有理数。
4. 解方程2x - 1 = 7,x的值是多少?A. 4B. 3C. 2D. 5答案:A解析:将方程2x - 1 = 7进行移项,得到2x = 8,然后除以2,得到x = 4。
5. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A解析:长方体的体积计算公式是V = 长× 宽× 高,所以体积是8cm × 6cm × 5cm = 240立方厘米。
6. 下列哪个选项是不等式2x + 3 > 9的解集?A. x > 3B. x > 1C. x > 6D. x < 3答案:B解析:首先将不等式2x + 3 > 9中的常数项移项,得到2x > 6,然后除以2,得到x > 3。
7. 一个数的75%是150,那么这个数是多少?A. 200B. 300C. 400D. 500答案:B解析:如果一个数的75%是150,那么这个数可以通过150除以75%来计算,即150 ÷ 0.75 = 200。
2023年高职单招数学考前摸底试卷1
高职单招数学考前摸底试卷1一、单选题单项选择题(每小题5分,共50分)1、A.2B.3C.4D.52、已知b>0,㏒5b=a,㏒b=c,5d=10,则下列等式肯定成立的是()A.d=acB.a=cdC.c=adD.d=a+c3、椭圆x2/2+y2=1的焦距为()A.1B.2C.3D.4、若集合A={0,1,2,3,4},A={1,2,4},则A∪B=()A.|0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}5、设a>b,c>d则()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be6、过点A(-1,0),B(0,-1)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=07、下列四个命题:①垂直于同一条直线的两条直线相互平行;②垂直于同一个平面的两条直线相互平行;③垂直于同一条直线的两个平面相互平行;④垂直于同一个平面的两个平面相互平行.其中正确的命题有()A.1个B.2个C.3个D.4个8、函数y=log2x的图象大致是()A.B.C.D.9、已知A={x|x+1>0},B{-2,-1,0,1},则(CRA)∩B=( )A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}10、要得到函数y=sin2x的图像,只需将函数:y=cos(2x-π/4)的图像()A.向左平移π/8个单位B.向右平移π/8个单位C.向左平移π/4个单位D.向右平移π/4个单位参考答案:【一、单选题】1~5DBBAB6~10CBCA。
单招单考《数学》模拟试题卷
单招单考《数学》模拟试题卷第一部分:选择题(共60分,每小题2分)
1. 题目1
解析:
2. 题目2
解析:
3. 题目3
解析:
......
第二部分:填空题(共30分,每小题3分)
1. 题目1
解析:
2. 题目2
解析:
3. 题目3
解析:
......
第三部分:计算题(共60分,每小题6分)1. 题目1
解析:
2. 题目2
解析:
3. 题目3
解析:
......
第四部分:解答题(共50分)
1. 题目1
解析:
2. 题目2
解析:
3. 题目3
解析:
......
总结:
本模拟试题卷是为单招单考中的《数学》科目而设计的,共分为四
个部分:选择题、填空题、计算题和解答题。
选择题和填空题主要考
察对数学知识的理解和应用能力,计算题则侧重于运算能力和解决实
际问题的能力,而解答题则要求考生有较高的综合应用能力。
在答题过程中,请考生认真审题,注意计算过程的准确性和逻辑性,并在答卷纸上作答。
解答题部分需要写出详细的解题步骤和推理过程,以便考官正确评判。
这套模拟试题卷旨在帮助考生了解单招单考《数学》科目的考核内
容和难度,通过练习提高解题能力和应对考试的自信心。
建议考生在
完成试题后,认真对照答案和解析进行自我评估,并针对自己薄弱的
知识点进行有针对性的复习和强化练习。
祝各位考生取得优异的成绩!。
最新山东城市建设职业学院单招数学模拟试题(附答案解析)
2016年山东城市建设职业学院单招数学模拟试题(附答案解析)一、选择题(共20题,每题3)1.设M={x︱x≤},b=,则下面关系中正确的是()(A)b M (B)b M (c){b}M (D){b}M2.设集合A={x︱-2<x<3},B={x︱x>1},则集合A∩B等于()(A){x︱1<x<3} (B){x︱-2<x<3}(C){x︱x>1}(D){x︱x>2}3.函数y=lg(5-2x)的定义域是 ( )(A)(1,) (B)(0, ) (C)(-∞, ) (D)(-∞, ]4.已知函数f(x)=x2+3x+1,则f(x+1)= ( )(A)x2+3x+2 (B)X2+5X+5 (C)X2+3X+5 (D)X2+3X+65..设P:α=;Q:sinα=,则P是Q的()(A)充分条件(B)必要条件(C)充分必要条件(D)既不充分又不必要条件6.sin (-π)的值是()(A) (B)- (C) (D)-7.cosα<0且tanα>0,则角α是()(A)第一象限的角(B)第二象限的角(C)第三象限的角(D)第四象限的角8.函数y=tanx-cotx的奇偶性是 ( )(A)奇函数(B)既是奇函数,也是偶函数(C)偶函数(D)非奇非偶函数9.函数y=cos(x+2)的周期是()(A)2π (B)π (C)4 (D)4π10.下列函数中,既是增函数又是奇函数的是()(A)y=3x (B)y=x3 (c)y=log3x (D)y=sinx11.函数y=x2+1(x≥0)的反函数是()(A)y=x-1 (B)y= (C) (x≤1) (D) (x≥1)12.函数f(x)=的反函数f-1(x)的值域是 ( )(A)[-2,2] (B)(-∞,4] (C)(-∞,+∞) (D)[0,+∞)13.Sin150的值是()(A)(B)2- (C)(D)2+14.在△ABC中,若cosAcosB=sinAsinB,则此三角形为()(A)任意三角形(B)锐角三角形(C)钝角三角形(D)直角三角形15.计算sincos= ()(A)(B)(C)(D)16.△ABC中,已知a=20,b=20,B=300,则A角为 ( ) (A)(B)(C)(D)或17.复数z=cos-isin的模是 ( )(A) (B) (C)1 (D)18.函数y=cosx+sinx(x∈R)的最小值是 ( )(A)- (B)-1 (C)-2 (D)-1-19.已知x>0.y>0,xy=9,则x+y的最小值为 ( )(A)6 (B)8 (C)18 (D)320.当为奇数时,()2n+()2n= ( )(A)2 (B)-2 (C)2或-2 (D)0二、填空(共10题,每题2分)21.函数y=的定义域是_________________________22.已知圆心角2000所对的圆弧长为50cm,求圆的半径(精确到0.1cm)_________ 23.y=sin3x的图像向_____平移_____个单位可得到y=sin(3x+)的图像24.终边落在y轴上的角的集合______________________25.设函数y=sin(x+)+1,当x=_____________时,y max=____________;当x=________________时,y min=_________26.已知P为第IV象限α终边上的一点,其横坐标x=,︱OP︱=2,则角α的正弦_______余弦_______正切_______27.=________________28.在△ABC中,a=7,b=4,c=,则最小角为___________________29.arctan()=_______________30.已知z1=-3-i,z2=2i+1,z1+z=z2,z=_____________三、解答题(共4题,每题5分)31.求函数+的定义域32.解方程72x-6·7x+5=033.计算+34.证明:+=2cscα参考答案一、选择题(3’×20=60’)1—5DACBA 6—10ACACB 11—15DBADB 16—20DCCAB二、填空题(2’×10)21.{x︱x≤2} 22.14.3cm 23.左,24.{α︱α=kπ+,k∈Z}25. +2kπ(k∈Z),2, +2kπ(k∈Z),026.-,, - 27.1 28.30029.- 30.4+3i三、解答题(5’×4=20’)31.解:1-x2≥02x+1≠0 (2’)(x+1)(x-1)≤0 (2’)X≠-[-1, -)∪(-,1] (1’)32.解:(7x)2-6·7x+5=0(7x-1)(7x-5)=0 (3’)7x=1,7x=5X=0,x=log75 (2’)33.解:原式=+ (2’)=+ (2’)=0 (1’) 34.证明:左边=+ (2’)=+== (2’)==2cscα =右边(1’)。
2024年高职单独招生考试数学模拟试题及答案
2024年高职院校单独招生考试数学题库一、选择题1、若集合S={-2,0,2},则(A)A.2∈SB.-2∉S2、若集合S={a,b,c},则C.1∈S(A)A.a∈SB.b∉S3、若集合S={-2,0,2},则C.d∈S(A)A.-2∈SB.2∉S4、若集合S={-2,0,2},则C.1∈S(A)A.0∈SB.2∉SC.1∈S5、30︒=弧度(C)A.πB.3π C.π266、45︒=弧度(A)A.πB.4π C.π267、90︒=弧度(B)A.πB.3π C.π268、60︒=弧度(A)A.πB.3π C.π269、等差数列{a n}中,a1=1,a2=4,则A.7B.8C.9a3=(A)10、等差数列{a n}中,a1=2,a2=5A.7B.8C.9,则a3=(B)11、等差数列{a n}中,a1=-5,a2=-1,则A.3B.8C.9a3=(A)12、等差数列{a n}中,a1=1,a2=5A.7B.8C.9,则a3=(C)13、cosπ的值是(A)3A.1B.22 C.3 2214、sinπ的值是(C)3A.1B.22 C.3 2215、cosπ的值是(C)6A.1B.22 C.3 2216、sinπ的值是(B)4A.12B.22 C.3217、log216=(C)A.218、log39=B.3 C.4(A)A.219、log327=B.3 C.4(B)A.2B.3C.420、log381=(C)A.2B.3C.421、已知:sin α<0,tan α>0,则角α是(A )A.第三象限角B.第二象限角C.第四象限角22、已知:sin α>0,tan α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角23、已知:tan α<0,cos α>0,则角α是(C )A.第三象限角B.第二象限角C.第四象限角24、已知:tan α<0,cos α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角25、直线y =x -1的倾斜角为(A )A.π B.4πC.π3626、直线y =x +8的倾斜角为(A )A.π B.4πC.π3627、直线y =x +5的倾斜角为(A )A.π B.4πC.π3628、直线y =-x +5的倾斜角为(A )A.3π B.4πC.π3629、实数12与3的等比中项为(B )A.-6B.±6C .630、实数1与16的等比中项为(B )A.-4B.±4C .431、实数2与32的等比中项为(B )A.-8B.±8C .832、实数4与9的等比中项为(B )A.-6B.±6C.633、已知正方体的边长是1,则正方体的体积为(A )A.1B.8C.2734、已知正方体的边长是2,则正方体的体积为(B)A.1B.8C.2735、已知正方体的边长是4,则正方体的体积为(A)A.64B.8C.2736、已知正方体的边长是3,则正方体的体积为(C)A.1B.8C.2737、已知角A为第一象限角,cos A=4,则sin A=5(B)A.2B.53 C.4 5538、已知角A为第二象限角,sin A=3,则cos A=5(C)A.-25B.-35C.-4539、已知角A为第一象限角,sin A=3,则cos A=5(C)A.2B.53 C.4 5540、已知角A为第一象限角,sin A=4,则cos A=5(B)A.2B.53 C.4 5541、不等式x<2的解集是(A)A.{x-2<x<2}B.{x x<-2或x>2}C.{x x<2}42、不等式x>3的解集是(B)A.{x x<-3}B.{x x<-3或x>3}C.{x x>3}43、不等式x≥3的解集是(B)3-2x⎪A.{x x ≤-3} B.{x x ≤-3或x ≥3} C.{x x ≥3}44、不等式x >4的解集是(B )A.{x x <-4}B.{x x <-4或x >4}C.{x x >4}45、下列函数为奇函数的是(B)A.y =x4B.y =1x 3C.y =4x +546、下列函数为奇函数的是(B )A.y =1x 4B.y =x 3C.y =4x +547、下列函数为偶函数的是(A )A.y =3x 4B.y =7xC.y =2x +148、下列函数为偶函数的是(A )A.y =-x2 B.y =1xC.y =2x +149、设f (x )=1,则f (1)=(B )A.2B.1C.1250、设f (x )=8,则f ⎛1⎫=2(C )⎝⎭A.2 B.1 C.451、设f (x )=1则f (2)=(B )3A.2 B.1 C.1252、设f (x )=1则f (53A.2B.1C.)=(C )133+2x53、若角α终边上一点P(-12,5),则tanα的值为(B)A.-1213B.-512C.-51354、若角α终边上一点P(-5,-12),则cosα的值为(C)A.-1213B.5 C.-5121355、若角α终边上一点P(12,-5),则tanα的值为(B)A.-1213B.-512C.-51356、若角α终边上一点P(-5,-12),则sinα的值为(A)A.-1213B.512C.-51357、若函数y=A.[-1,+∞)1-x,则其定义域为B.[1,+∞)C.(-∞,1](C)58、若函数y=A.[-2,+∞)2-x,则其定义域为B.[2,+∞)C.(-∞,2](C)59、若函数y=A.[-1,+∞)x+1,则其定义域为B.[1,+∞)C.(-∞,1](A)60、若函数y=A.[-1,+∞)x-1,则其定义域为B.[1,+∞)C.(-∞,1](B)二、填空题1、{a,b}∩{a,c}={a}2、{2,3}∩{2,4}={2}3、{x,y}∩{y,z}={y}4、{-1,2}∩{1,2}={2}3565、数列-4,1,6,的前五项和为306、数列1,4,7,的前五项和为357、数列2,5,8,的前五项和为408、数列-1,2,5,的前五项和为259、函数y =sin ⎛4x +π⎫的最小正周期是π ⎪⎝⎭10、函数y =sin ⎛2x -π⎫的最小正周期是π⎪⎝⎭11、函数y =cos ⎛x +π⎫的最小正周期是2π⎪⎝⎭12、函数y =⎛1x -π⎫的最小正周期是4πcos ⎪⎝26⎭13、若log 2x =5,则x =3214、若log 4x =3,则x =6415、若log 5x =2,则x =2516、若log 3x =4,则x =8117、已知:cot α=3,则2cot α-4=1cot α+1218、已知:cot α=1,则52-5cot α15+10cot α=719、已知:tan α=2,则tan α+1=15-tan α20、已知:tan α=2,则tan α+1=36+tan α821、在0︒~360︒之间,与760︒角的终边相同的角是40∘22、在0︒~360︒之间,与770︒角的终边相同的角是50∘223、在0︒~360︒之间,与400︒角的终边相同的角是40∘24、在0︒~360︒之间,与390︒角的终边相同的角是30∘25、若复数z =-3+5i ,则复数的虚部为526、若复数z =12+3i ,则复数的实部为1227、若复数z 1=3+6i ,z 2=-3+2i ,则z 1-z 2=28、若复数z 1=7-2i ,z 2=-3+5i ,则z 1+z 2=6+4i 4+3i 29、若圆的标准方程为(x +1)2+(y -5)2=16,则圆的面积为16π30、若圆的标准方程为x 2+y 2=3,则圆的面积为3π31、若圆的标准方程为(x +1)2+y 2=16,则圆的面积为32、若圆的标准方程为x 2+y 2=25,则圆的面积为25π16π33、数列1,2,3,4,的第n 项为n 2345n +134、数列1,1,1,1,的第n 项为11⨯235112⨯313⨯414⨯5n1n (n +1)、数列,,,,的第项为14916n 236、数列12,3,5,7468,的第n 项为2n -12n37、函数y =x 2+4x -5的图像与y 轴的交点坐标是(0,-5)38、函数y =x 2+2x +2的图像与y 轴的交点坐标是(0,2)39、函数y =x 2+4x -5的图像与x 轴的交点坐标是(-5,0),(1,0)40、函数y =x 2-2x +3的图像与y 轴的交点坐标是(0,3)三、解答题1、已知:设全集为实数集R ,A ={x -3<x ≤5},B ={x x ≤3},C ={x x >-1}求:A∩B,A∪B,A∩B∩C解:A∩B={x-3<x≤3}A∪B={x x≤5}A∩B∩C={x-1<x≤3}2、已知:设全集为实数集R,A={x2<x<7},B={x x>3},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x3<x<7}A∪B={x x>2}A∩B∩C={x3<x≤4}3、已知:设全集为实数集R,A={x-1≤x≤5},B={x x≥2},C={x x<3}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x≤5}A∪B={x x≥-1}A∩B∩C={x2≤x<3}4、已知:设全集为实数集R,A={x-1<x<7},B={x x≥2},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x<7}A∪B={x x>-1}A∩B∩C={x2≤x≤4}5、已知:等差数列-2,2,6,.求:(1)公差d;(2)通项公式a n;(3)第9项a9;(4)前9项的和s9解:(1)d=4(2)a n=a1+(n-1)d=4n-6n (3)把n =9代入(2)得a 9=30(4)s =9(a 1+a 9)=9(-2+30)=1269226、已知:等比数列1,1,1,1,248求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =12(2)a n =()2n -1或a =1n 2n -1(3)把n =9代入(2)得a 9=1256a (1-q 6)⎛1⎫6⎪263(4)s =1=⎝⎭=61-q 1-13227、已知:等差数列-3,2,7,.求:(1)公差d ;(2)通项公式a n ;(3)第8项a 8;(4)前8项的和S 8解:(1)d =5(2)a n =a 1+(n -1)d =5n -8(3)把n =8代入(2)得a 8=32(4)s =8(a 1+a 8)=8(-3+32)=1168228、已知:等比数列1,3,9,27,求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =3(2)a =3n -1(3)把n =9代入(2)得a 9=38=6561a (1-q 6)(4)s 6=1=1-q1-361-3=3641-1。
2024年全国高考体育单招考试数学模拟试卷试题(含答案) (2)
2024年全国普通高等学校运动训练、武术与民族传统项目体育专业单独统一招生考试数学模拟试卷(一)一、选择题:(本大题共8小题,每小题8分,共64分)1.己知集合M={-1,1},下列选项正确的是( )在此处键入公式。
A.「1}∈MB.a ∈MC.-1CMD.{-1}∈M2.在正方体ABCD-A₁B₁C₁D₁中,下列直线与AC成60°角的是()A.B₁C₁B.BC₁C.D₁DD.B₁D3.袋子中有5个大小相同的小球,其中3个白球,2个黑球,每次从袋子中随机摸出1个球,摸出的球不再放回.在第1次摸到白球的条件下,第2次摸到黑球的概率为( )A 8 D4.,等差数列{a,}的前n 项和为s₁, 若a¹=2,s₃=12, 则a₆=( )A.8B.10C.12D.145.己知两条直线L1:x+ay+6=0,L2:(a-2)x+3ay+2a=0,若L₁Di₂,则a=( )A.-1或0可B.-1可C.0豆D-1 或06..为弘扬我国古代的“六艺文化”某夏令营主办单位计划利用暑期开设“礼”,“乐”,”射”“御”,“书”“数”六门体验课程,每周一门,连续开设六周,若课程“乐”不排在第一周,课程“御”不排在最后一周,则所有可能的排法种数为()A.216B.480C.504D.6247.已知空间中三个互不相同的平面a、β、Y,两条不同的直线a、b,下列命题正确的是( )A.若αOβ,βOy, 则aOyB.若aDa,bOβ,a//b,则a//βC.若a//a,a//β,aOb, 则bOβD.若aOβ,βDy、则a//γ8.已知单位向量a, 满足a.则a与b夹角的大小为( )AG D.B.二、填空题(本大题共4小题,每小题8分,共32分)9.(1+2x)? 的展开式中x², 的系数是 (用数字作答)。
10.若实数a,b 满;则ab 的最小值为。
11.若椭圆C的焦点为F₁(-1.0)和F₂ (1,0),过F₁的直线交C 于A,B 两点,且△ABF₂的周长为12,则C 的方程为12.已知函数y=loga(x-3)-1的图像恒过定点P, 则点P 的坐标是三、解答题:(本大题共3小题,每小题18分,共54分解答应写出文字说明、证明过程或演算步骤。
2022年辽宁职业学院单招数学模拟试题附答案解析
(3) —该公司生产成本增长率最快;
(4) —该公司利润增长幅度比—利润增长幅度大.
其中说法对旳旳是
A.(1)(2)(3) B.(1)(3)(4) C.(1)(2)(4) D.(2)(3)(4)
9.在圆周上有 10 个等分点,以这些点为顶点,每三个点可以构成一种三角形,如果随机选择 三个点,正好构成直角三角形旳概率是
.∴
n≤
≤
.
【点评】本题中在平面图形背景下设计了一种数 列问题,考察了数列旳通项与求和等基本知识点,显 得较有新意。
20.(1)∵G 为正△ABC 旳中心,∴D 为 BC 中点.
∴DE:EB1=BD:B1C1=1:2=DG:GA.
∴GE//AB1.∵GE面 AA1B1B,AB1面 AA1B1B, ∴GE//面 AA1B1B.
【点评】解析几何中有关公式与措施必须要纯熟掌握和运用。 14.36π
将三棱锥补成正方体,三棱锥旳外接球即为正方体旳外接球。由
三棱锥旳外接球旳体积为
。
【点评】“割补法”是解决立体几何问题旳重要旳思想措施。
15.5
得 R=3,因此
射影为点 B(2,1,0), 则
=5。
【点评】要理解点在平面上投影旳概念。
A. ①②
B.①③
C.②③
D.①②③
1
1
4.已知 x=a+a-2(a>2),y=(2) (b<0) ,则 x,y 之间旳大小关系是
A. x>y
B . x<y
C. x=y
D.不能拟定
5.已知 A 是三角形旳内角,且 sinA+cosA= ,则 cos2A 等于
A.
B.-
C.
D.-
6.已知二面角
旳大小为 , 和 是两条异面直线,则在下列四个条件中,能
单招模拟试题数学
单招模拟试题数学一、选择题1. 下列哪个数不是无理数?A. √5B. √πC. √-2D. √72. 已知△ABC中,∠A= 90°,AD ⊥ BC,AD=4cm,BC=12cm,则AB的长度为多少?A. 16cmB. 8cmC. 10cmD. 12cm3. 一个球形水池的半径为6m,若水池的水深为2m,那么球形水池中的水的容量是多少?A. 144πm^3B. 288πm^3C. 144m^3D. 288m^34. 设 f(x) = 2x^2 + 4x - 3,则 f(2) = ?A. 3B. 6C. 11D. 125. 已知正方形ABCD的边长为a,点E是BC延长线上一点,且BE=AD,则∠EAD的度数是多少?A. 45°B. 90°C. 135°D. 180°二、填空题1. 36÷(6-2)+6^2=?答:272. 曲线y = 2x^2 + 3x + 4的对称轴方程是_________。
答:x = -3/43. 在△ABC中,∠A = 26°,∠B = 43°,则∠C = _______。
答:111°4. 将下列各数由大到小排列:0.5,-0.2,0.8,-0.1。
答:0.8,0.5,-0.1,-0.25. 已知对数a=log2, b=log3,则a+b=_________。
答:log6三、解答题1. 将下列分数化为小数,并指出这些小数是有理数还是无理数:a) 9/4b) -5/7c) √2/3解:a) 9/4 = 2.25(有理数)b) -5/7 ≈ -0.7143(有理数)c) √2/3 ≈ 0.4714(无理数)2. 解下列方程组:2x - 3y = 74x + y = 19解:通过消元法解方程组,将第二个方程乘以3得到:12x + 3y = 57 将两个方程相加得:14x = 64解得:x = 64/14 ≈ 4.57142857代入第一个方程,得:2 * 4.57142857 - 3y = 7解得:y ≈ -2.85714286所以方程组的解为:x ≈ 4.57142857,y ≈ -2.857142863. 求函数 f(x) = 3x - 5 的反函数。
2023年单招数学模拟试题
数学期末测试题(时间120分钟,满分150分)一、单项选择题(将正确答案的序号填入括号内。
本大题15小题,每小题4分,共60分)1、设集合A={0,3},B={1,2,3},C={0,2}则A(B C)=( )A .{0,1,2,3,4} B.C .{0,3} D. {0}2、不等式>0的解集是( ).A . {︱<<}B . {︱>-3}C . {︱>0}D .{︱≠-3}3、已知0<a<b<1,那么下列不等式中成立的是( )A. B .㏒a<㏒bC. a<b D . 3>34、已知角α终边上一点P的坐标为(-5,12),那么sinα=( )A. B. C. D.5、函数的定义域是( )A. B. C. D.6、已知a>0,b<0,c<0,那么直线ax+by+c=0的图象必经过()。
A . 第一、二、三象限B . 第一、二、四象限C. 第一、三、四象限 D . 第二、三、四象限7、在等比数列{}中,若,是方程的两根,则·=()A. 5B. C . 2 D. 18、函数y=的最小正周期是( )A.πB. 2πC. 1D. 29、已知两直线(m-2)x-y+3=0与x+3y-1=0互相垂直,则m=( )A. B . 5 C . -1 D.10、已知三点(2,-2),(4,2)及(5,)在同一条直线上,那么k的值是( )A . 8 B. -8 C.±8 D . 8或311、已知点A(-1,3),B(-3,-1),那么线段AB的垂直平分线方程是()。
A. B.C. D.12、五个人站成一排,甲、乙两人必须站在一起(即两人相邻)的 不同站法共有( )。
A . 48种B .24种C . 12种 D. 120种 13、若、为实数,则的充要条件是( ).A.=B. ︱︱=︱︱C.=D.==014、在空间中,下列命题正确的是( ).A .若两个平面有无数个公共点,则这两个平面重合B .若平面内不共线的三点到平面的距离相等,则∥C 两两相交的三条直线必共面D 若直线与平面垂直,则直线与平面上的无数条直线垂直 15、在△ABC 中,若∠B=,则∠C=( )。
山东单招数学模拟试题及答案
2017年山东单招数学模拟试题及答案一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.已知集合≤,,则集合A中所有元素之和为▲.2.如果实数和非零向量与满足,则向量和▲.(填“共线”或“不共线”).3.△中,若,,则▲.4.设,为常数.若存在,使得,则实数a的取值范围是▲.5.若复数,,,且与均为实数,则▲.6.右边的流程图最后输出的的值是▲.7.若实数、{,,,},且,则曲线表示焦点在轴上的双曲线的概率是▲.8.已知下列结论:①、都是正数,②、、都是正数,则由①②猜想:、、、都是正数9.某同学五次考试的数学成绩分别是120, 129, 121,125,130,则这五次考试成绩▲的方差是▲.10.如图,在矩形中, ,,以为圆心,1为半径作四分之一个圆弧,在圆弧上任取一点,则直线与线段有公共点的概率是▲.第10题图11.用一些棱长为1cm的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图,则这个几何体的体积最大是▲ cm3.图1(俯视图)图2(主视图)第11题图12.下表是某厂1~4月份用水量(单位:百吨)的一组数据,月份 1 2 3 4用水量4。
5 4 3 2。
5由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是▲.13.已知平面内一区域,命题甲:点;命题乙:点.如果甲是乙的充分条件,那么区域的面积的最小值是▲.14.设是椭圆上任意一点,和分别是椭圆的左顶点和右焦点,则的最小值为▲.二、解答题:(本大题共6小题,共90分。
解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分14分)C1A1 B1直三棱柱中,,.(1)求证:平面平面;(2)求三棱锥的体积.16.(本小题满分14分)某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0。
5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.(1)求该企业使用该设备年的年平均污水处理费用(万元);(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?17.(本小题满分14分)如图,已知圆心坐标为的圆与轴及直线分别相切于、两点,另一圆与圆外切、且与轴及直线分别相切于、两点.(1)求圆和圆的方程;(2)过点B作直线的平行线,求直线被圆截得的弦的长度.18.(本小题满分14分)已知函数,.(1)求函数在内的单调递增区间;(2)若函数在处取到最大值,求的值;(3)若(),求证:方程在内没有实数解.(参考数据:,)19.(本小题满分16分)已知函数()的图象为曲线.(1)求曲线上任意一点处的切线的斜率的取值范围;(2)若曲线上存在两点处的切线互相垂直,求其中一条切线与曲线的切点的横坐标的取值范围;(3)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.20.(本小题满分18分)已知数列的通项公式是,数列是等差数列,令集合,,.将集合中的元素按从小到大的顺序排列构成的数列记为.(1)若,,求数列的通项公式;(2)若,数列的前5项成等比数列,且,,求满足的正整数的个数.三、附加题部分(本大题共6小题,其中第21和第22题为必做题,第23~26题为选做题,请考生在第23~26题中任选2个小题作答,如果多做,则按所选做的前两题记分.解答应写出文字说明,证明过程或演算步骤.),满分12分)21.(本小题为必做题...已知直线被抛物线截得的弦长为20,为坐标原点.(1)求实数的值;(2)问点位于抛物线弧上何处时,△面积最大?,满分12分)22.(本小题为必做题...甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0。
抚顺职业技术学院单招数学模拟试题(附答案解析)
2016抚顺职业技术学院单招数学模拟试题(附答案解析) 一.选择题1.函数的最小正周期是()A.B.C.D.2.若条件P:,条件Q:,则?P是?Q的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要3.函数的图象大致是()4.设,则=()A.1B.0C.D.5.(理)()A.0B.-1C.1D.(文)如果成等比数列,那么A. B. C.D.6.设是的反函数,若,则的最小值是()A.1B.2C.D.47.设M={1,2,3,4},N={0,1,2},建立的函数,则以N为值域的映射有()A.18个B.36个C.48个D.81个的是()8.下列条件中,能确定三点A,B,P不共线...A.B.C.D.9.(理)()分别是定义在R上的奇函数和偶函数,当时,,且,则不等式的解集为()A.B.C.D.(文)曲线与在交点处的切线的夹角是()A.B.C.D.10.己知双曲线的左右焦点分别为,点P在双曲线的右支上,若此双曲线的离心率为,且,则的最大值为()A.B.C.2D.11.设实数满足,若对满足条件的,不等式恒成立,则c的取值范围是()A.B.C.D.12.如图,正方体ABCD-A1B1C1D1的棱长为1,点M在棱AB上,且AM=,点P是平面ABCD上的动点,且P点到直线A1D1的距离与点P到点M的距离的平方差为1,则动点P的轨迹是()A.圆B.抛物线C.双曲线D.直线二.填空题13.己知点P,Q,直线与线段PQ相交,则实数a的取值范围是14.己知数列的前n项和为,且向量与共线,则数列的前n项和=15.关于x的方程有实根,则实数m的取值范围是16.把49个数排成如图所示的数表,若表中每行7个数自左至右依次成等差数列,每列自上而下依次也成等差数列,且正中间的数=1,则表中所有数的和为三.解答题17.己知,,,其中,(1)若,求的值(2)若,求的值18.(文)有一批食品出厂前要进行五项指标抽检,如果有两项指标不合格,则这批产品不能出厂,己知每项抽检是相互独立的,且每项抽检不合格的概率都是,(1)求这批食品不能出厂的概率;(保留三位有效数字)(2)求直到五项指标全部检验完毕,才能确定该食品是否可以出厂的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高校单独招生考试数学模拟试题(一)
学校:___________姓名:___________班级:___________考号:___________题号一二三总分
得分
分卷I
一、选择题(共10小题,每小题5.0分,共50分)
1.已知集合A={3,4,5},B={1,3,6},则集合A∪B是()
A. {1,3,4,5,6}B. {3}C. {3,4,5,6}D. {1,2,3,4,5,6}
2.函数f(x)=√1+x+1
x
的定义域是()
A. {x|x≥-1}B. {x|x≠0}C. {x|x≥-1且x≠0}D.R
3.下列函数中为偶函数的是()
A.y=√x B.y=-x C.y=x2D.y=x3+1
4.计算2x2·(-3x3)的结果是()
A.-6x5B. 6x5C.-2x6D. 2x6
5.已知函数f(x)=2x+1
4
x-5,则f(x)的零点所在的区间为()
A. (0,1)B. (1,2)C. (2,3)D. (3,4)
6.一个几何体的三视图如图所示,则该几何体的直观图可以是()
A.B.C.D.
7.若经过A(m,3),B(1,2)两点的直线的倾斜角为45°,则m等于()
A. 2B. 1C.-1D.-2
8.已知过点A(-2,m)和B(m,4)的直线与斜率为2的直线平行,则m的值是( )
A.-8B. 0C. 2D. 10
9.某大学数学系共有本科生5 000人,其中一、二、三、四年级的学生比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽三年级的学生()
A. 80人B. 40人C. 60人D. 20人
10.角θ的终边过点P(-1,2),则sinθ等于()
A.√5
5B.2√5
5
C.-√5
5
D.-2√5
5
分卷II
二、填空题(共3小题,每小题4.0分,共12分)
11.若a=(2,3),b=(-4,7),则a在b方向上的投影为________.
12.抛物线y2=2x上一点M到焦点的距离为1,则点M的横坐标是________.
13.复数的值是________.
三、解答题(共3小题,14、15每小题13.0分,16小题12.0分共38分)
14.已知数列{an}中,a1=5且an=2an-1+2n-1 (n≥2且n∈N*).
(1)求a2,a3的值; (2)求通项公式an.
15.如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.
(1)求证:AD1⊥平面A1DC;
(2)求MN与平面ABCD所成的角.
16.已知函数f(x)=x3-ax2+3x+6,若x=3是f(x)的一个极值点,求f(x)在[0,a]上的最值.。