中考数学专题测试卷:数与式综合

合集下载

2023年中考数学专题练——1数与式

2023年中考数学专题练——1数与式

2023年中考数学专题练——1数与式一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2 3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1 4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−120225.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12 6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6 7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−120228.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3 9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y 11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多个.(由含n的代数式表示)13.(2022•泉山区校级三模)√4=.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为.15.(2022•丰县二模)计算:(x2)3•x﹣2=.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点离原点的距离较近(填“A”或“B”).17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示.18.(2022•邳州市一模)因式分解:b2﹣4b+4=.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米=米.20.(2021•徐州模拟)分解因式:m2+6m=.21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4; (2)化简:(1−1x+2)÷x 2−1x+2. 25.(2022•贾汪区二模)计算: (1)20220+(12)−1−|−3|+√−83; (2)(x −1x )÷x 2−2x+1x . 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 29.(2022•徐州一模)计算: (1)√12+4﹣1﹣(12)﹣1+|−√3|;(2)(1x+3−1)×x 2+6x+9x 2−4.30.(2022•鼓楼区校级二模)计算: (1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a.2023年江苏省徐州市中考数学专题练——1数与式参考答案与试题解析一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 【解答】解:A、a2与a3不属于同类项,不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(﹣a3)2=a6,故C符合题意;D、a2÷a3=a﹣1,故D不符合题意;故选:C.2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2【解答】解:a+a=2a,故A错误,不符合题意;(2a)2÷a=4a,故B正确,符合题意;(﹣ab)2=a2b2,故C错误,不符合题意;a2⋅a2=a4,故D错误,不符合题意;故选:B.3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1【解答】解:A、a2•a3=a5,故A符合题意;B、(a2)3=a6,故B不符合题意;C、a2与a3不属于同类项,不能合并,故C不符合题意;D、a3÷a2=a,故D不符合题意;故选:A.4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−12022【解答】解:2022的倒数是12022.故选:C.5.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12【解答】解:∵5<6<9<10<12<16,∴√5<√6<3<√10<√12<4,与3最接近的是√10,故选:C.6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6【解答】解:A、3a+2a=5a,原计算错误,故此选项不符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、a2+a2=2a2,原计算错误,故此选项不符合题意;D、(﹣a3)2=a6,原计算正确,故此选项符合题意.故选:D.7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−12022【解答】解:有理数﹣2022的相反数等于2022,故选:A.8.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3【解答】解:x6÷x2=x4≠x3,故选项A计算错误;(x2)3=x6≠x5,故选项B计算错误;x2与x3不是同类项,不能加减,故选项C计算错误;2x2•x=2x3,故选项D计算正确.故选:D.9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵1<3<4,9<10<16,∴1<√3<2,3<√10<4,∴在√3和√10之间的整数有2,3共2个,故选:C.10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y【解答】解:∵x杯饮料则在B和C餐中点了x份汉堡,∴点A餐为10﹣x,∴y份沙拉,则点C餐有y份,∴点B餐的份数为:10﹣(10﹣x)﹣y=x﹣y,故选:C.11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6【解答】解:∵2a2﹣a2=a2≠2,∴选项A不符合题意;∵(a﹣b)2=a2﹣2abb+2≠a2﹣b2,∴选项B不符合题意;∵(﹣a3b)2=a6b2,∴选项C符合题意;∵(2a+3)(a﹣2)=2a2﹣a﹣6≠2a2﹣6,∴选项D不符合题意;故选:C.二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多(2n+1)个.(由含n的代数式表示)【解答】解:根据题意有,第1个图形,圆的个数为:1;正三角形的个数为:1×3+1;第2个图形,圆的个数为:2;正三角形的个数为:2×3+1;第3个图形,圆的个数为:3;正三角形的个数为:3×3+1;……,第n个图形,圆的个数为:n;正三角形的个数为:n×3+1;n×3+1﹣n=3n﹣n+1=2n+1,∴第n个图形中三角形的个数比圆的个数多(2n+1)个.故答案为:(2n+1).13.(2022•泉山区校级三模)√4=2.【解答】解:∵22=4,∴4的算术平方根是2,即√4=2.故答案为:2.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为 2.5×1017.【解答】解:数据250000000000000000用科学记数法表示为2.5×1017.故答案为:2.5×1017.15.(2022•丰县二模)计算:(x2)3•x﹣2=x4.【解答】解:(x2)3•x﹣2=x6•1x2=x4,故答案为:x4.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点A离原点的距离较近(填“A”或“B”).【解答】解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示9.65×1011.【解答】解:9650亿=965000000000=9.65×1011.故答案为:9.65×1011.18.(2022•邳州市一模)因式分解:b2﹣4b+4=(b﹣2)2.【解答】解:b2﹣4b+4=(b﹣2)2.故答案为:(b﹣2)2.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米= 1.6×10﹣7米.【解答】解:∵1纳米=10﹣9米,∴160纳米=160×10﹣9米=1.6×10﹣7米.故答案为:1.6×10﹣7.20.(2021•徐州模拟)分解因式:m2+6m=m(m+6).【解答】解:原式=m(m+6).故答案为:m(m+6).21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为a≥﹣2.【解答】解:∵√a+2有意义,∴a+2≥0,解得a≥﹣2,即a的取值范围为a≥﹣2.故答案为:a≥﹣2.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.【解答】解:(1)20220﹣(−12)﹣1﹣|3−√8|=1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1x−2)÷x−1x−2=x−1 x−2⋅x−2 x−1=1.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.【解答】解:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273=1+4+2﹣3=4;(2)(1−1a)÷a2−2a+1a=a−1a⋅a(a−1)2 =1a−1.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x2−1x+2.【解答】解:(1)原式=4﹣1﹣1+2=4;(2)原式=x+2−1x+2•x+2(x+1)(x−1)=x+1 x+2•x+2 (x+1)(x−1)=1x−1.25.(2022•贾汪区二模)计算:(1)20220+(12)−1−|−3|+√−83;(2)(x−1x)÷x2−2x+1x.【解答】解:(1)20220+(12)−1−|−3|+√−83=1+2﹣3+(﹣2)=﹣2; (2)(x −1x)÷x 2−2x+1x=x 2−1x ⋅x (x−1)2=(x+1)(x−1)(x−1)2=x+1x−1. 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 【解答】解:(1)原式=﹣8+3﹣3+2√2 =﹣8+2√2.(2)原式=a(a+2)(a−2)÷a+2−2a+2 =a(a+2)(a−2)•a+2a=1a−2. 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 【解答】解:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12 =1+5﹣3+2√3 =3+2√3; (2)a−1a 2÷(1−1a 2) =a−1a2⋅a 2(a−1)(a+1)=1a+1.28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 【解答】解:(1)原式=√3−1+2×√32+2=√3−1+√3+2=2√3+1;(2)原式=[x−1(x+1)(x−1)−x+1(x+1)(x−1)]•(x+1)(x−1)2 =x−1−x−1(x+1)(x−1)•(x+1)(x−1)2=﹣1. 29.(2022•徐州一模)计算:(1)√12+4﹣1﹣(12)﹣1+|−√3|; (2)(1x+3−1)×x 2+6x+9x 2−4. 【解答】解:(1)√12+4﹣1﹣(12)﹣1+|−√3| =2√3+14−2+√3=3√3−74;(2)(1x+3−1)×x 2+6x+9x 2−4=1−x−3x+3•(x+3)2(x+2)(x−2)=−2−x x+3•(x+3)2(x+2)(x−2) =−x+3x−2.30.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a. 【解答】解:(1)|−4|−20220+√273−(13)−1=4﹣1+3﹣3=3;(2)(a +2a+1a )÷a 2−1a=a 2+2a+1a •a (a+1)(a−1) =(a+1)2a •a (a+1)(a−1) =a+1a−1.。

九年级数学下册中考专题一《数与式》测试题含答案

九年级数学下册中考专题一《数与式》测试题含答案

中考专题一《数与式》测试题含答案(考试时间120分钟,试卷满分120分)一、选择题1.上海世博会是我国第一次举办的综合类世界博览会.据统计自2010年5月1日开幕至5月31日,累计参观人数约为8 030 000人,将8 030 000用科学记数法表示应为 ( ) A .480310⨯ B .580.310⨯ C .68.0310⨯ D .70.80310⨯ 2.下列各数中,相反数等于5的数是( ).A .-5B .5C .-15D .153、实数2-,0.3,172,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5 4.在 -33 -1, 0 这四个实数中,最大的是( )A . -3B 3C . -1D . 0 5、-8的立方根是( )A 、2B 、 -2C 、-21 D 、21 6、计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测32009+1的个位数字是( )A .0B .2C .4D .87、如图,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示正确的是( ) A .a <1<-aB .a <-a <1C .1<-a <aD .-a <a <18、若23(2)0m n -++=,则2m n +的值为( ) A .4-B .1-C .0D .49、如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n ,…,请你探究出前n 行的点数和所满足的规律.若前n 行点数和为930,则n =( ) A .29 B .30 C .31 D .321A10.已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( ) A .51x -- B .51x + C .131x -- D .131x + 11.下列各式计算不正确的是( )A .(3)3--=B 2=C .339)3(x x =D .2121=-12.如果33-=-b a ,那么代数式b a 35+-的值是( )A .0B .2C .5D .813.把多项式2288x x -+分解因式,结果正确的是( )A .()224x - B .()224x - C .()222x - D .()222x +14.如果的取值是和是同类项,则与n m y x y xm m n 31253--( )A .3和-2B .-3和2C .3和2D .-3和-2 15.下列运算正确的是( ) A .B .24±=C .532a a a =⋅D .16.若54,32==yx,则y x 22-的值为( )A.53 B.-2 C.553 D.5617.若分式3621x x -+的值为0,则( ) A .x =-2 B .x =-12C .x =12D .x =2 18、函数11y x =+的自变量x 的取值范围是( ) A .x >-1B .x <-1C .x ≠-1D .x ≠119.要使式子a +2a有意义,a 的取值范围是( ) A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠0 20.化简1111--+x x ,可得( )A .122-x B .122--x C .122-x x D .122--x x21、估算31-2的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 22、下列计算正确的是( )A 、20=102B 、632=⋅ C 、224=- D 、2(3)3-=-23.下列根式中,不是..最简二次根式的是( ) A .7B .3C .12D .224.若11x x ---2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3 25.若a <1,化简2(1)1a --=( )A .2-aB .a -2C .aD .a -二、填空题26、若将三个数11,7,3-表示在数轴上,其中能被如图所示的墨迹覆盖的数是____________.27、有一组数列:2,3-,2,3-,2,3-,2,3-,…,根据这个规律,那么第2010个数是____ __.28.某商品的进价为x 元,售价为120元,则该商品的利润率可表示为__________. 29.已知:23=+b a ,1=ab ,化简)2)(2(--b a 的结果是 . 30.将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是___________.31.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).32.已知13x x +=,则代数式221x x+的值为_________. 33.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了.34.已知,2,1=+-=b a ab ,=+baa b 则式子. 35.如图,在数轴上点A 和点B 之间的整数是 .三、计算题 36、计算:01)2(3)31(5---+--π37、计算:1221)21()14.3(60tan 2200+-+----π .38.已知12=+x y ,求代数式)4()1(22x y y --+的值.39.化简,再求值: aa a a a -+-÷--2244)111(,其中1-=a .专题一《数与式》测试卷答案一、选择题1.C 2.A 3、A 4.D 5、B 6、C 7、A 8、A 9、B 10.A 11.C 12.D 13.C 14.C 15.C 16.A 17.D 18、C 19.D 20.B 21、C 22、B 23.C 24.C 25. D 二、填空题26、7 27、-3 28.120120100%x x x x --⎛⎫⨯ ⎪⎝⎭或 29.2 30.()()22a b a b a b +-=- 31.10,31n + 32.7 33.40% 34.-6 35.2三、计算题36、解:原式=5-3+3-1 =4 37、解:原式=34132++--=3332++-=5 .38.解:原式=x y y y 41222+-++=142++x y =1)2(2++x y ,当12=+x y 时,原式=3112=+⨯.39.解:()()22211442(1)1122a a a a a aa a a a a a --+--÷=⋅=-----, 当a=-1时,原式=112123a a -==---.。

中考数学复习基本过关训练综合训练1。数与式

中考数学复习基本过关训练综合训练1。数与式

卷1:数与式班级: 姓名: 分数:一、选择题:(1-8题,8×3分=24分)1、与数轴上的点是一一对应的是---------------------------------------( )(A )有理数 (B )实数 (C )无理数 (D )整数2、下列各数中,无理数是---------------------------------------------( )(A )02 (B )122 (C )124 (D )1383、在下列计算中,正确的是-------------------------------------------( )(A )633a a a =+ (B )a a a -=-÷-45)()( (C )54a a a =⋅- (D )632)(a a =-4、化简2)3(-的结果是---------------------------------------------( )(A )-3 (B )3或-3 (C )3 (D )95--------------------------( )(A )(B )(C )(D )6、把23xy x -分解因式,正确的结果是---------------------------------( )(A )))((xy x xy x -+ (B))(22y x x -(C) 2)(y x x - (D)))((y x y x x +-7、若()2120m n -++=,则m n +的值为-----------------------------( ) (A )-1 (B )-3 (C )3 (D )不能确定8、如果a 与-2互为相反数,那么a 等于--------------------------------( )(A )2 (B )12 (C )12- (D )-2 二、填空题:(9-24题,16×4分=64分)9、-5的倒数是 .10= .11、计算=-+)2)(2(b a b a .12、用科学记数法表示-3820000= . 13、当x= 时,分式25-x x没有意义. 14、x 25-有意义,则x . 15、计算=---111x x x . 16、计算52-= .17、计算=÷553. 18、16的平方根是 . 19、化简=-231 .20、因式分解:=-a a 163.21、数轴上一点到原点的距离为5,则该点表示的数为 . 22、若132+-x a与b a x 321+是同类项,则x= . 23、若22x x c ++在实数范围内不能分解因式,则c 的取值范围为______________. 24、一种商品成本价为x 元,按成本价增加25%定出价格销售,则销售价格为 _元. 三、解答题(25-31题,4×8分+3×10分=62分) 25、计算:2161831502-+ 26、211)3(2)31(02-+---+--27、计算:)1)(3()3)(3()12--+-++-x x x x x (28、计算:⎪⎭⎫⎝⎛-÷+-+4)223(2a a a a a a29、化简并求值yx y x +⨯+2)11(,其中x=2,3=y30、化简并求值yx y yx x +--,其中33x y ==31、在实数范围内因式分解:236x x a -+卷1答案:一、选择题1、B2、B3、B4、C5、D6、D7、A8、A 二、填空题9、51- 10、3 11、224b a - 12、61082.3⨯- 13、x =2 14、x ≤5215、-1 16、25- 17、5318、2± 19、23-- 20、)4)(4(-+a a a 21、5± 22、x =1 23、c >1 24、x 45 三、解答题25、29 26、7 27、5632--x x 28、42-a 29、化简得:xy 2=3330、化简得:=-+y x y x 3- 31、当a >3时,236x x a -+在实数范围内不能分解;当a =3时,236x x a -+=()231x -;当a >3时,236x x a -+=⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-+-3393333933a x a x。

中考数学总复习《数与式》专项检测卷(附带答案)

中考数学总复习《数与式》专项检测卷(附带答案)

中考数学总复习《数与式》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(共20小题) 1.(2022•无锡)分式32x-中x 的取值范围是( ) A .2x ≠B .2x ≠-C .2x -D .2x2.(2022•无锡)下列运算正确的是( ) A .2222a a -=B .224()ab ab =C .236a a a ⋅=D .844a a a ÷=3.(2022•钢城区)7-的相反数是( ) A .7-B .17-C .7D .174.(2022•陕西)计算:32(4)(a b -= ) A .538a bB .6216a bC .628a b -D .5216a b5.(2022•陕西)2022年6月5日上午10时44分07秒,熊熊的火焰托举着近500000千克的火箭和飞船冲上云霄,这是我国长征2F 运载火箭将“神舟十四号”载人飞船送入太空的壮观情景.其中,数据500000用科学记数法可以表示为( ) A .60.510⨯B .45010⨯C .4510⨯D .5510⨯6.(2022•陕西)21-的绝对值为( ) A .21B .21-C .121D .121-7.(2022•德州)下列实数为无理数的是( ) A .12B .0.2C .5-D 38.(2022•德州)已知2M a a =-,2(N a a =-为任意实数),则M N -的值( ) A .小于0B .等于0C .大于0D .无法确定9.(2022•德州)下列运算正确的是( ) A .22423a a a +=B .236(2)8a a =C .326a a a ⋅=D .222()a b a b -=-10.(2022•淮安)计算23a a ⋅的结果是( ) A .2aB .3aC .5aD .6a11.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为( ) A .80.1110⨯B .71.110⨯C .61110⨯D .61.110⨯12.(2022•攀枝花)2的平方根是( ) A .2B .2±C 2D .213.(2022•攀枝花)下列各式不是单项式的为( ) A .3B .aC .baD .212x y14.(2022•攀枝花)实数a 、b 在数轴上的对应点位置如图所示,下列结论中正确的是( )A .2b >-B .||b a >C .0a b +>D .0a b -<15.(2022•内蒙古)下列计算正确的是( ) A .336a a a +=B .1a b a b÷⋅=C .22211a a a -=--D .3325()b b a a=16.(2022•内蒙古)实数a 在数轴上的对应位置如图所示,21|1|a a +-的化简结果是( )A .1B .2C .2aD .12a -17.(2022•淄博)计算3262(2)3a b a b --的结果是( ) A .627a b -B .625a b -C .62a bD .627a b18.(2022•淄博)若实数a 的相反数是1-,则1a +等于( ) A .2B .2-C .0D .1219.(2022•淄博)下列分数中,和π最接近的是( ) A .355113B .22371C .15750D .22720.(2022•巴中)下列运算正确的是( ) A 2(2)2-- B .111()33-=- C .236()a a =D .842(0)a a a a ÷=≠二、填空题(共5小题)21.(2022•无锡)我市2021年GDP 总量为14000亿元,14000这个数据用科学记数法可表示为 .22.(2022•038(1)--= .23.(2022•黄石)计算:20(2)(20223)--= . 24.(2022•襄阳)化简分式:ma mba b a b+=++ .25.(2022•菏泽)若22150a a --=,则代数式244()2a a a a a --⋅-的值是 . 三、解答题(共6小题) 26.(2022•无锡)计算: (1)1|5|(2)tan 45--+-+︒; (2)26142m m m----. 27.(2022•陕西)计算:115(2)28()3-⨯-+⨯-.28.(2022•内蒙古)先化简,再求值:2344(1)11x x x x x -+--÷--,其中3x =. 29.(2022•淮安)(1)计算:0|5|(32)2tan 45-+--︒; (2)化简:23(1)93a a a ÷+--. 30.(2022•阜新)先化简,再求值:22691(1)22a a a a a -+÷---,其中4a =.31.(2022•徐州)计算: (1)202211(1)|33|()93--+--+;(2)22244(1)x x x x+++÷.一、选择题(共14小题)1.(2023•绥化一模)2±是4的( )区域模拟A .平方根B .相反数C .绝对值D .倒数2.(2023•达州一模)12023-的倒数的绝对值是( ) A .2023B .12023C .2023-D .12023-3.(2023•汶上县一模)2022年3月11日,新华社发文总结2021年中国取得的科技成?.其中中国高铁运营里程超40000000米.则数据40000000用科学记数法可表示为( ) A .80.410⨯B .7410⨯C .84.010⨯D .6410⨯4.(2023•张家口二模)“中国智造”势在必行.据2023年1月21日消息,英特尔公司定购了一台AML 公司的约23亿元人民币的最先进的EUV 光刻机;据2022年9月8日消息,武汉购买了一台价格约为5亿元人民币的非EUV 光刻机.由于美国的干涉,我国买不到最先进的EUV 光刻机;就连我国购买较低端的DUV 光刻机,美国近期都开始干涉.据2022年8月14日的消息:“中国已经购买了700多台AML 公司的光刻机.”这700台光刻机,按平均每台2亿元人民币计算,总共约合是人民币( ) A .111.410⨯元B .121.410⨯元C .101410⨯元D .120.1410⨯元5.(2023•沭阳县一模)计算33()ab 的结果是( ) A .6abB .36a bC .6a bD .39a b6.(2023•寻乌县一模)下面的计算正确的是( ) A .326a a a ⋅=B .222()a b a b -=-C .326()a a -=D .55a a -=7.(2023•明光市一模)下列运算错误的是( ) A 42=±B .2124-=C .22232a a a -=D .633a a a ÷=8.(2023•明光市一模)把多项式424a a -分解因式,结果正确的是( ) A .22(2)(2)a a a a -+B .22(4)a a -C .2(2)(2)a a a +-D .22(2)a a -9.(2023•张家口二模)下列计算不正确的是( ) A 222+=B 222C 0.452=D 1232=10.(2023•韩城市一模)下列运算正确的是( ) A .3515m m m ⋅= B .235()m m -=- C .23246()m n m n -=D .22321m m -=11.(2023•兴隆台区一模)下列运算正确的是( ) A 255=± B .0.40.2= C .3(1)1--=-D .222(3)6m m n -=-12.(2023•泰山区一模)在实数:(6)--,-5,0,|3|-中,最小的数是( ) A .(6)--B .5-C .0D .|3|-13.(2023•白塔区校级一模)化简 的结果是( ) A .﹣3B .±3C .3D .914.(2023•黄浦区二模)设a 是一个不为零的实数,下列式子中,一定成立的是( ) A .32a a ->-B .32a a >C .32a a ->-D .32aa>二、填空题(共10小题)15.(2023•兴隆台区一模)分解因式:2()9()a x y y x -+-= . 16.(2023•梁园区一模)计算:3|5|8---= .17.(2023•潮南区一模)若与y n +3x 4是同类项,则(m +n )= .18.(2023•海曙区一模)若2(2)30a b -++=,则2023()a b +的值是 . 19.(2023•慈溪市一模)在1-,-2,1,0这四个数中,最小的数是 . 20.(2023•崂山区一模)计算:433(2)x y xy ÷-= . 21.(2023•364 . 22.(2023•1205. 23.(2023•杨浦区二模)如果关于x 的二次三项式25x x k -+在实数范围内不能因式分解,那么k 的取值范围是 .24.(2023•张店区一模)化简22()m n mn n m m m--÷-的结果为 .三、解答题(共7小题)25.(2023•大丰区一模)计算:40218()2sin 453π---︒. 26.(2023•长安区四模)计算:2021(2)3(3)()3--︒+--. 27.(2023•1125()|234cos302-+-︒. 28.(2023•青海一模)先化简,再求值:2221111()()aba b ++-,其中11()2a -= 1b =.29.(2023•齐齐哈尔模拟)(1)计算:202302(1)(2022)(3)12tan 60π-⨯-÷-︒︒; (2)因式分解:22222()4x y x y +-.30.(2023•襄垣县一模)(131148(2)()1224-⨯-(2)下面是小颖对多项式因式分解的过程,请认真阅读并完成相应任务. 分解因式:22(3)(3)x y x y +-+.解:原式(33)(33)x y x y x y x y =++++--⋯⋯第一步(44)(22)x y x y =+-⋯⋯第二步 8()()x y x y =+-⋯⋯第三步 228()x y =- ⋯⋯第四步任务一:以上变形过程中,第一步依据的公式用字母a ,b 表示为 ;任务二:以上分解过程第 步出现错误,具体错误为 ,分解因式的正确结果为 . 31.(2023•官渡区校级模拟)已知:2420a a --=. (1)求2(4)1a a --的值; (2)求证:42204a a -=-;(3)若24251100404a b a a -=-+ 以下结论:0b > 0b = 0b < 你认为哪个正确?请证明你认为正确的那个结论.1.下列实数中 比3-小的数是( ) A .2-B .1C .0D .π-2.太阳的主要成分是氢 氢原子的半径约为0.000000000053m .这个数用科学记数法可以表示为( ) A .100.5310-⨯B .105.310-⨯C .115.310-⨯D .125310-⨯考前押题3.(1)计算:011(32)()4cos30|123-++︒--; (2)因式分解:29x y y -.4.已知2a b += 2ab = 求32231122a b a b ab ++的值.5.如图 约定:上方相邻两整式之和等于这两个整式下方箭头共同指向的整式. (1)求整式M 、P ; (2)将整式P 因式分解; (3)P 的最小值为 .参考答案一、选择题(共20小题)1.【答案】A有意义【解答】解:分式3-2x∴-≠x20解得2x≠故选:A.2.【答案】D【解答】解:222-=故A错误不符合题意;2a a a2224()=故B错误不符合题意;ab a b235⋅=故C错误不符合题意;a a a844÷=故D正确符合题意;a a a故选:D.3.【答案】C【解答】解:7-的相反数为7故选:C.4.【答案】B【解答】解:32-a b(4)2322a b=-(4)()62=;16a b故选:B.5.【答案】D【解答】解:数据500000用科学记数法表示为5⨯.510故选:D.6.【答案】A【解答】解:21-的绝对值为21故选:A.7.【答案】D是分数属于有理数故本选项不合题意;【解答】解:A.12B.0.2是有限小数属于有理数故本选项不合题意;C.5-是整数属于有理数故本选项不合题意;D3故本选项符合题意;故选:D.8.【答案】C【解答】解:M N-2(2)=---a a a222=-+a a2=-+(1)1a2a-(1)02a∴-+(1)11∴-大于0M N故选:C.9.【答案】B【解答】解:A .因为22223a a a += 故A 选项不符合题意; B .因为236(2)8a a = 故B 选项符合题意; C .因为23235a a a a +⋅== 故C 选项不符合题意; D .因为222()2a b a ab b -=-+ 故D 选项不符合题意. 故选:B .10.【答案】C【解答】解:235a a a ⋅=. 故选:C .11.【答案】B【解答】解:711000000 1.110=⨯. 故选:B .12.【答案】D【解答】解:因为2(2)2±= 所以2的平方根是2故选:D .13.【答案】C【解答】解:A 、3是单项式 故本选项不符合题意; B 、a 是单项式 故本选项不符合题意; C 、b a不是单项式 故本选项符合题意; D 、212x y 是单项式 故本选项不符合题意; 故选:C .14.【答案】B【解答】解:由数轴知 12a << 32b -<<- A ∴错误||b a > 即B 正确0a b +< 即C 错误0a b -> 即D 错误.故选:B .15.【答案】C【解答】解:3332a a a += 故A 错误 不符合题意; 2111a a b a b b b b÷⋅=⋅⋅= 故B 错误 不符合题意; 22222(1)21111a a a a a a a ---===---- 故C 正确 符合题意; 3326()b b a a= 故D 错误 不符合题意; 故选:C .16.【答案】B【解答】解:根据数轴得:01a << 0a ∴> 10a -<∴原式||11a a =++-11a a =++-2=.故选:B .17.【答案】C【解答】解:原式62626243a b a b a b =-= 故选:C .18.【答案】A【解答】解:实数a 的相反数是1- 1a ∴=12a ∴+=.故选:A .19.【答案】A【解答】解:355 3.1416113≈; 223 3.140871≈; 157 3.1450=; 22 3.14287≈因为 3.1416π≈所以和π最接近的是355113. 故选:A .20.【答案】C【解答】解:A 2(2)2- 选项错误 不符合题意;B 、11()33-= 选项错误 不符合题意; C 、236()a a = 选项正确 符合题意; D 、844(0)a a a a ÷=≠ 选项错误 不符合题意;故选:C .二、填空题(共5小题)21.【答案】41.410⨯.【解答】解:414000 1.410=⨯ 故答案为:41.410⨯.22.【答案】3-.【解答】解:原式21=-- 3=-.故答案为:3-.23.【答案】3.【解答】解:原式41=- 3=.故答案为:3.24.【答案】m .【解答】解:原式ma mba b +=+()m a b a b +=+m =故答案为:m .25.【答案】15.【解答】解:244()2a a a a a --⋅-22442a a a a a -+=⋅-22(2)2a a a a -=⋅-22a a =-22150a a --=2215a a ∴-=∴原式15=.故答案为:15.三、解答题(共6小题)26.【答案】(1)112;(2)22m +.【解答】解:(1)原式1512=-+112=;(2)原式62(2)(2)(2)(2)m m m m m m -+=++-+-24(2)(2)m m m -=+-22m =+.27.【答案】9-.【解答】解:原式10163=- 1043=-+-9=-.28.【答案】22x x +-- 5-.【解答】解:原式223(1)11(2)x x x x ---=⋅-- 2(2)(2)11(2)x x x x x +--=-⋅-- 22x x +=-- 当3x =时 原式3232+=-- 5=-. 29.【答案】(1)4;(2)13a +. 【解答】解:(1)原式5121=+-⨯ 512=+-4=;(2)原式(3)(3)3a a a a a =÷+-- 3(3)(3)a a a a a-=⨯+- 13a =+. 30.【答案】3a a- 14. 【解答】解:原式2(3)21()(2)22a a a a a a --=÷---- 2(3)3(2)2a a a a a --=÷-- 2(3)2(2)3a a a a a --=⋅-- 3a a -=当4a =时 原式43144-==.31.【答案】(1)43-; (2)2x x +. 【解答】解:(1)202211(1)|33|()93--+--+13333=+--+43=-;(2)22244(1)x x x x +++÷ 222(2)x x x x +=⋅+ 2x x =+.一、选择题(共14小题)1.【答案】A【解答】解:2±是4的平方根. 故选:A .2.【答案】A【解答】解:12023-的倒数是2023- 12023∴-的倒数的绝对值是|2023|2023-=. 故选:A .3.【答案】B区域模拟【解答】解:740000000410=⨯. 故选:B .4.【答案】A【解答】解:11200000000700140000000000 1.410⨯==⨯元. 故选:A .5.【答案】D【解答】解:33()ab333()a b =39a b =.故选:D .6.【答案】C【解答】解:A 、32a a a ⋅= 故原计算错误 不合题意; B 、222()2a b a b ab -=+- 故原计算错误 不合题意; C 、326()a a -= 故原计算正确 符合题意; D 、54a a a -= 故原计算错误 不合题意; 故选:C .7.【答案】A【解答】解:A 42= 故A 符合题意;B 、2124-= 故B 不符合题意; C 、22232a a a -= 故C 不符合题意; D 、633a a a ÷= 故D 不符合题意;故选:A .8.【答案】C【解答】解:原式22(4)a a =- 2(2)(2)a a a =+-. 故选:C .9.【答案】C【解答】解:A 、原式2= 所以A 选项正确 不合题意; B 、原式2= 所以B 选项正确 不合题意; C 、原式10= 所以C 选项错误 符合题意; D 、原式2= 所以D 选项正确 不合题意. 故选:C .10.【答案】C【解答】解:A 、358m m m ⋅= 故A 不符合题意; B 、236()m m -=- 故B 不符合题意; C 、23246()m n m n -= 故C 符合题意; D 、22232m m m -= 故D 不符合题意; 故选:C .11.【答案】C【解答】解:A 255 故A 不符合题意; B 100.4= 故B 不符合题意;C 、3(1)1--=- 故C 符合题意;D 、22(3)9m m -= 故D 不符合题意;故选:C .12.【答案】B【解答】解:(6)6--= |3|3-=50|3|(6)∴-<<-<--.故选:B .13.【答案】C【解答】解:=3.故选:C .14.【答案】A【解答】解:A .32a a ->- 故本选项符合题意;B .若1a =- 则32a a < 故本选项不符合题意;C .若1a = 则32a a -<- 故本选项不符合题意;D .若1a =- 则32a a< 故本选项不符合题意. 故选:A .二、填空题(共10小题)15.【答案】()(3)(3)x y a a -+-.【解答】解:2()9()a x y y x -+-2()(9)x y a =--()(3)(3)x y a a =-+-故答案为:()(3)(3)x y a a -+-16.【答案】3-.【解答】解:3|5|8----5(2)=---52=-+3=-故答案为:3-.17.【答案】﹣1.【解答】解:∵与y n +3x 4是同类项∴m +3=4 n +3=1∴m =1 n =﹣2∴m +n=1+(﹣2)=﹣1.故答案为:﹣1.18.【答案】1-.【解答】解:由题意得 20a -= 30b +=解得2a = 3b =-所以 20232023()(23)1a b +=-=-.故答案为:1-.19.【答案】2-.【解答】解:|1|1-=|2|2-=21> 21∴-<-2101∴-<-<<∴在1-2- 1 0中最小的数为:2-.故答案为:2-.20.【答案】18x-.【解答】解:原式4333(8)x y x y=÷-1 8x=-.故答案为:18x-.21.【答案】4.【解答】3644=.故答案为:4.22.【答案】0.【解答】解:原式52510=2525==.故答案为:0.23.【答案】254k>.【解答】解:关于x的二次三项式25x x k-+在实数范围内不能分解因式就是对应的二次方程250x x k -+=无实数根∴△2(5)42540k k =--=-<254k ∴>. 故答案为:254k >. 24.【答案】1m n-. 【解答】解:原式222m n m mn n m m--+=÷ 2()m n m m m n -=⋅- 1m n=-. 故答案为:1m n -. 三、解答题(共7小题)25.2.【解答】解:40218()2sin 453π---︒212212=-+- 12212=-+2=26.【答案】5-.【解答】解:2021(2)3(3)()3--︒+--34319=+-4119=-+-5=-.27.【答案】533-【解答】1125()|234cos302-+-︒ 352(23)4=-+--522323=-+533=-28.【答案】222a ba b + 32.【解答】解:2221111()()a b a b ++-22222()a b b a ab a b +-=+2222222a ab b b a a b +++-=22222ab b a b +=222a ba b += 当11()22a -== 1b =时 原式2222121⨯+⨯=⨯424+=32=.29.【答案】(1)829;(2)22()()x y x y +-.【解答】解:(1)原式11192332=-⨯÷+139=-+ 829=; (2)原式2222(2)(2)x y xy x y xy =+++-22()()x y x y =+-.30.【答案】22()()a b a b a b -=+- 进行乘法运算 8()()x y x y +-.【解答】解:(1)原式1143(8)()2324=-⨯--1143238()24=+⨯- 2342=- 232=;(2)原式(33)(33)x y x y x y x y =++++--⋯⋯第一步(44)(22)x y x y =+-⋯⋯第二步8()()x y x y =+-⋯⋯第三步228()x y =-.⋯⋯第四步任务一:以上变形过程中 第一步依据的公式用字母a b 表示为22()()a b a b a b -=+-;任务二:以上分解过程第四步出现错误 具体错误为进行乘法运算 分解因式的正确结果为8()()x y x y +-.故答案为:22()()a b a b a b -=+- 进行乘法运算 8()()x y x y +-.31.【答案】(1)3;(2)见解答;(3)0b >.【解答】(1)解:2420a a --= 242a a ∴-=2(4)1a a ∴--2281a a =--22(4)1a a =--221=⨯-3=;(2)证明:2420a a --=224a a ∴-=222(2)(4)a a ∴-= 即4224416a a a -+= 42204a a ∴-=-;(3)解:0b > 证明如下: 由(2)知42204a a -=-42204a a ∴=-4222()(204)a a ∴=-84240016016a a a ∴=-+ ∴842110040164a a a =-+由(2)知42204a a -=-42204a a ∴=-∴421514a a =-4242481511411004044a a b a a a a -∴===-+2420a a --=0a '≠40a ∴>0b ∴>.1.【答案】D【解答】解:A 、|2||3|-<- 因此23->- 故A 不符合题意; B 、31-< 故B 不符合题意; C 、30-< 故C 不符合题意; D 、|||3|π->- 因此3π-<- 故D 符合题意. 故选:D .2.【答案】C【解答】解:110.000000000053 5.310-=⨯. 故选:C .3.【解答】解:(1)原式3134232=++⨯- 4=; (2)原式2(9)y x =-考前押题(3)(3)y x x =+-.4.【解答】解:原式32231122a b a b ab =++ 221(2)2ab a ab b =++21()2ab a b =+2a b += 2ab =∴原式12442=⨯⨯=.5.【答案】(1)520x -;(2)4(2)(2)P x x =+-;(3)16-.【解答】解:(1)根据题意得:2(3420)3(3)M x x x x =----22342039x x x x =---+520x =-;223420(2)P x x x =--++ 22342044x x x x =--+++ 2416x =-;(2)2416P x =-24(4)x =-4(2)(2)x x =+-;(3)2416P x =- 20x∴当0x =时,P 的最小值为16-. 故答案为:16-。

中考数学《数与式》专题测试卷(含答案)

中考数学《数与式》专题测试卷(含答案)

中考数学《数与式》专题测试卷(含答案)(时间:120分钟 总分:120分)一、选择题(每小题3分,共30分)1.下列各数中是有理数的是( )A.πB.0C. 2D.35 2.截至2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿美元,则3.11×104亿表示的原数为( )A.311000亿B.31100亿C.3110亿D.311亿3.用计算器依次按键 3=得到的结果最接近的是( )A.1.5B.1.6C.1.7D.1.84.在实数|-3|,-2,0,π中,最小的数是( )A .|-3|B .-2C .0D .π5.下列各式中正确的是( )A .9=±3B .(-3)2=-3C .39=3 D .12-3= 36.如图,一块砖的A ,B ,C 三个面的面积比是4∶2∶1.如果A ,B ,C 面分别向下放在地上,地面所受压强为p 1,p 2,p 3,压强的计算公式为p =F S,其中p 是压强,F 是压力,S 是受力面积,则p 1,p 2,p 3,的大小关系正确的是( )A .p 1>p 2>p 3B .p 1>p 3>p 2C .p 2>p 1>p 3D .p 3>p 2>p 17.下列等式成立的是( )A .x 2+3x 2=3x 4B .0.00028=2.8×10-3C .(a 3b 2)3=a 9b 6D .(-a +b )(-a -b )=b 2-a 28.已知x 2-3x -4=0,则代数式x x 2-x -4的值是( ) A .3 B .2 C .13 D .129.如图,数轴上有三个点A ,B ,C ,若点A ,B 表示的数互为相反数,则图中点C 对应的数是( )A .-2B .0C .1D .410.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图1可以得到(a +b )2=a 2+2ab +b 2,那么利用图2所得到的数学等式是( )A .(a +b +c )2=a 2+b 2+c 2B .(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bcC .(a +b +c )2=a 2+b 2+c 2+ab +ac +bcD .(a +b +c )2=2a +2b +2c二、填空题(每小题4分,共24分)11.一个正数的平方根分别是x +1和x -5,则x = .12.计算:18×13-24,其结果是 . 13.定义新运算:a ※b =a 2+b ,例如3※2=32+2=11,已知4※x =20,则x = .14.已知ab =a +b +1,则(a -1)(b -1)的值为 .15.若a -1a =6,则a 2+1a 2的值为 . 16.已知a 1=t t -1,a 2=11-a 1,a 3=11-a 2,…, a n +1=11-a n(n 为正整数,且t≠0,1),则a 2016= .(用含有t 的代数式表示) 三、解答题(共66分)17.(6分)计算:(1)(-1)2018+|1-2|-38;(2)-|4-12|-(π-3.14)0+(1-cos 30°)×(12)-2.18.(8分)先化简,再求值:(a -2b )(a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.19.(8分)已知1x -1y =3,求分式2x -14xy -2y x -2xy -y的值.20.(10分)已知多项式A =2x 2-xy +m y -8,B =-n x 2+xy +y +7,A -2B 中不含有x2项和y 项,求n m +mn 的值.21.(10分)先化简,再求值:(x +1x 2-x -x x 2-2x +1)÷1x,其中x =2+1.22.(12分)已知有理数m ,n 满足(m +n)2=9,(m -n)2=1.求下列各式的值.(1)mn ;(2)m 2+n 2.23.(12分)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数,如:83=6+23=2+23=223.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如x -1x +1,x 2x -1这样的分式就是假分式;再如:3x +1,2x x 2+1这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:x -1x +1=(x +1)-2x +1=1-2x +1; 解决下列问题:(1)分式2x是 分式(填“真”或“假”); (2)将假分式x 2-1x +2化为带分式; (3)如果x 为整数,分式2x -1x +1的值为整数,求所有符合条件的x 的值.答案一、选择题(每小题3分,共30分)1. B2. B3. C4. B5. D6. D7. C8. D9. C10. B二、填空题(每小题4分,共24分)11.212.-613. 4 .14. 2 .15. 8 .16. 1t . 三、解答题(共66分)17.(6分)计算:(1) 解:原式=2-2;(2)解:原式=-1.18.解:原式=4ab,代入得:-4.19.解:4.20.解:m=2,n=-1,n m+mn=-1.21.解:原式=-1(x-1)2,当x=2+1时,原式=-12.22.解:(1)mn=2;(2)m2+n2=5.23.解:(1)分式2x是真分式;(2)原式=x2+2x-2x-1x+2=x-2x+1x+2=x-2(x+2)-3x+2=x-2+3x+2;(3)原式=2(x+1)-3x+1=2-3x+1,由x为整数,分式的值为整数,得到x+1=-1,-3,1,3,解得:x=-2,-4,0,2,则所有符合条件的x值为0,-2,2,-4.。

中考数学专题:数与式

中考数学专题:数与式

中考数学专题:数与式一.选择题(共20小题)1.如果规定收入为正,那么支出为负,收入2元记作+2,支出5元记作()A.5元B.﹣5元C.﹣3元D.7元2.下列数轴表示正确的是()A.B.C.D.3.﹣的相反数是()A.B.C.﹣D.﹣4.﹣9的绝对值是()A.9B.﹣9C.D.﹣5.4的倒数为()A.B.2C.1D.﹣46.下列各数:﹣4,﹣2.8,0,|﹣4|,其中比﹣3小的数是()A.﹣4B.|﹣4|C.0D.﹣2.87.在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是()A.戊同学手里拿的两张卡片上的数字是8和9B.丙同学手里拿的两张卡片上的数字是9和7C.丁同学手里拿的两张卡片上的数字是3和4D.甲同学手里拿的两张卡片上的数字是2和98.某地区2021年元旦的最高气温为9℃,最低气温为﹣2℃,那么该地区这天的最低气温比最高气温低()A.7℃B.﹣7℃C.11℃D.﹣11℃9.从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.410.计算:3×(﹣2)=()A.1B.﹣1C.6D.﹣611.计算(﹣6)÷(﹣)的结果是()A.﹣18B.2C.18D.﹣212.计算(﹣2)2的结果是()A.4B.﹣4C.1D.﹣113.若|x+2|+(y﹣3)2=0,则x﹣y的值为()A.﹣5B.5C.1D.﹣114.生活中常用的十进制是用0~9这十个数字来表示数,满十进一,例:12=1×10+2,212=2×10×10+1×10+2;计算机也常用十六进制来表示字符代码,它是用0~F来表示0~15,满十六进一,它与十进制对应的数如表:012…891011121314151617…十进制十六012…89A B C D E F1011…进制例:十六进制2B对应十进制的数为2×16+11=43,10C对应十进制的数为1×16×16+0×16+12=268,那么十六进制中14E对应十进制的数为()A.28B.62C.238D.33415.用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.14116.太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为()A.1.5×108B.15×107C.1.5×107D.0.15×10917.2019新型冠状病毒的直径是0.00012mm,将0.00012用科学记数法表示是()A.120×10﹣6B.12×10﹣3C.1.2×10﹣4D.1.2×10﹣518.用四舍五入法将130542精确到千位,正确的是()A.131000B.0.131×106C.1.31×105D.13.1×10419.利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A.﹣2B.2C.±2D.420.与下面科学计算器的按键顺序:对应的计算任务是()A.0.6×+124B.0.6×+124C.0.6×5÷6+412D.0.6×+412二.填空题(共15小题)21.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.22.定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={}.23.点A在数轴上的位置如图所示,则点A表示的数的相反数是.24.2020的相反数是.25.﹣5的绝对值是.26.﹣2的相反数是;的倒数是.27.用“>”或“<”符号填空:﹣7﹣9.28.计算:|﹣2+3|=.29.计算:﹣2﹣1=.30.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}=.31.若=2,=6,则=.32.阅读材料:若a b=N,则b=log a N,称b为以a为底N的对数,例如23=8,则log28=log223=3.根据材料填空:log39=.33.刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中为红珠,为绿珠,有8个黑珠.问刘凯的蓝珠最多有个.34.据报道,2021年全国高考报名人数为1078万,将1078万用科学记数法表示为1.078×10n,则n=.35.原子很小,1个氧原子的直径大约为0.000000000148m,将0.000000000148用科学记数法表示为.三.解答题(共25小题)36.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.37.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.38.计算:(﹣2)×(﹣3)﹣[5﹣(﹣3)]+(﹣7﹣1)÷2.39.计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.40.计算:.41.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.42.如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.43.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.44.问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a ≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.45.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数﹣“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.46.阅读以下材料:苏格兰数学家纳皮尔(J.Npler,1550﹣1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log39可以转化为指数式32=9.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N).又∵m+n=log a M+log a N,∴log a(M•N)=log a M+log a N.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①log232=,②log327=,③log71=;(2)求证:log a=log a M﹣log a N(a>0,a≠1,M>0,N>0);(3)拓展运用:计算log5125+log56﹣log530.47.计算:+﹣()﹣2+|3﹣|.48.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式;(2)求证:log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log69+log68﹣log62=.49.计算:(1)|﹣3|+()﹣1﹣()0;(2)2a3•a3﹣(a2)3.50.化简:(a+b)2﹣b(2a+b).51.计算(x+y)(x2﹣xy+y2)52.(1)计算:4×(﹣3)+|﹣8|﹣.(2)化简:(a﹣5)2+a(2a+8).53.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:54.计算:x(x+2)+(1+x)(1﹣x).55.计算:[a3•a5+(3a4)2]÷a2.56.计算:(x+2y)2+(x﹣2y)(x+2y)+x(x﹣4y).57.先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.58.(1)计算:()﹣2+(﹣)0﹣2cos60°﹣|3﹣π|(2)分解因式:6(a﹣b)2+3(a﹣b)59.分解因式:(x﹣1)2+2(x﹣5).60.(1)计算:sin30°+﹣(3﹣)0+|﹣|(2)因式分解:3a2﹣48参考答案一.选择题(共20小题)1.B;2.D;3.B;4.A;5.A;6.A;7.A;8.C;9.C;10.D;11.C;12.A;13.A;14.D;15.C;16.A;17.C;18.C;19.B;20.B;二.填空题(共15小题)21.﹣10907;22.1,0,﹣1;23.﹣3;24.﹣2020;25.5;26.2;2;27.>;28.1;29.﹣3;30.1.1;31.12;32.2;33.20;34.7;35.1.48×10﹣10;三.解答题(共25小题)36.;37.;38.;39.;40.;41.;42.;43.×(1+)=2﹣;×(1+)=2﹣;44.(a﹣1);(4a﹣4);(2a﹣2);(8a﹣8);8(a﹣1)(b﹣1)(c﹣1);45.;46.5;3;0;47.;48.4=log381;2;49.;50.;51.;52.;53.;54.;。

中考数学数与式专题训练50题含答案

中考数学数与式专题训练50题含答案

中考数学数与式专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.下列四个数中,是无理数的是( )A B .1π3 C .52 D .3.142.﹣2的相反数为( )A .0B .﹣1C .﹣2D .23a 的取值范围是( )A .1a ≥-B .0a ≠C .1a >-D .0a > 4.下列多项式相乘,能用平方差公式计算的是( )A .()()22x x ++B .()()x y x y -+-C .()()22x y x y -+D .()()x y x y --+ 5.计算(﹣20)+17的结果是( )A .﹣3B .3C .﹣2017D .20176﹣5的结果为( )A .5B .5C .6D .17.下列计算正确的是( )A .336a a a +=B .336a a a ⋅=C .()325a a =D .33()ab ab =8.当 x =-3 )A .3B .-3C .±3 D9.点P (2a +1,4)与P '(1,3b -1)关于原点对称,则2a +b =( )A .3B .-2C .-3D .210.科学家使用某技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.用科学记数法表示数据0.00000000022,其结果是( ) A .90.2210-⨯ B .102.210-⨯ C .112210-⨯ D .80.2210-⨯ 11.下列运算不能运用平方差公式的是( )A .(23)(23)m m +-B .(23)(23)m m -+-C .(23)(23)m m ---D .(23)(23)m m -+-- 12.下面四个数中,最大的数是( )A .4-B .1-C .0D .513.下列计算正确的是( )A .2323()n n x x +=B .233262)((())a a a +=C .23236))((()a b a b +=+D .22[(])n n x x -=14.计算2a 2·3a 3的结果为( )A .6a 5B .-6a 5C .6a 6D .-6a 6 15.下列计算正确的是( )AB .2=C 2D 32 16.在式子“322(1)--中”的“○”内填入下列运算符号,计算后结果最大的是( ) A .+B .-C .×D .÷ 17.计算()()()()()()x c b c b c x a x b a b x b b a x a ---++------所得的结果是( ) A .x c - B .x a - C .1x a - D .1-x b18.下列各数中,是有理数的是( )A .面积为3的正方形的边长B .体积为8的正方体的棱长C .两直角边分别为2和3的直角三角形的斜边长D .长为3,宽为2的长方形的对角线长19.下列各题中的两项是同类项的是( )A .23x y 和-23x y ;B .22a b 和20.2ab ;C .11abc 和9bc ;D .26和2x .二、填空题20.要使式子2x x -有意义,则x 的取值范围______. 21.已知,2253a b ab a b +==+=,,______________.22.比较大小: 1.5-____34-(用<,>,= 填空).23.如果一个数的立方根是6,则它相反数的立方根是______,它倒数的立方根是____.24.苏州公共自行车自2010年起步至今,平均每天用车量都在10万人次以上,在全国公共自行车行业排名前五名.根据测算,日均10万多人骑行公共自行车出行,意味着苏州每年因此减少碳排放6865.65吨,相当于种树近22.7万棵,对数据6865.65吨按精确到0.1吨的要求取近似值可表示为___吨.25.已知:3a b +=,则代数式22(1)(1)484a b a ab b ab ++----=__________. 26.116-的相反数是______,倒数是______,绝对值是______.27.下列代数式中的哪些是单项式,哪些是多项式,哪些是整式?3x y z ++,4xy ,1a ,22m n ,x 2+x +1x ,0,212x x -,m ,﹣2.01×105 整式集合:{_______________ …}单项式集合:{__________ …}多项式集合:{_______________…}.28m =_____. 29.若4m n -=,则228m n n --=______.30x 的取值范围是____________.31x 的取值范围为_____.32.若1139273m m ⨯⨯=,则m=__________.33_______4(填“>”“<”或“=”).34.计算:(22=_____.35.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)111113266--+=____________. 36.已知a 与b 互为相反数,c 、d 互为倒数,x 的绝对值是2,y 不能作除数,则()201122012010122()a b cd y x+-++的值等于_____. 37.已知关于x 的多式225x x k -+的一个因式是3x +,则k 的值是__.38.()()2312x x n x ax ++=++,则a 的取值____39.23(2)x y y ⎛⎫-⋅- ⎪⎝⎭=_____________.三、解答题40)2 41.解答下列问题.(1)|1(.(2)已知:2(5)49x +=,求x 的值.42.若36xy =,且5x y -=.(1)求()()22x y -+的值;(2)求22x xy y x y -+++的值.43.计算:11021|27(2022)----. 44.如图,点A 、B 、C 、D 分别表示四个高铁车站的位置.(1)用含a 、b 的代数式表示B 、D 两站之间的距离是 ;(最后结果需化简)(2)若已知B 、D 两站之间的距离是80km ,求A 、B 两站之间的距离.45.已知有理数a ,b ,c 在数轴上所对应的点分别为点A ,B ,C ,且a b =-,()2130a c ++-=.(1)求a ,b ,c 的值;(2)若将数轴折叠,使点A 与点C 重合.数轴上M ,N 两点经过上述折叠后重合,且M ,N 两点之间的距离为2022,则M 表示的数为______,N 表示的数为______.(点M 在点N 的左侧)(3)若点P 为数轴上一动点,其对应的数为x ,当点P 在点B 与点C 之间时,化简式子:31124x x x +--+-(写出化简过程).46.如图,a ,b ,c 是数轴上三个点A 、B 、C 所对应的实数.(1)将a ,b ,c ,0由大到小排列(用“>”连接)__________________;(2)a b -______0;b c -______0(填写“>”,“=”,“<”)(3)试化简:a b --47.算一算:(1)()()2228233m m m m ⋅⋅-; (2)()()53253a b ⎡⎤⋅⎢⎥⎣⎦; (3)()()453t t t -⋅-⋅-;(4)已知24m n a a ==,,求32m n a +的值;(5)已知2328162x ⨯⨯=,求x 的值.48.计算:(1)(﹣8)+10﹣(﹣2)+(﹣1)(2)()2721149353⎛⎫÷--⨯- ⎪⎝⎭ . 49.已知有A 、B 两种不同规格的货车共50辆,现计划分两趟把甲种货物306吨和乙种货物230吨运往某地,先用50辆货车共同运输甲种货物,再开回共同运输乙种货物.其中每辆车的最大..装载量如表:(1)装货时按此要求安排A 、B 两种货车的辆数,共有几种方案.(2)使用A 型车每辆费用为600元,使用B 型车每辆费用800元.在上述方案中,哪个方案运费最省最省的运费是多少元?(3)在(2)的方案下,现决定对货车司机发共2100元的安全奖,已知每辆A 型车奖金为m 元,每辆B 型车奖金为n 元,38m n <<,且m ,n 均为整数.则m =___________,n =____________.参考答案:1.B【分析】根据无理数的三种形式:①开方开不尽的数,①无限不循环小数,①化简后含有π的数,结合所给数据进行判断即可.【详解】A 3=是整数,不是无理数,故A 不符合题意;B 、1π3是无理数,故B 符合题意; C 、52是分数,不是无理数,故C 不符合题意; D 、3.14是有限小数,不是无理数,故D 不符合题意;故选:B .【点睛】本题考查了无理数的定义,解答本题的关键是熟悉无限不循环小数是无理数. 2.D【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【详解】解:﹣2的相反数为2故选D【点睛】本题考查了相反数的定义,理解相反数的定义是解题的关键.3.A【分析】根据二次根式有意义:被开方数为非负数可得出x 的取值范围.【详解】解:①①10a +≥ ,解得:1a ≥-.故选:A .【点睛】本题考查了二次根式有意义的条件,要求同学们掌握二次根式有意义则被开方数为非负数.4.C【分析】根据平方差公式:两个数的和乘两个数的差,等于两个数的平方差,字母表示为:(a +b )(a −b )=22a b -,找出整式中的a 和b ,进行判定即可.【详解】解:A 、(x +2)(x +2)=()2+2x ,不符合平方差公式的特点,故选项A 错误; B 、(−x +y )(x −y )=()2x y --,不符合平方差公式的特点,故选项B 错误;C、(2x−y)(2x+y)=224x y,符合平方差公式的特点,故选项C正确;D、(−x−y)(x+y)=()2-不符合平方差公式的特点,故选项D错误.x y+故选:C.【点睛】此题考查了平方差公式,注意抓住整式的特点,灵活变形是解题关键.5.A【分析】原式利用异号两数相加的法则计算即可得到结果.【详解】解:原式=-(20-17)=-3故选A.【点睛】本题考查了有理数的加法,熟练掌握加法法则是解本题关键.6.D【分析】根据二次根式的乘法法则即可得.【详解】解:原式5,65=-,=,1故选:D.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则是解题关键.7.B【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方等知识点进行判定即可.【详解】解:A. 333+=,选项计算错误,不符合题意;2a a aB. 336⋅=,选项计算正确,符合题意;a a aC.()326a a=,选项计算错误,不符合题意;D. 333ab a b=,选项计算错误,不符合题意;()故选:B.【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、积的乘方的运算,熟练掌握运算法则是解本题的关键.8.A【分析】把x=-3代入二次根式进行化简即可求解.【详解】解:当x =-33==.故选A.【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键.9.C【分析】根据平面直角坐标系中任意一点(),P x y ,关于原点的对称点是(),x y --可得到a b ,的值,再代入2a b +中可得到答案.【详解】解:点P (2a +1,4)与P '(1,3b -1)关于原点对称,则211a +=-,314b -=-,解得1a =-,1b ,23a b +=-,故选C .【点睛】此题主要考查了坐标系中的点关于原点对称的坐标特点,根据关于原点对称点的坐标特点求出a b ,的值是解答本题的关键.10.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:100.00000000022 2.210-=⨯.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要确定a 的值以及n 的值.11.B【分析】依据平方差公式的特点进行判断即可.【详解】解:A 、(23)(23)m m +-符合平方差公式;B 、2(23)(23)(23)(23)(23)m m m m m -+-=---=--,不符合平方差公式; C 、(23)(23)(23)(23)m m m m ---=-+-符合平方差公式;D 、(23)(23)m m -+--符合平方差公式.故选B .【点睛】此题考查完全平方公式,平方差公式,解题关键在于掌握计算公式.12.D【分析】根据正数都大于0,负数都小于0,两个负数比较大小,绝对值大的反而小进行求解即可.【详解】①-4<-1<0<5,①最大的数是5,故选D.【点睛】本题考查了有理数大小的比较,熟练掌握有理数大小比较的方法是解题的关键.13.D【分析】根据幂的乘方法则,合并同类项法则依次分析各项即可.【详解】解:A、(x2n)3=x6n,故本选项错误;B.(a2)3+(a3)2=a6+a6=2a6,(a6)2=a12,故本选项错误;C.(a2)3+(b2)3=a6+b6≠(a+b)6,故本选项错误;D.[(-x)2]n=x2n,本选项正确.故选D.【点睛】本题考查了幂的乘方法则,合并同类项法,解答本题的关键是熟练掌握幂的乘方法则:幂的乘方,底数不变,指数相乘;合并同类项法则:把同类项的系数相加,字母和字母的指数不变.14.A【分析】根据单项式乘单项式的运算法则进行运算即可.【详解】原式=6a5.故选A.【点睛】本题考查了单项式乘单项式的知识,属于基础题.15.D【分析】根据二次根式的运算法则可以对各个选项的正误作出判断.【详解】AB、=C=D3322=÷=,选项正确.故选D.【点睛】本题考查二次根式的运算,熟练掌握二次根式的运算法则是解题关键.16.A【分析】分别按各选项求出结果,然后比较即可.【详解】解:①328-=-,()211-=①-8+1=-7,-8-1=-9,-8×1=-8,-8÷1=-8,①-7>-8=-8>-9,①计算结果最大的是-7.故选:A.【点睛】本题主要考查了有理数的乘方和混合运算,掌握n a表示n个a相乘是解题的关键.17.C【分析】通过分式的加法法则,即可求解.【详解】原式=()()()()()() ()()()()()()()()() x c a b b c x a x b b cx a x b a b x a x b a b x a x b a b ------+----------=2()()()()()()()()() ax bx ac bc bx ab cx ac bx cx b bc x a x b a b x a x b a b x a x b a b --+--+--++----------=2+()()()()ax bx ac bc bx ab cx ac bx cx b bcx a x b a b--+--+---+---=2+()()()()ax bx ac bc bx ab cx ac bx cx b bcx a x b a b--+--+---+---=2+ ()()() ax ab bx bx a x b a b-----=()() ()()() a x b b x b x a x b a b------=()() ()()()a b x bx a x b a b-----=1 () x a -.故选C.【点睛】本题主要考查分式的加法法则,掌握分式的通分和约分,是解题的关键. 18.A【详解】A选项:面积为3B选项:体积为8,是有理数,此选项正确;C 、两直角边分别为2和3=,是无理数,此选项错误;D 、长为3,宽为2误.故选A.19.A【分析】同类项是指所含字母相同并且相同字母的指数也分别相等的项,根据同类项的定义判断并选出正确答案.【详解】23x y 和-23x y 是同类项,A 正确;22a b 和20.2ab 不是同类项,B 错误;11abc 和9bc 不是同类项,C 错误; 26和2x 不是同类项,D 错误;正确答案选A.【点睛】本题主要考查学生对同类项的定义的掌握,能够熟练的判断出两个式子是否是同类项是解答本题的关键.20.2x ≠【分析】根据分式的分母不为零,即20x -≠即可解答. 【详解】2x x -有意义, ∴20x -≠ 2x ∴≠【点睛】本题考查了分式有意义的条件,熟练掌握方式有意义的条件即“当分母不为零时,分式有意义”是解本题的关键.21.19【分析】根据完全平方公式将5a b +=两边平方,已知3ab =,由此即可求解.【详解】解:5a b +=两边平方得,22()5a b +=,即22225a ab b ++=,①3ab =,①22252252319a b ab +=-=-⨯=,故答案是:19.【点睛】本题主要考查的完全平方公式的应用,理解和掌握完全平方公式及其配方法是解题的关键.22.<【分析】直接根据有理数大小比较方法:正数大于0,负数小于0,正数大于负数,两个负数绝对值大的反而小,判断即可.【详解】解: 1.5-<34-, 故答案为:<.【点睛】本题考查了有理数的大小比较,熟练掌握有理数的大小比较方法是解本题的关键.23. -6 16【分析】根据立方根的概念求解.【详解】如果一个数的立方根是6,则这个数为216∴6=-16=. 故答案为:6-,16. 【点睛】本题考查了求一个数的立方根,熟练掌握概念是解题的关键.24.6865.7.【详解】试题分析:求近似值,在一般情况下,无特殊要求就用“四舍五入”, 对数据6865.65吨按精确到0.1吨的要求取近似值可表示为 6865.7吨.考点:近似值.25.-32【分析】先根据多项式乘以多项式展开,根据完全平方公式凑完全平方公式,再将3a b +=整体代入求解即可.【详解】解:22(1)(1)484a b a ab b ab ++----=()214ab a b a b ab +++-+- ()241a b a b =+-++当3a b +=时,原式23431=-⨯+43632=-=-故答案为:32-【点睛】本题考查了多项式的乘法,完全平方公式,整体代入是解题的关键.26. 116##76 67- 116##76 【分析】依据相反数、倒数、绝对值的定义求解,要区分清楚这三个容易混淆的概念,求带分数的倒数时,应先把带分数化成假分数后再求倒数. 【详解】-=-17166, ①116-的相反数是116,倒数是67-,绝对值是116. 故答案为:①116,①67-,①116. 【点睛】此题考查了相反数、绝对值和倒数的性质,要求掌握相反数、绝对值和倒数的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.27. 3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105… 4xy ,22m n ,0,m ,﹣2.01×105 (3)x y z ++ 【分析】根据整式、单项式、多项式的定义判断后选出即可.【详解】解:整式集合:{3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105 …}; 单项式集合:{ 4xy ,22m n ,0,m ,﹣2.01×105 …}; 多项式集合:{3x y z ++ …}. 故答案为:3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105…;4xy ,22m n ,0,m ,﹣2.01×105 …;3x y z ++ 【点睛】本题考查了对单项式,多项式,整式的定义的理解和运用,注意:整式包括多项式和单项式,数与字母的积是单项式,单个的数与单个的字母也是单项式,若干个单项式的和组成的代数式叫做多项式.28.1【分析】根据同类二次根式的被开方数相同可得出关于m 的方程,解出即可.【详解】解:①①13m m +=-,解得:1m =.故答案为:1【点睛】本题考查了同类二次根式的知识,一元一次方程,注意掌握同类二次根式化为最简二次根式后被开方数相同且根指数均为2.29.16【分析】将原式化简然后整体代入即可解决问题.【详解】解:①4m n -=,①228m n n --=)8()m m n n n -+-(=)8m n n +-4(=4()m n -=4×4=16.故答案为:16.【点睛】本题考查了因式分解的应用,解决本题的关键是掌握提公因式法分解因式. 30.x≥0且x≠2.【详解】试题分析:根据题意得:x≥0且x ﹣2≠0,解得:x≥0且x≠2.考点: 二次根式有意义的条件;分式有意义的条件.31.x≥﹣4【详解】分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解. 详解:根据题意得x+4≥0解得x≥-4.故答案为x≥-4.点睛:此题主要考查了二次根式有意义的条件,关键是明确二次根式的被开方数为非负数,比较简单,是常考题型.32.2【分析】把左边先逆用幂的乘方法则变形,再根据同底数幂的乘法计算,然胡两边比较即可求出m 的值.【详解】解:①1139273m m ⨯⨯=,①23113333m m ⨯⨯=,①511133m +=,①5m+1=11,①m=2.故答案为:2.【点睛】本题考查了同底数幂的乘法、以及幂的乘方法则,熟练掌握运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘. 33.<【分析】先求出328=,3464=,根据2864<即可得出答案.【详解】解:①328=,3464=, 又①2864<,4<.故答案为:<.【点睛】本题主要考查了立方根,以及实数的大小比较,关键是掌握实数的大小比较方法.34.6-【分析】直接利用完全平方公式以及二次根式的混合运算法则化简得出答案.【详解】解:原式=4+2﹣=6﹣.故答案为:6﹣.【点睛】本题主要考查完全平方公式以及二次根式的混合运算,掌握相关知识和运算法则是解题的关键.35. -15 -7.6 56 【详解】试题分析:进行有理数的加减混合运算时,可先统一成加法,再运用加法交换律,结合律进行运算.(1)-5+7-15-4+2=-5+7+(-15)+(-4)+2=-5+(-15)+[7+(-4)+2]=-15; (2)-0.5+4.3-9.6-1.8=(-0.5-1.8+4.3)-9.6=-7.6;(3)111113266--+=11115132666⎛⎫-+-+= ⎪⎝⎭ 36. 2.5-或 1.5-【分析】根据相反数、倒数、绝对值的定义得到a+b=0,cd=1,x=±2,y=0,再分别代入所求的代数式中,然后先算乘方,再算加减运算.【详解】解:①a 与 b 互为相反数,c 、d 互为倒数,x 的绝对值是2的相反数的负倒数,y 不能作除数,①a+b=0,cd=1,x=±2,y=0①当a+b=0,cd=1,x=2,y=0时,原式=2011201020121202102⨯-⨯++ =2×0-2×1+12+0=0-2+2-0= 1.5-;当a+b=0,cd=1,x=-2,y=0时,原式=20112010201212021-02⨯-⨯+ =2×0-2×1-12+0 =0-2-12-0= 2.5-;故答案为 2.5-或 1.5-【点睛】本题考查了有理数混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.掌握互为相反数的两个数和为0,互为倒数的两数的积为1是解题的关键. 37.33-【分析】设另一个因式为(2)x n -,根据多项式乘以多项式展开,左右两边对比得到等量关系求解即可;【详解】设另一个因式为(2)x n -,则2(2)(3)2(6)3x n x x n x n -+=+--,即()2225263x x k x n x n -+=+--, ∴653n k n -=-⎧⎨=-⎩, 解得1133n k =⎧⎨=-⎩, 故答案为:33-.【点睛】本题主要考查了多项式乘以多项式的应用,准确计算是解题的关键. 38.7【分析】将原式左侧进行展开后,先根据3n 求出n 的值,然后利用a=n+3即可求解.【详解】将原式左端进行展开,()223312x n x n x ax +++=++①3n=12①n=4①a=3+4=7故答案为7.【点睛】本题考查了因式分解,本题的关键是将等式的左端展开,然后进行比对. 39.-8x 2y【分析】根据幂的乘方与积的乘方计算即可【详解】原式=232(8)x y y ⨯-=-8x 2y【点睛】此题考查幂的乘方与积的乘方,掌握运算法则是解题关键40.85--【分析】直接利用二次根式的性质和立方根的性质分别化简得出答案.【详解】解:7125=-+--735=-+-85=--【点睛】此题主要考查了实数运算,正确化简各数是解题关键.41.(1)7(2)122,12x x ==-【分析】(1)先逐项化简,再算加减即可;(2)利用平方根化简,再进行计算即可.【详解】(1)解:原式=(61)(2)+--+,=612+=7;(2)解:由原式得5757x x +=+=-,12212x x ==-,.【点睛】本题考查了实数的混合运算和平方根的运算,解决此题的关键是熟练的运用运算法则进行求解.42.(1)42(2)74或48【分析】(1)将原式变形为()24xy x y +--,再代入求解即可;(2)利用()()224x y x x y y +=-+先求出x y +的值,再将原式变形为()()2x y xy x y -+++,代入即可求解.(1) ()()22x y -+224xy x y =+--()24xy x y =+--,①36xy =,5x y -=,①原式()243625442xy x y =+--=+⨯-=,即结果为42;(2)①()()224x y x x y y +=-+,36xy =,5x y -=,①()222543616913x y +=+⨯==,①x y +的值为13±,22x xy y x y -+++ 222x xy y x y xy =-++++()()2x y xy x y =-+++,当13x y +=时,原式()()225361374x y xy x y =-+++=++=;当13x y +=-时,原式()()225361348x y xy x y =-+++=+-=;即结果为74或者48.【点睛】本题主要考查了多项式乘多项式及完全平方公式,掌握多项式乘多项式的运算法则及完全平方公式是解题的关键.43.0【分析】先根据绝对值的意义,分数指数幂,负整数指数幂和零指数幂的运算法则进行化简,然后再根据实数混合运算法则进行运算即可.【详解】解:原式11121-0=【点睛】本题主要考查了实数的混合运算,熟练掌握绝对值的意义,分数指数幂,负整数指数幂和零指数幂的运算法则,是解题的关键.44.(1)2a-3b (2)90km【详解】试题分析: (1)根据两点间的距离列出代数式即可;(2)根据两点间的距离列出AB 的代数式进行解答即可.试题解析:(1)用含a 、b 的代数式表示B. D 两站之间的距离是a −2b +a −b =2a −3b ;故答案为2a −3b ;(2)由题意可知:2a −3b =80kmAB =(5a −8b −70)−(a −2b )=4a −6b −70=160−70=90,①A 、B 两站之间的距离是90km.45.(1)1a =-,1b =,3c =.(2)-1010,1012.(3)12【分析】(1)根据偶次方的非负性,绝对值的非负性由非负数和为0可得方程,进而求出a 、c 、b ,(2)先找到对折点,再根据M ,N 两点之间的距离为2022,可得它们到对折点的距离为1011以及点M 在点N 的左侧可得答案;(3)根据点P 的位置得出13x <<,再化简绝对值,进行整式运算即可解答.【详解】(1)解:根据题意得:10a +=,30c -=,解得:①1a =-,3c =,又①a b =-,①1b =,综上所述:1a =-,1b =,3c =.(2)解:①1a =-,3c =,将数轴折叠,使点A 与点C 重合. 故对折点所表示的数为-1+3=12, ①M ,N 对折点所表示的数也是1,①M ,N 两点之间的距离为2022,点M 在点N 的左侧,故点M 表示的数为1-1011=-1010,点M 表示的数为1+1011=1012,故答案为:-1010,1012.(3)解:①当点P 在点B 与点C 之间时,1b =,3c =.①13x <<,①10x ->,10x +>,40x -<, ①31124x x x +--+-=3(1)(1)2(4)x x x +----=33+12+8x x x +--,=12.【点睛】本题考查了偶次方的非负性,绝对值的非负性,数轴上的点之间的距离、绝对值的化简、整式加减等知识,数形结合是解题的关键.46.(1)0c a b >>>(2)>,<(3)2b【分析】(1)数轴上,越往左数字越小,越往右数字越大,据此即可作答;(2)根据(1)中的结果,结合不等式的性质即可作答;(3)根据(2)中的结果去绝对值和根号,即可得解.【详解】(1)根据数轴上各数的位置,有:0c a b >>>,故答案为:0c a b >>>;(2)在(1)中有0c a b >>>,①a b >,c b >,①0a b ->,0c b ->,①0b c -<,故答案为:>,<;(3)①0a b ->,0c b ->,①a b --()()()a b a c c b =--++--a b a c c b =-+++-+2b =,故答案为:2b .【点睛】本题考查了利用数轴比较实数的大小,不等式的性质,求一个数的立方根以及二次根式的性质等知识,根据数据得到0c a b >>>,再根据不等式的性质得到0a b ->,0c b ->,是解答本题的关键.不等式的基本性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若a b >,那么a m b m ±±>;①不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a b >,且0m >,那么am bm >或a b m m>;①不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若a b >,且0m <,那么am bm <或a b m m<. 47.(1)102m(2)7530a b(3)12t(4)128(5)6【分析】)(1)运用同底数幂乘法公式和幂的乘方公式运算,再合并即可;(2)运用幂的乘方和积的乘方公式运算即可;(3)先确定符号,再用同底数幂乘法公式运算即可;(4)逆用同底数幂乘法公式和幂的乘方公式,再整体代入即可;(5)将等式两边转化成同底数幂,再让指数相等得到一个一元一次方程,解之即可. (1)解:原式1046101010332m m m m m m ⋅===--;(2)原式()()()5551561567530a b a b a b =⋅=⋅=; (3)原式34512t t t t =⋅⋅=;(4)①24m n a a ==,,①()()3232323224816128m n m n m n a a a a a +=⋅=⋅⨯=⨯==; (5)①2328162x ⨯⨯=,即()34232222x⨯⨯=, ①352322x +=,①3523x +=,解得:6x =.【点睛】本题考查了同底数幂乘法公式,积的乘方公式,幂的乘方公式,灵活掌握这三个公式正逆用是解题的关键.48.(1)3;(2)﹣113. 【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)原式=﹣8+10+2﹣1=3;(2)原式=79×157﹣163=﹣113. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.49.(1)三种方案(2)A 种货车30辆,B 种货车20辆时费用最省,费用为34000(元)(3)40 45【分析】(1)设安排A 种货车x 辆,则安排B 种货车()50x -辆,列出不等式组,求整数解即可;(2)根据三种方案判断即可;(3)根据二元一次方程,求整数解即可.【详解】(1)解:设安排A 种货车x 辆,则安排B 种货车()50x -辆,()()75503063750230x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:28x 30≤≤,因为x 为整数,所以可以取28,29,30,共三种方案.(2)使用A 种货车费用600元,B 种货车800元,600800<,∴在上述方案中,安排A 种货车最多时最省费用,即当A 种货车30辆,B 种货车20辆时费用最省,费用为:306002080034000⨯+⨯=(元);(3)在(2)的方案下,由题意得:30202100m n +=,210020270303n n m -∴==-, 38m n <<,303820210030202100n n n ⨯+<⎧∴⎨+>⎩, 解得:4248n <<,经验算,只有当45n =时,m =27045403-⨯=为整数,其余n 的取值不符合要求, 此次奖金发放的具体方案为:每辆A 种货车奖金为40元,每辆B 种货车奖金为45元.【点睛】本题考查一元一次不等式(组)的应用,二元一次方程的整数解问题,解题的关键是理解题意,学会利用参数根据不等式(组)解决问题.。

中考数学数与式专题知识训练50题含答案

中考数学数与式专题知识训练50题含答案

中考数学数与式专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)__一、单选题1.下列说法正确的是( )A .最小的有理数是0B .任何有理数都可以用数轴上的点表示C .绝对值等于它的相反数的数都是负数D .整数是正整数和负整数的统称 2.5的相反数是( )A .5-B .5C .15D .|5| 3.单项式22xy -的系数和次数分别为( )A .2,2B .2,3C .-2,2D .-2,3 4.下列计算正确的是( )A .3a 2﹣6a 2=﹣3B .(﹣2a )•(﹣a )=2a 2C .10a 10÷2a 2=5a 5D .﹣(a 3)2=a 65.火星具有和地球相近的环境,与地球最近时候的距离约55000000km ,将数字55000000用科学记数法表示为( )A .555010⨯B .65510⨯C .75.510⨯D .80.5510⨯ 6.2019年3月25日,为加强中法两国友好关系,两国签署价值300亿美元的“空中客车”飞机大单,其中300亿用科学记数法表示为( )A .3×108B .300×108C .0.3×1011D .3×1010 7.下列各式计算正确的是( )A 2=-B =C =D .2=8.下列各式的值最小的是( )A .13-B .22-C .40-⨯D .|5|-9.5的相反数是( )A .-5B .5C .±5D .1510.下列二次根式是最简二次根式的是( )AB C D 11.高州市投入环保资金3730000万元,3730000万元用科学记数法表示为( )万元A .537.310⨯B .63.7310⨯C .70.37310⨯D .437310⨯ 12.下列说法中错误的是( )①0既不是正数,也不是负数; ①0是自然数,也是整数,也是有理数;①数轴上原点两侧的数互为相反数; ①两个数比较,绝对值大的反而小.A .①①B .①①C .①①D .①①①13.下列运算正确的是( )A .a ab --b b a -=1 B .m n m n a b a b --=- C .11b b a a a +-= D .2221a b a b a b a b+-=--- 14.下列计算正确的是( )A .4a 3·2a 2=8a 6B .2x 4·3x 4=6x 8C .3x 2·4x 2=12x 2D .(2ab 2)·(-3abc)=-6a 2b 315.函数y =) A .2x ≥- B .21x C .1x > D .2x ≥-且1x ≠ 16.6-的相反数是( )A .16-B .6--C .6D .1617.下列各数中比-1小1的数是( )A .-1B .-2C .1D .-318.已知b>0,化简-1]∞(,的结果是( )A .-B .C .-D .19 )A .3与4之间B .5与6之间C .6与7之间D .28与30之间 20.如果a 是负数,那么2a 的算术平方根是( ).A .aB .a -C .a ±D .二、填空题21x 的取值范围是__________.22.当x =__________________.23.若|x|=5,则x ﹣3的值为_____.24.上海世博会预计约有69 000 000人次参观,69 000 000用科学记数法表示为_________.25.计算:222a b a b b a+=--____________. 26.用科学记数法表示:0.000832-=________.27.计算:a2•a3=_____.2823x =-,则x 的范围是_____________.29.对于任意不相等的两个数a ,b ,定义一种运算①如下:a ①b 3①2==4①8=________. 30.若4a b =+,则222a ab b -+的值是______________.31.“KN95”口罩能过滤空气中95%的直径约为0.0000003m 的非油性颗粒,数据0.0000003用科学记数法表示为____________.32.已知x 、y 均为实数,且5x y +=,2211x y +=,则xy =______. 33.若分式22x 有意义,则x 的取值范围是________.34.计算:02(3)π-+-=______________.35=b+2,那么a b =_____.36______________________=____________37_______,π=_______38.计算:(2a b -)3·(2b a -)2=____________(结果用幂的形式表示)39100,...,==根据其变化规律,解答问题:若1.02102,则x =____________.三、解答题40.计算:x 2•x 3+(﹣x )5+(x 2)3.41.张师傅承揽了某栋公寓楼的装修任务,他准备铺地时,发现这栋公寓楼户型结构相同,但地面卫生间和客厅的宽分别有几个类型,他将房子地面结构图按下图进行表示(单位:米).(1)请你用含x ,y 的式子,帮张师傅把地面的总面积表示出来;(单位:平方米) (2)已知 4.5x =,2y =这类型的房子有五户,铺地砖的费用为80元/平方米,请求出这个类型的房子铺地砖的总费用.42.已知2a +2的立方根是-2,a +b +4的算术平方根是3,c(1)求a ,b ,c 的值.(2)求22a ab c -+的平方根.43.计算:(1)(22 44.计算:032243.45.在等式2y ax bx c =++中,当1x =时,0y =;当=1x -时,=2y -:当2x =时,7y =.(1)求a ,b ,c 的值;(2)求当3x =-时,y 的值.46.计算:()()2242x y y x y x x ⎡⎤-+--÷⎣⎦.47.在ABCD 中,120BAD ∠=︒,DE 平分ADC ∠交射线AB 于点E ,线段BE 绕点E 顺针旋转60°得到线段EP ,连接AC ,PC .(1)如图1,当点E 在线段AB 上时,①PBC ∠的大小为______;①判断APC △的形状并说明理由;(2)当4BC =,2BE =时,直接写出AC 的长.48.已知:243M a ab =+-,269N a ab =-+.(1)化简:M N +;(2)若()2210a b ++-=,求M N +的值.49.操作题(1)如图①所示是一个长为2a ,宽为2b 的矩形,若把此图沿图中虚线用剪刀均分为四块小长方形,然后按图①的形状拼成一个正方形,请问:这两个图形的 不变.图①中阴影部分的面积用含a 、b 的代数式表示为_________________;(2)由(1)的探索中,可得到的结论是:在周长一定的矩形中,___________时,面积最大;(3)若一矩形的周长为36 cm ,则当边长为多少时,该图形的面积最大?最大面积是多少?参考答案:1.B【详解】分析:利用有理数的概念、数轴上点与有理数的关系、相反数的求法、整数等知识对各选项进行判断;解:A 选项有理数包括了正数、0、负数,所以没有最小的有理数,故是错误的; B 选项数轴上的点与有理数是一一对应的关系,故是正确的;C 选项绝对值等于它的相反数的数有0和负数,故是错误的;D 选项整数包括了正整数、0和负整数,故是错误的;故选B .2.A【分析】直接利用互为相反数的定义得出答案.【详解】解:5的相反数是:-5.故选:A .【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.3.D【分析】单项式的系数包括系数前面的符号,次数指所有未知数的次数之和.根据以上规律直接可以读出结果.【详解】单项式22xy -的系数为-2,次数包括x 和y 的次数之和,总共为3,所以单项式22xy -的系数和次数分别为-2,3,故选D【点睛】此题重点考察学生对单项式系数和次数的把握,抓住次数包括所有未知数的次数是解题的关键.4.B【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A ,由合并同类项法则可得3a 2﹣6a 2=﹣3a 2,不正确;选项B ,单项式乘单项式的运算可得(﹣2a )•(﹣a )=2a 2,正确;选项C ,根据整式的除法可得10a 10÷2a 2=5a 8,不正确;选项D ,根据幂的乘方可得﹣(a 3)2=﹣a 6,不正确.故答案选B .考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.5.C【分析】直接根据科学记数法表示即可.【详解】755000000 5.510=⨯,故选C【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:300亿=3000000000=3×1010.故选D .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.C【分析】先对各选项进行计算后再进行判断.【详解】A 22=-=||,故计算错误;BC =D选项:2故选C.【点睛】考查了二次根式的加法、化简,解题关键是熟记加法法则和二次根式的性质. 8.B【分析】原式各项计算得到结果,比较即可.【详解】A 、原式=-2,B 、原式=-4,C 、原式=0,D 、原式=5,①-4<-2<0<5,则各式的值最小为-4,故选B .【点睛】此题考查了有理数的大小比较,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.9.A【分析】根据相反数的定义即可求解.【详解】解:5的相反数是-5,故选A .【点睛】本题考查了相反数的定义(只有符号不同的两个数叫做互为相反数),是一个基础的题目.10.B【分析】根据最简二次根式的定义:被开方数不含能开方开的尽的因数或因式,被开方数不含分母,进行判断即可.【详解】A ==不符合题意;BC =,被开方数含分母,不是最简二次根式,不符合题意;D a ,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意; 故选:B .【点睛】本题考查最简二次根式的定义,熟练掌握概念是解题的关键.11.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,看小数点移动了多少位,n 的绝对值与小数点移动的位数相同.小数点向左移动时,n 是正整数;小数点向右移动时,n 是负整数.【详解】解:63730000 3.7310=⨯,故选:B .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.解题关键是正确确定a 的值以及n 的值.12.B【分析】根据相反数,绝对值的定义进行判断.【详解】解:①0既不是正数,也不是负数正确,不符合题意.①0是自然数,也是整数,也是有理数正确,不符合题意.①数轴上原点两侧的数互为相反数,说法不正确,符合题意.①两个数比较,绝对值大的反而小,说法不正确,符合题意.①说法不正确的是①①,故选B .【点睛】主要考查相反数,绝对值的定义,只有符号不同的两个数互为相反数,0的相反数是0;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 13.D【分析】根据分式的加减运算法则逐项判断即可的解. 【详解】根据分式的减法法则,可知:a b a b a b a b b a a b a b a b +-=+=-----,A 错误; 由异分母的分式相加减,可知m n bm an bm an a b ab ab ab --=-=,B 错误; 由同分母分式的加减,可知11b b a a a+-=-,C 错误; 由分式的加减法法则,先因式分解再通分,可得:2222()1()()()()()()a b a b a b a b a b a b a b a b a b a b a b a b a b++++-=-==--+-+-+--,D 正确. 故选D .【点睛】本题考查分式的加减运算,熟知分式的加减运算法则是解题的关键.14.B【详解】A. ① 4a 3·2a 2=8a 5 ,故不正确;B. ① 2x 4·3x 4=6x 8 ,故正确;C. ① 3x 2·4x 2=12x 4 ,故不正确;D. ① (2ab 2)·(-3abc)=-6a 2b 3c ,故不正确;故选B.15.D【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:根据题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥-2且1x≠.故选D.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.C【分析】只有符号不同的两个数是互为相反数,根据定义解答.【详解】6-的相反数是6,故选择:C.【点睛】本题考查相反数的定义及求一个数的相反数,熟记定义是解题的关键.17.B【分析】根据有理数的减法,即可解答.【详解】−1−1=−2,故选B.【点睛】此题考查有理数的减法,解题关键在于结合题意列式计算.18.C【分析】首先根据二次根式有意义的条件,判断a≤0,再根据二次根式的性质进行化简.【详解】①b>0,30a b-≥,①0.a≤①原式==-故选C.【点睛】考查二次根式有意义的条件以及二次根式的化简,得到a≤0是解题的关键. 19.B【分析】直接利用估算无理数的方法得出接近无理数的整数进而得出答案.【详解】25<①56<<,5与6之间.故选:B .【点睛】此题主要考查了估算无理数的大小,正确掌握二次根式的性质是解题关键. 20.B【详解】当a a a ==-.故选B.21.x≥-5【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【详解】解:根据题意得:x+5≥0,解得x≥-5.【点睛】主要考查了二次根式的意义和性质.a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22. 6 0【分析】根据被开方数为非负数可得.【详解】①当0a =0)a ≥的最小值为0,①当60x -=,即6x =0.故答案为:6, 0.【点睛】本题考查了二次根式的定义,解题的关键是利用二次根式的被开方数是非负数解题.23.﹣8或2【分析】由|x|=5可求出x 的值,再代入x ﹣3计算即可.【详解】解:①|x|=5,①x =5或﹣5,当x =5时,x ﹣3=2,当x =﹣5时,x ﹣3=﹣8,综上,x﹣3的值为﹣8或2.故答案为:﹣8或2.【点睛】本题考查了绝对值的意义,正确求出x的值是解题的关键.24.76.910⨯【详解】解:69000000=6.9×107.故答案为:76.910⨯25.1【分析】变异分母为同分母【详解】解:222a ba b b a+=--221222a b a ba b a b a b--==---故答案为:126.48.3210--⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.0008328.3210--=-⨯故答案为:48.3210--⨯【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.27.a5.【详解】【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【详解】a2•a3=a2+3=a5,故答案为a5.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数的幂的乘法的运算法则是解题的关键.28.32 x≥【分析】根据二次根式的性质可得230x-≥,解不等式即可求解.【详解】根据题意,得2x-3≥0,解得:x 32≥. 【点睛】本题考查了二次根式的性质,掌握二次根式的性质是解题的关键.29. 【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得===故答案为: 【点睛】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.30.16【分析】根据已知条件可得出a b -的值;因为2222a ab b a b ,带入即可得出答案.【详解】解:由4a b =+,可得:4a b -=;①2222a ab b a b , 将4a b -=可得:()22224162=-==-+a b a ab b ;故答案为:16.【点睛】本题考查代数式求值,结合利用完全平方公式因式分解,观察已知条件与要求的式子之间的联系是此类题目解题关键,平时也要多积累经验.31.7310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.0000003310,故答案是:7310-⨯.【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<, n 为由原数左边起第一个不为零的数字前面的0的个数所决定.32.7【分析】根据5x y +=可得出2()25x y +=,再展开,将2211x y +=代入,即可求出xy 的值.【详解】解:①5x y +=①2()25x y +=,①22225x y xy ++=,将2211x y +=代入上式,得:11225xy +=①7xy =.故答案为:7.【点睛】本题考查完全平方公式和代数式求值.利用整体代入的思想是解题的关键. 33.2x ≠-【分析】根据分母不等于0,即可求出答案.【详解】解:①分式22x 有意义,①20x +≠,①2x ≠-;故答案为:2x ≠-.【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于0.34.3【详解】【分析】先分别进行绝对值化简、0次幂的计算,然后再进行加法计算即可得.【详解】()02π3-+-=2+1=3,故答案为3.【点睛】本题考查了实数的运算,熟知任何非0数的0次幂为1是解题的关键.35.19 【分析】根据二次根式中的被开方数必须是非负数可得关于a 的不等式组,进一步即可求出a 的值,进而可得b 的值,然后代入所求式子计算即可.【详解】解:由题意,得:3030a a -≥⎧⎨-≥⎩,解得a =3,则b +2=0,解得:b =﹣2. 所以ab =3-2=19. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件、一元一次不等式组的解法和负整数指数幂的运算,属于基本题型,熟练掌握二次根式的被开方数非负和负整数指数幂的运算法则是解题关键.36. 0 15 6-【分析】根据算术平方根的定义及性质和立方根的定义及性质直接求解即可得到答案.【详解】解:①200=,0=;①()215225±=,算术平方根非负,15;①()36216-=-,6-;故答案为:0;15;6-.【点睛】本题考查算术平方根和立方根,熟练掌握算术平方根的定义及性质,立方根的定义及性质是解决问题的关键.37. 2± 4π-4=,进而求得4的平方根,根据4π<,化简绝对值即可.【详解】解:4=,①4的平方根是2±,①4π<①4ππ=-故答案为:2±,4π-【点睛】本题考查了求一个数的算术平方根,平方根,化简绝对值,掌握算术平方根和平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.38.()52a b -【分析】把2a b -看成底数, ()()222=2b a a b --,再根据同底数幂乘法法则计算即可.【详解】(2a b -)3·(2b a -)2=()52a b -,故答案为: ()52a b -.【点睛】本题主要考查同底数幂乘法法则,解决本题的关键是要熟练掌握同底数幂乘法法则. 39.10404【分析】根据已知运算规律计算即可;【详解】 1.02=102=,100 1.02=⨯==①10404x =;故答案是:10404.【点睛】本题主要考查了二次根式计算和数字规律,准确计算是解题的关键.40.6x【分析】直接利用同底数幂的乘法法则和幂的乘方运算法则计算得出答案.【详解】解:x 2•x 3+(﹣x )5+(x 2)3=x 5﹣x 5+x 6=x 6.【点睛】本题考查了整式的运算,掌握乘方、同底数幂的乘法、幂的乘方是解题的关键. 41.(1)18+2y +6x ;(2)这个类型的房子铺地砖的总费用为18000元.【分析】(1)将四个长方形的面积相加即可得到答案;(2)将x =4.5,y =2代入(1),再乘以80即可得到总费用.【详解】解:(1)地面总面积=3×(2+2)+2y +(6-3)×2+6x=(18+2y +6x )平方米;(2)铺21m 地砖的平均费用为80元,当x =4.5,y =2,(18+2×2+6×4.5)×80=(18+4+27)×80=3920(元)①这个类型的房子铺地砖的总费用为3920元.【点睛】此题考查了列代数式,已知字母的值求代数式的值,正确掌握求几何图形的面积是解题的关键.42.(1)a=-5,b=10,c=3;(2)a2-ab+2c的平方根为±9.【分析】(1)直接利用立方根以及算术平方根的定义得出a,b,c的值;(2)利用(1)中所求,代入求出答案.(1)解:①2a+2的立方根是-2,①2a+2=-8,①2a=-10,①a=-5,①a+b+4的算术平方根是3,①a+b+4=9,-5+b+4=9,b=10,①c,①c=3;(2)22-+a ab c解:①a=-5,b=10,c=3,①a2-ab+2c= (-5)2- (-5)×10+2×3=81,①a2-ab+2c的平方根为.【点睛】此题主要考查了估算无理数的大小以及平方根、算术平方根和立方根,正确把握相关定义是解题关键.43.(1)(2)1122【详解】试题分析:(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用完全平方式和二次根式的乘法计算,再合并即可.试题解析:(1)原式=(2)原式=8+2+1-11-44.7【分析】根据乘方,二次根式和零指数幂的运算法则化简,然后再计算即可.【详解】解:原式821=-+7=.【点睛】本题主要考查了乘方,二次根式和零指数幂的运算法则,熟练掌握运算法则是解题的关键.45.(1)213a b c =⎧⎪=⎨⎪=-⎩(2)12【分析】(1)根据题设条件,得到关于a ,b ,c 的三元一次方程组,利用加减消元法解之即可,(2)结合(1)的结果,得到关于x 和y 的等式,把3x =-代入,计算求值即可.【详解】(1)根据题意得:02427a b c a b c a b c ++=⎧⎪-+=-⎨⎪++=⎩①②③,①+①得:1a c +=-①①+①×2得:21a c +=①,①-①得:2a =,把2a =代入①得:21c +=-,解得:3c =-,把2a =,3c =-代入①得:230b +-=,解得:1b =,方程组的解为:213a b c =⎧⎪=⎨⎪=-⎩;(2)根据题意得:223y x x =+-,把3x =-代入得:22(3)3312y =⨯---=,即y 的值为12.【点睛】本题考查了解三元一次方程组,解题的关键:(1)正确掌握加减消元法,(2)正确掌握代入法.46.122x - 【分析】先根据完全平方公式和单项式乘以多项式进行运算,合并同类项,再利用多项式除以单项式即可.【详解】()()2242x y y x y x x ⎡⎤-+--÷⎣⎦()2222242x xy y xy y x x =-++--÷ ()242x x x =-÷122x =-. 【点睛】本题考查了整式的混合运算以及完全平方公式的应用,能灵活运用运算法则进行化简是解此题的关键.47.(1)①120︒;①APC △为等边三角形;理由见解析(2)【分析】(1)①利用平行四边形的性质证明60,ABC ∠=︒再利用旋转的性质证明BEP △是等边三角形,可得60,PBE 从而可得答案;①先证明18060120,AEP 再证明,AE AD =可得,AE BC 证明,PBC PEA ≌ 可得,,PC PA BPC EPA 证明60,APC BPE 从而可得结论;(2)需要分①当点E 在线段AB 上时,过A 作AF BC ⊥于F ,和①当点E 在线段AB 的延长线上时,两种情况讨论.同样的思路和方法,根据平行四边形对边相等可得4BC AD ==,邻角互补得60,ABC ∠=︒所以30BAF ∠=︒,132BFAB 或1,再两次应用勾股定理即可解答.(1)①①ABCD ,①,AD BC ∥ 而120BAD ∠=︒,18012060,ABC ADC由旋转的性质可得:,60,EB EP BEP①BEP △是等边三角形,①60,PBE①6060120.PBC PBE ABC①APC △为等边三角形.理由如下:①60,BEP①18060120,AEP①60,ADC DE 平分,ADC ∠①30,ADE CDE①18030,AED BAD ADE ADE ①,AE AD = 而,AD BC =①,AE BC①PBE △为等边三角形,①,60PE PB BPE①120,AEP PBC①,PBC PEA ≌①,,PC PA BPC EPA①60,APC EPA EPC BPC EPC BPE ①APC △为等边三角形.(2)①当点E 在线段AB 上时,如图,过A 作AF BC ⊥于F , ①4,2,AE AD BC BE ====①6,AB =①60,ABC ∠=︒①30,BAF①13,2BFAB 22226333,AF AB BF ①431,CF①222827AC AF CF .①当点E 在线段AB 的延长线上时,如图,过A 作AF BC ⊥于F ,方法同①得4AEBC AD ,60ABF ∠=︒, ①422AB AE EB ,30BAF ∠=︒, ①112BF AB ==,413FC BC BF , ①2223AF AB BF , ①2223323AC AF FC .综上所述:AC 的长是【点睛】本题考查的是旋转的性质,等边三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,勾股定理的应用,含30︒的直角三角形的性质,二次根式的化简,熟悉基本几何图形的性质是解本题的关键.48.(1)2226a ab -+(2)18【分析】(1)根据整式的加减混合运算法则进行计算即可;(2)根据非负数相加和为0,则这几个非负数分别为0,先求出a 和b 的值,再代入求解即可.【详解】(1)解:①243M a ab =+-,269N a ab =-+,①()()224369M a N a ab a b =++-+-+224369a ab a ab =+-+-+2226a ab =-+.(2)①()2210a b ++-=,①20,10a b +=-=,解得:2,1a b =-=,把2,1a b =-=代入得: 2226M a N ab +=-+()()2222216=⨯--⨯-⨯+846=++ 18=.【点睛】本题考查了非负数的性质,整式加减中的化简求值,掌握合并同类项法则是解题的关键.49.(1)周长,2()a b -;(2)长等于宽;(3)当边长为9cm 时,最大面积为81cm 2.【分析】(1)根据长方形、正方形的周长公式和面积公式进行解答;(2)由完全平方公式进行计算分析;(3)根据第(2)的结论解答.【详解】(1)①图①长方形的周长=2a +2b ,图①正方形的周长=2(a +b )=2a +2b , ①周长相等;阴影部分的面积=正方形的面积-长方形的面积,=(a +b )2-4ab =a 2-2ab +b 2=(a -b )2,故填:周长,(a -b )2 ;(2)正方形面积为(a +b )2、长方形的面积为4ab ,①(a +b )2-4ab =(a -b )2≥0,①(a+b)2≥4ab,即:在周长一定的长方形中,当长和宽相等时,面积最大;(3)①在周长一定的长方形中,当长和宽相等时,面积最大,①当周长为36cm时,长和宽为9cm时,该图形的面积最大,最大面积为:9×9=81(cm2).【点睛】掌握乘法公式与几何图形的面积结合.。

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。

专题1.8 数与式的综合复习(真题专练)

专题1.8  数与式的综合复习(真题专练)

专题1.8 数与式的综合复习(真题专练)一、单选题1.(2021·四川德阳·中考真题)-2的倒数是( ) A .-2B .12-C .12D .22.(2021·黑龙江大庆·中考真题)北京故宫的占地面积约为720 000m 2,将720 000用科学记数法表示为( ). A .72×104B .7.2×105C .7.2×106D .0.72×1063.(2021·浙江丽水·中考真题)计算:()24a a -⋅的结果是( ) A .8aB .6aC .8aD .6a -4.(2021·河北·中考真题)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是( )A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<5.(2021·四川凉山·) A .9B .9和﹣9C .3D .3和﹣36.(2021·广东·中考真题)若0a =,则ab =( )A B .92C .D .97.(2021·辽宁大连·中考真题)下列计算正确的是( )A.2(3=-B C 1= D .1)3=8.(2021·四川绵阳· ) A .3B .4C .5D .69.(2021·浙江温州·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元10.(2021·广西玉林·中考真题)观察下列树枝分叉的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯11.(2021·甘肃兰州·中考真题)因式分解:34x x -=( )A .()24x x x -B .()()44x x x +-C .()()22x x x +-D .()24x x -12.(2021·河北· ). A .321-+ B .321+- C .321++D .321--13.(2021·江苏扬州·中考真题)如图,一次函数y x =+的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30交x 轴于点C ,则线段AC 长为( )A B .C .2D二、填空题14.(2021·湖北宜昌·中考真题)用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为6C -︒,攀登2km 后,气温下降__________C ︒.15.(2021·内蒙古赤峰·中考真题)在函数y =x 的取值范围是_____.16.(2021·云南·中考真题)已知a ,b 2(2)0b -=则a b -=_______.17.(2021·广西河池·.18.(2021·湖南怀化·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.19.(2021·山东临沂·中考真题)比较大小:(选填“>”、“ =”、“ <” ).20.(2021·四川眉山·中考真题)观察下列等式:1311212x ==+⨯;2711623x ===+⨯;313111234x ===+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.21.(2021·四川遂宁·中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.22.(2021·广东·中考真题)若1136x x +=且01x <<,则221x x-=_____. 23.(2021·内蒙古·中考真题)一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______.三、解答题24.(2021·河北·中考真题)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元. (1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.25.(2021·浙江温州·中考真题)(1)计算:()0438⨯-+-.(2)化简:()()215282a a a -++.26.(2021·黑龙江齐齐哈尔·中考真题)(1)计算:()201 3.144cos 4512π-⎛⎫-+-+︒- ⎪⎝⎭(2)因式分解:3312xy xy -+.27.(2021·四川遂宁·中考真题)计算:()101tan 60232-⎛⎫-+︒-- ⎪⎝⎭π28.(2021·山东泰安·中考真题)(1)先化简,再求值:23169111a a a a a a --+⎛⎫-+÷ ⎪++⎝⎭,其中3a =+;(2)解不等式:7132184x x ->--.29.(2021·内蒙古赤峰·中考真题)先化简,再求值:352 22m m m m -⎛⎫÷+- ⎪--⎝⎭,其中()101273m π-⎛⎫=+-- ⎪⎝⎭.参考答案1.B【分析】根据倒数的定义求解.【详解】 -2的倒数是-12故选B【点拨】本题难度较低,主要考查学生对倒数相反数等知识点的掌握 2.B 【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 【详解】解:将720000用科学记数法表示为7.2×105. 故选B .【点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.B 【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可. 【详解】解:原式24246a a a a +=⋅==. 故选B .【点拨】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键. 4.C 【分析】根据题目中的条件,可以把1a ,2a ,3a ,4a ,5a 分别求出来,即可判断. 【详解】解:根据题意可求出:123454,2,0,2,4a a a a a =-=-===A ,30a =,故选项错误,不符合题意;B ,1442a a =≠=,故选项错误,不符合题意;C ,123450a a a a a ++++=,故选项正确,符合题意;D ,2520a a +=>,故选项错误,不符合题意; 故选:C .【点拨】本题考查了等分点和实数与数轴上的点一一对应,解题的关键是:根据题意直接求出1a ,2a ,3a ,4a ,5a 的值即可判断. 5.D 【分析】先化简,再根据平方根的地红衣求解. 【详解】 解:,3±, 故选D .【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a ,则这个数叫做a 的平方根,即x 2=a ,那么x 叫做a 的平方根,记作x =±. 6.B 【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值. 【详解】∵0a ≥0≥,且0a =∵0a =0即0a =,且320a b -=∵a =b =∵92ab == 故选:B .【点拨】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零. 7.B 【分析】根据二次根式的运算及立方根可直接进行排除选项. 【详解】解:A 、(23=,错误,故不符合题意;B =C 1=-,错误,故不符合题意;D 、)11211=-=,错误,故不符合题意;故选B .【点拨】本题主要考查二次根式的运算及立方根,熟练掌握二次根式的运算及立方根是解题的关键. 8.C 【分析】>5=<6,即可得出结果. 【详解】5=,45∴<,又<6=,∴56<<,456∴<<,故选:C .【点拨】本题考查了估算无理数的大小,立方根,解决本题的关键是用有理数逼近无理数,求无理数的近似值.9.D 【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可. 【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元, ∵应缴水费为17a +3(a +1.2)=20a +3.6(元), 故选:D .【点拨】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等. 10.B 【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】 解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∵944942121312Y Y -=--+=⨯,故答案选:B .【点拨】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答. 11.C 【分析】先提公因式x ,进而根据平方差公式因式分解即可. 【详解】34x x -=()()2(4)22x x x x x -=+-故选C .【点拨】本题考查了综合运用提公因式和公式法因式分解,掌握因式分解的方法是解题的关键. 12.A 【分析】根据有理数运算和二次根式的性质计算,即可得到答案. 【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0 故选:A .【点拨】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案. 13.A 【分析】根据一次函数表达式求出点A 和点B 坐标,得到∵OAB 为等腰直角三角形和AB 的长,过点C 作CD ∵AB ,垂足为D ,证明∵ACD 为等腰直角三角形,设CD =AD =x ,结合旋转的度数,用两种方法表示出BD ,得到关于x 的方程,解之即可. 【详解】解:∵一次函数y x =的图像与x 轴、y 轴分别交于点A 、B ,令x =0,则y y =0,则x =则A (,0),B (0,则∵OAB 为等腰直角三角形,∵ABO =45°,∵AB ,过点C 作CD ∵AB ,垂足为D , ∵∵CAD =∵OAB =45°,∵∵ACD 为等腰直角三角形,设CD =AD =x ,∵AC ,∵旋转,∵∵ABC=30°,∵BC=2CD=2x,∵BD,又BD=AB+AD=2+x,∵2+x,解得:x,∵AC x)故选A.【点拨】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.14.12【分析】-︒乘以攀登高度,即可求解.根据题意知,气温变化量为6C【详解】-︒”知:根据“每登高1km气温的变化量为6C攀登2km后,气温变化量为:-⨯=-6212︒下降为负:所以下降12C故答案为:12.【点拨】本题考查了分析信息的能力,正负数的意义,有理数的计算,根据题意分析得出变化量,再结合正负数的意义是解题的关键.15.x≥-1且x≠12【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【详解】解:根据题意得:x10{2x10,+≥-≠解得:x≥-1且x≠12故答案为:x≥-1且x≠12.【点拨】本题考查函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.-3【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+1=0,b-2=0,解得a=-1,b=2,所以,a-b=-1-2=-3.故答案为:-3.【点拨】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.17.﹣2.【详解】立方根.【分析】根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a 的一个立方根:∵(-2)3=-8,2-.18.2m m-【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和. 【详解】由题意规律可得:2399100222222++++=-. ∵1002=m∵23991000222222=2m m +++++==, ∵22991001012222222+++++=-,∵10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=. ……∵1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=① 12310022222S ++++=②∵-∵,得10021S -=∵10010110110199992222222m m m ++++=+++=()100221m m m -=- 故答案为:2m m -.【点拨】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.19.<【分析】先把两数值化成带根号的形式,再根据实数的大小比较方法即可求解.【详解】解:∵5=而24<25, ∵5.故答案为:<.【点拨】此题主要考查了实数的大小的比较,当一个带根号的无理数和一个有理数进行比较时,首选的方法就是把它们还原成带根号的形式,然后比较被开方数即可解决问题.20.12021- 【分析】根据题意,找到第n 等式右边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可. 【详解】11(1)n n ++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021 =12021-. 故答案为:12021-. 【点拨】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.21.20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∵第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时,()12102n n +=, 解得:20n =或21-(不合题意,舍去),∵第20个图形共有210个小球.故答案为:20.【点拨】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .22.6536- 【分析】 根据1136x x +=,利用完全平方公式可得2125()36x x -=,根据x 的取值范围可得1x x -的值,利用平方差公式即可得答案.【详解】 ∵1136x x +=, ∵2211125()()436x x x x x x -=+-⋅=, ∵01x <<, ∵1x x<, ∵1x x-=56-, ∵221x x -=11()()x x x x +-=135()66⨯-=6536-, 故答案为:6536-【点拨】本题考查了完全平方公式及平方差公式,准确运用公式是解题的关键. 23.2【分析】根据一个正数的平方根互为相反数,将21b -和4b +相加等于0,列出方程,解出b ,再将b 代入任意一个平方根中,进行平方运算求出这个正数a ,将a b +算出后,求立方根即可.【详解】∵21b -和4b +是正数a 的平方根,∵2140b b -++=,解得1b =- ,将b 代入212(1)13b ,∵正数2(3)9a , ∵198a b +=-+=,∵a b +382ab ,故填:2.【点拨】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数.24.(1)410Q m n =+(2)52.310Q =⨯【分析】(1)进m 本甲种书和n 本乙种书共付款为2种书的总价,用单价乘以数量即可; (2)将书的数量代入(1)中结论,求解,最后用科学记数法表示.【详解】(1)410Q m n =+(2)43,351010m n =⨯⨯=43510410310Q ∴=⨯+⨯⨯⨯ 44453102310201 2.3100=+⨯=⨯=⨯⨯所以52.310Q =⨯.【点拨】本题考查了列代数式,科学记数法,幂的计算,正确的理解题意根据实际问题列出代数式,正确的用科学计数法表示出结果是解题的关键.25.(1)-6;(2)22625a a -+.【分析】(1)直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算再合并即可得出答案.【详解】解:(1)()0438⨯-+- 12831=-+-+6=-;(2)()()215282a a a -++ 2210254a a a a =-+++22625a a =-+.【点拨】此题主要考查了实数运算、整式的混合运算,正确掌握相关运算法则是解题关键.26.(1)6(2)3(2)(2)xy y y -+-【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可.【详解】(1)解:原式4141)=++411=++6=(2)解:原式23(4)xy y =--3(2)(2)xy y y =-+-【点拨】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键.27.-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-- ⎪⎝⎭π(=2-=221--=3-【点拨】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.28.(1)3a a --;1-(2)1x < 【分析】(1)先根据分式混合运算法则化简,然后代入条件求值即可;(2)根据解一元一次不等式的步骤求解即可.【详解】解:(1)原式2231111(3)a a a a a --++=⋅+- 2(3)11(3)a a a a a --+=⋅+- 3a a =--当3a =时,原式1===- (2)8(71)2(3x 2)x -->-87164x x -+>-7649x x -->--1313x ->-1x <.【点拨】本题考查分式的化简求值,解一元一次不等式等,掌握相应的运算法则,注意分母有理化是解题关键.29.1,34m +【分析】先根据分式的混合运算顺序和运算法则化简原式,再将计算m 的值代入化简结果中求值可得.【详解】 解:35222m m m m -⎛⎫÷+- ⎪--⎝⎭ ()()2235222m m m m m m +-⎡⎤-=÷-⎢⎥---⎣⎦ 23922m m m m --=÷-- 32=2(3)(3)m m m m m --⨯-+- 13m =+∵()101273m π-⎛⎫=+-- ⎪⎝⎭317=++3=∵当3m =时,原式13m =+ 【点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.。

中考数学基础复习-数与式综合检测题

中考数学基础复习-数与式综合检测题

初中数学毕业总复习总复习知识检测试卷(一)数与式分值:100分时量:120分钟命题人:李维军审题人:李维军总分一、填空题(每小题3分,共30分): 1.若m ,n 互为相反数,则m+n=。

2.化简777-=,23=。

3.分解因式27x 63-=。

4.若分式x 1x 1-+的值为零,则x 的值为。

5.小说《达·芬奇密码》中的一个故事里出现了一连串神秘排列的数,将这串另人费解的数按从小到大的顺序排列为:1,1,2,3,5,8,…,则这列数的第8个数是。

6.计算:1233-=7.如图,数轴上表示数3的点是。

5-5-4-221-334-1C B A 8.0o 2(51)2sin 30(3)-++=。

9.计算:23a (ab)•=。

10.计算:24a 1a1aa 1++--的结果是。

二、选择题(每小题3分,共30分): 题号91011121314151617181920总计考号姓名班级——————密封线内不得答题——————密封线内不得答题——————选项11.举世瞩目的三峡大坝的所装发电机组全部投入运行发电量达到847亿度,用科学记数法表示这个发电量为()A .884710⨯度B .108.4710⨯度C .128.4710⨯度D .1084.710⨯度12.若a 与-5互为相反数,那么a 是()A .-5B .15C .15- D .513.计算:2-3=()A .1B .-1 C.5 D .-5 14.下列计算正确的是() A .3x 2x 1-=B .23x 2x 5x +=C .3x 2x 6x •=D .3x 2x x -=15.冬季的一天,室内温度是o 8C ,室外温度是o 2C -,则室内外温度相差()A .o 4CB .o 6C C .o 10CD .o 16C16.若0<x<1,则23x,x ,x 的大小关系是() A .23x x x <<B .32x x x <<C .32x x x <<D .23x x x << 17.函数y x 2=-中自变量x 的取值范围是()A .x 2≥-B .x 2≥C .x 2≠D .x 2<18.如果分式2x 1-与3x 3+的值相等,则x 的值是()A .9B .7C .5D .3 19.计算:2m 62m 3m 39m -÷+--的结果为() A .1B .m 3m 3-+C .m 3m 3+-D .3mm 3+20.已知x=2,则代数式x x 1-的值为()A .22+B .22-C .223+D .223-三、解答题(共40分)21.已知2(a b)1+=,2(a b)25-=,求22a b ab ++的值。

中考数学复习《数与式》专项检测卷(附带答案)

中考数学复习《数与式》专项检测卷(附带答案)

中考数学复习《数与式》专项检测卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共15道小题)1. (2023•淄博)设m=,则( )A.0<m<1B.1<m<2C.2<m<3D.3<m<42. (2023•杭州)因式分解:1﹣4y2=( )A.(1﹣2y)(1+2y)B.(2﹣y)(2+y)C.(1﹣2y)(2+y)D.(2﹣y)(1+2y)3. (2023秋•莫旗期末)下列说法中,不正确的是( )A.﹣ab2c的系数是﹣1,次数是4B.3xy-1是整式C.6x2﹣3x+1的项是6x2、﹣3x,1D.2πR+πR2是三次二项式4. (2023•东营)下列运算结果正确的是( )A.x2+x3=x5B.(﹣a﹣b)2=a2+2ab+b2C.(3x3)2=6x6D.5. (2023•雅安)若分式的值等于0,则x的值为( )A.﹣1B.0C.1D.±16. (2023春•渝中区校级月考)已知x是整数,当|x-23|取最小值时,x的值是( )A.3B.4C.5D.67. (2023•乐山)某种商品m千克的售价为n元,那么这种商品8千克的售价为( )A.(元)B.(元)C.(元)D.(元)8. (2023•达州)实数+1在数轴上的对应点可能是( )A.A点B.B点C.C点D.D点9. (2022·贵州贵阳)若代数式3(2-x)与代数式122x 的值相等,则x的值为( )A.87B.85C.﹣87D.10710. (2023•宁波)2023年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000用科学记数法表示为( )A.32×107B.3.2×108C.3.2×109D.0.32×10911. (2023•台州)将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖( )A.20%B.×100%C.×100%D.×100%12. (2023•绍兴)第七次全国人口普查数据显示,绍兴市常住人口约为5270000人,这个数字5270000用科学记数法可表示为( )A.0.527×107B.5.27×106C.52.7×105D.5.27×10713. (2022八下·冠县期末)有三个实数a1,a2,a3满足a1-a2=a2-a3>0,若a1+a3<0 则下列判断中正确的是( )A.a1<0B.a2<0C.a1+a2<0D.a2×a3=014. (2022·太原模拟)中国人很早就开始使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放着表示正数,斜放着表示负数,如图(1)表示(+2)+(-2).按照这种表示法,如图(2)表示的是( )A.(+3)+(+6)B.(-3)+(-6)C.(-3)+(+6)D.(+3)+(-6)15. (2023•达州)生活中常用的十进制是用0~9这十个数字来表示数,满十进一,例:12=1×10+2,212=2×10×10+1×10+2;计算机也常用十六进制来表示字符代码,它是用0~F来表示0~15,满十六进一,它与十进制对应的数如表:例:十六进制2B对应十进制的数为2×16+11=43,10C对应十进制的数为1×16×16+0×16+12=268,那么十六进制中14E对应十进制的数为( )A.28B.62C.238D.334二、填空题(本大题共8道小题)16. (2023•浙江自主招生)分解因式:2x2+7xy-15y2-3x+11y-2=.17. (2023•温州)分解因式:2m2﹣18=.18. (2023•宁波)分解因式:x2﹣3x=.19. (2023秋•沙坪坝区校级月考)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.20. (2023•广元)如图,实数﹣,,m在数轴上所对应的点分别为A,B,C,点B关于原点O的对称点为D.若m为整数,则m的值为.21. (2023秋•顺城区期末)有一数值转换器,原理如图所示,如果开始输入x的值为1,则第一次输出的结果是4,第二次输出的结果是5,……;那么2023次输出的结果是.22. (2023•嘉兴)观察下列等式:1=12﹣02,3=22﹣12,5=32﹣22,…按此规律,则第n个等式为2n﹣1=.23. (2023•眉山)观察下列等式:x1===1+;x2===1+;x3===1+;…根据以上规律,计算x1+x2+x3+…+x2023﹣2023=.三、解答题(本大题共6道小题)24. (2023秋•长春期末)已知多项式A=2m2-4mn+2n2,B=m2+mn-3n2,求:(1)3A+B;(2)A-3B.25. (2023•聊城)先化简,再求值:,其中a=﹣.26. (2023•威海)先化简,然后从﹣1,0,1,3中选一个合适的数作为a的值代入求值.27. (2023秋•达州期中)有理数a,b,c在数轴上的位置如图所示:(1)用“>”或“<”填空:b﹣c 0,a+b 0,c﹣a 0.(2)化简:|a+b|﹣|a+c|+|b﹣c|﹣|a|.28. (2023秋•内江期中)仔细观察,探索规律:(1)(a-b)(a+b)=a2-b2;(a-b)(a2+ab+b2)=a3-b3;(a-b)(a3+a2b+ab2+b3)=a4-b4.(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=①(其中n为正整数,且n≥2).②(2-1)(2+1)=;③(2-1)(22+2+1)=;④(2-1)(23+22+2+1)=;⑤(2n-1+2n-2+…+2+1)=;(2)根据上述规律,求22019+22018+22017+…+2+1的个位数字是多少?(3)根据上述规律,求29-28+27-…+23-22+2的值?29. (2023秋•内江期中)仔细观察,探索规律:(1)(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4.(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=①(其中n为正整数,且n≥2).②(2﹣1)(2+1)=;③(2﹣1)(22+2+1)=;④(2﹣1)(23+22+2+1)=;⑤(2n﹣1+2n﹣2+…+2+1)=;(2)根据上述规律,求22019+22018+22017+…+2+1的个位数字是多少?(3)根据上述规律,求29﹣28+27﹣…+23﹣22+2的值?答案一、选择题(本大题共15道小题)1. 解:∵4<5<9,∴2<<3,∴1<﹣1<2,∴<<1,∴0<m<1故选:A.2. 解:1﹣4y2=1﹣(2y)2=(1﹣2y)(1+2y).故选:A.3. 故选:D.4. 解:A、x2与x3不能合并,所以A选项错误;B、(﹣a﹣b)2=[﹣(a+b)]2=(a+b)2=a2+2ab+b2,所以B选项正确;C、(3x3)2=9x6,所以C选项错误;D、与不能合并,所以D选项错误.故选:B.5. 解:由题意得:|x|﹣1=0,且x﹣1≠0,解得:x=﹣1,故选:A.【题目】(2023•宜宾)在我国远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示是远古时期一位母亲记录孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是( )A.27B.42C.55D.2106. 故选:C.7. 解:根据题意,得:×8=(元),故选:A.8. 解:∵1<2<4,∴1<<2,∴2<+1<3则实数+1在数轴上的对应点可能是点D,故选:D.9. A10. 解:320000000=3.2×108,故选:B.11. 解:由题意可得,故选:D.12. 解:5270000=5.27×106.故选:B.13. D14. D15. 解:由题意得14E=1×16×16+4×16+14=334.故选:D.二、填空题(本大题共8道小题)16. 解:∵2x2+7xy-15y2=(x+5y)(2x-3y)∴可设2x2+7xy-15y2-3x+11y-2=(x+5y+a)(2x-3y+b),a、b为待定系数∴2a+b=-3,5b-3a=11,ab=-2,解得a=-2,b=1∴原式=(x+5y-2)(2x-3y+1).故答案为:(x+5y-2)(2x-3y+1).17. 解:原式=2(m2﹣9)=2(m+3)(m﹣3).故答案为:2(m+3)(m﹣3).18. 解:原式=x(x﹣3),故答案为:x(x﹣3)19. 解:由图可得:a<0<b,且|a|>|b|,∴ab<0,﹣a>b,a﹣b<0,∴正确的有:①③;故答案为:①③.20. 解:∵点B表示的数是,点B关于原点O的对称点是点D∴点D表示的数是﹣,∵点C在点A、D之间∴﹣<m<﹣,∵﹣4<﹣<﹣3,﹣3<﹣<﹣2,∴﹣<﹣3<﹣∵m为整数,∴m的值为﹣3.答案为:﹣3.21. 故答案为:10.22. 解:∵1=12﹣02,3=22﹣12,5=32﹣22,…∴第n个等式为2n﹣1=n2﹣(n﹣1)2,故答案为:n2﹣(n﹣1)2.23. 解:∵x1===1+;x2===1+;x3===1+;…∴x1+x2+x3+…+x2023﹣2023=1++1++1++…+1+﹣2023=2023+1﹣+﹣+﹣+…﹣﹣2023=﹣故答案为:﹣.三、解答题(本大题共6道小题)24. 解:(1)∵A=2m2-4mn+2n2,B=m2+mn-3n2∴3A+B=3(2m2-4mn+2n2)+(m2+mn-3n2)=6m2-12mn+6n2+m2+mn-3n2=7m2-11mn+3n2;(2)∵A=2m2-4mn+2n2,B=m2+mn-3n2∴A-3B=(2m2-4mn+2n2)-3(m2+mn-3n2)=2m2-4mn+2n2-3m2-3mn+9n2=-m2-7mn+11n2.25. 解:原式=+÷=+÷=+•=﹣=当a=﹣时,原式==6.26. 解:原式=[﹣(a+1)]÷=•=•=•=2(a﹣3)=2a﹣6∵a=﹣1或a=3时,原式无意义,∴a只能取1或0当a=1时,原式=2﹣6=﹣4.(当a=0时,原式=﹣6.)27. 解:(1)由数轴可得,a<0<b<c,且|b|<|a|<|c|,∴b﹣c<0,a+b<0,c﹣a>0 故答案为:<,<,>;(2)∵b﹣c<0,a+b<0,a+c>0∴|a+b|﹣|a+c|+|b﹣c|﹣|a|=﹣a﹣b﹣(a+c)+(﹣b+c)﹣(﹣a)=﹣a﹣b﹣a﹣c﹣b+c+a=﹣a﹣2b.28. 解:(1)由上式的规律可得,a n-b n,①故答案为:a n-b n;由题干中提供的等式的规律可得,②(2+1)(2-1)=22-1;故答案为:22-1;③(2-1)(22+2+1)=23-1,故答案为:23-1;④(2-1)(23+22+2+1)=24-1故答案为:24-1;⑤(2n-1+2n-2+…+2+1)=(2-1)(2n-1+2n-2+…+2+1)=2n-1,故答案为:2n-1;(2)22019+22018+22017+…+2+1=(2-1)(22019+22018+22017+…+2+1)=22023-1又∵21=2,22=4,23=8,24=16,25=32,……∴22023的个位数字为6∴22023-1的个位数字为6-1=5,答:22019+22018+22017+…+2+1的个位数字是5.(3)(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=2n-1,取a=2,b=-1,n=10∴(2-1)(29-28+27-…+23-22+2-1)=210-1∴29-28+27-…+23-22+2=210=1024.29. 解:(1)由上式的规律可得,a n﹣b n①故答案为:a n﹣b n;由题干中提供的等式的规律可得②(2+1)(2﹣1)=22﹣1;故答案为:22﹣1;③(2﹣1)(22+2+1)=23﹣1,故答案为:23﹣1;④(2﹣1)(23+22+2+1)=24﹣1故答案为:24﹣1;⑤(2n﹣1+2n﹣2+…+2+1)=(2﹣1)(2n﹣1+2n﹣2+…+2+1)=2n﹣1,故答案为:2n﹣1;(2)22019+22018+22017+…+2+1=(2﹣1)(22019+22018+22017+…+2+1)=22023﹣1又∵21=2,22=4,23=8,24=16,25=32,……∴22023的个位数字为6,∴22023﹣1的个位数字为6﹣1=5答:22019+22018+22017+…+2+1的个位数字是5.(3)(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=2n﹣1取a=2,b=﹣1,n=10∴(2﹣1)(29﹣28+27﹣…+23﹣22+2﹣1)=210﹣1∴29﹣28+27﹣…+23﹣22+2=210=1024.。

初中数学《数与式》综合测试试题

初中数学《数与式》综合测试试题

C.(2m)=6m3D.(m+1)=m2+1①b-a<0;②a+b>0;③|a|<|b|;④>0.其中正确的是(C)b∴b-a<0,a+b<0,<0,故①③正确,②④错误.A.a=-2B.a=C.a=1D.a=2《数与式》综合测试卷[分值:120分]一、选择题(每小题3分,共30分)1.-22=(B)A.-2B.-4C.2D.4【解析】-22=-4.2.研究表明,可燃冰是一种可代替石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000m3,其中数字150000000000用科学记数法可表示为(C) A.15×1010B.0.15×1012C.1.5×1011D.1.5×1012【解析】150000000000=1.5×1011.3.在下列的计算中,正确的是(B)A.m3+m2=m5B.m6÷m3=m332【解析】m6÷m3=m6-3=m3.4.计算|2+5|+|2-5|的结果是(D)A.-25B.-4C.4D.25【解析】原式=2+5+5-2=2 5.5.若a+b=4,ab=2,则(a-b)2=(C)A.0B.6C.8D.12【解析】(a-b)2=(a+b)2-4ab=42-4×2=8.6.已知点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:a(第6题)A.①②B.③④C.①③D.②④【解析】由题意,得b<-3<0<a<3,且|b|>|a|,ba7.能说明“对于任何实数a,|a|>-a”是假命题的一个反例可以是(A)13【解析】若|a|>-a,则|a|+a>0,此时a>0.∴当a≤0时,|a|>-a不成立,∴反例只要是非正数就可以.⎛4⎫a2⎝a⎭a-2的值是(C)【解析】 a-a⎪·=⎛4⎫a2a2-4a2⎭a-2a a-2⎝a1a2a3a19A.202184840760a1a2a3a191×32×43×519×212⎛ 1-+-+…+-⎪+ -11111⎫+-+…+-⎪1⎛1⎫1⎛11⎫58921⎭2⎝220⎭840= 1-⎪+ -⎪=.11.若2有意义,则x的取值范围是__x>3__.8.如果a2+2a-1=0,那么代数式 a-⎪·A.-3B.-1C.1D.3·=a(a+2)=a2+2a.∵a2+2a-1=0,∴a2+2a=1.∴原式=a2+2a=1.9.如图①,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图②所示,再将剪下的两个小矩形拼成一个新的矩形,如图③所示,则新矩形的周长可表示为(B)(第9题)A.2a-3bB.4a-8bC.2a-4bD.4a-10b【解析】由题意,得2[a-b+(a-3b)]=4a-8b.10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个1111数为a3……以此类推,则+++…+的值为(C),(第10题))61589431B. C. D.【解析】由图可得:a1=1+2=3,a2=1+2+3+2=8,a3=1+2+3+4+3+2=15,a4=1+2+3+4+5+4+3+2=24,…,a n=n(n+2).111111111∴+++…+=+++…+=11111⎫1⎛1⎝3351921⎭2⎝24461820⎭2⎝二、填空题(每小题4分,共24分)x-3【解析】∵x-3>0,∴x>3.12.如图,数轴上点A表示的实数是5-1.15.若关于 x 的方程 2 x +m =2 的解为正数,则 m 的取值范围是__m <6 且 m ≠0__.【解析】 原方程去分母,得 2-x -m =2(x -2),解得 x =2- .∵原方程的解为正数,∴2- >0,解得 m <6.又∵x ≠2,∴2- ≠2,解得 m ≠0.,a 4= 第 2 次, y 2= 第 3 次, y 3=…,则第 n 次运算的结果 y n = (2n-1)x +1【解析】 将 y 1= 2x代入 y 2= ,得x +1 4x y 2= 2x 3x +1x +1 将 y 2= 4x 代入 y 3=,得3x +1 8x y 3= 4x 7x +13x +1 依此类推,第 n 次运算的结果 y n = (2n-1)x +1,(第 12 题))【解析】 点 A 表示的实数为 12+22-2+1= 5-1.3 5 7 9 11 1713.已知 a 1=-2,a 2=5,a 3=-10 17,a 5=-26,…,则 a 8=__65__.2n +1 17【解析】由题意,得 a n =(-1)nn 2+1 ,∴a 8=65.14.若 m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代数式 m 2017+2017n +c 2018 的值为__0__.【解析】 由题意知 m =-1,n =0,c =1, ∴m 2017+2017n +c 2018=-1+0+1=0.x -2 2-xm3m3m3综上所述,m <6 且 m ≠0.16.有一个计算程序,每次运算都是把一个数先乘2,再除以它与 1 的和,多次重复进 行这种运算的过程如下:输入x , 第 1 次 y 1=2x2y 1 2y 2 x +1 y 1+1 y 2+1(第 16 题) 2n x (用含字母 x 和 n 的代数式表示). 2y 1x +1 y 1+12x 2× =. +12y 2 3x +1y 2+1 4x 2× =.+1… 2n x .1⎫⎛3-1⎝4⎭82,其中a=2+ 2.⎝+2a-4⎭a+2a-2(2) a(a-2)(a-1)a-2a-22222+21⎫a-1+12a-4a-1a-2x x三、解答题(共66分)17.(6分)计算:(1)(-1)2017-|-2|+(3-π)0×8+ ⎪.【解析】原式=-1-2+1×2+4=3.31(2)-32+8+|1-2|-4sin30°+-4cos45°.1121【解析】原式=-9+22+2-1-4×+-4×=-9+32-1-2+-2223=2-.18.(6分)分解因式:(1)(y+2x)2-(x+2y)2.【解析】原式=[(y+2x)+(x+2y)][(y+2x)-(x+2y)]=3(x+y)(x-y).(2)ab4-6ab3+9ab2.【解析】原式=ab2(b2-6b+9)=ab2(b-3)2.19.(6分)已知实数a,b满足ab=1,a+b=3.(1)求代数式a2+b2的值.(2)求a4-b4的值.【解析】(1)a2+b2=(a+b)2-2ab=32-2×1=9-2=7.(2)∵(a-b)2=(a+b)2-4ab=32-4×1=5,即a-b=5或a-b=-5,∴a2-b2=(a-b)(a+b)=±35,∴a4-b4=(a2+b2)(a2-b2)=7×(±35)=±21 5.20.(10分)先化简,再求值:(1)(2a-1)2-2(a+1)(a-1)-a(a-2),其中a=2+1.【解析】原式=4a2-4a+1-2a2+2-a2+2a=a2-2a+3.当a=2+1时,原式=a2-2a+3=(2+1)2-2(2+1)+3=3+22-22-2+3=4.⎛a⎪÷a(a-2)+1a+21【解析】原式=·+(a-1)21a=+=.2+2当a=2+2时,原式==2+1.21x-221.(6分)小明解方程-=1的过程如图所示,请指出他解答过程中的错误,并写出正确的解答过程.合并同类项,得-2x=-3,解得x=.经检验,x=是原方程的解,∴原方程的解为x=.【解析】(1)S阴影4×4×=8,2×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=.,(第21题))【解析】小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验.正确解法如下:方程两边同乘x,得1-(x-2)=x.去括号,得1-x+2=x.移项,得-x-x=-1-2.32323222.(8分)如图为4×4的网格(每个小正方形的边长均为1)与数轴.(第22题)(1)求出图①中阴影部分的面积及正方形的边长.(2)在图②的数轴上作出表示8的点A.1=正方形的边长=8=2 2.(2)在数轴上画边长为2的正方形,以原点为圆心、对角线长为半径画弧,交x轴正半轴于点A,则点A即为表示8的点(画图略).23.(12分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称ppq34(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1.(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位与十位上的数字得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”.⎧⎪x =1,⎧⎪x =2,⎧⎪x =3,⎧⎪x =4,⎧⎪x =5,(3)若 t =15,15=1×15=3×5,F (15)= ;若 t =26,26=1×26=2×13,F (26)= ;若 t =37,37=1×37,F (37)= ;若 t =48,48=1×48=2×24=3×16=4×12=6×8,F (48)= = ;若 t =59,59=1×59,F (59)= .59 37 13 5 4 ∴F (t )的最大值为 .21 3⎛ ⎫23⎛ ⎫222(2)(a +b ) -ab或a =1,⎧⎪2(3)由已知等式可得 a - ⎪ +3 -1⎪ +(c -1) =0,∴⎨b =2,∴a +b +c =4. ⎪⎩c =1,2 2例如:(x -1) +3,(x -2) +2x , x -2⎪ + x 2 是 x 2-2x +4 的三种不同形式的配方(即 ⎛b ⎫ ⎛b ⎫2 2 ⎩ ⎩ ⎩⎩ ⎩(3)在(2)所得“吉祥数”中,求 F (t )的最大值.【解析】 (1)设 m =n 2,则 n ×n 是 m 的最佳分解, ∴F (m )=1.(2)由题意知 10y +x -(10x +y )=36, 解得 y -x =4. ∵1≤x ≤y ≤9,∴x ,y 的值为⎨ ⎨ ⎨ ⎨ ⎨⎪y =5,⎪y =6,⎪y =7,⎪y =8,⎪y =9,∴t =15,26,37,48,59.35213 1376 38 41591 123 3 ∵ < < < < , 3424.(12 分)阅读材料:把形如 ax 2+bx +c 的二次三项式(或其中某一部分)配成完全平方式的方法叫做配方 法.配方法的基本形式是完全平方公式的逆写,即 a 2±2ab +b 2=(a ±b )2.⎝2 ⎭ 4“余项”分别是常数项、一次项、二次项——见横线上的部分).请根据材料解决下列问题:(1)比照上面的例子,写出 x 2-4x +2 的三种不同形式的配方. (2)将 a 2+ab +b 2 配方(至少两种形式).(3)已知 a 2+b 2+c 2-ab -3b -2c +4=0,求 a +b +c 的值. 【解析】 (1)①x 2-4x +2=(x 2-4x +4)-2=(x -2)2-2.②x 2-4x +2=(x 2-2 2x +2)+(2 2-4)x =(x - 2)2+(2 2-4)x .③x 2-4x +2=[( 2x )2-4x +2]-x 2=( 2x - 2)2-x 2.⎝ 2 ⎭4 ⎝2 ⎭ 4⎝ 2⎭ ⎝2 ⎭。

2020中考数学复习基础测试卷专练数与式综合(含答案)

2020中考数学复习基础测试卷专练数与式综合(含答案)

6.A [解析](1)a=681×(2019-2018)=681. (2)设 2015=m,则 b=m(m+1)-(m-2)(m+3)=m2+m-m2-m+6=6.
(3)设 678=n,则 c= n2 (2n 2) (n 2) n = n2 4n 4 =n+2=680.
∵6<680<681,∴b<c<a. 故选 A. 7.x 8.7 [解析]由已知得(a+1)2+(b-2)2=0,∴a=-1,b=2.于是原式=7.
所以等式两边取倒数,得 x2 1 =3,即 x 1 =3.
x
x

x4 x2
1

x2
1 x2
=( x
1 x
)2-2=32-2=7.
∴ x2 的值为 7 的倒数,即 1 .
x4 1
7
以上解法中先将已知等式的两边“取倒数”,然后求出待求式子倒数的值,我们把此题的这种解法叫做“倒数法”
.请你利用“倒数法”解决下面的问题:
3.实数 a、b、c 在数轴上对应点如图 23 所示,化简 a+|a+b|-|c|-|b-c|等于( )
A.0 B.2a+2b C.2a+2c D.2b+2c
b
c0 a
图 23
4.计算 ( a2 a2
b2 b2
a a
b b
)
ab 2ab
的结果是(
)
A.
a
1
b
B.
a
1
b
C.a-b D.a+b
(1)已知: x =7,求 x2 的值.
ቤተ መጻሕፍቲ ባይዱ
x2 x 1
x4 x2 1
(2)已知
xy x y
2

yz y

2024年中考数学复习(全国版)专题05 数与式综合测试卷(原卷版)

2024年中考数学复习(全国版)专题05 数与式综合测试卷(原卷版)

专题05数与式综合测试卷考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2023·青海西宁·统考中考真题)算式−3□1的值最小时,□中填入的运算符号是()A.+B.-C.×D.÷2.(3分)(2023·江苏宿迁·统考中考真题)下列运算正确的是()A.2�−�=1B.�3⋅�2=�5C.� 2=� 2D.�24=�63.(3分)(2023·浙江衢州·统考中考真题)手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:dBm),则下列信号最强的是()A.−50B.−60C.−70D.−804.(3分)(2023·河北·统考中考真题)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km.下列正确的是()A.9.46×1012−10=9.46×1011B.9.46×1012−0.46=9×1012C.9.46×1012是一个12位数D.9.46×1012是一个13位数5.(3分)(2023·重庆·统考中考真题)估计5×6−)A.−1B.�−1C.1�+1D.1�2−17.(3分)(2023·山东·统考中考真题)实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.�( −�)<0B. (�−�)<0C.�( −�)>0D.�(�+ )>08.(3分)(2023·河北·统考中考真题)若k 为任意整数,则(2�+3)2−4�2的值总能()A .被2整除B .被3整除C .被5整除D .被7整除9.(3分)(2023·四川德阳·统考中考真题)在“点燃我的梦想,数学皆有可衡”数学创新设计活动中,“智多星”小强设计了一个数学探究活动:对依次排列的两个整式m ,n 按如下规律进行操作:第1次操作后得到整式串m ,n ,�−�;第2次操作后得到整式串m ,n ,�−�,−�;第3次操作后…其操作规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差,小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是()A .�+�B .m C .�−�D .2�10.(3分)(2023·四川内江·统考中考真题)对于正数x ,规定�(�)=2��+1,例如:�(2)=2×22+1=43,�=2×1212+1=23,�(3)=2×33+1=32,�=2×1313+1=12,计算:�+�+�+⋯+�+�+�(1)+�(2)+�(3)+⋯+�(99)+(100)+�(101)=(A .199B .200C .201D .202二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2023·四川巴中·统考中考真题)在0,−,−π,−2四个数中,最小的实数是.12.(3分)(2023·江苏·统考中考真题)若圆柱的底面半径和高均为�,则它的体积是(用含�的代数式表示).13.(3分)(2023·江苏泰州·统考中考真题)若2�− +3=0,则2(2�+ )−4 的值为.14.(3分)(2023·山东潍坊·统考中考真题)从−2、3,6中任意选择两个数,分别填在算式□+○2÷2里面的“□”与“○”中,计算该算式的结果是.(只需写出一种结果)15.(3分)(2023·黑龙江大庆·统考中考真题)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,(�+ )7展开的多项式中各项系数之和为.16.(3分)(2023·湖南娄底·统考中考真题)若干个同学参加课后社团——舞蹈活动,一次排练中,先到的n个同学均匀排成一个以O点为圆心,r为半径的圆圈(每个同学对应圆周上一个点),又来了两个同学,先到的同学都沿各自所在半径往后移a米,再左右调整位置,使这�+2个同学之间的距离与原来n个同学之间的距离(即在圆周上两人之间的圆弧的长)相等.这�+2个同学排成圆圈后,又有一个同学要加入队伍,重复前面的操作,则每人须往后移米(请用关于a的代数式表示),才能使得这�+3个同学之间的距离与原来n个同学之间的距离相等.三.解答题(共7小题,满分52分)17.(6分)(2023·江苏无锡·统考中考真题)(1)计算:(−3)2−25+|−4|(2)化简:(�+2�)(�−2�)−�(�−�)18.(6分)(2023·广东广州·统考中考真题)已知�>3,代数式:�=2�2−8,�=3�2+6�,�=�3−4�2+4�.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.19.(8分)(2023·河北·统考中考真题)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(�>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为�1,�2.(1)请用含a的式子分别表示�1,�2;当�=2时,求�1+�2的值;(2)比较�1与�2的大小,并说明理由.20.(8分)(2023·四川攀枝花·统考中考真题)2022年卡塔尔世界杯共有32支球队进行决赛阶段的比赛.决赛阶段分为分组积分赛和复赛.32支球队通过抽签被分成8个小组,每个小组4支球队,进行分组积分赛,分组积分赛采取单循环比赛(同组内每2支球队之间都只进行一场比赛),各个小组的前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,16支球队按照既定的规则确定赛程,不再抽签,然后进行18决赛,14决赛,最后胜出的4支球队进行半决赛,半决赛胜出的2支球队决出冠、亚军,另外2支球队决出三、四名.(1)本届世界杯分在�组的4支球队有阿根廷、沙特、墨西哥、波兰,请用表格列一个�组分组积分赛对阵表(不要求写对阵时间).(2)请简要说明本届世界杯冠军阿根廷队在决赛阶段一共踢了多少场比赛?(3)请简要说明本届世界杯32支球队在决赛阶段一共踢了多少场比赛?21.(8分)(2023·福建厦门·统考模拟预测)“歌唱家在家唱歌”“蜜蜂酿蜂蜜”这两句话从左往右读和从右往左读,结果完全相同.文学上把这样的现象称为“回文”,数学上也有类似的“回文数”,比如252,7887,34143,小明在计算两位数减法的过程中意外地发现有些等式从左往右读的结果和从右往左读的结果一样,如:65−38=83−56;91−37=73−19;54−36=63−45.数学上把这类等式叫做“减法回文等式”.(1)①观察以上等式,请你再写出一个“减法回文等式”;②请归纳“减法回文等式”的被减数� (十位数字为a,个位数字为b)与减数� 应满足的条件,并证明.(2)两个两位数相乘,是否也存在“乘法回文等式”?如果存在,请你直接写出“乘法回文等式”的因数��与因数��应满足的条件.22.(8分)(2023·山东青岛·统考中考真题)如图①,正方形��� 的面积为1.(1)如图②,延长��到�1,使�1�=��,延长��到�1,使�1�=��,则四边形��1�1 的面积为______;(2)如图③,延长��到�2,使�2�=2��,延长��到�2,使�2�=2��,则四边形��2�2 的面积为______;(3)延长��到��,使���=���,延长��到��,使���=���,则四边形����� 的面积为______.23.(8分)(2023·山东潍坊·统考中考真题)[材料阅读]用数形结合的方法,可以探究�+�2+�3+...+��+…的值,其中0<�<1.例求12+++⋯++⋯的值.方法1:借助面积为1的正方形,观察图①可知12+++⋯++⋯的结果等于该正方形的面积,即12+++⋯++⋯=1.方法2:借助函数�=12�+12和�=�的图象,观察图②可知12+++⋯++⋯的结果等于�1,�2,�3,…,��…等各条竖直线段的长度之和,即两个函数图象的交点到�轴的距离.因为两个函数图象的交点(1,1)到�轴的距为1,所以,12+++⋯++⋯=1.【实践应用】任务一完善23+++⋯++⋯的求值过程.方法1:借助面积为2的正方形,观察图③可知23+++⋯++⋯=______.方法2:借助函数�=23�+23和�=�的图象,观察图④可知因为两个函数图象的交点的坐标为______,所以,23+++⋯++⋯=______.任务二参照上面的过程,选择合适的方法,求34+++⋯++⋯的值.任务三用方法2,求�+�2+�3+⋯+��+⋯的值(结果用�表示).【迁移拓展】长宽之比为5+12:1的矩形是黄金矩形,将黄金矩形依次截去一个正方形后,得到的新矩形仍是黄金矩形.观察图⑤+++⋯+�+⋯的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年江西省中考数学专题测试卷:数与式综合一、选择题
1.代数式
1 2
1
x
x
-+
-
中,x的取值范围是( )
A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠1
2.若a+b=1,a-c=2,则(2a+b-c)2+(b+c)2等于()
A.10B.8C.2D.1
3.实数a、b、c在数轴上对应点如图23所示,化简a+|a+b|-|c|-|b-c|等于( )
.2a+2c D.2b+2c
4.计算
22
22
()
2
a b a b a b
a b ab
a b
+--
-⨯
+
-
的结果是( )
A.
1
a b
-
B.
1
a b
+
C.a-b D.a+b
5.已知a=5+2,b=5-2,则227
a b
++的值为( )
A.3 B.4 C.5 D.6
6.设681×2019-681×2018=a,2015×2016-2013×2018=b,2
6781358690678
+++=c,则a,b,c的大小关系是( )
A.b<c<a B.a<c<b C.b<a<c D.c<b<a
二、填空题
7.化简
2
1
x
x-

1
x
x
-
的结果为______.
8.已知a2+b2+2a-4b+5=0,则2a2+4b-3的值是______.
9.已知x+y=-10,xy=8,则x
y

y
x
=______.
10.计算(1-
1
2

1
3

1
4

1
5
)(
1
2

1
3

1
4

1
5

1
6
)-(1-
1
2

1
3

1
4

1
5

1
6
)(
1
2

1
3

1
4

1
5
)的结果是______.
11.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):
请依据上述规律,写出(x-
2
x
)2016展开式中含x2014项的系数是______.
a
b c
图23
三、解答题
12(-
12)-1-tan60°2|.
13.先化简,再求值:21
x x -÷(1+11x -),其中x (π-3)0.
14.阅读下面的解题过程: 已知21x x +=13,求241
x x +的值. 解:由
21x x +=13可知x ≠0, 所以等式两边取倒数,得21x x
+=3,即1x x +=3. ∴421x x
+=221x x +=(1x x +)2-2=32-2=7. ∴241
x x +的值为7的倒数,即17. 以上解法中先将已知等式的两边“取倒数”,然后求出待求式子倒数的值,我们把此题的这种解法叫做“倒数法”.请你利用“倒数法”解决下面的问题:
(1)已知:21x x x -+=7,求2421
x x x ++的值. (2)已知2xy x y =-+,43yz y z =+,43zx z x =-+,求xyz xy yz zx
++的值.
参考答案
1.B
2.A
3.A [解析]原式=a -(a +b )+c -(c -b )=a -a -b +c -c +b =0.故选A .
4.B
5.C [解析]由已知得a -b =4,ab =15.故选C .
6.A [解析](1)a =681×(2019-2018)=681.
(2)设2015=m ,则b =m (m +1)-(m -2)(m +3)=m 2+m -m 2-m +6=6.
(3)设678=n ,则c n +2=680.
∵6<680<681,∴b <c <a .
故选A .
7.x
8.7 [解析]由已知得(a +1)2+(b -2)2=0,∴a =-1,b =2.于是原式=7.
9 [解析]依题意可知x <0,y <0.

∵x +y =-10,xy =8
. 10.16 [解析]设12+13+14+15=a ,则原式=(1-a )(a +16)-(1-a -16)a =16+56a -a 2-56a +a 2=16
. 11.-4032 [解析](x -2x
)2016展开式中, 第一项是x 2016, 第二项是2016x 2015·(-
2x )=-4032x 2014. 所以含x 2014项的系数是-4032.
12.解:原式=22+22.
13.解:原式=
21x x -·1x x -=11x +.
x =12×-31-1.

14.解:(1)由已知得2117x x x -+=,∴x -1+1x =17,即1x x +=87.而422
1x x x ++=2211x x ++=(1x x +)2-1=(87)2-1=1549.故2421x x x ++=4915

(2)依题意得1112x y +=-,1134y x +=,1134z x +=-,以上三个方程相加,得2(111x y z
++)=-12.即xy yz zx xyz ++=-
14.∴xyz xy yz zx
++=-4.。

相关文档
最新文档