二次函数在实际生活中的应用及建模应用

合集下载

二次函数在物理学中的应用

二次函数在物理学中的应用

二次函数在物理学中的应用二次函数是高中数学中的重要内容,在物理学中也有广泛的应用。

本文将通过介绍二次函数在物理学中的几个典型应用案例,探讨二次函数的实际应用价值。

1. 物体运动在物理学中,二次函数可以用来描述物体的运动。

以一个自由落体的例子来说明。

假设一个物体从高处自由落下,忽略空气阻力,其运动轨迹可以用二次函数来表示。

设物体的高度为h,时间为t,则物体的高度可以用以下的二次函数表示:h = -gt^2 + v0t + h0其中,g为重力加速度,v0为物体的初始速度,h0为起始位置。

2. 抛体运动抛体运动也是物理学中常见的题型,可以通过二次函数进行建模。

抛体运动是指一个物体在初速度和重力作用下,呈抛物线运动的过程。

其运动轨迹可以用以下的二次函数描述:h = -gt^2 + vt + h0其中,g为重力加速度,v为物体的初速度,h0为起始位置。

3. 平抛运动平抛运动是指物体在水平方向上以一定速度平行地抛出,而在竖直方向上仅受重力作用而自由运动。

平抛运动可以通过二次函数来描述。

以一个抛出斜线运动的例子来说明。

设物体的水平位置为x,时间为t,则物体的位置可以用以下的二次函数表示:x = v0t + h0其中,v0为物体的水平初速度,h0为起始位置。

4. 弹簧振动弹簧振动是物理学中的一个重要概念,也可以用二次函数进行建模。

当一个物体在弹簧的作用下振动时,其位置可以用以下的二次函数来表示:x = Acos(ωt + φ)其中,A为振幅,ω为角频率,φ为相位。

5. 光的折射光的折射现象也可以用二次函数进行描述。

当光线从一种介质射入另一种介质时,由于两种介质的光速不同,光线会发生折射。

光的折射可以由斯涅尔定律来描述,斯涅尔定律可以用以下的二次函数来表示:n1sinθ1 = n2sinθ2其中,n1和n2分别为两种介质的折射率,θ1和θ2分别为光线在两种介质中的入射角和折射角。

综上所述,二次函数在物理学中有着广泛的应用。

二次函数的综合运用

二次函数的综合运用

二次函数的综合运用二次函数是一种形式为 y = ax² + bx + c 的函数,其中 a、b、c 是常数且a ≠ 0。

二次函数在数学中有广泛的应用,涉及到诸如物理学、经济学和工程学等多个领域。

本文将探讨二次函数在各个领域中的综合运用,包括最值问题、图像分析、实际问题的建模等。

一、最值问题对于二次函数 y = ax² + bx + c,其中a ≠ 0,我们可以通过一些方法求得其最值。

为了简化讨论,我们以函数 y = x² + 2x - 3 为例。

1. 定义域和值域首先,我们需要确定该二次函数的定义域和值域。

对于二次函数 y= x² + 2x - 3,由于 x²的值始终大于等于 0,所以该函数的定义域为全体实数。

而二次函数在开口向上的情况下,其最小值即为函数的值域的下界。

根据二次函数的顶点公式,可以求得该函数的顶点为(-1, -4),因此该函数的最小值为 -4。

2. 求解极值点我们可以通过求导数的方法求得二次函数的极值点。

对于函数 y =x² + 2x - 3,将其对 x 求导后可得 y' = 2x + 2。

令 y' = 0,解得 x = -1。

将 x = -1 代入函数 y = x² + 2x - 3 中可得 y = -4,即函数在 x = -1 处取得极小值 -4。

同样,对于开口向下的二次函数,可以通过类似的方法求得其极大值。

二、图像分析二次函数的图像一般为抛物线,通过分析图像可以获得更多关于函数的信息。

下面以函数 y = x² + 2x - 3 为例进行具体分析。

1. 对称轴和顶点二次函数的对称轴是由函数的一阶导数确定的直线,其方程形式为x = -b/(2a)。

对于函数 y = x² + 2x - 3,对称轴的方程为 x = -1。

根据二次函数的顶点公式,可以求得该函数的顶点坐标为 (-1, -4)。

例谈二次函数在实际生活中的应用

例谈二次函数在实际生活中的应用

例谈二次函数在实际生活中的应用作者:张岚秦婷马玲刘瑜来源:《大东方》2018年第02期摘要:二次函数作为一个非常重要的函数模型,贯穿于整个中学数学的教与学中,是数学研究中的重要的工具。

本文通过具体的实例进行分析和总结二次函数在实际生活中的应用。

关键词:二次函数;数学模型;应用1 二次函数的相关概念一般地,我们把形如的函数叫做一元二次函数,其图像是一条抛物线,且a决定函数图像的开口方向,a>0时,开口方向向上,a物线是轴对称图形,对称轴为直线。

对称轴与抛物线唯一的交点为抛物线的顶点P,其坐标为。

抛物线与x轴交点个数由一元二次方程根的个数决定,即由的符号决定。

当时,抛物线与x轴有2个交点;当时,抛物线与x轴只有1个交点;当时,抛物线与x轴没有交点。

2 二次函数在实际生活中的应用有关二次函数的应用问题按照是否需要建立平面直角坐标系可以分为两类,一类不需要建立平面直角坐标系,这类题目关键是要求出二次函数的解析式,例如求销售利润的最值问题,二次函数的解析式分为顶点式,一般式和交点式,要根据实际问题所给的条件选择合适的解析式,接着只需运用二次函数的主要性质:如单调性、奇偶性、对称性、最值等,必要时结合二次函数图形求解出函数模型。

另一类就是必须建立平面直角坐标系。

这类题呈现的方式主要是以抛物线为基础的实际问题,如拱桥问题、投掷问题等等。

首先要将拱桥抽象为抛物线,然后结合实际问题中的条件,建立坐标系求出抛物线的解析式。

平面直角坐标系选择的一般原则是使得得出的二次函数的解析式最简单,因此要学会巧妙地选择直角坐标系的位置。

综上可知不管是哪类二次函数模型题最终都是通过二次函数解析式来解决问题的。

2.1 在经济生活中的应用二次函数在经济生活中的应用,主要分为投资策略、销售定价、货物存放、消费住宿等不同方面,而这几个不同方面的问题有一个共通点,那就是利润的最大化问题。

不论是投资还是销售,利润问题都是我们最关注的问题。

2021最新版二次函数的实际应用:建模问题

2021最新版二次函数的实际应用:建模问题

二次函数的实际应用:建模问题一、球类、跳水、喷泉问题这类问题对于解析式的确定通常采用顶点式:1. 球类问题分为篮球问题、足球问题及羽毛球问题。

篮球问题会考察“球是否入篮”,即看篮筐所在点是否在抛物线上;“足球是否进球门”即看球到达球门所在位置时纵坐标是比球门高还是低;羽毛球涉及过网越界问题,即计算在过网位置纵坐标比网高还是低,越界考察在界限位置纵坐标是正数还是负数。

2. 跳水问题考察的是动作是否在规定范围内规范,同样考察在指定位置的纵坐标与限定高度的大小比较。

3. 喷泉问题考察的比较多的是圆形水池的半径,需要计算抛物线与水池水平面的交点坐标。

1、如图,羽毛球运动员甲站在点 O 处练习发球,将球从 O 点正上方23m 的 P 处发出,把球勘察点,其运行路线是抛物线的一部分,当球运动到最高点时,其高度为617m ,离甲站立地点 O 的水平距离为 4m ,球网 BA 离 O 点的水平距离为 5m ,以 O 为坐标原点建立如图所示的坐标系,乙站立地点 C 的坐标为(m ,0)①求出抛物线的解析式;(不写自变量的取值范围)②求排球落地点N 离球网的水平距离; ③乙原地起跳可接球的最大高度为49米,若乙因为接球高度不够而失球,求 m 的取值范围.2、某跳水运动员进行 10 米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点 O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面 332米,入水处距池边的距离为 4 米,运动员在距水面高度为 5 米以前,必须完成规定的翻腾动作, 并调整好入水姿势,否则就会出现失误. ①求这条抛物线的解析式.②在某次试跳中,测得运动员在空中的运动路线是①中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为 3.6 米,问此次跳水会不会失误?并通过计算说明理由.3、如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子 OA ,O 恰在水面中心,OA=1.25m ,由柱子顶端 A 处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在 OA 距离为 1m 处达到距水面最大高度 2.25m . ①若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不能落到池外?②若水流喷出的抛物线形状与①相同,水池的半径为 3.5m ,要使水流不落到池外,此时水流最大高度应达多少米?4、一场篮球赛中,球员甲跳起投篮,已知球在 A 处出手时离地面920m ,与篮筐中心C 的水平距离为 7m ,当球运行的水平距离是 4m 时,达到最大高度 4m (B 处),篮筐距地面 3m ,篮球运行的路线为抛物线(如图所示).①建立适当的平面直角坐标系,并求出抛物线的解析式;②判断此球能否投中?5、如图,小区中央公园要修建一个圆形的喷水池,在水池中央垂直于地面安装一个柱子 OA ,O 恰好在水面的中心,OA=1.25 米.由柱子顶端 A 处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计水流在离OA 距离为 1 米处达到距水面的最大高度 2.25 米.①建立适当的平面直角坐标系,使A 点的坐标为(0,1.25),水流的最高点的坐标为(1,2.25),求水流的抛物线路线在第一象限内对应的函数关系式(不要求写取值范围);②若不计其他因素,则水池的半径至少要多少米,才能使喷出的水流不至于落到池外? ③若水流喷出的抛物线形状与①相同,水池半径为 3.5 米,要使水流不落到池外,此时水流距水面的最大高度就达到多少米?6、如图,足球上守门员在O 处开出一高球.球从离地面 1米的A 处飞出(A 在 y 轴上),把球看成点.其运行的高度y (单位:m )与运行的水平距离 x (单位:m )满足关系式h x a y +-=2)6((1)①当此球开出后.飞行的最高点距离地面 4 米时.求y 与 x 满足的关系式.②在①的情况下,足球落地点 C 距守门员多少米?(取734≈)③如图所示,若在①的情况下,求落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求:站在距离O 点 6 米的 B 处的球员甲要抢到第二个落点 D 处的球.他应再向前跑多少米?(取562≈)(2)球员乙升高为 1.75 米.在距 O 点 11 米的H 处.试图原地跃起用头拦截.守门员调整开球高度.若保证足球下落至 H 正上方时低于球员乙的身高.同时落地点在距 O 点 15 米之内.求 h 的取值范围.7、如图,一位篮球运动员甲在距篮球筐下 4 米处跳起投篮,球的运行线路为抛物线, 当球运行到水平距离为 2.5 米时达到最高高度为 3.5 米,然后准确地落入篮筐,已知篮圈中心到地面的高度为 3.05 米,该运动员的身高为 1.8 米.在这次投篮中,球在该运动员的头顶上方 0.25 米处出手,则当球出手时,该运动员离地面的高度为________米.运动员乙跳离地面时,最高能摸到 3.3 米运动员乙在运动员甲与篮板之间的什么范围内能在空中截住球?二、隧道、过桥问题隧道、过桥问题通常采用的是y=ax2+c 的形式,通常考察的是车或者船是否能够通过,考察的是车或者船的高度比车或者船边缘对应纵坐标的数值大小比较。

二次函数的应用于环卫业问题

二次函数的应用于环卫业问题

二次函数的应用于环卫业问题随着城市的不断发展和人口的增长,环卫业已成为现代城市管理中不可或缺的重要部分。

而二次函数作为数学中的一种基本函数,具有强大的建模能力,被广泛应用于各个领域。

本文将通过分析环卫业中的问题,探讨二次函数在环卫业问题中的应用。

1. 路面垃圾清扫效率的优化环卫部门需要高效地清扫城市道路上的垃圾,以保持城市的整洁。

但是,人力资源有限,如何合理安排清扫人员的数量和工作时间,成为一个关键问题。

我们可以使用二次函数来建立一个清扫效率的模型,以找到最佳的清扫方案。

设清扫人员的数量为x,工作时间为y,清扫效率为z,则可以建立二次函数模型:z = ax^2 + by^2通过求解二次函数的极值,可以得到最优的清扫人员数量和工作时间,从而实现路面垃圾清扫效率的最大化。

2. 环卫车辆的路径规划环卫车辆的路径规划对于提高清洁效率至关重要。

我们可以利用二次函数来确定环卫车辆的最佳路径,以使其在有限的时间内完成清洁任务,并尽量减少行驶距离。

设环卫车辆行驶的路线为二次函数y =ax^2 + bx + c,其中a、b、c为常数,则可以通过求解二次函数的最大值或最小值,确定车辆的最佳路径。

使用这种方法,可以有效地提高环卫车辆的工作效率,降低运营成本。

3. 垃圾桶容量的估计与设计合理设计垃圾桶的容量可以避免垃圾溢出或容量浪费的问题。

我们可以利用二次函数来估计垃圾桶的容量,从而实现容量的精确设计。

设垃圾桶内垃圾的体积为V,垃圾桶的高度为h,则可以建立二次函数模型:V = ah^2 + bh + c通过求解二次函数的零点,可以得到垃圾桶容量的最小值,从而确保桶内垃圾不会溢出。

同时,我们还可以通过调整二次函数的参数来实现不同容量需求下的垃圾桶设计。

总结:二次函数在环卫业中具有广泛的应用,可以用于优化路面清扫效率、规划环卫车辆路径、估计垃圾桶容量等问题。

通过合理建立二次函数模型,可以提高环卫业的工作效率,减少资源浪费,实现城市环境的整洁与美观。

二次函数在实际生活中的应用及建模应用

二次函数在实际生活中的应用及建模应用

二次函数的建模 知识归纳:求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.一、利用二次函数解决几何面积最大问题1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。

(1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式;(2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少?解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得: x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是:利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18)(2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值, 即当9)1(2182=-⨯-=-=a b x 时, 81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。

点评:在回答问题实际时,一定注意不要遗漏了单位。

2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。

问如何围,才能使养鸡场的面积最大?解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x-)(米),根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值,即当25)21(2252=-⨯-=-=a b x 时,2625)21(42504422max =-⨯-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。

二次函数在实际生活中的应用及建模应用

二次函数在实际生活中的应用及建模应用

二次函数的建模一、利用二次函数解决面积最大问题1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。

(1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式;(2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少?解:(1)设矩形的长为x (米),则宽为(18- x )(米),根据题意,得:x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧- (2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值,即 当9)1(2182=-⨯-=-=a b x 时, 81)1(41804422max =-⨯-=-=a b ac y又∵500,02500<x<>x x ∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值, 即当25)1(2252=-⨯-=-=a b x 时,2625)1(42504422max =-⨯-=-=a b ac y图(1)图解:(得:(2即水流距水平面的最大高度系.(2)如图2,若把桥看做是圆的一部分.①求圆的半径;②要使高为3米的船通过,则其宽度须不超过多少米?4.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A.2.76米B.6.76米解:设该抛物线的解析式为y=ax2,在正常水位下x=10,y=-4,代入解析式得-4=a×102 a=-1/25 所以此抛物线的解析式为:y=-x2/25因为桥下水面宽度不得小于18米,所以令x=9时可得:y=-81/25=-3.24此时水深6+4-3.24=6.76米即桥下水深6.76米时正好通过,所以超过6.76米时则不能通过.故选B2、有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示h的函数解析式.(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行?(1)设该抛物线的解析式为y=ax2,在正常水位下x=10,y=-4,代入解析式得-4=a×102 a=-1/25 所以此抛物线的解析式为:y=-x2/25(2)设水面上升hm,水面与抛物线的交点为(d/2,h-4),带入抛物线得h-4=-d2/4×1/25 化简得:d=10√4-h(3)将d=18代入d=10√4-h得:h=0.76所求最大水深为:2+0.76=2.76(米)8.如图,是江夏广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1)请建立适当的直角坐标系,求抛物线的函数解析式;(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)解:(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).所以8=a×42 a=1/2 ∴所求抛物线的函数解析式为:y=x2/2(2)找法:延长AC,交建筑物造型所在抛物线于点D,则点A、D关于OC对称.连接BD交OC于点P,则点P即为所求.(3)由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(-4,8),设直线BD的函数解析式为y=kx+b,2k+b=2..........①−4k+b=8........②解得:k=-1,b=4.∴直线BD的函数解析式为y=-x+4,把x=0代入y=-x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O、P之间的距离是4米.三、利用抛物线解决最大利润问题1、某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y=-10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分)(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分)(3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) (3分)(2)在(1)的条件下,设工艺厂试销该工艺品每天所得利润为P元;①当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润P为8000元?②工艺厂自身发展要求试销单价不低于35元/件,同时,当地物价部门规定,该工艺品销售单价最高不能超过55元,写出在此情况下每天获利P的取值范围.解:(1)如图所示是一次函数解析式,设一次函数解析式为:y=ax+b30a+b=500.........①40a+b=400.........②解得:a=−10 b=800∴函数解析式为:y=-10x+800(2)①由题意得出:P=yx=(-10x+800)(x-20)=8000,解得:x1=40,x2=60,∴当销售单价定为40元或60元时,工艺厂试销该工艺品每天获得的利润P为8000元;②∵P=yx=(-10x+800)(x-20)=-10x2+1000x-16000=-10(x-50)2+9000,∴当x=50时,P=9000元,当x=35时,P=6750元,∴P的取值范围是:6750≤P≤9000.3.某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:销售单价x(元/件)…55 60 70 75 …一周的销售量y…450 400 300 250 …(件)(1)直接写出y与x的函数关系式:y=-10x+1000(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请求出该商家最大捐款数额是多少元?解:(1)设y=kx+b,由题意得,55k+b=450...........①60k+b=400...........②解得:k=−10 b=1000则函数关系式为:y=-10x+1000;(2)由题意得,S=(x-40)y=(x-40)(-10x+1000)=-10x2+1400x-40000=-10(x-70)2+9000,(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?解::(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600元, 即政府这个月为他承担的总差价为600元;(2)依题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000 ∵a=﹣10<0,∴当x=30时,w有最大值4000元.即当销售单价定为30元时,每月可获得最大利润4000元;(3)由题意得:﹣10x2+600x﹣5000=3000, 解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500元.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.5.某文具店销售一种进价为10元/个的签字笔,物价部门规定这种签字笔的售价不得高于14元/个,根据以往经验:以12元/个的价格销售,平均每周销售签字笔100个;若每个签字笔的销售价格每提高1元,则平均每周少销售签字笔10个. 设销售价为x元/个.(1)该文具店这种签字笔平均每周的销售量为个(用含x的式子表示);(2)求该文具店这种签字笔平均每周的销售利润w(元)与销售价x(元/个)之间的函数关系式;(3)当x取何值时,该文具店这种签字笔平均每周的销售利润最大?最大利润是多少元?解:(1)(220-10x);物线的开侧,随的知,,最大时,该文具店每周解:(1)由表格数据可知y与x是一次函数关系,设其解析式为,将(3000,100),(3200,96)代入得,解得:。

二次函数的性质及应用

二次函数的性质及应用

二次函数的性质及应用二次函数是一类形式为y = ax² + bx + c(a ≠ 0)的函数,它在数学中具有重要的性质和广泛的应用。

本文将介绍二次函数的性质以及它在实际问题中的应用。

一、二次函数的性质1. 函数图像二次函数的图像通常为抛物线,具体的形状取决于a的正负和大小:- 当a > 0时,图像开口向上,形状类似于“U”字型;- 当a < 0时,图像开口向下,形状类似于倒置的“U”字型。

2. 对称性二次函数关于其顶点具有对称性。

设二次函数的顶点坐标为(h, k),则函数图像关于直线x = h对称。

3. 零点与判别式二次函数的零点即为方程ax² + bx + c = 0的解。

一元二次方程的判别式Δ = b² - 4ac可以判断二次函数的零点情况:- 当Δ > 0时,方程有两个不相等的实根,函数图像与x轴有两个交点;- 当Δ = 0时,方程有两个相等的实根,函数图像与x轴有一个切点;- 当Δ < 0时,方程无实根,函数图像与x轴无交点。

4. 极值点二次函数在最高点(开口向下)或最低点(开口向上)取得极值。

当二次函数开口向上时,极小值等于函数的最低点y = k;当二次函数开口向下时,极大值等于函数的最高点y = k。

二、二次函数的应用1. 物理学应用二次函数在物理学中有广泛的应用,例如抛物线运动。

抛物线运动可以用二次函数的形式进行建模,通过分析和解决相关的二次函数问题,可以求得抛物线物体的最高点、运动轨迹等信息。

2. 经济学应用经济学中的一些问题也可以通过二次函数来描述和解决。

比如,成本函数和利润函数常常使用二次函数来表示,通过求解这些二次函数的极值点,可以确定最低成本、最大利润等关键数据。

3. 工程学应用工程学中的一些问题也可以用二次函数进行建模。

比如,在建筑设计中,可以用二次函数来描述一个拱形或穹顶的形状;在电子工程中可以通过二次函数来描述某些电子元件的特性和响应等等。

二次函数的应用案例总结

二次函数的应用案例总结

二次函数的应用案例总结二次函数是一种常见的数学函数形式,它的形式为:y = ax^2 + bx + c。

在现实生活中,二次函数可以用于解决各种问题,包括物理、经济、工程等领域。

本文将总结几个常见的二次函数应用案例,以展示二次函数的实际应用。

案例一:物体自由落体的高度模型假设一个物体从高处自由落体,忽略空气阻力,我们可以用二次函数来表示物体的高度与时间之间的关系。

设物体初始高度为H,加速度为g,时间为t。

根据物理定律,物体的高度可以表示为:h(t) = -0.5gt^2 + H。

这个二次函数模型可以帮助我们计算物体在任意时间点的高度,并可以用于预测物体何时落地。

案例二:销售收入和定价策略假设一个公司生产和销售某种产品,销售价格为p(单位:元),销售量为q(单位:件)。

二次函数可以用于建立销售收入与定价策略之间的模型。

设定售价的二次函数为:R(p) = -ap^2 + bp + c,其中a、b、c为常数。

我们可以通过分析二次函数的图像、求解极值等方法,确定最佳售价,以使得销售收入最大化。

案例三:桥梁设计中的弧线形状在桥梁设计中,常常需要确定桥梁的弧线形状,以使得车辆在桥上行驶时感到平稳。

二次函数可以用来描述桥梁的曲线形状。

设桥梁的弧线形状为y = ax^2 + bx,其中x表示桥梁长度的一半,y表示桥梁的高度。

通过调整参数a和b,可以得到不同形状的弧线,以满足设计要求。

案例四:市场需求和价格关系分析在经济学中,二次函数可以用于建立市场需求与价格之间的关系模型。

设市场需求量为D,价格为p。

根据经济理论,市场需求可以表示为:D(p) = ap^2 + bp + c,其中a、b、c为常数。

通过分析二次函数的图像、求解极值等方法,可以研究市场需求和价格之间的关系,得出不同价格下的市场需求量。

综上所述,二次函数在物理、经济、工程等领域中具有广泛的应用。

通过建立二次函数模型,我们可以更好地理解和解决各种实际问题。

二次函数的实际应用(利润问题)

二次函数的实际应用(利润问题)

建立模型
将问题抽象为二次函数模型,确定各项参数。
验证和调整
通过实际数据验证模型的准确性,并根据实际 情况进行调整和优化。
2 图像特点
二次函数的图像形状通常为抛物线,具有顶点、对称轴和开口方向等特点。
3 重要概念
二次函数的最值、最值点、零点等重要概念对利润问题的分析很有帮助。
二次函数的利润问题
利润问题是二次函数在实际应用中的一个典型问题。通过二次函数,我们可以计算出不同销量对应的利润,并 进一步分析销量与利润之间的关系。
利润的计算公式
1 收入
收入是销量乘以单价,可以表示为 R = px,其中 p 表示单价,x 表示销量。
2 成本
成本是与销量相关的固定成本和单位成本的乘积,可以表示为 C = a + bx。
3 利润
利润是收入减去成本,可以表示为 P = R - C。
二次函数在利润问题中的应用举例
例一:最大利润
根据给定的销量-利润函数,我们 可以通过分析函数的图像找到最 大利润所对应的销量。
例二:利润变化率
我们可以通过利润函数的一阶导 数(利润对销量的变化率)来分 析利润的增减情况。
例三:最佳生产量
通过分析利润函数的零点,我们 可以确定最佳生产量以最大化利 润。
最大化利润和最小化亏损
最大化利润
通过优化销量,控制成本和定价策略,我们可以最 大化企业的利润。
最小化亏损
在经营中,我们也需要考虑如何降低亏损,避免经 营困难。
求解利润最大化的方法
1
利润函数建模
将利润问题建立二次函数模型,确定各项参数。
2
图像分析
分析二次函数图像的顶点、开口方向等特点,确定最值点。

二次函数的应用抛物线的实际应用

二次函数的应用抛物线的实际应用

二次函数的应用抛物线的实际应用二次函数的应用:抛物线的实际应用引言:二次函数是数学中重要的一种函数形式,它的图像为一个抛物线。

抛物线在现实生活中有着广泛的应用,无论是物理学、经济学还是工程学,都离不开对二次函数的应用。

本文将重点介绍抛物线的实际应用,并探讨二次函数在这些应用中的角色。

一、抛物线在物理学中的应用1. 自由落体运动自由落体运动是我们熟知的物理现象,物体在重力作用下自由下落。

这一过程可以用二次函数来描述。

假设物体从高度 h0 自由下落,高度随时间的变化可以用二次函数 h(t) = -gt^2 + h0 来表示,其中 g 是重力加速度,t 是时间。

抛物线的开口向下,表达了物体的下降趋势,通过解析二次函数,我们可以计算物体的下落时间、最大高度等重要物理量。

2. 抛物线弹道在射击或投掷物体时,抛物线弹道也是常见的现象。

例如,运动员射击目标、棒球手投掷棒球等。

这些抛物线弹道可以利用二次函数进行建模。

通过观察抛物线的顶点和开口方向,我们可以分析射击或投掷的角度、速度等因素,帮助运动员准确命中目标。

二、抛物线在经济学中的应用1. 成本与收益在经济学中,成本与收益是决策的重要因素。

当生产或经营某种产品时,成本和收益之间往往存在着二次函数关系。

成本一般随着产量的增加而呈抛物线增长,而收益则随着产量的增加而呈抛物线增长,二者的交点即为盈亏平衡点。

通过分析二次函数的图像,我们可以找到最大化收益、最小化成本的最优产量或定价策略。

2. 市场供需市场供需关系也可以用二次函数进行建模。

供需的交点是市场均衡点,也就是商品的实际价格。

市场需求一般随着价格的下降而增加,而市场供应一般随着价格的上升而增加,二者的交点即为市场均衡。

通过分析二次函数的图像,我们可以预测市场的价格波动和供需的变化趋势。

三、抛物线在工程学中的应用1. 科学研究在科学研究中,抛物线的应用非常广泛。

例如,在天体力学中,通过二次函数可以描述天体的轨迹;在工程力学中,通过二次函数可以建立材料的变形模型,以便研究材料的受力行为。

二次函数的相关性质与应用

二次函数的相关性质与应用

二次函数的相关性质与应用二次函数是高中数学中比较重要的一类函数,它的图像呈现出U型或者倒U型的形状,具有多种性质和应用。

本文将介绍二次函数的相关性质以及它在现实生活中的应用,并探讨其中的数学原理和实际意义。

一、二次函数的一般形式及相关性质二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为实数,a不等于0。

根据此一般形式,可以了解到以下几个与二次函数相关的性质。

1. 首先,二次函数的图像为抛物线,在坐标系中通常呈现U型或者倒U型。

这一性质决定了二次函数在不同区间内的增减性,以及极值点的存在性。

2. 其次,二次函数的a值决定了抛物线的开口方向。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

这一性质可以通过计算二次函数的导数来进行证明,从而体现出与导数的相关性。

3. 另外,二次函数的顶点坐标可以通过求解二次方程的解来获得。

顶点的横坐标为x=-b/2a,纵坐标为f(x)=-b^2/4a+c。

顶点是抛物线的最低点(当a>0时)或者最高点(当a<0时),具有重要的几何意义。

4. 最后,二次函数的轴对称性是一个重要的性质。

对于任意一个二次函数,它的图像关于直线x=-b/2a对称。

这意味着,当我们确定了图像的一部分时,可以通过轴对称性来得到另一部分的信息。

二、二次函数的应用二次函数在现实生活中具有广泛的应用。

以下列举了几个常见的应用场景。

1. 马鞍形建筑设计二次函数的图像呈现U型或者倒U型的形状,可以用来设计马鞍形建筑物。

比如,体育馆、停车场和演唱会场馆等运用了二次函数的特性,使得空间的设计更加合理,并且能够提供较好的视野和使用效果。

2. 投射运动的轨迹抛体的运动轨迹可以被建模为二次函数。

比如,物体在自由落体运动或者抛体运动下的轨迹都可以使用二次函数来描述。

此外,通过求解二次方程可以计算出物体的最大高度、最大水平距离等重要参数。

3. 线性加速度运动某些物体的运动状态可以通过二次函数来刻画。

二次函数的实际应用总结

二次函数的实际应用总结

二次函数的实际应用总结二次函数是高中数学中重要的一类函数。

它具有形如y=ax^2+bx+c的特点,其中a、b、c是实数且a不等于0。

二次函数有许多实际应用,涉及到物理、经济和生活中的各种问题。

本文将总结几个二次函数的实际应用。

一、物体自由落体物体自由落体是一个常见的物理问题,可以用二次函数来描述。

当一物体从高处自由落下时,它的高度与时间之间的关系可以由二次函数表示。

设物体自由落下的高度为H(米),时间为t(秒),重力加速度为g(9.8米/秒²),则有公式H = -gt²/2。

其中负号表示高度的减小,因为物体向下运动。

通过这个二次函数,我们可以计算物体在不同时间下的高度,进而研究物体的运动规律。

例如,我们可以计算物体自由落地所需的时间,或者计算物体在某个时间点的高度。

这在工程设计和物理实验中具有重要意义,帮助我们预测和控制物体的运动。

二、开口向上/向下的抛物线二次函数的图像通常是一个抛物线,其开口的方向由二次项系数a的正负决定。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

对于开口向上的抛物线,我们可以将其应用到生活中的一些情景。

比如,一个喷泉的水柱,水流高度与时间之间的变化可以用开口向上的二次函数来描述。

同样,开口向下的抛物线也有实际应用。

例如,一个弹簧的变形量与受力之间的关系常常是开口向下的二次函数。

通过了解抛物线的性质和方程,我们可以更好地理解和解决与之相关的问题。

三、经济学中的应用二次函数在经济学中也有广泛的应用。

例如,成本函数和收入函数常常是二次函数。

企业的成本与产量之间的关系可以用二次函数来刻画。

同样,市场需求和供给也可以用二次函数来表达。

在经济学中,研究成本、收入、需求和供给的函数对于决策和市场分析至关重要。

通过对二次函数的运用,我们可以计算某一产量下的成本和收入,并了解市场价格的影响因素。

这有助于企业决策和经济政策的制定。

四、其他实际应用除了以上提到的应用,二次函数还可以用于建模和预测其他实际问题。

二次函数与实际问题

二次函数与实际问题

二次函数与实际问题引言二次函数是高中数学中的一个重要内容,也是实际问题中常常遇到的数学模型。

二次函数的图像呈现出一种开口向上或者开口向下的曲线形状,能够很好地描述实际问题中的曲线关系。

本文将深入探讨二次函数及其在实际问题中的应用。

二次函数的定义与性质二次函数的定义:设函数f(x) = ax^2 + bx + c(a≠0),其中a、b、c是常数,a称为二次函数的二次系数。

二次函数的图像当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

二次函数的顶点二次函数的顶点坐标为(h,k),其中h = -b/(2a),k = f(h)。

二次函数的对称轴二次函数的对称轴方程为x = h(即x = -b/(2a))。

二次函数的零点二次函数的零点即为方程f(x) = 0的解,可以通过求根公式或配方法求得。

二次函数在实际问题中的应用自由落体运动自由落体运动是一个常见的物理现象,也可以用二次函数来进行模拟和描述。

假设一个物体从高处自由落下,忽略空气阻力,它的下落距离与时间的关系可以用二次函数来表示。

抛物线轨迹抛物线轨迹是指一个物体在一个力的作用下进行受控抛射运动时所遵循的路径。

如投射运动中的抛体、水流喷泉等都可以用二次函数进行建模和描述。

开口向上的池塘有一片长方形的池塘,周围修建了一圈围墙。

围墙的材料价格是每米10元。

假设池塘的长为x米,宽为y米。

已知池塘的面积为100平方米。

要使得围墙的总价值最小,需要求解池塘的长和宽。

能量与时间的关系生活中很多实际问题涉及到能量的转化和传递,而能量与时间的关系常常可以用二次函数进行建模。

例如,弹簧振子的机械能与振动时间的关系、充电电池的电量衰减与使用时间的关系等等。

结论二次函数作为一种重要的数学模型,在实际问题中有着广泛的应用。

通过对二次函数的定义与性质的学习,我们可以更好地理解和解决实际问题,同时也提高了我们的数学建模能力。

通过本文对二次函数与实际问题的探讨,我们更深入地认识了二次函数的应用价值和意义。

二次函数在生活中的运用

二次函数在生活中的运用

二次函数在生活中的运用二次函数是一个具有形式为y=ax^2+bx+c的二次多项式函数,其中a、b、c是实数且a≠0。

它是数学中一个重要的函数类型,其在现实生活中有许多广泛的应用。

下面将介绍一些二次函数在生活中的运用。

1.物体的自由落体运动:当物体从静止的位置开始自由下落时,其高度与时间的关系可以用二次函数来描述。

根据物体下落的加速度和初速度,我们可以建立二次函数模型来预测物体的高度随时间的变化。

2.弹性力的计算:弹性力是恢复力的一种,其大小与物体偏离平衡位置的距离成正比。

当物体被施加一个力使其偏离平衡位置时,恢复力的大小可以用二次函数描述。

3.抛物线的建模:抛物线是二次函数的图像,它在很多领域中都有应用。

例如,在建筑设计中,抛物线形状的屋顶可以提供更好的排水系统。

在桥梁设计中,抛物线形状的拱桥可以提供更好的结构稳定性。

4.投射物体的路径预测:当一个物体以一定的初速度和角度被抛出时,它的轨迹可以用二次函数模型来预测。

例如,在棒球运动中,球员可以通过分析投球的初速度和角度来预测球的落点。

5.音乐乐器的调音:乐器的音高可以通过改变乐器弦的张力来调节。

根据弦的拉紧程度,可以建立一个二次函数模型来描述音高与弦长的关系。

这使得乐器演奏者能够根据需要调整乐器的音高。

6.经济中的成本与产出关系:在经济学中,成本与产出的关系经常可以用二次函数来描述。

例如,生产一定数量的商品所需的成本与产出之间可能存在一个最优点,通过求二次函数的极值,可以确定最大化利润的产量。

7.变量与值的关系:二次函数可以用来描述两个变量之间的关系。

例如,员工的工资与工作经验之间可能存在一个二次函数模型,随着工作经验的增加,工资可能会呈现先上升后下降的趋势。

8.交通流量的模拟:交通流量的变化可以用二次函数来建模。

例如,小时交通流量随时间的变化可能呈现一个钟形曲线,交通高峰期的交通流量较大,而其他时间段的交通流量相对较小。

以上仅列举了二次函数在生活中的一些应用,其中还有许多其他的应用。

二次函数的模型建立与解决实际问题

二次函数的模型建立与解决实际问题

二次函数的模型建立与解决实际问题二次函数是数学中重要的一个概念,也被广泛应用于实际问题的建模和解决。

本文将介绍二次函数的基本形式、模型的建立方法,以及如何利用二次函数解决实际问题。

一、二次函数的基本形式二次函数一般可以写成以下形式:y = ax^2 + bx + c其中,a、b、c为常数,x为自变量,y为因变量。

其中,a不等于0,否则称为一次函数。

二次函数的图像一般是一个抛物线。

二、二次函数的模型建立方法建立二次函数模型的关键在于确定函数中的系数a、b、c。

常用的方法包括根据已知点建立方程、根据已知的函数值建立方程,以及根据图像特征建立方程等。

下面以几个具体的例子来说明。

例1:已知抛物线上的两个点A(x1, y1)和B(x2, y2),求二次函数的模型。

由于已知两个点的坐标,可以建立两个方程:y1 = ax1^2 + bx1 + cy2 = ax2^2 + bx2 + c可以解这个方程组得到a、b、c的值,从而得到二次函数的模型。

例2:已知二次函数过定点(0, c)和与正轴交于点C(x, 0),求二次函数的模型。

由于已知两个点的坐标,可以建立两个方程:c = a * 0^2 + b * 0 + c0 = a * x^2 + b * x + c可以解这个方程组得到a、b、c的值,从而得到二次函数的模型。

例3:已知抛物线的顶点为V(h, k),求二次函数的模型。

由于已知顶点的坐标,可以将二次函数写成顶点形式:y = a(x - h)^2 + k其中,h为顶点的横坐标,k为顶点的纵坐标。

三、利用二次函数解决实际问题二次函数的模型可以应用于多个实际问题的解决中,例如抛物线的轨迹问题、最值问题、运动问题等。

在抛物线的轨迹问题中,可以根据已知的条件建立二次函数模型,通过求解二次函数的顶点、判别式、根等,得到抛物线的特征,进而解决具体的问题。

在最值问题中,可以根据已知的限制条件建立二次函数模型,通过求解二次函数的最值,得到问题的最优解。

二次函数的变形及其应用

二次函数的变形及其应用

二次函数的变形及其应用二次函数是高中数学中的重要内容,它在应用数学中具有广泛的应用。

本文将讨论二次函数的变形以及它在实际问题中的应用。

一、基本形式二次函数的基本形式是:$y = ax^2 + bx + c$,其中$a$、$b$和$c$为常数,且$a \neq 0$。

这里的$x$和$y$分别代表函数的自变量和因变量。

二、二次函数的变形二次函数的图像可以通过对基本形式进行变形来得到不同的形状。

常见的二次函数的变形形式包括平移、伸缩和翻转。

1. 平移变形平移变形指的是将二次函数的图像沿$x$轴或$y$轴方向上移动一定的单位。

具体地,如果将二次函数$y = ax^2 + bx + c$向左平移$h$个单位,则新的二次函数为$y = a(x-h)^2 + b(x-h) + c$;如果将二次函数$y = ax^2 + bx + c$向右平移$h$个单位,则新的二次函数为$y = a(x+h)^2 + b(x+h) + c$。

2. 伸缩变形伸缩变形指的是改变二次函数图像的横向和纵向尺寸。

具体地,如果将二次函数$y = ax^2 + bx + c$沿$x$轴伸缩$k$倍,则新的二次函数为$y = a(kx)^2 + b(kx) + c$;如果将二次函数$y = ax^2 + bx + c$沿$y$轴伸缩$k$倍,则新的二次函数为$y = ak^2x^2 + bkx + c$。

3. 翻转变形翻转变形指的是改变二次函数图像的凹凸方向。

具体地,如果将二次函数$y = ax^2 + bx + c$关于$x$轴翻转,则新的二次函数为$y = -ax^2 + bx + c$;如果将二次函数$y = ax^2 + bx + c$关于$y$轴翻转,则新的二次函数为$y = ax^2 - bx + c$。

这些二次函数的变形形式使得我们能够更好地理解和分析函数图像的特点,从而应用于实际问题的解决中。

三、二次函数的应用二次函数在实际问题中具有广泛的应用,包括建模、物理学、经济学等各个领域。

二次函数的应用与建模

二次函数的应用与建模

二次函数的应用与建模二次函数是一种包含平方项的函数形式,常用形式为f(x) = ax^2 +bx + c。

在数学中,二次函数的图像通常为抛物线形状,具有许多重要的应用与建模价值。

一、抛物线的形状与性质抛物线是二次函数的图像,它的形状决定了二次函数的性质。

通过观察抛物线的顶点、开口方向以及对称轴等特征,可以得到以下结论:1. 抛物线的顶点坐标为(-b/2a, f(-b/2a))。

顶点是抛物线的最高点或最低点,并且其横坐标为- b/2a。

2. 抛物线的开口方向由二次系数a的正负决定。

若a>0,则抛物线开口向上;若a<0,则抛物线开口向下。

3. 抛物线的对称轴是与x轴垂直且通过顶点的直线。

对称轴的方程为x = -b/2a。

4. 如果a的绝对值越大,那么抛物线的开口越窄;如果a的绝对值越小,抛物线的开口越宽。

二、二次函数的应用1. 物体的抛体运动二次函数的抛物线形状与物体的抛体运动相关。

在不考虑空气阻力和其它外力的情况下,抛体的高度与时间的关系可以表示为h(t) = -gt^2 + vt + h0,其中g为重力加速度,v为初速度,h0为初始高度。

2. 表达曲线的拟合当一组数据点呈现出非线性的趋势时,可以使用二次函数进行拟合。

通过找到最佳的二次函数拟合曲线,我们可以更好地了解数据之间的关系,并进行预测和分析。

3. 经济与金融领域的建模二次函数在经济与金融领域中有广泛应用。

例如,成本函数、价格函数和收益函数等都可以使用二次函数进行建模,以便对市场行为进行预测和分析。

4. 自然科学中的应用二次函数也在自然科学中具有重要的应用价值。

例如,在生物学中,通过对种群数量与时间的关系进行建模,可以使用二次函数来描述种群的生长模式。

在物理学中,二次函数可以用来描述力学过程中的速度、加速度等物理量之间的关系。

三、二次函数的建模方法建立二次函数模型需要以下步骤:1. 确定问题要建模的变量和变量之间的关系。

2. 收集和整理相关的数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的建模知识归纳:求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值. 一、利用二次函数解决几何面积最大问题1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。

(1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式; (2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少?解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得:x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是: 利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18)(2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值,即当9)1(2182=-⨯-=-=a b x 时, 81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。

点评:在回答问题实际时,一定注意不要遗漏了单位。

2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。

问如何围,才能使养鸡场的面积最大?解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x-)(米),根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧-∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值,即当25)21(2252=-⨯-=-=abx 时,2625)21(42504422max=-⨯-=-=a b ac y解:∵四边形ABCD 是边长为a 米的正方形,∴∠A=∠D=90°,AD= a 米.∵四边形EFGH 为正方形,∴∠FEH=90°,EF=EH . 在△AEF 与△DHE 中,∵∠A=∠D ,∠AEF=∠DHE=90°-∠DEH ,EF=EH∴△AEF ≌△DHE (AAS ),∴AE=DH=x 米,AF=DE=(a-x )米, ∴y=EF 2=AE 2+AF 2=x 2+(a-x )2=2x 2-2ax+ a 2,即y=2x 2-2ax+ a 2;(2)∵y=2x 2-2ax+ a 2=2(x-2a )2+24a ,∴当x=2a时,S 有最大值.故当点E 是AB 的中点时,面积最大.5、在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm ²)是多少?(2)此时五边形APQCD 的面积是S(cm ²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=6、小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米, 则花圃的长为(32-4x+3)=(35-4x )米,面积为S 从而S=x(35-4x)-x=-4x ²+34x∵ 0<35-4x ≤10 ∴6.25≤x <8.75 S=-4x ²+34x,对称轴x=4.25,开口朝下 ∴当x ≥6.25时S 随x 的增大而减小 故当x=6.25时, 35-4×6.25=10 S 取最大值56.25㎡.答:可设计成宽6.25米,长10米的矩形花圃,这样的花圃面积最大.变式1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃 ,他买回了32米长的不锈钢管准备作为花圃的围栏,花圃的宽宽究竟应为多少米才能使花圃的面积最大?解:设花圃的宽为x 米, 则花圃的长为(32-2x )米,面积为S设矩形面积为y 米²,得到: S=x (32-2x )=-2x ²+32x∵ 0<32-2x ≤10 ∴ 11≤x <16 由图象或增减性可知x=11米时, S 最大=110米²7:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由; (2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的, 故CE=CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形. (2)设CE=x, 则BE=0.4-x ,每块地砖的费用为y 元 那么:y=x ×30+×0.4×(0.4-x)×20+[0.16-x -×0.4×(0.4-x)×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x 当x=0.1时,y 有最小值,即费用为最省,此时CE=CF=0.1. 答:当CE=CF=0.1米时,总费用最省.8、某居民小区要在一块一边靠墙(墙长15m)的空地上建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m ²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n(n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(如果要问,剪去四个正方形后的面积是多少)(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.(3)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2.若按图1所示的方法剪折,则与的函数关系式为:xxxxy⋅-⋅+-=22102)28(2即.当时,.若按图2所示的方法剪折,则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.11.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.过点作垂直交抛物线于,则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车. 12、12、(2006年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x ∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.513、已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x ,∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.14.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ABCD PQ解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=. 15、如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN∴MB MA BN AD =,即5512x b -=,)5(512x b -=)5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.二、利用二次函数解决抛物线形建筑物问题1、如图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是 .解:设此函数解析式为:2y ax ,(a ≠0); 那么(2,-2)应在此函数解析式上. 24a 即12a, 212x.2、某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间的图(1) 图关系是4522++-=x x y .请回答下列问题: (1)柱子OA 的高度是多少米?(2)喷出的水流距水平面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?解:(1)把x=0代入抛物线的解析式得:y=45,即柱子OA 的高度是45 (2)由题意得:当x=2=121-⨯-()时,y=49,即水流距水平面的最大高度(3)把y=0代入抛物线 得:4522++-x x =0,解得,x 1=12-(舍去,不合题意),x 2=52故水池的半径至少要52米才能使喷出的水流不至于落在池外3.一座桥如图,桥下水面宽度AB 是20米,高CD 是4米.要使高为3米的船通过,则其宽度须不超过多少米.(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系. ①求抛物线的解析式;②要使高为3米的船通过,则其宽度须不超过多少米? (2)如图2,若把桥看做是圆的一部分. ①求圆的半径;②要使高为3米的船通过,则其宽度须不超过多少米?解:(1)①设抛物线解析式为:2y ax c =+, ∵桥下水面宽度AB 是20米,高CD 是4米,∴A (﹣10,0),B (10,0),D (0,4),∴10004a c c +=⎧⎨=⎩,解得:1254a c ⎧=-⎪⎨⎪=⎩,∴抛物线解析式为:21425y x =-+;②∵要使高为3米的船通过,∴3y =,则213425x =-+,解得:5x =±,∴EF=10米;(2)①设圆半径r 米,圆心为W ,∵BW2=BC2+CW2,∴222(4)10r r =-+,解得:14.5r =;②在RT △WGF 中,由题可知,WF=14.5,WG=14.5﹣1=13.5,根据勾股定理知: GF2=WF2﹣WG2,即GF2=14.52﹣13.52=28,所以GF=27,此时宽度EF=47米.4.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行( )A .2.76米B .6.76米解:设该抛物线的解析式为y=ax 2,在正常水位下x=10,y=-4,代入解析式得-4=a ×102 a=-1/25 所以此抛物线的解析式为:y=-x 2/25因为桥下水面宽度不得小于18米,所以令x=9时可得:y=-81/25=-3.24此时水深6+4-3.24=6.76米即桥下水深6.76米时正好通过,所以超过6.76米时则不能通过.故选B5、有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m .(1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示h 的函数解析式.(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行?解:(1)设该抛物线的解析式为y=ax 2,在正常水位下x=10,y=-4,代入解析式得 -4=a ×102 a=-1/25 所以此抛物线的解析式为:y=-x 2/25(2)设水面上升hm ,水面与抛物线的交点为(d/2,h-4),带入抛物线得h-4=-d 2/4×1/25 化简得:d=10√4-h(3)将d=18代入d=10√4-h 得:h=0.76 所求最大水深为:2+0.76=2.76(米)所以当水深超过2.76米时就会影响过往船只在桥下的顺利航行6、林书豪身高1.91m ,在某次投篮中,球的运动路线是抛物线y=−51-x 2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离约为( ) A .3.2m B .4m解:由题意得:3.05=−51-x 2+3.5, x 2=2.25,∵篮圈中心在第一象限,∴x=1.5,∴他与篮底的距离约为1.5+2.5=4m ,故选B .7.如图是江夏宁港灵山脚下古河道上一座已有了400年历史的古拱桥的截面图,这座拱桥桥洞上沿是抛物线形状,若把拱桥的截面图放在平面直角坐标系中,则抛物线两端点与水面的距离都是1m ,拱桥的跨度为10m ,桥洞与水面的最大距离是5m ,如果在桥洞两侧壁上各安装一盏距离水面4m 的景观灯,则两盏景观灯之间的水平距离是( )A .3mB .4mC .5mD .6m解:抛物线的顶点坐标为(5,5),且经过点(0,1),设抛物线解析式为y=a (x-5)2+5,把点(0,1)代入得:a=-4/25抛物线解析式为y=-4/25(x-5)2+5, 令y=4,得:x1=15/2 x2=5/2∴盏景观灯之间的水平距离是:15/2-5/2=5m 故选C . 先不做此题 7.如图,在“江夏杯”钓鱼比赛中,选手甲钓到了一条大鱼,鱼竿被拉弯近似可看作以A 为最高点的一条抛物线,已知鱼线AB 长6m ,鱼隐约在水面了,估计鱼离鱼竿支点有8m ,此时鱼竿鱼线呈一个平面,且与水平面夹脚α恰好为60°,以鱼竿支点为原点,则鱼竿所在抛物线的解析式为8.如图,AB 是自动喷灌设备的水管,点A 在地面,点B 高出地面1.5米.在B 处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线状,喷头B 与水流最高点C 的连线与水平线成45°角,水流的最高点C与喷头B 高出2米,在如图的坐标系中,水流的落地点D 到点A 的距离是 米.解:如图,建立直角坐标系,过C 点作CE ⊥y 轴于E ,过C 点作CF ⊥x 轴于F , ∴B (0,1.5),∴∠CBE=45°,∴EC=EB=2米,∵CF=AB+BE=2+1.5=3.5,∴C (2,3.5)设抛物线解析式为:y=a (x-2)2+3.5,又∵抛物线过点B ,∴1.5=a (0-2)2+3.5 a=-1/2所求抛物线解析y=-1/2(x-2)2+3.5,即 y=-x 2/2+2x+3/2∵抛物线与x 轴相交时,y=0,即-x 2/2+2x+3/2=0∴(舍去)727221-=+=x x ∴点D 坐标为)(0,72+ 水流落点D 到A 点的距离为:米72+9.如图,是江夏广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1)请建立适当的直角坐标系,求抛物线的函数解析式;(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)解:(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).所以8=a×42 a=1/2 ∴所求抛物线的函数解析式为:y=x2/2(2)找法:延长AC,交建筑物造型所在抛物线于点D,则点A、D关于OC对称.连接BD交OC于点P,则点P即为所求.(3)由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(-4,8),设直线BD的函数解析式为y=kx+b,2k+b=2..........①−4k+b=8........②解得:k=-1,b=4.∴直线BD的函数解析式为y=-x+4,把x=0代入y=-x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O、P之间的距离是4米.10、兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图像上,(如图所示),则6楼房子的价格为元/平方米.(提示:利用对称性,答案:2080.)11、自建平面坐标系求值:(2008四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米.答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入, ⎩⎨⎧+=+-⨯=c a c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.三、利用抛物线解决最大利润问题1、某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y =-10x +500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分)(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分)(3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)解:(1)由题意得出: :w = (x -20)·y=(x-20)·(-10x+500)=-10x 2+700x-10000∵a=-10<0,x=-b/2a =35,,∴当销售单价定为35元时,每月可获得最大利润.(2)由题意,得:-10x 2+700x-10000=2000,解这个方程得:x1=30,x2=40.∴李明想要每月获得2000元的利润,销售单价应定为30元或40元.(3)∵a=-10<0,∴抛物线开口向下. ∴当30≤x ≤40时,W ≥2000.∵x ≤32,∴当30≤x ≤32时,W ≥2000.设成本为P (元),由题意,得:P =20(-10x+500)=-200x+10000,∵k=200<0,∴P 随x 的增大而减小.∴当x=32时,P 最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.2.我市某工艺厂设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:(注:利润=销售总价-成本总价)销售单价x (元∕件)… 30 40 50 60 … 每天销售量y (件) … 500 400 300 200 …(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)在(1)的条件下,设工艺厂试销该工艺品每天所得利润为P元;①当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润P为8000元?②工艺厂自身发展要求试销单价不低于35元/件,同时,当地物价部门规定,该工艺品销售单价最高不能超过55元,写出在此情况下每天获利P的取值范围.解:(1)如图所示是一次函数解析式,设一次函数解析式为:y=ax+b30a+b=500.........①40a+b=400.........②解得:a=−10 b=800 ∴函数解析式为:y=-10x+800(2)①由题意得出:P=(-10x+800)(x-20)=8000,解得:x1=40,x2=60,∴当销售单价定为40元或60元时,工艺厂试销该工艺品每天获得的利润P为8000元;②∵P=(-10x+800)(x-20)=-10x2+1000x-16000=-10(x-50)2+9000,∴当x=50时,P=9000元,当x=35时,P=6750元,∴P的取值范围是:6750≤P≤9000.3.某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:销售单价x(元/件)…55 60 70 75 …一周的销售量y…450 400 300 250 …(件)(1)直接写出y与x的函数关系式:y=-10x+1000(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请求出该商家最大捐款数额是多少元?解:(1)设y=kx+b,由题意得,55k+b=450...........①60k+b=400...........②解得:k=−10 b=1000则函数关系式为:y=-10x+1000;(2)由题意得,S=(x-40)y=(x-40)(-10x+1000)=-10x2+1400x-40000=-10(x-70)2+9000,∵-10<0,∴函数图象开口向下,对称轴为x=70,∴当50≤x≤70时,销售利润随着销售单价的增大而增大;(3)∵由40(-10x+1000)≤10000解得x≥75 ∴当x=75时,利润最大,为8750元.4、某玩具批发商销售每只进价为40元的玩具,市场调查发现,若以每只50元的价格销售,平均每天销售90只,单价每提高1元,平均每天就少销售3只.(1)平均每天的销售量y(只)与销售价x(元/只)之间的函数关系式为;(2)求该批发商平均每天的销售利润W(元)与销售只x(元/只)之间的函数关系式;(3)物价部门规定每只售价不得高于55元,当每只玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元解::( 1)y=90-3(x-50)即y=-3x+240;(2)w=(x-40)y=(x-40)(-3x+240)=-3x2+360x-9600;(3)当x≤60,y随x的增大而减小,当x=55时,w最大=1125所以定价为55元时,可以获得最大利润是1125元.5.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为多少时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?解:(1)由题意得:w=(x-20)∙y=(x-20)(-2x+80)=-2x2+120x-1600,∴w与x的函数关系式为:w=-2x2+120x-1600;,(2)w=-2x2+120x-1600=-2(x-30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程-2(x-30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.6.某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系y=ax2-bx,当x=1时,y=1.4;当x=3时,y=3.6。

相关文档
最新文档