乐山市数学中考三模试卷

合集下载

四川省乐山市数学中考三模试卷

四川省乐山市数学中考三模试卷

四川省乐山市数学中考三模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·新疆模拟) 下列四个图形中,是中心对称图形的是()A .B .C .D .2. (2分) (2015九上·武昌期中) 下列方程中没有实数根的是()A . x2﹣x﹣1=0B . x2+3x+2=0C . 2015x2+11x﹣20=0D . x2+x+2=03. (2分) (2019七下·邢台期中) 已知 , ,则等于()A .B . -7C . 17D . 724. (2分)已知一组数据含有三个不同的数12,17,25,它们的频率分别是 , , ,则这组数据的平均数是()A . 19B . 16.5C . 18.4D . 225. (2分) (2016八上·桐乡月考) 下列说法中:①三边对应相等的两个三角形全等;②三角对应相等的两个三角形全等;③两边和它们的夹角对应相等的两个三角形全等;④两角及其中一角的对边对应相等的两个三角形全等;⑤两边及其中一边的对角对应相等的两个三角形全等;不正确的是()A . ①②B . ②④C . ④⑤D . ②⑤6. (2分)华氏温度F(华氏度)与摄氏温度C(摄氏度)之间的关系为F= C+32,若某地某时温度为20摄氏度,则该温度相当于华氏温度为()A . 68华氏度B . - 华氏度C . 77华氏度D . 华氏度7. (2分)若反比例函数的图象经过点(m,3m),其中,则此反比例函数的图象()A . 第一、二象限B . 第一、三象限C . 第二、四象限D . 第三、四象限8. (2分) (2019七上·雁塔期中) 下列说法正确的有()①n棱柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);②点动成线,线动成面,面动成体;③圆锥的侧面展开图是一个圆;④用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.A . 1个B . 2个C . 3个D . 4个9. (2分) (2020九上·镇平期末) 今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600 ,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A . x(x-60)=1600B . x(x+60)=1600C . 60(x+60)=1600D . 60(x-60)=160010. (2分)(2016·宝安模拟) 如图,小强从热气球上测量一栋高楼顶部的倾角为30°,测量这栋高楼底部的俯角为60°,热气球与高楼的水平距离为45米,则这栋高楼高为多少(单位:米)()A . 15B . 30C . 45D . 60二、填空题 (共6题;共9分)11. (1分) (2018八上·武昌期中) 点P(1,3)关于y轴对称点的坐标为________.12. (1分)在同一平面内下列4个函数;①y=2(x+1)2-1;②y=2x2+3;③y=-2x2-1;④y= x2-1的图象不可能由函数y=2x2+1的图象通过平移变换得到的函数是________(把你认为正确的序号都填写在横线上)13. (2分) (2015八上·龙华期末) 在一次数学单元测试中,A,B两个学习小组成员的成绩如图所示,则在这次测试中,这两个小组的数学成绩较为稳定的一组是________(填“A组”、“B组”或“一样”)14. (2分)(2012·桂林) 下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是________.15. (2分)(2018·江苏模拟) 反比例函数的图像经过点(2,3),则的值等于________.16. (1分) (2016八上·淮阴期末) 如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为________.三、解答题 (共8题;共71分)17. (10分)(2019·益阳模拟) ()2﹣|1﹣ |﹣tan45°+(π﹣1978)0 .18. (2分) (2019八上·东台期中) 已知:如图∠ABC=∠ADC=90°,M,N分别是AC、BD的中点.(1)试判断△BMD的形状,并说明理由.(2)求证:MN⊥BD.19. (10分) (2019八上·射阳期末) 如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC和△A1B1C1关于x轴成轴对称,画出△A1B1C1(2)点C1的坐标为________,△ABC的面积为________.20. (11分)(2019·郑州模拟) 2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行。

四川省乐山市2019-2020学年中考三诊数学试题含解析

四川省乐山市2019-2020学年中考三诊数学试题含解析

四川省乐山市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.232.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个3.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高A.—7℃B.7℃C.—1℃D.1℃4.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②1014043n n++=;③1014043n n--=;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④5.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.66.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为()A.3122×10 8元B.3.122×10 3元C.3122×10 11元D.3.122×10 11元7.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位B.将l1向右平移2个单位C.将l1向上平移2个单位D.将l1向下平移2个单位8.计算2a2+3a2的结果是()A.5a4B.6a2C.6a4D.5a29.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm10.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A 下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3 B.4﹣3C.4 D.6﹣2311.如果向北走6km记作+6km,那么向南走8km记作()A.+8km B.﹣8km C.+14km D.﹣2km12.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.43B.63C.23D.8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.14.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______15.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.16.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________.17.已知三个数据3,x+3,3﹣x的方差为23,则x=_____.18.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表: x/cm 1 1.5 2 2.5 3 3.5 4 y/cm3.7______3.83.32.5______(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60°时,PM 的长度约为______cm . 20.(6分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P 的坐标满足(m ,m ﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy 中就是一次函数y=x ﹣1的图象.即点P 的轨迹就是直线y=x ﹣1.(1)若m 、n 满足等式mn ﹣m=6,则(m ,n ﹣1)在平面直角坐标系xOy 中的轨迹是 ; (2)若点P (x ,y )到点A (0,1)的距离与到直线y=﹣1的距离相等,求点P 的轨迹; (3)若抛物线y=214x 上有两动点M 、N 满足MN=a (a 为常数,且a≥4),设线段MN 的中点为Q ,求点Q 到x 轴的最短距离.21.(6分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)22.(8分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20my m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -.求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.23.(8分)如图,在四边形ABCD 中,AB=AD ,BC=DC ,AC 、BD 相交于点O ,点E 在AO 上,且OE=OC .求证:∠1=∠2;连结BE 、DE ,判断四边形BCDE 的形状,并说明理由.24.(10分)在Rt ABC ∆中,8, 6,90AC BC C ==∠=︒ , AD 是CAB ∠的角平分线,交BC 于点D . (1)求AB 的长; (2)求CD 的长.25.(10分)如图1,点D 为正ABC ∆的BC 边上一点(D 不与点,B C 重合),点,E F 分别在边,AB AC 上,且EDF B ∠=∠. (1)求证:~BDE CFD ∆∆;(2)设,BD a CD b ==,BDE ∆的面积为1S ,CDF ∆的面积为2S ,求12S S ⋅(用含,a b 的式子表示); (3)如图2,若点D 为BC 边的中点,求证: 2DF EF FC =⋅.图1 图226.(12分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC 如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D 在BA 的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD 的长.(结果精确到0.1米)27.(12分)自学下面材料后,解答问题。

【附5套中考模拟试卷】四川省乐山市2019-2020学年中考数学三月模拟试卷含解析

【附5套中考模拟试卷】四川省乐山市2019-2020学年中考数学三月模拟试卷含解析

四川省乐山市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若⊙O 的半径为5cm ,OA=4cm ,则点A 与⊙O 的位置关系是( ) A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .内含2.下列运算正确的是( ) A .a 2•a 4=a 8B .2a 2+a 2=3a 4C .a 6÷a 2=a 3D .(ab 2)3=a 3b 63.关于x 的不等式组24351x x -<⎧⎨-<⎩的所有整数解是( )A .0,1B .﹣1,0,1C .0,1,2D .﹣2,0,1,24.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是( ) A .75°B .60°C .45°D .30°5.如图,已知两个全等的直角三角形纸片的直角边分别为a 、b ()a b ≠,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )A .3个;B .4个;C .5个;D .6个.6.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A .众数是5B .中位数是5C .平均数是6D .方差是3.67.下列实数中,最小的数是( ) A .3B .π-C .0D .2-8.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE 等于( )A .40°B .70°C .60°D .50°9.将弧长为2πcm 、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是( ) A 2 cmB .2 cmC .3D 10 cm10.下列运算正确的是( )A .2a ﹣a=1B .2a+b=2abC .(a 4)3=a 7D .(﹣a )2•(﹣a )3=﹣a 5 11.13-的相反数是 ( ) A .13 B .13-C .3D .-312.已知二次函数y =﹣(x ﹣h)2+1(为常数),在自变量x 的值满足1≤x≤3的情况下,与其对应的函数值y 的最大值为﹣5,则h 的值为( ) A .3﹣6或1+6 B .3﹣6或3+6 C .3+6或1﹣6D .1﹣6或1+6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.14.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ,A’B’交AC 于点D ,若∠A’DC=90°,则∠A= °.15.若关于x 的不等式组><2x a x ⎧⎨⎩恰有3个整数解,则字母a 的取值范围是_____.16.在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab=_____.17.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_____.18222)=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.20.(6分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.21.(6分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.22.(8分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.23.(8分)如图,AB是⊙O的直径,BC交⊙O于点D,E是弧BD的中点,AE与BC交于点F,∠C=2∠EAB.求证:AC是⊙O的切线;已知CD=4,CA=6,求AF的长.24.(10分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(1)求点Q落在直线y=﹣x﹣1上的概率.25.(10分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x ﹣3=0的解.根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.x …﹣3 ﹣52﹣2 ﹣32﹣1﹣12121322 …y …﹣8 ﹣21858m ﹣98﹣2 ﹣15835812 …(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有个,分别为;(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.26.(12分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.27.(12分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=33,求∠C 的度数;(3)如图3,在(2)的条件下,PD=63,连接QC交BC于点M,求QM的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】直接利用点与圆的位置关系进而得出答案.【详解】解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选A.【点睛】此题主要考查了点与圆的位置关系,正确①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r是解题关键.根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:A、a2•a4=a6,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(ab2)3=a3b6,故此选项正确..故选D.考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方.3.B【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案.【详解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,则不等式组的解集为﹣2<x<2,所以不等式组的整数解为﹣1、0、1,故选:B.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.C【解析】【分析】根据直角三角形两锐角互余即可解决问题.【详解】解:∵直角三角形两锐角互余,∴另一个锐角的度数=90°﹣45°=45°,故选C.【点睛】本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.分析:直接利用轴对称图形的性质进而分析得出答案.详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.故选B.点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.6.D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.7.B【解析】【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比∵π-∴最小的数是-π,故选B.【点睛】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.8.D【解析】【分析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.9.B【解析】【分析】由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高. 【详解】解:设圆锥母线长为Rcm,则2π=120180Rπ︒⨯︒,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.故选择B. 【点睛】本题考查了圆锥的概念和弧长的计算. 10.D【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答. 【详解】A 、2a ﹣a=a ,故本选项错误;B 、2a 与b 不是同类项,不能合并,故本选项错误;C 、(a 4)3=a 12,故本选项错误;D 、(﹣a )2•(﹣a )3=﹣a 5,故本选项正确, 故选D .【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键. 11.B 【解析】先求13-的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点13-到原点的距离是13,所以13-的绝对值是13;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此13的相反数是13-.故选B . 12.C 【解析】 【详解】∵当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小, ∴①若h <1≤x≤3,x=1时,y 取得最大值-5, 可得:-(1-h )2+1=-5,解得:或(舍);②若1≤x≤3<h ,当x=3时,y 取得最大值-5, 可得:-(3-h )2+1=-5,解得:或(舍).综上,h 的值为或, 故选C .点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.72 【解析】分析:延长AB 交2l 于点F ,根据12//l l 得到∠2=∠3,根据五边形ABCDE 是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出. 详解:延长AB 交2l 于点F ,∵12//l l , ∴∠2=∠3,∵五边形ABCDE 是正五边形, ∴∠ABC=108°, ∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72° 故答案为:72°. 点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键. 14.55. 【解析】 【详解】试题分析:∵把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ∴∠ACA’=35°,∠A =∠A’,. ∵∠A’DC=90°, ∴∠A’ =55°. ∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系. 15.﹣2≤a <﹣1. 【解析】 【分析】先确定不等式组的整数解,再求出a 的范围即可. 【详解】∵关于x的不等式组><2x ax⎧⎨⎩恰有3个整数解,∴整数解为1,0,﹣1,∴﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a的取值范围是解此题的关键.16.1【解析】【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=1,故答案为1.【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.17.【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长则所得到的侧面展开图形面积.考点:勾股定理,圆锥的侧面积公式点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.18.1.【解析】【分析】去括号后得到答案.【详解】2×22×22+1=1,故答案为1.【点睛】本题主要考查了去括号的概念,解本题的要点在于二次根式的运算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)不可能事件;(2).【解析】【详解】试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为21 126=.考点:列表法与树状图法.20.(1)详见解析;(1)①详见解析;②1;③62 +.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(1)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(1)①解:如图1中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-1)1+1,∵-12<0,∴x=1时,△BMN的面积最大,最大值为1.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=3m,EB=6m.∴EG=m+3m=(1+3)m,∵S△BEG =12•EG•BN=12•BG•EH,∴EH=3?(13)2m mm+=3+32m,在Rt△EBH中,sin∠EBH=3+36226mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,21.1【解析】解:取时,原式.22.2.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x元,则今年用水价格为每立方米1.2x元由题意列方程得:30155 1.2x x-=解得x2=经检验,x2=是原方程的解1.2x2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键. 23.(1)证明见解析(2)26 【解析】 【分析】(1)连结AD ,如图,根据圆周角定理,由E 是¶BD 的中点得到2DAB EAB ∠=∠,由于2ACB EAB ∠=∠,则ACB DAB ∠=∠,,再利用圆周角定理得到90ADB ,∠=︒则90DAC ACB ∠+∠=︒,所以90DAC DAB ∠+∠=︒,于是根据切线的判定定理得到AC 是⊙O 的切线; ()2先求出DF 的长,用勾股定理即可求出.【详解】解:(1)证明:连结AD ,如图,∵E 是¶BD 的中点,∴2DAB EAB ∠=∠,∵2ACB EAB ∠=∠, ∴ACB DAB ∠=∠,∵AB 是⊙O 的直径,∴90ADB ,∠=︒ ∴90DAC ACB ∠+∠=︒,∴90DAC DAB ∠+∠=︒, 即90BAC ∠=︒, ∴AC 是⊙O 的切线;(2)∵9090EAC EAB DAE AFD EAD EAB ∠+∠=︒∠+∠=︒∠=∠,,, ∴62EAC AFD CF AC DF ,,.∠=∠∴==∴= ∵222226420AD AC CD =-=-=, ∴22220226AF AD DF =+=+=【点睛】本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点. 24. (1)见解析;(1)13【解析】试题分析:先用列表法写出点Q的所有可能坐标,再根据概率公式求解即可. (1)由题意得(1)共有6种等可能情况,符合条件的有1种P(点Q在直线y=−x−1上)=1 3 .考点:概率公式点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.25.(1)2;(2)3,﹣2,或﹣1或1.(3)﹣2<x<﹣1或x>1.【解析】试题分析:(1)求出x=﹣1时的函数值即可解决问题;利用描点法画出图象即可;(2)利用图象以及表格即可解决问题;(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于2的自变量的取值范围,观察图象即可解决问题.试题解析:(1)由题意m=﹣1+2+1﹣2=2.函数图象如图所示.(2)根据表格和图象可知,方程的解有3个,分别为﹣2,或﹣1或1.(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于2的自变量的取值范围.观察图象可知,﹣2<x<﹣1或x>1.26.(1)△CPD.理由参见解析;(2)证明参见解析;(3)PC2=PE•PF.理由参见解析.【解析】【分析】(1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.【详解】解:(1)△APD≌△CPD.理由:∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(两组角相等则两三角形相似).(3)猜想:PC2=PE•PF.理由:∵△APE∽△FPA,∴AP PEFP PA=即PA2=PE•PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE•PF.【点睛】本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强.27.(1)证明见解析(2)30°919【解析】试题分析:(1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;(2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得3x,在Rt△BEF中,由tan∠BFE=33BE=33x,从而可得AB=43x,则OP=OA=23x,结合3x可得3x,这样即可得到sin∠OPE=12 OEOP=,由此可得∠OPE=30°,则∠C=30°;(3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ 为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=33Rt△EPO 中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG 中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=33BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=319,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.试题解析:(1)如下图1,连接OP,PB,∵CP切⊙O于P,∴OP⊥CP于点P,又∵BQ ⊥CP 于点Q , ∴OP ∥BQ , ∴∠OPB=∠QBP , ∵OP=OB , ∴∠OPB=∠OBP , ∴∠QBP=∠OBP , 又∵PE ⊥AB 于点E , ∴PQ=PE ;(2)如下图2,连接OP ,∵CP 切⊙O 于P , ∴90OPC OPQ ∠=∠=︒ ∴90C COP ∠+∠=︒ ∵PD ⊥AB∴ 90PEO AEF BEF ∠=∠=∠=︒ ∴90EPO COP ∠+∠=︒ ∴C EPO ∠=∠在Rt FEA ∆中,∠GAB=30° ∴设EF=x ,则tan303AE EF x =÷︒=在Rt FEB ∆中,tan ∠3∴·tan 33BE EF BFE x =∠= ∴43AB AE BE x =+= ∴23AO PO x == ∴3EO AO AE x =-= ∴在Rt ∆PEO 中, 1sin 2EO EPO PO ∠== ∴C EPO ∠=∠=30°;(3)如下图3,连接BG ,过点O 作OK HB ⊥于K ,又BQ ⊥CP , ∴90OPQ Q OKQ ∠=∠=∠=︒, ∴四边形POKQ 为矩形, ∴QK=PO,OK//CQ , ∴C KOB ∠=∠=30°,∵⊙O 中PD ⊥AB 于E ,3,AB 为⊙O 的直径, ∴PE=123 根据(2)得30EPO ∠=︒,在Rt ∆EPO 中,cos PEEPO PO∠=, ∴cos 33cos306PO PE EPO =÷∠=︒=, ∴OB=QK=PO=6,∴在Rt KOB ∆中,sin KBKOB OB∠= , ∴01sin30632KB OB =⋅=⨯=, ∴QB=9,在△ABG 中,AB 为⊙O 的直径, ∴∠AGB=90°, ∵∠BAG=30°, ∴BG=6,∠ABG=60°,过点G 作GN ⊥QB 交QB 的延长线于点N ,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°, ∴BN=BQ·cos ∠GBQ=3,GN=BQ·sin ∠GBQ=33∴QN=QB+BN=12,∴在Rt △QGN 中,2212(33)319+=, ∵∠ABG=∠CBQ=60°, ∴BM 是△BQG 的角平分线, ∴QM :GM=QB :GB=9:6,∴QM=9919319155⨯=.点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。

四川省乐山市中考数学三模试卷

四川省乐山市中考数学三模试卷

四川省乐山市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2018七上·新乡期末) 下列计算正确的是()A . (—2)×(—3)=—6B . —32=9C . —2-(-2)=0D . -1+(-1)=02. (2分)下列图形中,是轴对称图形的是()A .B .C .D .3. (2分)(2019·井研模拟) 下列说法正确的是()A . 了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B . 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C . 一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是D . “任意画一个三角形,其内角和是360°”这一事件是不可能事件4. (2分) (2016九上·东城期末) 在Rt△ABC中,∠C=90°,若BC=1,AC=2,则cosA的值为()A .B .C .D . 25. (2分)若a>b,则下列式子正确的是()A . ﹣0.5a>﹣0.5bB . 0.5a>0.5bC . a+c<b+cD . a﹣c<b﹣c6. (2分) (2019九上·柳南期末) 如图,是二次函数y=ax2+bx+c的图象,①abc>0;②a+b+c<0;③4a ﹣2b+c<0;④4ac﹣b2<0,其中正确结论的序号是()A . ①②③B . ①③C . ②④D . ③④二、填空题 (共10题;共10分)7. (1分)计算(﹣2x3)3=________.8. (1分) (2020七上·德惠期末) 已知,则它的余角的大小是________.9. (1分) (2019八下·嘉兴期中) 一组数据-2,3,2,1,-2的中位数为________.10. (1分) (2020七下·江阴月考) 如图,把△ABC沿EF翻折,叠合后的图形如图.若∠A=60°,∠1=80°,则∠2的度数为________.11. (1分)(2019·淮安模拟) 圆锥的底面周长为6πcm,高为4cm,则该圆锥的全面积是________;12. (1分) (2019八上·白银期中) 已知点(﹣4,y1),(2,y2)都在直线y=﹣2x+3上,则y1 , y2的大小关系是________.13. (1分) (2019九上·慈溪期中) 已知在圆O中,AB是直径,点E和点D是圆O上的点,且∠EAB=45°,延长AE和BD相交于点C,连接BE和AD交于点F,BD=12,CD=8,则直径AB的长是________.14. (1分) (2017七下·大同期末) 二元一次方程组的解是________.15. (1分) (2019八下·宜兴期中) 如图,O是坐标原点,菱形OABC的顶点A的坐标为,顶点C在x 轴的正半轴上,则的角平分线所在直线的函数关系式为________.16. (1分) (2019九上·柳江月考) 如图,⊙O的半径是2,直线1与⊙O相交于A、B两点,M,N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB的面积最大值是________。

四川省乐山市中考三模数学考试试卷

四川省乐山市中考三模数学考试试卷

四川省乐山市中考三模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·杭州月考) 下列各对数中,数值相等的是()A . 与B . 与C . 与D . 与2. (2分)如图,P为∠XOY上一点,作PH⊥OY于H,对于sin2∠XOY+cos2∠XOY的大小,下列说法正确的是()A . 与点P的位置有关B . 与PH的长度有关C . 与∠XOY的大小有关D . 与点P的位置和∠XOY的大小都无关3. (2分)(2018·河北) 图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A . l1B . l2C . l3D . l44. (2分) (2017七上·彭泽期中) 据有关资料显示,2012年罗庄区全年财政总收入820亿用科学记数法表示为()A . 8.2×1010B . 0.82×1011C . 82×109D . 8.2×1085. (2分)小丁有个边长为的正方体,他在地上摆成如图所示的形状,然后露出的表面都染上颜色,那么被染上颜色的面积有()A . 37㎡B . 33㎡C . 24㎡D . 21㎡6. (2分)(2017·兰州模拟) 图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A . y=﹣2x2B . y=2x2C . y=﹣ x2D . y= x27. (2分)要使分式有意义,则x的取值应满足()A . x≠﹣2B . x≠1C . x=﹣2D . x=18. (2分) (2019七上·荣昌期中) 若,那么的值是()A . 2或12B . 2或-12C . -2或12D . -2或-129. (2分) (2019九上·天台月考) 如图,反比例函数y=(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<时,则x的取值范围是()A . 1<x<3B . x<1或x>3C . 0<x<1D . 0<x<1或x>310. (2分) (2018九上·哈尔滨月考) 如图,将绕点顺时针方向旋转得,若,则等于().A .B .C .D .11. (2分)已知圆O是正n边形A1A2…An的外接圆,半径长为18,如果弧A1A2的长为π,那么边数n为()A . 5B . 10C . 36D . 7212. (2分)如图,抛物线与两坐标轴的交点分别为(-1,0),(2,0),(0,2),则当y>2时,自变量x的取值范围是()A . 0<x<B . 0<x<1C . <x<1D . -1<x<2二、填空题 (共6题;共16分)13. (1分) (2020七下·南京期末) 已知2a=3,4b=5,则的值是________.14. (1分)(2019·盘锦) 计算:(2 +3 )(2 ﹣3 )=________.15. (1分)(2019·黑龙江模拟) 抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是________.16. (1分)若反比例函数y= 的图象位于一、三象限内,则k的取值范围是________.17. (1分) (2019八下·乐亭期末) 如图,过正方形的顶点作直线,过作的垂线,垂足分别为.若,,则的长度为________.18. (11分) (2016七下·青山期中) 如图,在边长为1的小正方形组成的网格中,A、B、C、D、E五点都是格点.(1)请在网格中建立合适的平面直角坐标系,使点A、B两点坐标分别是A(﹣3,0)、B(2,﹣1);(2)在(1)条件下,请直接写出C、D、E三点的坐标;(3)则三角形BDE的面积为________三、解答题 (共7题;共80分)19. (15分)已知关于x、y的方程组,且它的解是一对正数.(1)试用含m的式子表示方程组的解;(2)求实数m的取值范围;(3)化简|m﹣4|+|m+1|.20. (10分)(2020·定海模拟) 甲、乙两所学校选派相同人数的老师参加志愿者活动,参加活动时长分别被制成下列两个统计图,根据以上信息,整理分析数据如下表:平均时间/小时中位数/小时众数/小时方差/小时甲a77 1.2乙7b8c(1)求出表格中a,b,c的值;(2)分别运用表中的统计量,简要分析这两所学校参加志愿者活动的时长,若选其中一所学校作为志愿推广学校,你认为应选哪所?21. (10分)(2019·宁夏) 如图在中,,以为直径作圆交于点,连接 .(1)求证:;(2)过点作圆的切线,交于点,若,求的值.22. (5分)(2020·包河模拟) 如图,无人机在600米高空的P点,测得地面A点和建筑物BC的顶端B的俯角分别为60°和70°,已知A点和建筑物BC的底端C的距离为286 米,求建筑物BC的高.(结果保留整数,参考数据:≈1.73,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)23. (10分)(2020·湖南模拟) 甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费由两部分组成:固定费用400元和服务费用5元/平方米;乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求甲公司养护费用y(元)与绿化面积x(平方米)的函数解析式(不要求写出自变量的范围);(2)选择哪家公司的服务,每月的绿化养护费用较少.24. (15分) (2020八下·南昌期末) 在长方形纸片中,,,点是边上一点,将沿所在直线折每叠,使点落在点处,(1)如图,当点落在对角线上时,求的长;(2)如图,当点落在边上是,求的长;(3)如图,当点为的中点,且的延长线交于点是,求的长.25. (15分)(2017·兰州模拟) 如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共16分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、18-3、三、解答题 (共7题;共80分)19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、。

四川省乐山市2019-2020学年中考数学三模考试卷含解析

四川省乐山市2019-2020学年中考数学三模考试卷含解析

四川省乐山市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是( )A .5ab ﹣ab=4B .a 6÷a 2=a 4C .112a b ab +=D .(a 2b )3=a 5b 3 2.计算()15-3÷的结果等于( )A .-5B .5C .1-5 D .153.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差4.如图,边长为2a 的等边△ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .12aB .aC .3aD .3a5.下列一元二次方程中,有两个不相等实数根的是( )A .x 2+6x+9=0B .x 2=xC .x 2+3=2xD .(x ﹣1)2+1=06.下列各数中比﹣1小的数是( )A .﹣2B .﹣1C .0D .17.下列图形中既是中心对称图形又是轴对称图形的是A .B .C .D .8.如图所示的几何体,上下部分均为圆柱体,其左视图是( )A.B.C.D.9.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+910.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=11.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b12.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,BC=8,高AD=6,矩形EFGH的一边EF在边BC上,其余两个顶点G、H 分别在边AC、AB上,则矩形EFGH的面积最大值为_____.14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数).15.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB 是△ABC 的一个内角.求作:∠APB =∠ACB .小明的做法如下:如图①作线段AB 的垂直平分线m ;②作线段BC 的垂直平分线n ,与直线m 交于点O ;③以点O 为圆心,OA 为半径作△ABC 的外接圆;④在弧ACB 上取一点P ,连结AP ,BP .所以∠APB =∠ACB .老师说:“小明的作法正确.”请回答:(1)点O 为△ABC 外接圆圆心(即OA =OB =OC )的依据是_____;(2)∠APB =∠ACB 的依据是_____.16.因式分解:3a a -=________.17.计算22111x x x +--的结果为 . 18.关于x 的不等式组010x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3)如图2,若点N 在抛物线上,且∠NBO=∠ABO ,则在(2)的条件下,在坐标平面内有点P ,求出所有满足△POD ∽△NOB 的点P 坐标(点P 、O 、D 分别与点N 、O 、B 对应).20.(6分)如图,已知:C F 90o ∠∠==,AB DE =,CE BF =,求证:AC DF =.21.(6分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E .求证:△AFE ≌△CDF ;若AB=4,BC=8,求图中阴影部分的面积.22.(8分)如图,在每个小正方形的边长为1的网格中,点A ,B ,M ,N 均在格点上,P 为线段MN 上的一个动点(1)MN 的长等于_______,(2)当点P 在线段MN 上运动,且使PA 2+PB 2取得最小值时,请借助网格和无刻度的直尺,在给定的(1)21(62)12(8)3--- (2)221cos60cos 45tan 603+-o o o 24.(10分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.25.(10分)如图,已知ABC V ,请用尺规过点C 作一条直线,使其将ABC V 分成面积比为1:3两部分.(保留作图痕迹,不写作法)26.(12分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p=14t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y 与时间t 的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?27.(12分)如图,在平行四边形ABCD 中,DB ⊥AB ,点E 是BC 边的中点,过点E 作EF ⊥CD ,垂足为F ,交AB 的延长线于点G .(1)求证:四边形BDFG 是矩形;(2)若AE 平分∠BAD ,求tan ∠BAE 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由整数指数幂和分式的运算的法则计算可得答案.【详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a b a b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误;故本题正确答案为B.【点睛】幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数)(2)幂的乘方:()m n mn a a =(m 、n 都是正整数)(3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n)(5)零次幂:01a =(a≠0)(6) 负整数次幂: 1p paa -=(a≠0, p 是正整数). 2.A【解析】【分析】根据有理数的除法法则计算可得.【详解】【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.3.D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.4.A【解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∴HB=12AB , ∴HB=BG ,又∵MB 旋转到BN ,∴BM=BN ,在△MBG 和△NBH 中,BG BH MBG NBH MB NB ⎧⎪∠∠⎨⎪⎩===,∴△MBG ≌△NBH (SAS ),∴MG=NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH=12×60°=30°,CG=12AB=12×2a=a , ∴MG=12CG=12×a=2a , ∴HN=2a , 故选A .【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.5.B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A 、x 2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B 、x 2=x.x 2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C 、x 2+3=2x.x 2-2x+3=0.D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.6.A【解析】【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【详解】解:A、﹣2<﹣1,故A正确;B、﹣1=﹣1,故B错误;C、0>﹣1,故C错误;D、1>﹣1,故D错误;故选:A.【点睛】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小.7.B【解析】【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C .考点:简单组合体的三视图.9.D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x 2-6x+9=(x-3)2.故选D .考点:2.因式分解-运用公式法;2.因式分解-提公因式法.10.C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键. 11.D【解析】试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误;B .如图所示:﹣3<a <﹣2,故此选项错误;C .如图所示:1<b <2,则﹣2<﹣b <﹣1,又﹣3<a <﹣2,故a <﹣b ,故此选项错误;D .由选项C 可得,此选项正确.故选D .考点:实数与数轴12.C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m 、n 是方程x 2+kx ﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C .【考点】根与系数的关系;一元二次方程的解.二、填空题:(本大题共6个小题,每小题4分,共24分.)【分析】设HG=x,根据相似三角形的性质用x表示出KD,根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可.【详解】解:设HG=x.∵四边形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴HGBC=AKAD,即8x=66KD-,解得:KD=6﹣34x,则矩形EFGH的面积=x(6﹣34x)=﹣34x2+6x=34﹣(x﹣4)2+1,则矩形EFGH的面积最大值为1.故答案为1.【点睛】本题考查的是相似三角形的判定和性质、二次函数的性质,掌握相似三角形的判定定理和性质定理是解题的关键.14.28%.【解析】【分析】用被抽查的100名学生中参加社会实践活动时间在2~2.5小时之间的学生除以抽查的学生总人数,即可得解.【详解】由频数分布直方图知,2~2.5小时的人数为100﹣(8+24+30+10)=28,则该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的百分比为28100⨯100%=28%.故答案为:28%.【点睛】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.15.①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换同弧所对的圆周角相等【解析】【分析】(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.(2)根据同弧所对的圆周角相等即可得出结论.【详解】(1)如图2中,∵MN 垂直平分AB ,EF 垂直平分BC ,∴OA=OB ,OB=OC (线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC (等量代换)故答案是:(2)∵»»AB AB =,∴∠APB=∠ACB (同弧所对的圆周角相等).故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.【点睛】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.16.a(a+1)(a-1)【解析】【分析】先提公因式,再利用公式法进行因式分解即可.【详解】解:3a a -=a(a+1)(a-1)故答案为:a(a+1)(a-1)【点睛】本题考查了因式分解,先提公因式再利用平方差公式是解题的关键.17.11x - 【解析】【分析】直接把分子相加减即可.【详解】22111x x x +--=11(1)(1)1x x x x +=+--,故答案为:11x -. 【点睛】本题考查了分式的加减法,关键是要注意通分及约分的灵活应用.18.32a -≤<-【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:由不等式①得:x >a ,由不等式②得:x <1,所以不等式组的解集是a <x <1.∵关于x 的不等式组010x a x -⎧⎨-⎩>>的整数解共有3个,∴3个整数解为0,﹣1,﹣2,∴a 的取值范围是﹣3≤a <﹣2.故答案为:﹣3≤a <﹣2.【点睛】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)抛物线的解析式是y=12x 2﹣3x ;(2)D 点的坐标为(4,﹣4);(3)点P 的坐标是(345,416--)或(453,164). 【解析】试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB 的解析式为y=x ,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线A′B 的解析式,进而由△P 1OD ∽△NOB ,得出△P 1OD ∽△N 1OB 1,进而求出点P 1的坐标,再利用翻折变换的性质得出另一点的坐标.试题解析:(1)∵抛物线y=ax 2+bx (a≠0)经过A (6,0)、B (8,8)∴将A 与B 两点坐标代入得:64883660a b a b +=⎧⎨+=⎩,解得:123a b ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式是y=12x 2﹣3x . (2)设直线OB 的解析式为y=k 1x ,由点B (8,8),得:8=8k 1,解得:k 1=1∴直线OB 的解析式为y=x ,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∴x﹣m=12x2﹣3x,∵抛物线与直线只有一个公共点,∴△=16﹣2m=0,解得:m=8,此时x1=x2=4,y=x2﹣3x=﹣4,∴D点的坐标为(4,﹣4)(3)∵直线OB的解析式为y=x,且A(6,0),∴点A关于直线OB的对称点A′的坐标是(0,6),根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,设直线A′B的解析式为y=k2x+6,过点(8,8),∴8k2+6=8,解得:k2=14,∴直线A′B的解析式是y=164y x=+,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即点N在直线A′B上,∴设点N(n,164x+),又点N在抛物线y=12x2﹣3x上,∴164x+=12n2﹣3n,解得:n1=﹣32,n2=8(不合题意,舍去)∴N点的坐标为(﹣32,458).如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(﹣32,-458),B1(8,﹣8),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴11112OP OD ON OB ==, ∴点P 1的坐标为(345,416--). 将△OP 1D 沿直线y=﹣x 翻折,可得另一个满足条件的点P 2(453,164), 综上所述,点P 的坐标是(345,416--)或(453,164). 【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.20.证明见解析;【解析】【分析】根据HL 定理证明Rt △ABC ≌Rt △DEF ,根据全等三角形的性质证明即可.【详解】CE BF =Q ,BE 为公共线段,∴CE+BE=BF+BE ,即 CB EF =又90C F o Q ∠∠==,AB DE =在Rt ABC V 与Rt DEF V 中,AB DE CB EF =⎧⎨=⎩Rt ABC ∴V ≌Rt DEF V ()HL∴AC=DF.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键. 21.(1)证明见解析;(2)1.【解析】试题分析:(1)根据矩形的性质得到AB=CD ,∠B=∠D=90°,根据折叠的性质得到∠E=∠B ,AB=AE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF ,EF=DF ,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD 是矩形,∴AB=CD ,∠B=∠D=90°,∵将矩形ABCD 沿对角线AC 翻折,点B 落在点E 处,∴∠E=∠B ,AB=AE ,∴AE=CD ,∠E=∠D ,在△AEF 与△CDF 中,∵∠E=∠D ,∠AFE=∠CFD ,AE=CD ,∴△AEF ≌△CDF ;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=12×4×8﹣12×4×3=1.点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.22.(1)34;(2)见解析.【解析】【分析】(1)根据勾股定理即可得到结论;(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P即可得到结果.【详解】(1)223534MN=+=;(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P【点睛】本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键.23.(1)8242-;(2)1.【解析】【分析】(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算.【详解】解:(1)原式=3 643212223⎛⎫-- ⎪⎪⎝⎭8=-8=-(2)原式2211223⎛⎫=+-⋅ ⎪ ⎪⎝⎭ 11=-0=.【点睛】本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则. 24.(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:x 2y 3.5{2x y 2.5+=+=,解得:x 0.5{y 1.5==。

乐山三诊数学试题及答案

乐山三诊数学试题及答案

乐山三诊数学试题及答案一、选择题(每题3分,共15分)1. 下列函数中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = x^2 + 1 \)D. \( y = \frac{1}{x} \)答案:B2. 已知向量\( \vec{a} = (2, -3) \)和向量\( \vec{b} = (-1, 4) \),求向量\( \vec{a} \)和向量\( \vec{b} \)的数量积。

A. 5B. -5C. 10D. -10答案:B3. 若\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)为锐角,求\( \cos(\alpha) \)的值。

A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{5} \)D. \( -\frac{3}{5} \)答案:A4. 已知等差数列的首项为3,公差为2,求该数列的第10项。

A. 23B. 21C. 19D. 17答案:A5. 一个圆的直径为10,求该圆的面积。

A. 25πB. 50πC. 100πD. 200π答案:B二、填空题(每题3分,共15分)6. 计算\( \log_2 8 \)的值。

答案:37. 已知\( \tan(\theta) = 2 \),求\( \sin(\theta) \)的值。

答案:\( \frac{2\sqrt{5}}{5} \)8. 计算\( \sqrt{49} \)的值。

答案:79. 一个等比数列的首项为2,公比为3,求该数列的第5项。

答案:48610. 已知椭圆的方程为\( \frac{x^2}{25} + \frac{y^2}{16} = 1 \),求该椭圆的焦距。

答案:6三、解答题(共70分)11. 已知函数\( f(x) = x^3 - 3x^2 + 2 \),求该函数的导数\( f'(x) \),并找出其在区间[1,2]上的单调区间。

四川省乐山市中考数学三模试卷

四川省乐山市中考数学三模试卷

四川省乐山市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·淮安) 2的相反数是()A . 2B . -2C .D .2. (2分)(2020·定兴模拟) 计算:1252-50×125+252=()A . 100B . 150C . 10000D . 225003. (2分)(2017·姑苏模拟) 2015年12月27日,苏州环古城河健康步道全线开通了.环古城河健身步道全程15 500m,沿护城河内岸环绕苏州古城.将数据15500用科学记数法可表示为()A . 0.155×104B . 0.155×105C . 1.55×104D . 1.55×1054. (2分) (2020八下·大东期末) 平行四边形一边长12,那么它的两条对角线的长度可能是()A . 8和16B . 10和16C . 8和14D . 8和125. (2分)已知a,b,c是△ABC三条边的长,那么方程cx2+(a+b)x+=0的根的情况是().A . 没有实数根B . 有两个不相等的正实数根C . 有两个不相等的负实数根D . 有两个异号实数根6. (2分)(2011·海南) 一枚质地均匀的普通硬币重复掷两次,落地后两次都是正面朝上的概率是()A . 1B .C .D .7. (2分) (2020八下·武川期中) 下列命题中,真命题的是()A . 对角线互相垂直的四边形是菱形B . 对角线互相垂直平分的四边形是正方形C . 对角线相等的四边形是矩形D . 对角线互相平分的四边形是平行四边形8. (2分)下列说法正确的是()A . 全等的两个图形成中心对称B . 成中心对称的两个图形必须重合C . 成中心对称的两个图形全等D . 旋转后能够重合的两个图形成中心对称9. (2分)一个圆锥形的冰淇淋纸筒,其底面直径为6cm,母线长5cm,围成这样的冰淇淋纸筒所需纸片的面积是()A . 66πcm2B . 15πcm2C . 28πcm2D . 30πcm210. (2分)(2017·嘉兴模拟) 在平面直角坐标系中,任意两点A(x1 , y1),B(x2 , y2),规定运算:①A⊕B=(x1+x2 , y1+y2);②A⊗B=x1x2+y1y2;③当x1=x2且y1=y2时,A=B,有下列四个命题:①若A(1,2),B(2,﹣1),则A⊕B=(3,1),A⊗B=0;②若A⊕B=B⊕C,则A=C;③若A⊗B=B⊗C,则A=C;④对任意点A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立,其中正确命题的个数为()A . 1个B . 2个C . 3个D . 4个11. (2分)如图,点A、点B、点C均在⊙O上,若∠B=40°,则∠AOC的度数为()A . 40°B . 60°C . 80°D . 90°12. (2分) (2019九上·北京期中) 已知函数y=ax2+bx+c(a≠0)的图象如图,给出下列4个结论:①abc >0;②b2>4ac;③4a+2b+c>0;④2a+b=0.其中正确的有()个.A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)13. (1分)已知a、b为两个连续整数,且a<<b ,则a+b=________14. (1分)(2018·南山模拟) 因式分解:y3﹣4x2y=________.15. (1分)(2016·安陆模拟) 式子在实数范围内有意义,则x的取值范围是________.16. (1分)如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED=________17. (1分) (2019九下·昆明模拟) 如图,点是圆形纸片的圆心,将这个圆形纸片按下列要求折叠,使弧和弧都经过圆心,已知的半径为,则阴影部分的面积是________.18. (1分)如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有________ 个.三、解答题 (共8题;共72分)19. (5分)(2012·朝阳) 计算(先化简,再求值):,其中a= .20. (10分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E,⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:∠F=∠B;(2)若AB=10,BG=13,求AF的长.21. (10分)(2020·黄冈模拟) 如图,点在双曲线上,垂直轴,垂足为,点在上,平行于轴交曲线于点,直线与轴交于点,已知,点的坐标为 .(1)求该双曲线的解析式;(2)求的面积.22. (10分)某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为80m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如图所示:(1)从上述统计图可知:每人每分钟能擦课桌椅________m2;擦玻璃,擦课桌椅,扫地拖地的面积分别是________m2 , ________m2 , ________m2 .(2)如果x人每分钟擦玻璃的面积是y m2 ,那么y关于x的函数关系式是________(3)他们一起完成扫地拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅.如果你是卫生委员,该如何分配这两组的人数,才能最快的完成任务?23. (5分) (2020八上·滨州期末) 李明和王军相约周末去野生动物园游玩。

四川省乐山市数学中考三模试卷

四川省乐山市数学中考三模试卷

四川省乐山市数学中考三模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)(2019·宿迁模拟) 的相反数是()A . 3B .C .D . ﹣32. (1分) (2018九上·富顺期中) 如图,△ABC绕点A顺时针旋转95°得到△AEF ,若∠BAC=25°,则∠α的度数是()A . 35°B . 45°C . 55°D . 70°3. (1分) |﹣9|的平方根等于()A . ±3B . 3C . ±D .4. (1分)不等式组的解集在数轴上表示为()A .B .C .D .5. (1分)如图,已知直线a∥b,∠1=40°,∠2=60°.则∠3等于().A . 100°B . 60°C . 40°D . 20°6. (1分) (2019九下·润州期中) 在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示则这些运动员成绩的中位数、众数分别是()A . 4.65、4.70B . 4.65、4.75C . 4.70、4.75D . 4.70、4.707. (1分) (2020九上·淅川期末) 下列二次根式是最简二次根式的是()A .B .C .D .8. (1分) (2018八上·东台月考) 已知:△ABC≌△DCB,若BC=10cm,AB=6cm,AC=7cm,则CD为()A . 10cmB . 7cmC . 6cmD . 6cm或7cm9. (1分) (2017七下·宝安期中) 小明一出校门先加速行驶,然后匀速行驶一段后,在距家门不远的地方开始减速,而最后停下,下面哪一副图可以近似地刻画出以上情况:()A .B .C .D .10. (1分)在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于()A . 3.8cmB . 7.6cmC . 11.4cmD . 11.2cm11. (1分) (2018九上·和平期末) 已知△ABC∽△DEF,且AB∶DE=1∶2,则△ABC的面积与△DEF的面积之比为()A . 1∶2B . 1∶4C . 2∶1D . 4∶112. (1分)用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于A . 3B .C . 2D .二、填空题 (共6题;共6分)13. (1分)(2016·娄底) 已知某水库容量约为112000立方米,将112000用科学记数法表示为________.14. (1分)方程7x+2y=11有________对正整数解.15. (1分)(2017·个旧模拟) 函数:中,自变量x的取值范围是________.16. (1分)(2017·濉溪模拟) 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长________.17. (1分) (2015八下·新昌期中) 已知关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则实数k的取值范围是________18. (1分)如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D 点,则弹性皮筋被拉长了________ cm三、解答题 (共8题;共15分)19. (1分)(2018·中山模拟) 计算:|﹣2|+2﹣1﹣cos60°﹣(1﹣)0 .20. (1分) (2017八下·大丰期中) 先化简,然后在﹣2≤a≤2中选择一个你喜欢的整数代入求值.21. (2分) (2016九上·西湖期末) 平面上有3个点的坐标:A(0,﹣3),B(3,0),C(﹣1,﹣4).(1)在A,B,C三个点中任取一个点,这个点既在直线y1=x﹣3上又在抛物线上y2=x2﹣2x﹣3上的概率是多少?(2)从A,B,C三个点中任取两个点,求两点都落在抛物线y2=x2﹣2x﹣3上的概率.22. (1分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)23. (2分) (2016九上·萧山期中) 为了鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低且Z与x之间也大致满足如图②所示的一次函数关系。

四川省乐山市数学中考三模试卷

四川省乐山市数学中考三模试卷

四川省乐山市数学中考三模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018九下·市中区模拟) ﹣3的倒数是()A .B .C . -3D . 32. (2分)下列说法正确的是()A . 0不是单项式B . x没有系数C . +x是多项式D . -xy是单项式3. (2分)(2017·长春模拟) 下列各式计算正确的是()A . a+2a2=3a3B . (a+b)2=a2+ab+b2C . 2(a﹣b)=2a﹣2bD . (2ab)2÷(ab)=2ab(ab≠0)4. (2分) (2016八上·驻马店期末) 要使分式有意义,则x的取值应满足()A . x=0B . x≠0C . x=﹣3D . x≠﹣35. (2分) (2019七下·景县期末) 如图2,两条直线相交于点O,OE⊥AB,∠1=56°,则∠2等于()A . 44°B . 56°C . 45°D . 34°6. (2分)(2018·东莞模拟) 一元一次不等式组的解集在数轴上表示出来,正确的是()A .B .C .D .7. (2分)若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是().A . 44B . 45C . 46D . 478. (2分) .抛物线y=(x-1)2+3的对称轴是()A . 直线x=1B . 直线x=-1C . 直线x=3D . 直线x=-39. (2分) (2018七上·腾冲期末) 如图所示的几何体,从左面看到的平面图形是().A .B .C .D .10. (2分)直角三角形中两锐角之差为20°,则较大锐角为()A . 45°B . 55°C . 65°D . 50°11. (2分)△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长是()A . 5cmB . 6cmC . cmD . 8cm12. (2分)(2017·葫芦岛) 如图,点A,B,C是⊙O上的点,∠AOB=70°,则∠ACB的度数是()A . 30°B . 35°C . 45°D . 70°二、填空题 (共6题;共6分)13. (1分)(2017·天门模拟) 将2x2﹣8分解因式的结果是________.14. (1分)2cos30°-= ________15. (1分) (2020九上·醴陵期末) 某中学共有学生人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有________人.16. (1分) (2019八上·东台月考) 如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,则AB=________.17. (1分)(2014·镇江) 已知圆锥的底面半径为3,母线长为8,则圆锥的侧面积等于________.18. (1分)如图,已知函数y=﹣与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+=0的解是________三、解答题 (共8题;共70分)19. (5分)(2017·内江) 计算:﹣12017﹣丨1﹣丨+ ×()﹣2+(2017﹣π)0 .20. (5分) (2019七下·兰州月考) 对于任何实数,我们规定符号的意义是:=ad-bc.(1)按照这个规定计算的值;(2)按照这个规定计算:当x2-3x+1=0时,的值.21. (5分) (2019八上·孝南月考) 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).①在如图所示的网格平面内作出平面直角坐标系;②作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;③P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P的坐标.22. (10分)(2017·深圳模拟) 2016年中考前,张老师为了解全市初三男生体育考试项目的选择情况(每人限选一项),在全市范围内随机调查了部分初三男生,将调查结果分成五类:A.推实心球(2kg);B.立定跳远;C.半场运球;D.跳绳;E.其他,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有32000名男生,试估计全市初三男生中选半场运球的人数有多少人;(3)甲、乙两名初三男生在上述选择率较高的三个项目:B.立定跳远;C.半场运球;D.跳绳中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.23. (10分)(2016·竞秀模拟) 如图,在菱形ABCD中,P是对角线AC上任一点(不与A,C重合),连接BP,DP,过P作PE∥CD交AD于E,过P作PF∥AD交CD于F,连接EF.(1)求证:△ABP≌△ADP;(2)若BP=EF,求证:四边形EPFD是矩形.24. (15分) (2017八下·临沭期末) 甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟________米,乙在A地时距地面的高度b为________米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?25. (5分) (2017九上·陆丰月考) 如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),点B的坐标为(,0),解答下列各题:(1)求线段AB的长;(2)求⊙C的半径及圆心C的坐标;(3)在⊙C上是否存在一点P,使得△POB是等腰三角形?若存在,请求出P点的坐标.26. (15分)(2017·蓝田模拟) 如图,已知抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A、B、C三点的坐标及抛物线的对称轴;(2)若已知x轴上一点N(,0),则在抛物线的对称轴上是否存在一点Q,使得△CNQ是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共70分)19-1、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。

四川省乐山市2019-2020学年中考第三次质量检测数学试题含解析

四川省乐山市2019-2020学年中考第三次质量检测数学试题含解析

四川省乐山市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面的图形是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个2.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A.B.C.D.3.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()1 2 3 4 5成绩(m)8.2 8.0 8.2 7.5 7.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.04.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A .9分B .8分C .7分D .6分5.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC=35°,则∠CAB 的度数为( )A .35°B .45°C .55°D .65°6.如图,右侧立体图形的俯视图是( )A .B .C .D .7.如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE ,BF ,DF ,DG ,CG 分别交于点,,,,P Q K M N ,设BPQ V ,DKM △,CNH △的面积依次为1S ,2S ,3S ,若1320S S +=,则2S 的值为( )A .6B .8C .10D .128.在平面直角坐标系中,把直线y =x 向左平移一个单位长度后,所得直线的解析式为( )A .y =x +1B .y =x -1C .y =xD .y =x -29.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为( )A .40°B .45°C .50°D .55°10.如图,小明从A 处出发沿北偏西30°方向行走至B 处,又沿南偏西50°方向行走至C 处,此时再沿与出发时一致的方向行走至D 处,则∠BCD 的度数为( )A .100°B .80°C .50°D .20°11.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( )A .B .2C .D .12.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )A .①B .②C .③D .④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:9a 2﹣12a+4=______.14.若一个棱柱有7个面,则它是______棱柱.15.反比例函数k y x=的图象经过点()1,6和(),3m -,则m = ______ . 16.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.17.若代数式4x -在实数范围内有意义,则实数x 的取值范围为_____.18.分解因式:2242a a ++=__________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,E ,F 是▱ABCD 的对角线AC 上的两点,BE ∥DF.求证:AF =CE .20.(6分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走6 米到达A 处,测得树顶端E 的仰角为30°,他又继续走下台阶到达C 处,测得树的顶端的仰角是60°,再继续向前走到大树底D 处,测得食堂楼顶N 的仰角为45°,已如A 点离地面的高度AB =4米,∠BCA =30°,且B 、C 、D 三点在同一直线上.(1)求树DE 的高度;(2)求食堂MN 的高度.21.(6分)如图,已知点D 在△ABC 的外部,AD ∥BC ,点E 在边AB 上,AB•AD =BC•AE .求证:∠BAC =∠AED ;在边AC 取一点F ,如果∠AFE =∠D ,求证:AD AF BC AC =.22.(8分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED=∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD DF AC CG =.求证:△ADF ∽△ACG ;若12AD AC =,求AF FG的值.23.(8分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”24.(10分)如图,男生楼在女生楼的左侧,两楼高度均为90m ,楼间距为AB ,冬至日正午,太阳光线与水平面所成的角为32.3o ,女生楼在男生楼墙面上的影高为CA ;春分日正午,太阳光线与水平面所成的角为55.7o ,女生楼在男生楼墙面上的影高为DA ,已知42CD m =.()1求楼间距AB ;()2若男生楼共30层,层高均为3m ,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.30.53≈o ,cos32.30.85≈o ,tan32.30.63≈o ,sin55.70.83≈o ,cos55.70.56≈,tan55.7 1.47)≈o25.(10分)在△ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与点B 、C 重合),以AD 为直角边在AD 右侧作等腰三角形ADE ,使∠DAE=90°,连接CE .探究:如图①,当点D 在线段BC 上时,证明BC=CE+CD .应用:在探究的条件下,若AB=2,CD=1,则△DCE 的周长为 .拓展:(1)如图②,当点D 在线段CB 的延长线上时,BC 、CD 、CE 之间的数量关系为 . (2)如图③,当点D 在线段BC 的延长线上时,BC 、CD 、CE 之间的数量关系为 .26.(12分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加109m%小时,求m 的值. 27.(12分)已知线段a 及如图形状的图案.(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a (保留作图痕迹)(2)当a=6时,求图案中阴影部分正六边形的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可.【详解】解:第一个图形是轴对称图形,但不是中心对称图形;第二个图形是中心对称图形,但不是轴对称图形;第三个图形既是轴对称图形,又是中心对称图形;第四个图形即是轴对称图形,又是中心对称图形;∴既是轴对称图形,又是中心对称图形的有两个,故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.2.A【解析】【分析】当点F在MD上运动时,0≤x<2;当点F在DA上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.【详解】解:当点F在MD上运动时,0≤x<2,则:y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则: y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A.【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.3.D【解析】【分析】【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D .【点睛】本题考查众数;中位数.4.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B 即可求得.详解:∵∠ADC=35°,∠ADC 与∠B 所对的弧相同,∴∠B=∠ADC=35°,∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.6.A【解析】 试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A. 考点:简单组合体的三视图.7.B【解析】【分析】由条件可以得出△BPQ ∽△DKM ∽△CNH ,可以求出△BPQ 与△DKM 的相似比为12,△BPQ 与△CNH 相似比为13,由相似三角形的性质,就可以求出1S ,从而可以求出2S . 【详解】∵矩形AEHC 是由三个全等矩形拼成的,∴AB=BD=CD ,AE ∥BF ∥DG ∥CH ,∴∠BQP=∠DMK=∠CHN ,∴△ABQ ∽△ADM ,△ABQ ∽△ACH , ∴12AB BQ AD DM ==,13AB BQ AC CH ==, ∵EF=FG= BD=CD ,AC ∥EH ,∴四边形BEFD 、四边形DFGC 是平行四边形,∴BE ∥DF ∥CG ,∴∠BPQ=∠DKM=∠CNH ,又∵∠BQP=∠DMK=∠CHN ,∴△BPQ ∽△DKM ,△BPQ ∽△CNH , ∴221211()24S BQ S DM ⎛⎫=== ⎪⎝⎭,221311()39S BQ S CH ⎛⎫=== ⎪⎝⎭, 即214S S =,319S S =, 1320S S +=Q ,∴11920S S +=,即11020S =,解得:12S =,∴214S S =42=⨯8=,【点睛】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键.8.A【解析】向左平移一个单位长度后解析式为:y=x+1.故选A.点睛:掌握一次函数的平移.9.D【解析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选D.考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质10.B【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.11.D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣1+52=12.12.A【解析】【分析】根据题意得到原几何体的主视图,结合主视图选择.【详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.故取走的正方体是①.故选A.【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(3a﹣1)1【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.14.5【解析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.15.-1【解析】【分析】先把点(1,6)代入反比例函数y=k x ,求出k 的值,进而可得出反比例函数的解析式,再把点(m ,-3)代入即可得出m 的值.【详解】解:∵反比例函数y=k x 的图象经过点(1,6), ∴6=1k ,解得k=6, ∴反比例函数的解析式为y=6x . ∵点(m ,-3)在此函数图象上上,∴-3=6m,解得m=-1. 故答案为-1.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.6【解析】设这个扇形的半径为r ,根据题意可得:2606360r ππ=,解得:6r =. 故答案为6.17.x≤1【解析】【分析】根据二次根式有意义的条件可求出x 的取值范围.【详解】由题意可知:1﹣x≥0,∴x≤1故答案为:x≤1.【点睛】本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可.18.22(1)a +【解析】【分析】原式提取2,再利用完全平方公式分解即可.【详解】原式()()22=221=21a a a +++ 【点睛】先考虑提公因式法,再用公式法进行分解,最后考虑十字相乘,差项补项等方法.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.参见解析.【解析】分析:先证∠ACB=∠CAD ,再证出△BEC ≌△DFA ,从而得出CE=AF .详解:证明:平行四边形ABCD 中,AD BC P ,AD BC =,ACB CAD ∴∠=∠.又BE DF P ,BEC DFA ∴∠=∠,BEC DFA ∴V V ≌,∴ CE AF =点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.20.(1)12米;(2)(【解析】【分析】(1)设DE =x ,先证明△ACE 是直角三角形,∠CAE =60°,∠AEC =30°,得到AE =16,根据EF=8求出x 的值得到答案;(2)延长NM 交DB 延长线于点P ,先分别求出PB 、CD 得到PD ,利用∠NDP =45°得到NP ,即可求出MN.【详解】(1)如图,设DE =x ,∵AB =DF =4,∠ACB =30°,∴AC =8,∵∠ECD =60°,∴△ACE 是直角三角形,∵AF ∥BD ,∴∠CAF =30°,∴∠CAE=60°,∠AEC=30°,∴AE=16,∴Rt△AEF中,EF=8,即x﹣4=8,解得x=12,∴树DE的高度为12米;(2)延长NM交DB延长线于点P,则AM=BP=6,由(1)知CD=12CE=12×3AC=43,BC=43,∴PD=BP+BC+CD=6+43+43=6+83,∵∠NDP=45°,且∠NPD=90°,∴NP=PD=6+83,∴NM=NP﹣MP=6+83﹣4=2+83,∴食堂MN的高度为(2+83)米.【点睛】此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.21.见解析【解析】【分析】(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得AD DEBC AC=,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;【详解】证明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴AB BC AE AD=,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,AD DE BC AC=,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四边形ADEF是平行四边形,∴DE=AF,∴AD AF BC AC=.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)证明见解析;(2)1.【解析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.23.x=60【解析】【分析】 设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则 65234x x x ++= 解得:x=60;∴有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 24.(1)AB 的长为50m ;(2)冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【解析】【分析】()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设.AB CM DN xm ===想办法构建方程即可解决问题.()2求出AC ,AD ,分两种情形解决问题即可.【详解】解:()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设AB CM DN xm ===. 在Rt PCM V 中,()tan32.30.63PM x x m =⋅=o, 在Rt PDN V 中,()tan55.7 1.47PN x x m =⋅=o, 42CD MN m ==Q ,1.470.6342x x ∴-=,50x ∴=,AB ∴的长为50m .()2由()1可知:31.5=,PM m()AD m∴=--=,9031.558.5904231.516.5AC=-=,Q÷=,58.5319.5÷=,16.53 5.5∴冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【点睛】考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.探究:证明见解析;应用:22(1)BC= CD-CE,(2)BC= CE-CD【解析】试题分析:探究:判断出∠BAD=∠CAE,再用SAS即可得出结论;应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论;(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论.试题解析:探究:∵∠BAC=90°,∠DAE=90°,∴∠BAC=∠DAE.∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,∴∠BAD=∠CAE.∵AB=AC,AD=AE,∴△ABD≌△ACE.∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.应用:在Rt△ABC中,2,∴∠ABC=∠ACB=45°,BC=2,∵CD=1,∴BD=BC-CD=1,由探究知,△ABD ≌△ACE ,∴∠ACE=∠ABD=45°,∴∠DCE=90°,在Rt △BCE 中,CD=1,CE=BD=1,根据勾股定理得,,∴△DCE 的周长为故答案为拓展:(1)同探究的方法得,△ABD ≌△ACE .∴BD=CE∴BC=CD-BD=CD-CE ,故答案为BC=CD-CE ;(2)同探究的方法得,△ABD ≌△ACE .∴BD=CE∴BC=BD-CD=CE-CD ,故答案为BC=CE-CD .26.(1)1600千米;(2)1【解析】试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出方程(80+120)(1-m%)(8+109m%)=1600,进而解方程求出即可. 试题解析:(1)设原时速为xkm/h ,通车后里程为ykm ,则有: ()()8120816320x y x y ⎧+⎪⎨++⎪⎩== , 解得:801600x y ⎧⎨⎩== . 答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1﹣m%)(8+109m%)=1600, 解得:m 1=1,m 2=0(不合题意舍去),答:m 的值为1.27.(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为183【解析】试题分析:(1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得△OCD的面积,这样即可由S阴影=6S△OCD求出阴影部分的面积了.试题解析:(1)所作图形如下图所示:(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,则由题意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三边三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=33,OE=3,∴AB=63,∴CD=23,∴S△OCD=1233=332⨯⨯,∴S阴影=6S△OC D=183.。

四川省乐山市2019-2020学年中考数学三模试卷含解析

四川省乐山市2019-2020学年中考数学三模试卷含解析

四川省乐山市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若△ABC 与△DEF 相似,相似比为2:3,则这两个三角形的面积比为( )A .2:3B .3:2C .4:9D .9:42.如图,65,AFD CD EB ∠=︒∕∕,则B Ð的度数为( )A .115°B .110°C .105°D .65°3.如图,点A ,B ,C 在⊙O 上,∠ACB=30°,⊙O 的半径为6,则»AB 的长等于( )A .πB .2πC .3πD .4π4.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .92432B .98132C .82432D .881325.将某不等式组的解集13x ≤<-表示在数轴上,下列表示正确的是( )A .B .C .D .6.如图,将△ABC 沿着DE 剪成一个小三角形ADE 和一个四边形D'E'CB ,若DE ∥BC ,四边形D'E'CB 各边的长度如图所示,则剪出的小三角形ADE 应是( )A .B .C .D .7.如图所示是放置在正方形网格中的一个ABC ∆ ,则tan ABC ∠的值为( )A .25B .5C .2D .128.在下列各平面图形中,是圆锥的表面展开图的是( )A .B .C .D .9.已知二次函数y =ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a ﹣b+c >1;③abc >0;④4a ﹣2b+c <0;⑤c ﹣a >1,其中所有正确结论的序号是( )A .①②B .①③④C .①②③⑤D .①②③④⑤10.已知:如图,点P 是正方形ABCD 的对角线AC 上的一个动点(A 、C 除外),作PE ⊥AB 于点E ,作PF ⊥BC 于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在下列图象中,大致表示y 与x 之间的函数关系的是( )A .B .C .D .11.将一把直尺与一块三角板如图所示放置,若140∠=︒则∠2的度数为( )A.50°B.110°C.130°D.150°12.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.14.不等式1﹣2x<6的负整数解是___________.15.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)16.若方程x2+(m2﹣1)x+1+m=0的两根互为相反数,则m=______17.若a+b=3,ab=2,则a2+b2=_____.18.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及其方差s2如下表所示:甲乙丙丁x1′05″331′04″261′04″261′07″29s2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派_________去.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.求一次函数与反比例函数的解析式;求△AOB的面积.20.(6分)已知:如图,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)MN n的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.(拓展)当MN n与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.21.(6分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?22.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线1y x32=-+交AB,BC分别于点M,N,反比例函数kyx=的图象经过点M,N.求反比例函数的解析式;若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.23.(8分)小张同学尝试运用课堂上学到的方法,自主研究函数y=21x 的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:(1)函数y=21x自变量的取值范围是 ; (2)下表列出了y 与x 的几组对应值:x … ﹣2 ﹣32m ﹣34 ﹣12 12 34 1 32 2 … y … 14 49 1 169 4 4 169 1 49 14 …表中m 的值是 ;(3)如图,在平面直角坐标系xOy 中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;(4)结合函数y=21x 的图象,写出这个函数的性质: .(只需写一个)24.(10分)在平面直角坐标系xOy 中,一次函数y kx b =+的图象与y 轴交于点()B 0,1,与反比例函数m y x= 的图象交于点()A 3,2-. ()1求反比例函数的表达式和一次函数表达式;()2若点C 是y 轴上一点,且BC BA =,直接写出点C 的坐标.25.(10分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?26.(12分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1<y2时x的取值范围.27.(12分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【详解】∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:1.故选C.【点睛】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.2.A【解析】【分析】根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.【详解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°−65°=115°,故选:A.【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.3.B【解析】【分析】根据圆周角得出∠AOB=60°,进而利用弧长公式解答即可.【详解】解:∵∠ACB=30°,∴∠AOB=60°,∴»AB的长=606180π⨯=2π,故选B.【点睛】此题考查弧长的计算,关键是根据圆周角得出∠AOB=60°.4.A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=32E1D1=32×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=32×2,同理可得正六边形A3B3C3D3E3F3的边长=(32)2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(3)10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=3E1D1=3×2,∴正六边形A2B2C2D2E2F2的边长=3×2,同理可得正六边形A3B3C3D3E3F3的边长=(32)2×2,则正六边形A11B11C11D11E11F11的边长=(32)10×2=92432.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.5.B【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;< ,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.C【解析】【分析】利用相似三角形的性质即可判断.【详解】设AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴AD AE DE AB AC BC==,∴6121614x yx y==++,∴x=9,y=12,故选:C.【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.D【解析】【分析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【详解】解:过点A向CB引垂线,与CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=2142 ADBD==故选:D.【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.8.C【解析】【分析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选C.【点睛】考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.9.C【解析】【分析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0,则①当x=1时,y=a+b+c <0,正确;②当x=-1时,y=a-b+c >1,正确;③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-2b a=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确. 故所有正确结论的序号是①②③⑤.故选C10.A【解析】由题意可得:△APE 和△PCF 都是等腰直角三角形.∴AE=PE ,PF=CF ,那么矩形PEBF 的周长等于2个正方形的边长.则y=2x ,为正比例函数.故选A .11.C【解析】【分析】如图,根据长方形的性质得出EF ∥GH ,推出∠FCD=∠2,代入∠FCD=∠1+∠A 求出即可.【详解】∵EF ∥GH ,∴∠FCD=∠2,∵∠FCD=∠1+∠A ,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.12.C【解析】【分析】根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.61【解析】分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.面”,用勾股定理解决.14.﹣2,﹣1【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x>﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.15.52【解析】【分析】如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.【详解】如图,作BH⊥AC于H.在Rt△ABH中,∵AB=10海里,∠BAH=30°,∴∠ABH=60°,BH=12AB=5(海里),在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),∴BH=CH=5海里,∴2.故答案为2【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决【分析】根据“方程 x 2+(m 2﹣1)x+1+m =0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可.【详解】∵方程 x 2+(m 2﹣1)x+1+m =0 的两根互为相反数,∴1﹣m 2=0,解得:m =1 或﹣1,把 m =1代入原方程得:x 2+2=0,该方程无解,∴m =1不合题意,舍去,把 m =﹣1代入原方程得:x 2=0,解得:x 1=x 2=0,(符合题意),∴m =﹣1,故答案为﹣1.【点睛】本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键.若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=. 17.1【解析】【分析】根据a 2+b 2=(a+b )2-2ab ,代入计算即可.【详解】∵a+b =3,ab =2,∴a 2+b 2=(a+b )2﹣2ab =9﹣4=1.故答案为:1.【点睛】本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式.18.乙∵x丁〉x甲x〉乙=x丙,∴从乙和丙中选择一人参加比赛,∵S 乙2<S 丙2,∴选择乙参赛,故答案是:乙.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=-6x,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x ﹣1;(2)设AB 与x 轴相交于点C ,令﹣2x ﹣1=0解得x=﹣2,所以,点C 的坐标为(﹣2,0),所以,OC=2,S △AOB =S △AOC +S △BOC , =×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.20.【发现】(3)MN n 的长度为π3;(2)3【探究】:点P 的坐标为10(,);或23 0()或23 0-();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析. 【解析】【分析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ ,即可用面积公式得出结论;探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出·MN和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】[发现](3)∵P (2,0),∴OP=2.∵OA=3,∴AP=3,∴·MN 的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r=2﹣3=3,当t=2时,如图3,点N 与点A 重合,∴PA=r=3,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQ 12=PA 12=,∴AQ=AP×cos30°32=,∴S 重叠部分=S △APQ 12=PQ×AQ 38= 3①如图2,当⊙P与直线AB相切于点C时,连接PC,则有PC⊥AB,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;∴点P的坐标为(3,0);②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPDPDOP=,∴OP123303cos==︒,∴点P的坐标为(233,0);③如图2,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP233 =;∴点P的坐标为(233-,0);[拓展]t的取值范围是2<t≤3,2≤t<4,理由:如图4,当点N运动到与点A重合时,·MN与Rt△ABO的边有一个公共点,此时t=2;当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t411-==3,·MN与Rt△ABO的边有两个公共点,∴2<t≤3.如图6,当⊙P运动到PM与OB重合时,·MN与Rt△ABO的边有两个公共点,此时t=2;直到⊙P运动到点N与点O重合时,·MN与Rt△ABO的边有一个公共点,此时t=4;∴2≤t<4,即:t的取值范围是2<t≤3,2≤t<4.本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.21.120【解析】【分析】设第一批水果每件进价为x 元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【详解】解:设第一批水果每件进价为x 元,则第二批水果每件进价为(x+5)元, 由题意得,×2=, 解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.22.(1)4y x =;(2)点P 的坐标是(0,4)或(0,-4). 【解析】【分析】(1)求出OA=BC=2,将y=2代入1y x 32=-+求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标.【详解】(1)∵B (4,2),四边形OABC 是矩形,∴OA=BC=2. 将y=2代入1y x 32=-+3得:x=2,∴M (2,2). 把M 的坐标代入k y x =得:k=4, ∴反比例函数的解析式是4y x=; (2)AOM CON BMON OABC 1S S S S 422442∆∆=--=⨯-⨯⨯=四边形矩形. ∵△OPM 的面积与四边形BMON 的面积相等,∴1OP AM 42⋅⋅=. ∵AM=2,∴OP=4.∴点P 的坐标是(0,4)或(0,-4). 23.(1)x≠0;(2)﹣1;(3)见解析;(4)图象关于y 轴对称.【解析】【分析】(1)由分母不等于零可得答案;(2)求出y=1时x 的值即可得;(3)根据表格中的数据,描点、连线即可得;(4)由函数图象即可得.【详解】(1)函数y=21x 的定义域是x≠0, 故答案为x≠0; (2)当y=1时,21x =1, 解得:x=1或x=﹣1,∴m=﹣1,故答案为﹣1;(3)如图所示:(4)图象关于y 轴对称,故答案为图象关于y 轴对称.【点睛】本题主要考查反比例函数的图象与性质,解题的关键是掌握反比例函数自变量的取值范围、函数值的求法、列表描点画函数图象及反比例函数的性质.24.(1)y=6x-,y=-x+1;(2)C(0,2+1 )或C(0,2【分析】(1)依据一次函数y kx b =+的图象与y 轴交于点(0,1)B ,与反比例函数m y x=的图象交于点(3,2)A -,即可得到反比例函数的表达式和一次函数表达式;(2)由(3,2)A -,(0,1)B 可得:AB ==BC =,再根据1BO =,可得1CO =或1,即可得出点C 的坐标.【详解】 (1)∵双曲线m y x =过(3,2)A -,将(3,2)A -代入m y x=,解得:6m =-. ∴所求反比例函数表达式为:6y x =-. ∵点(3,2)A -,点(0,1)B 在直线y kx b =+上,∴23k b -=+,1b =,∴1k =-,∴所求一次函数表达式为1y x =-+.(2)由(3,2)A -,(0,1)B 可得:AB ==BC =又∵1BO =,∴1CO =或1,∴(0C ,1)或(0C ,1-).【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.25.(1)50(2)36%(3)160【解析】【分析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%50⨯=, ∴最喜欢篮球活动的人数占被调查人数的36%.(3)()130%26%24%20%-++=,8100%100016050⨯⨯=人.答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.26.(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.27.(1)作图见解析;(2)7,7.5,2.8;(3)见解析.【解析】【分析】(1)根据图1找出8、9、10℃的天数,然后补全统计图即可;(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;(3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.【详解】(1)由图1可知,8℃有2天,9℃有0天,10℃有2天,补全统计图如图;(2)根据条形统计图,7℃出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,所以,中位数为12(7+8)=7.5;平均数为110(6×2+7×3+8×2+10×2+11)=110×80=8,所以,方差=110[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=110(8+3+0+8+9),=110×28,=2.8;(3)6℃的度数,210×360°=72°,7℃的度数,310×360°=108°,8℃的度数,210×360°=72°,10℃的度数,210×360°=72°,11℃的度数,110×360°=36°,作出扇形统计图如图所示.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n 个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.。

四川省乐山市2019-2020学年第三次中考模拟考试数学试卷含解析

四川省乐山市2019-2020学年第三次中考模拟考试数学试卷含解析

四川省乐山市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,正六边形ABCDEF 内接于O e ,M 为EF 的中点,连接DM ,若O e 的半径为2,则MD 的长度为( )A .7B .5C .2D .12.下列函数中,y 关于x 的二次函数是( ) A .y =ax 2+bx+c B .y =x(x ﹣1) C .y=21x D .y =(x ﹣1)2﹣x 23.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.已知函数y =ax 2+bx+c 的图象如图所示,则关于x 的方程ax 2+bx+c ﹣4=0的根的情况是A .有两个相等的实数根B .有两个异号的实数根C .有两个不相等的实数根D .没有实数根5.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b>0B .ab >0C .D .6.若x 是2的相反数,|y|=3,则12y x -的值是( ) A .﹣2B .4C .2或﹣4D .﹣2或47.计算4+(﹣2)2×5=( ) A .﹣16 B .16 C .20 D .248.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )A .15,0.125B .15,0.25C .30,0.125D .30,0.259.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( ) A .6±B .6C .2或3D 2310.如果向北走6km 记作+6km ,那么向南走8km 记作( ) A .+8km B .﹣8km C .+14km D .﹣2km 11.下列说法正确的是( ) A .2a 2b 与–2b 2a 的和为0 B .223a b π的系数是23,次数是4次C .2x 2y –3y 2–1是3次3项式D 3x 2y 3与–3213x y 是同类项 12.下列计算正确的是( ) A .(a 2)3=a 6 B .a 2+a 2=a 4 C .(3a )•(2a )2=6aD .3a ﹣a =3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 边上的点,将△ADE 沿直线DE 折叠,点A 落在点'A 处,且点'A 在△ABC 的外部,则阴影部分图形的周长为_____cm.14.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67ABBC=,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm15.已知点M(1,2)在反比例函数的图象上,则k=____.16.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=34CG2;③若AF=2DF,则BG=6GF.其中正确的结论有_____.(填序号)17.如图,已知点C为反比例函数6yx=-上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为___________.18.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简:241133aa a-⎛⎫÷+⎪--⎝⎭,再从3-、2、3中选择一个合适的数作为a的值代入求值.20.(6分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k 的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k 的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.21.(6分)(1)解不等式组:2322112323x xxx>-⎧⎪-⎨≥-⎪⎩;(2)解方程:22 212x xx x+=--.22.(8分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?23.(8分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A (5,0)的直线y=kx+b 与y 轴于点C ,且BD=OC ,tan ∠OAC=25. (1)求反比例函数y=mx和直线y=kx+b 的解析式; (2)连接CD ,试判断线段AC 与线段CD 的关系,并说明理由;(3)点E 为x 轴上点A 右侧的一点,且AE=OC ,连接BE 交直线CA 与点M ,求∠BMC 的度数.24.(10分)如图,抛物线2y ax bx c =++()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =–1,P 为抛物线上第二象限的一个动点. (1)求抛物线的解析式并写出其顶点坐标; (2)当点P 的纵坐标为2时,求点P 的横坐标;(3)当点P 在运动过程中,求四边形PABC 面积最大时的值及此时点P 的坐标.25.(10分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表: 血型 A B AB O 人数105(1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A 型的概率是多少?并估计这3000人中大约有多少人是A 型血?26.(12分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?27.(12分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站 A B C D E X(千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用221y x 11x 782=-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】连接OM 、OD 、OF ,由正六边形的性质和已知条件得出OM ⊥OD ,OM ⊥EF ,∠MFO=60°,由三角函连接OM 、OD 、OF ,∵正六边形ABCDEF 内接于⊙O ,M 为EF 的中点, ∴OM ⊥OD ,OM ⊥EF ,∠MFO=60°, ∴∠MOD=∠OMF=90°, ∴OM=OF•sin ∠MFO=2×3=3, ∴MD=()2222327OM OD +=+=,故选A .【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM 是解决问题的关键. 2.B 【解析】 【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是. 【详解】A.当a=0时, y=ax 2+bx+c= bx+c ,不是二次函数,故不符合题意;B. y=x (x ﹣1)=x 2-x ,是二次函数,故符合题意;C. 21y x =的自变量在分母中,不是二次函数,故不符合题意; D. y=(x ﹣1)2﹣x 2=-2x+1,不是二次函数,故不符合题意; 故选B. 【点睛】本题考查了二次函数的定义,一般地,形如y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的函数叫做二次函数,据此求解即可. 3.D 【解析】∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.4.A【解析】【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c 的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键. 5.C本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.【详解】A、因为b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故选项A错误;B、因为b<0<a,所以ab<0,故选项B错误;C、因为b<-1<0<a<1,所以+>0,故选项C正确;D、因为b<-1<0<a<1,所以->0,故选项D错误.故选C.【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.6.D【解析】【分析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.【详解】解:∵x是1的相反数,|y|=3,∴x=-1,y=±3,∴y-12x=4或-1.故选D.【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.7.D【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.详解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.8.D根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,又∵被调查学生总数为120人,∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.综上所述,选项D中数据正确.故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.9.A【解析】【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.【详解】∵方程2-+=有两个相等的实根,x kx230∴△=k2-4×2×3=k2-24=0,解得:k=±故选A.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.10.B【解析】【分析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量.若向北走6km记作+6km,那么向南走8km记作﹣8km.故选:B.【点睛】11.C【解析】【分析】根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.【详解】A 、2a 2b 与-2b 2a 不是同类项,不能合并,此选项错误;B 、23πa 2b 的系数是23π,次数是3次,此选项错误; C 、2x 2y-3y 2-1是3次3项式,此选项正确;D x 2y 3与﹣3213x y 相同字母的次数不同,不是同类项,此选项错误; 故选C .【点睛】本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.12.A【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【详解】A .(a 2)3=a 2×3=a 6,故本选项正确;B .a 2+a 2=2a 2,故本选项错误;C .(3a )•(2a )2=(3a )•(4a 2)=12a 1+2=12a 3,故本选项错误;D .3a ﹣a=2a ,故本选项错误.故选A .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】【分析】由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.【详解】∵△A'DE与△ADE关于直线DE对称,∴AD=A'D,AE=A'E,C阴影=BC+A'D+A'E+BD+EC= BC+AD+AE+BD+EC =BC+AB+AC=3cm. 故答案为3.【点睛】由图形轴对称可以得到对应的边相等、角相等.14.50 3【解析】试题分析:根据67ABBC,EF=4可得:AB=和BC的长度,根据阴影部分的面积为542cm可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为256,则菱形的周长为:256×4=503.考点:菱形的性质.15.-2【解析】=1×(-2)=-216.①②③【解析】【分析】(1)由已知条件易得∠A=∠BDF=60°,结合BD=AB=AD,AE=DF,即可证得△AED≌△DFB,从而说明结论①正确;(2)由已知条件可证点B、C、D、G四点共圆,从而可得∠CDN=∠CBM,如图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,结合CB=CD即可证得△CBM≌△CDN,由此可得S四边形BCDG =S四边形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=12CG,CN=32CG,由此即可求得S△CGN=38CG2,从而可得结论②是正确的;(3)过点F作FK∥AB交DE于点K,由此可得△DFK∽△DAE,△GFK∽△GBE,结合AF=2DF和相似三角形的性质即可证得结论④成立.【详解】(1)∵四边形ABCD是菱形,BD=AB,∴AB=BD=BC=DC=DA,∴△ABD和△CBD都是等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,∴△AED≌△DFB,即结论①正确;(2)∵△AED≌△DFB,△ABD和△DBC是等边三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴点B、C、D、G四点共圆,∴∠CDN=∠CBM,如下图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四边形BCDG=S四边形CMG N=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=12CG,CN=3CG,∴S△CGN=3CG2,∴S四边形BCDG=2S△CGN,=3CG2,即结论②是正确的;(3)如下图,过点F作FK∥AB交DE于点K,∴△DFK∽△DAE,△GFK∽△GBE,∴FK DF DFAE DA DF AF==+,FG FKBG BE=,∵AF=2DF,∴13 FKAE=,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴126 FG FK FKBG BE AE===,∴BG=6FG,即结论③成立.综上所述,本题中正确的结论是:故答案为①②③点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.17.1【解析】【详解】解:由于点C为反比例函数6yx=-上的一点,则四边形AOBC的面积S=|k|=1.故答案为:1.18.2【解析】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣1,2),∵双曲线y=经过点D,∴k=﹣1×2=﹣6,∴△BOC的面积=|k|=1.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣1=2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.-1.【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后在3-、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】241133a a a -⎛⎫÷+ ⎪--⎝⎭()()223133a a a a a +--+=÷-- ()()22332a a a a a +--=⋅-- 2a =+,当3a =-时,原式321=-+=-.故答案为:-1.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(1)32(2)1(3)①②③ 【解析】【分析】(1)由抛物线与x 轴只有一个交点,可知△=0;(2)由抛物线与x 轴有两个交点且AB=2,可知A 、B 坐标,代入解析式,可得k 值;(3)通过解析式求出对称轴,与y 轴交点,并根据系数的关系得出判断.【详解】(1)∵二次函数y =kx 2﹣4kx+3与x 轴只有一个公共点,∴关于x 的方程kx 2﹣4kx+3=0有两个相等的实数根,∴△=(﹣4k )2﹣4×3k =16k 2﹣12k =0,解得:k 1=0,k 2=32, k≠0,∴k =32; (2)∵AB =2,抛物线对称轴为x =2,∴A 、B 点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k =1,(3)①∵当x =0时,y =3,∴二次函数图象与y 轴的交点为(0,3),①正确;②∵抛物线的对称轴为x =2,∴抛物线的对称轴不变,②正确;③二次函数y =kx 2﹣4kx+3=k (x 2﹣4x )+3,将其看成y 关于k 的一次函数,令k的系数为0,即x2﹣4x=0,解得:x1=0,x2=4,∴抛物线一定经过两个定点(0,3)和(4,3),③正确.综上可知:正确的结论有①②③.【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.21.(1)﹣2≤x<2;(2)x=45.【解析】【分析】(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.【详解】(1)2322x112323x xx①②>-⎧⎪⎨-≥-⎪⎩,∵解不等式①得:x<2,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x<2;(2)方程两边都乘以(2x﹣1)(x﹣2)得2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),解得:x=45,检验:把x=45代入(2x﹣1)(x﹣2)≠0,所以x=45是原方程的解,即原方程的解是x=45.【点睛】本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键.22.(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【解析】【分析】(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.【详解】解:(1)本次调查共抽取的学生有36%50÷=(名)选择“友善”的人数有5030%15⨯=(名)∴条形统计图如图所示:(2)∵选择“爱国”主题所对应的百分比为205040%÷=,∴选择“爱国”主题所对应的圆心角是40%360144⨯︒=︒;(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有120030%360⨯=名.故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(1)6yx-=,2y x25=-(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=25,∴25OCOA=,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x,设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴052k bb=+⎧⎨-=⎩,解得252kb⎧=⎪⎨⎪=-⎩,∴y=25x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中OA BCAOC DBCOC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=41°.24.(1)二次函数的解析式为223y x x=--+,顶点坐标为(–1,4);(2)点P横坐标为2–1;(3)当3x2=-时,四边形PABC的面积有最大值758,点P(31524-,).【解析】试题分析: (1)已知抛物线2y ax bx c=++()0a≠与x轴交于点A和点B(1,0),与y轴交于点C (0,3),其对称轴l为x=﹣1,由此列出方程组,解方程组求得a、b、c的值,即可得抛物线的解析式,把解析式化为顶点式,直接写出顶点坐标即可;(2)把y=2代入解析式,解方程求得x的值,即可得点P 的横坐标,从而求得点P的坐标;(3)设点P(x,y),则2--23y x x=+,根据OBC OAP OPCBCPAS S S S∆∆∆=++四边形得出四边形PABC与x之间的函数关系式,利用二次函数的性质求得x 的值,即可求得点P 的坐标.试题解析:(1)∵抛物线2y ax bx c =++ ()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =﹣1,∴0312a b c c b a⎧⎪++=⎪=⎨⎪⎪-=-⎩ , 解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴二次函数的解析式为2--23y x x =+ =()214x -++,∴顶点坐标为(﹣1,4)(2)设点P (x ,2),即2--23y x x =+=2,解得1x1(舍去)或2x =﹣1,∴点P1,2).(3)设点P(x ,y ),则2--23y x x =+ , OBC OAP OPC BCPA S S S S ∆∆∆=++四边形,∴ 2339332222BCPAS x x x =--+-四边形=23375228x ⎛⎫-++ ⎪⎝⎭ ∴当32x =-时,四边形PABC 的面积有最大值758. 所以点P (315,24-). 点睛:本题是二次函数综合题,主要考查学生对二次函数解决动点问题综合运用能力,动点问题为中考常考题型,注意培养数形结合思想,培养综合分析归纳能力,解决这类问题要会建立二次函数模型,利用二次函数的性质解决问题.25.(1)50,20;(2)12,23;见图;(3)大约有720人是A 型血.【解析】【分析】(1)用AB 型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B 型的人数除以抽取的总人数即可求得m 的值;(2)先计算出O 型的人数,再计算出A 型人数,从而可补全上表中的数据;(3)用样本中A 型的人数除以50得到血型是A 型的概率,然后用3000乘以此概率可估计这3000人中是A 型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20, 故答案为50,20;(2)O 型献血的人数为46%×50=23(人),A 型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A 型的概率=1265025=, 3000×625=720, 估计这3000人中大约有720人是A 型血. 【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.26.(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.【解析】【分析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x 天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y 天完成该项工程,根据题意列不等式解不等式即可.【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷13=90(天).设乙队单独施工需要x 天完成该项工程,则 301515190x++=, 去分母,得x+1=2x .解得x=1.经检验x=1是原方程的解.答:乙队单独施工需要1天完成.(2)设乙队施工y 天完成该项工程,则1-36 3090 y≤解得y≥2.答:乙队至少施工l8天才能完成该项工程.27.(1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.【解析】【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=12x2-9x+80,根据二次函数的性质,即可得出最短时间.【详解】(1)设y1=kx+b,将(8,18),(9,20),代入y1=kx+b,得:818, 920. k bk b+=⎧⎨+=⎩解得2,2. kb=⎧⎨=⎩所以y1关于x的函数解析式为y1=2x+2. (2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+12x2-11x+78=12x2-9x+80=12(x-9)2+39.5.所以当x=9时,y取得最小值,最小值为39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点睛】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乐山市数学中考三模试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共6题;共12分)
1. (2分) (2020七上·淮滨期末) 下列说法不正确的是()
A . 1是绝对值最小的数
B . 0既不是正数,也不是负数
C . 一个有理数不是整数就是分数
D . 0的绝对值是0
2. (2分)下列计算正确的是()
A . (-y)7÷(-y)4=y3
B . (x+y)5÷(x+y)=x4+y4
C . (a-1)6÷(a-1)2=(a-1)3
D . -x5÷(-x3)=x2
3. (2分) (2019八下·南浔期末) 某多边形的每个内角均为135°,则此多边形的边数为()
A . 5
B . 6
C . 7
D . 8
4. (2分)下面关于五棱柱的说法错误的是()
A . 有15条棱
B . 有10个顶点
C . 有15个顶点
D . 有7个面
5. (2分) (2019八下·陆川期末) 如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1 ,在x轴上取点A1 ,使OA1=OB1 ,过点A1作x轴的垂线,交直线l于B2 ,在x轴上取点A2 ,使OA2=OB2 ,过点A2作x轴的垂线,交直线l于B3 ,…,这样依次作图,则点B8的纵坐标为()
A . ()7
B . 2()7
C . 2()8
D . ()9
6. (2分) (2020七下·瑞安期末) 如图,正方形ABCD和长方形DEFG的面积相等,且四边形AEFH也为正方形.欧几里得在《几何原本》中利用该图得到了:AH2=AB×BH.设AB=a,BH=b.若ab=45,则图中阴影部分的周长为()
A . 25
B . 26
C . 28
D . 30
二、填空题 (共10题;共12分)
7. (1分)自2015年12月7日大同市召开“冬季行动”招商引资工作动员会后,至12月11日全市项目签约7个,拟投资额27.515亿元.将2751500000元用科学计数法表示为________元.
8. (1分)计算:( + )× =________..
9. (1分)(2017·平房模拟) 因式分解:x3﹣9x=________.
10. (1分)(2020·朝阳模拟) 甲、乙两个芭蕾舞团演员的身高(单位:cm)如下表:
甲164164165165166166167167
乙163163165165166166168168两组芭蕾舞团演员身高的方差较小的是________.(填“甲”或“乙”)
11. (2分) (2019八下·靖远期中) 已知关于X的不等式组的解集为-1<x<2,则(m+n)2019的值是________.
12. (1分) (2019九上·丹东期末) 反比例函数y=的图象,当x>0时,y随x的增大而增大,则k 的取值范围是________.
13. (1分)(2018·嘉定模拟) 在Rt△ 中,,如果,那么 =________.
14. (1分) (2018九上·宝应月考) 如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是________.
15. (1分)(2018·龙湾模拟) 如图,点A是反比例函数y= (x>0)图象上的一点,点B是反比例函数y=﹣(x<0)图象上的点,连接OA、OB、AB,若∠AOB=90°,则sin∠A=________
16. (2分) (2019七下·卢龙期末) 如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2018根火柴棍,并且正三角形的个数比正六边形的个数多7个,那么能连续搭建正三角形的个数是________.
三、解答题 (共11题;共82分)
17. (5分)计算:(2015﹣π)0+()﹣1+|﹣1|﹣3tan30°+.
18. (7分)(2017·游仙模拟) 计算题
(1)求值:2 sin45°+(﹣3)2﹣20170×|﹣4|+ ;
(2)先化简,再求值:(﹣x﹣1)÷ ,其中x是不等式组的一个整数解.
19. (10分) (2017九上·南平期末) 已知△ABC中,∠BCA=90°,BC=AC,D是BA边上一点(点D不与A,B 重合),M是CA中点,当以CD为直径的⊙O与BA边交于点N,⊙O与射线NM交于点E,连接CE,DE.
(1)求证:BN=AN;
(2)猜想线段CD与DE的数量关系,并说明理由.
20. (6分)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.
(1)求取出纸币的总额是30元的概率
(2)找出总额超过51元的结果数,然后根据概率公式计算
21. (10分) (2020七下·覃塘期末) 一次安全知识测验中,学生得分均为整数,满分10分,成绩达到9分为优秀,这次测验甲、乙两组学生人数相同,成绩分别被绘制成下列两个统计图:
根据统计图中信息,整理分析数据如下:
组别平均成绩/分中位数/分众数/分方差优秀率
甲77720%
乙8 1.3610%
(1)求出表格中a,b,c的值;
(2)你认为哪组的成绩较好?从以上信息中写出两条支持你的选择.
22. (2分)(2018·长宁模拟) 如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.
(参考数据:≈1.414,≈1.732.结果精确到0.1米)
23. (10分)(2019·上海模拟) 已知:在平面直角坐标系xOy中,二次函数的图像与x轴交于点A、B(点A在点B的左侧),与y轴交于点C ,△ABC的面积为12.
(1)求这个二次函数的解析式;
(2)点D的坐标为,点P在二次函数的图像上,∠ADP为锐角,且,请直接写出点P的横坐标;
(3)点E在x轴的正半轴上,,点O与点关于EC所在直线对称,过点O作的垂线,垂足为点N , ON与EC交于点M .若,求点E的坐标.
24. (11分)(2019·凤翔模拟) 快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:
型号甲乙
每台每小时分拣快递件数(件)1000800
每台价格(万元)53
该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件(1)设购买甲种型号的机器人x台,购买这10台机器人所花的费用为y万元,求y与x之间的关系式;
(2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?
25. (5分) (2019九上·松北期末) 如图,在每个小正方形的边长为1的方格纸中,有线段AB,点A、B均在格点上.
(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在格点上,且三角形ABC的面积为.(2)在方格纸中画出以AB为一边的菱形ABDE,点D、E均在小正方形的顶点上,且菱形ABDE的面积为3,连接CE,请直接写出线段CE的长.
26. (6分)(2018·河东模拟) 水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为了保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是________斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
(3)当每斤的售价定为多少元时,每天获利最大?最大值为多少?
27. (10分) (2019八下·平顶山期末) 如图,在中,是边上的中线,的垂直平分线分别交于点,连接 .
(1)求证:点在的垂直平分线上;
(2)若,请直接写出的度数.
参考答案一、单选题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共10题;共12分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共11题;共82分)
17-1、
18-1、
18-2、19-1、
19-2、
20-1、20-2、
21-1、
21-2、
22-1、
23-1、
23-2、
23-3、24-1、
24-2、
25-1、
25-2、26-1、
26-2、26-3、
27-1、27-2、。

相关文档
最新文档