《数学学科知识与教学能力》(高级中学)教师资格证
教师资格证考试全国统考高中数学模拟试卷二(含答案)
![教师资格证考试全国统考高中数学模拟试卷二(含答案)](https://img.taocdn.com/s3/m/31e8d5a270fe910ef12d2af90242a8956becaaf0.png)
中小学教师资格考试数学学科知识与教学能力模拟卷(二)(高级中学)考试时间:120分钟满分:150分一.选择题(本大题共8小题,每小题5分,共40分)1.设1234(,,,)=A αααα是4阶矩阵,*A 是A 的伴随矩阵,若(1,0,1,0)T 是方程组=Ax 0的一个基础解系,则*=A x 0的基础解系可为().A .13,ααB .12,ααC .123,,αααD .234,,ααα2.方程yxdx dy =的解是().A .cx y +=B .cy x =+22C .c x y =-22D .c y x =+2213.若级数1nn a∞=∑收敛,1nn b∞=∑发散,则().A .1n nn a b∞=∑必发散B .21nn a∞=∑必收敛C .21nn b∞=∑必收敛D .1()nn n ab ∞=+∑必发散4.过点)2,1,1(-M 且垂直于平面π:05432=-+-z y x 的直线方程为().A .42z 31y 21x -=-+=-B .42z 31y 21x -=+=-C .42z 31y 21x +=-+=-D .42z 31y 21x -=-+=+5.函数的零点的个数为().A .0B .1C .2D .36.将5名学生分到,,A B C 三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A 宿舍的不同分法有().A .18种B .36种C .48种D .60种7.假设n (n ≥2)阶矩阵A 为非奇异矩阵,则下列等式正确的是().A .2()n A AA -**=⋅B .1()n A AA-**=⋅C .1()n A AA +**=⋅D .2()n A AA+**=⋅8.从整个数学教学的宏观来看,数学教学有五大类难点,它们包括:利用方程解应用题,代数到几何的过渡,常量数学到变量数学的过渡,有限到无限的过渡以及().A .换元法B .数字化C .必然到或然的过渡D .函数的概念二、简答题(本大题共5题,每小题7分,共35分)9.判别级数111......1335(21)(21)n n ++++∙∙-∙+的收敛性,如果收敛,求其和.10.设123,,ααα线性无关,证明122331,,αααααα+++也线性无关.11.设随机变量X的概率分布为P{X=1}=P{X=2}=0.5,在给定x=i的条件下,随机变量Y服从均匀分布U(0,i),(i=1,2).问题:(1)求Y的分布函数F(y)(2)求EY12.怎么理解学生主体地位和教师主导作用的关系,如何使学生成为学习的主体?13.学生在学习数学过程中,会因为各种原因出现错误,教师应如何对待学生的数学错误.三、解答题(本大题1小题10分)14.《中小学数学课程标准》中提出,教师应成为学生活佛那个的组织者、引导者、合作者,为学生的发展提供良好的环境和条件,请结合教学实际,教师“组织”“引导”“合作”分别体现在哪些方面.四、论述题(本大题1小题,15分)15.人们常说:“一个好的开始就是成功的一半.”数字来源于生活又服务于生活,请你结合一个具体的案例说明创设生活化情景对数学课堂教学有何作用.五、案例分析题(本大题1小题,20分)阅读案例,并回答问题16.某学生在做题目求过点)1,0(的直线,使它与抛物线x y 22=仅有一个交点.的解题过程如下:设所求的过点)1,0(的直线为1+=kx y ,则它与抛物线的交点为⎩⎨⎧=+=xy kx y 212,消去y 得.02)1(2=-+x kx 整理得.01)22(22=+-+x k x k 直线与抛物线仅有一个交点,,0=∆∴解得∴=.21k 所求直线为.121+=x y (1)指出学生的错误之处(2)分析学生的错误原因(3)写出正确解法六、教学设计题(本大题1小题,30分)17.下列是普通高中课程标准实验教科书必修《数学》第四册(人教版)关于“简单的三角恒等变换”的部分教学内容,请阅读并据此回答问题.例2.求证:(1)sin αcos β=1/2[sin(α+β)+sin(α-β)];(2)sin sin 2sincos22θϕθϕθϕ+-+=证明:(1)因为sin(α+β)=sin αcos β+cos αsin βsin(α-β)=sin αcos β-cos αsin β将以上两式的左右两边分别相加得sin(α+β)+sin(α-β)=2sin αcos β即sin αcos β=1/2[sin(α+β)+sin(α-β)](2)有(1)可得sin(α+β)+sin(α-β)=2sin αcos β设α+β=θ,α-β=φ那么α=(θ+φ)/2,β=(θ-φ)/2把α,β的值带入(1)即得sin sin 2sincos22θϕθϕθϕ+-+=问题:(1)写出该部分教学内容的教学目标、重点和难点(2)写出该部分教学内容的教学应渗透的数学思想(3)对该内容设计教学过程简案(4)对例2(2)给出另一种证明中小学教师资格考试数学学科知识与教学能力模拟卷(二)(高级中学)考试时间:120分钟满分:150分一.选择题(本大题共8小题,每小题5分,共40分)1.【答案】D .解析:因为=Ax 0的基础解系含一个线性无关的解向量,所以()3,r =A 于是*()1r =A ,故*=A x 0的基础解系含有3个线性无关的解向量,排除A 、B .又*||==A A A E 0,且()3,r =A 所以A 的列向量组中含有*=A x 0的基础解系,所以13+=αα0,故选D .2.【答案】C .解析:方程为'yy x =,两边同时积分得222211,22y x c y C =+-=即x ,正确选项为C .3.【答案】D .解析:根据级数收敛的定义可知,D 选项为正确选项.4.【答案】A .解析:因为所求直线与已知平面垂直,所以所求直线与已知平面的法向量平行.因此,取已知平面的法向量为所求直线的方向向量,即v =}4,3,2{-.于是,所求直线的方程为423121-=-+=-z y x .5.【答案】D .解析:画出函数的图象,观察图象与x 轴交点个数有3个,故选D .6.【答案】D .解析:第一步:先安排甲学生,他可以去B 或C 宿舍,共有2种安排方法;第二步:若甲在B 宿舍,B 宿舍可以不安排其他学生,那么其余4人平均安排在A 、C 宿舍有2242C C ;B 宿舍也可再安排一个学生有14C 种,其余3人安排在A 、C 宿舍,其中一个1人、一个2人,有12213231C C C C +种,所以共有1122143231()C C C C C +.综上两步有:221122142432312[()]2[64(33)]60C C C C C C C ++=⨯+⨯+=种,故选择D .7.【答案】A .解析:211111,,()()n A A A A A A A A A A A A A*--*-**---==⋅=⋅⋅=⋅.8.【答案】C .解析:从整个数学教学的宏观来看,数学教学有五大类难点,它们包括:利方程解应用题,代数到几何的过渡,常量数学到变量数学的过渡,有限到无限的过渡以及必然到或然的过渡.二、简答题(本大题共5题,每小题7分,共35分)9.【答案】解析:由于211(21)(21)n n n ≤-∙+,而级数211n n∞=∑是收敛的,利用比较判别法即知111......1335(21)(21)n n ++++∙∙-∙+是收敛的.10.【答案】解析:设由线性关系112223331()()()0k k k αααααα+++++=,则131122233()()()0k k k k k k ααα+++++=.再由题设知123,,ααα线性无关,所以13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩,解得1230k k k ===,所以122331,,αααααα+++线性无关.11.【答案】(1)0,03014()11124212y y y F y y y y <⎧⎪⎪≤<⎪=⎨⎪+≤<⎪⎪≥⎩;(2)78.解析:()()(,1)(,2)(/1)(1)(/2)(2)F y P Y y P Y y X P Y y X P Y y X P X P Y y X P X =≤=≤=+≤==≤==+≤==1[(/1)(/2)]2P Y y X P Y y X =≤=+≤=,当0y <时,()0F y =;当01y ≤<,1113()2224F y y y y =+⨯=,当12y ≤<,11111()22242F y y y =+⨯=+;当2y ≥,()1F y =.所以0,03014()11124212y y y F y y y y <⎧⎪⎪≤<⎪=⎨⎪+≤<⎪⎪≥⎩.(2)'3,0141()(),1240,y f y F y y ⎧<<⎪⎪⎪==<<⎨⎪⎪⎪⎩其他则,可知1201317()448E Y ydy ydy =+=⎰⎰.12.【参考答案】好的教学活动,应是学生主体地位和教师主导作用的和谐统一.一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展.启发式教学是处理好学生主体地位和教师主导作用关系的有效途径.教师富有启发性的讲授,创设情境、设计问题,引导学生自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,都能有效地启发学生的思考,使学生成为学习的主体.13.【参考答案】作为老师,我们应该正视学生在学习过程中出现的错误,立足于学生,和学生一起去探索、学习数学知识,真正发挥学生学习主体作用,要善于变“错”为宝,合理利用这些“错误”资源.首先要能够及时展现学生潜在的错误,并及时引导学生自查自纠,引导学生联系生活实际发现自己的问题,并且知道学生建立自己的错题集,争取以后少犯错.三、解答题(本大题1小题10分)14.【参考答案】教师的“组织”作用主要体现在两个方面:第一,教师应当准确把握教学内容的数学实质和学生的实际情况,确定合理的教学目标,设计一个好的教学方案;第二,在教学活动中,教师要选择适当的教学方式,因势利导、适时调控、努力营造师生互动、生生互动、生动活泼的课堂氛围,形成有效的学习活动.教师的“引导”作用主要体现在:通过恰当的问题,或者准确、清晰、富有启发性的讲授,引导学生积极思考、求知求真,激发学生的好奇心;通过恰当的归纳和示范,使学生理解知识、掌握技能、积累经验、感悟思想;能关注学生的差异,用不同层次的问题或教学手段,引导每一个学生都能积极参与学习活动,提高教学活动的针对性和有效性.教师与学生的“合作”主要体现在:教师以平等、尊重的态度鼓励学生积极参与教学活动,启发学生共同探索,与学生一起感受成功和挫折、分享发现和成果.四、论述题(本大题1小题,15分)15.【参考答案】学习的创造性来源于学生对问题的解决,在数学课堂教学中,适时地.合理地创设生活化的问题情境,设置适当的悬念,引导学生在教师创设的生活情境中不断地根据自己的生活经验进行探索.可以激发学生的学习兴趣,更有利于新知识的讲授以及理解.比如我们在七年级数学的“绝对值”这节的学习中.我们可以通过具体的例子:星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到松下沙滩,下午她又向西行30千米,回到家中(学校.松下沙滩.家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?体现了数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.避免了通过练习归纳出求有理数的绝对值的规律,直接给出绝对值的概念,灌输知识,且太抽象,让学生不易接受,从而达到更好的学习效果.五、案例分析题(本大题1小题,20分)阅读案例,并回答问题16.【参考答案】(1)此处解法共有三处错误:第一,设所求直线为1+=kx y 时,没有考虑0=k 与斜率不存在的情形,实际上就是承认了该直线的斜率是存在的,且不为零,这是不严密的.第二,题中要求直线与抛物线只有一个交点,它包含相交和相切两种情况,而上述解法没有考虑相切的情况,只考虑相交的情况.原因是对于直线与抛物线“相切”和“只有一个交点”的关系理解不透.第三,将直线方程与抛物线方程联立后得一个一元二次方程,要考虑它的判别式,所以它的二次项系数不能为零,即,0≠k 而上述解法没作考虑,表现出思维不严密.(2)高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略.改生没有考虑到直线存在的特殊情况以及相交只有一个交点时的特殊情况,均导致了题目解析错误,说明该生审题不认真,对于直线的表示形式没有理解透彻,也没有掌握一定的做题方法,如数形结合.(3)①当所求直线斜率不存在时,即直线垂直x 轴,因为过点)1,0(,所以,0=x 即y 轴,它正好与抛物线x y 22=相切.②当所求直线斜率为零时,直线为y =1平行x 轴,它正好与抛物线x y 22=只有一个交点.③一般地,设所求的过点)1,0(的直线为1+=kx y )0(≠k ,则⎩⎨⎧=+=x y kx y 212,∴.01)22(22=+-+x k x k 令,0=∆解得k =12,∴所求直线为.121+=x y 综上,满足条件的直线为:.121,0,1+===x y x y 六、教学设计题(本大题1小题,30分)17.【参考答案】(1)教学目标:1、知识与技能:掌握三角恒等变换公式,能用三角恒等变换公式及二倍角公式正确解决简单的三角恒等变换问题.2、过程与方法:通过解决简单三角恒等变换问题,提升基础知识到实际运用的能力.3、情感态度价值观:从问题的前后设置,感受数学知识运用的联系,体会逆向使用公式的思想,提高推理能力,激发数学学习的兴趣.教学重难点:1、教学重点:运用三角恒等变换公式解决简单的三角恒等变换问题.2、教学难点:运用三角恒等变换公式以及倍角公式正确解决简单的三角恒等变换问题.(2)转化思想、类比思想(3)教学过程:一、复习引入:复习三角函数和差公式以及倍角公式二、探索新知:问题:思考α与2α的关系.尝试用cos α表示222sin ,cos ,tan 222ααα总结出:222sin ,cos ,tan 222ααα三、课堂练习:求证:(1)sin αcos β=1/2[sin(α+β)+sin(α-β)];(2)sin sin 2sin cos 22θϕθϕθϕ+-+=证明:(1)因为sin(α+β)=sin αcos β+cos αsin βsin(α-β)=sin αcos β-cos αsin β将以上两式的左右两边分别相加得sin(α+β)+sin(α-β)=2sin αcos β即sin αcos β=1/2[sin(α+β)+sin(α-β)](2)有(1)可得sin(α+β)+sin(α-β)=2sin αcos β设α+β=θ,α-β=φ那么α=(θ+φ)/2,β=(θ-φ)/2把α,β的值带入(1)即得sin sin 2sin cos 22θϕθϕθϕ+-+=四、小结作业:1、本节课所学到那些公式,与之前的公式有何关系?2、作业:思考:代数式变换与三角变换有何不同?(4)2sin cos 2sin cos cos sin cos cos sin sin 2222222222θϕθϕθϕθϕθϕθϕ+-⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭22222sin cos cos sin cos cos sin cos sin sin cos sin 222222222222θθϕϕϕθθθϕϕϕθ⎛⎫=+++ ⎪⎝⎭2sin cos 2sin cos sin sin 2222θθϕϕθϕ=+=+。
2014上半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案(教师版)
![2014上半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案(教师版)](https://img.taocdn.com/s3/m/a466ad12f12d2af90242e6b0.png)
【答案】
【解析】【参考答案】(1)该教师的这种直接呈现偶函数定义的方法对抽象思维能力较高的学生较容易接受,使之能够直接进
入学习状态并对本节的学习内容有一个总的概念与基本的轮廓,但对于其他抽象思维能力较差的学生学习有一定的困难。而且 不符合新的教学理念,学生并没有参与到偶函数概念的形成这个活动中来,体现其主体地位,教师也没有起到一个引导者的作
学生思维,而该老师的提问太过盲目没有针对性无法达到应有的课堂效果。②适度性原则与循序渐进原则。课堂提问的涉及要 考虑学生的认知水平,遵循由浅入深、由易到难的规律、使学生能够拾级而上,从而深刻地理解偶函数的概念,而该老师的提 问不符合现阶段学生的认知水平,难度过大。无法达到学习的预期效果,学生能力也无法得到相应的提高。
六、教学设计题
17、向量是近代数学中重要和基本的数学概念之一,下面是高中必修课程数学4“平面向量”第一章第一节“平面向量的实际背景 及基本概念”的部分教材内容。
试卷链接:/t/s4Ksv7k.html
4/5
云测库,互联网测评考试与人才管理平台
阅读教材,回答下列问题:
用——创设出学习偶函数概念的学习环境。
对于偶函数的定义的讲授建议由具体的函数图象引入,通过观察图象的特点,学生自行归纳总结出偶函数的定义。学生由具体 到抽象、表象到概念的学习过程中,其观察能力、抽象概括能力也得到相应的提高。
(2)该教师的课堂提问违背了课堂提问的基本原则:①目的性原则与启发性原则。课堂提问应有效的引导学生积极思考,启迪
师:请同学们齐声朗读一遍
生:(大家一起朗读)(略) 师:好!从这个定义看,偶函数有什么性质呢?请同学们4~5人一组,进行探索、讨论和交流,然后我们来交流探索结果。 (学生们纷纷结成4~5人一组,开展小组学习,大约经历了8分钟,期间教师参与了部分小组的讨论和指导)
《数学学科知识与教学能力》(高级中学)教师资格证
![《数学学科知识与教学能力》(高级中学)教师资格证](https://img.taocdn.com/s3/m/5caa11f55727a5e9846a61b5.png)
《数学学科知识与教学能力》(高级中学)一、考试目标1.数学学科知识的掌握和运用。
掌握大学本科数学专业基础课程的知识和高中数学知识。
具有在高中数学教学实践中综合而有效地运用这些知识的能力。
2.高中数学课程知识的掌握和运用。
理解高中数学课程的性质、基本理念和目标,熟悉《普通高中数学课程标准(实验)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。
理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
二、考试内容模块与要求1.学科知识数学学科知识包括大学本科数学专业基础课程和高中课程中的数学知识。
大学本科数学专业基础课程的知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学课程中与中学数学密切相关的内容,包括数列极限、函数极限、连续函数、一元函数微积分、向量及其运算、矩阵与变换等内容及概率与数理统计的基础知识。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。
高中数学知识是指《课标》中所规定的必修课全部内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)。
其内容要求是:理解高中数学中的重要概念,掌握高中数学中的重要公式、定理、法则等知识,掌握中学数学中常见的思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。
2.课程知识了解高中数学课程的性质、基本理念和目标。
熟悉《课标》所规定教学内容的知识体系,掌握《课标》对教学内容的要求。
了解《课标》各模块知识编排的特点。
能运用《课标》指导自己的数学教学实践。
3.教学知识了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。
掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。
掌握概念教学、命题教学等数学教学知识的基本内容。
教师资格证高中数学
![教师资格证高中数学](https://img.taocdn.com/s3/m/ab5e7d0a590216fc700abb68a98271fe900eaf41.png)
2021下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案一、单选题1.A.1B.2C.*D.4答案:D解析:在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。
类似地,行秩是A的线性无关的横行的极大数目。
分数:52.已知**a=i-2j+3k,b=2i+3j-3k.则a(-3b)的值是()。
A.-39B.-13C.**D.39答案:D解析:暂无解析分数:53.A.*B.1C.2D.∞答案:D解析:暂无解析分数:54.已知一条曲线的一条切线与直线x+y-3=0垂直,则该***方程是()A.*****B.y=XC.y=-x+eD.y=x+e解析:暂无解析分数:55.A.AB.BC.CD.D答案:A解析:暂无解析分数:56.A.λ1≠0B.λ2≠0C.λ1=0D.****答案:B解析:暂无解析分数:57.第十四届国际数学教育大会(ICME-14)于2021年7月在中国上海举行,ICME-14的会标如图1所示,其中没有涉及的数学**是()A.旋转变换C.杨辉三角图D.数字进位制答案:C解析:暂无解析分数:58.高中数学**中的周期函数是()A.反三角函数B.三角函数C.****D.指数函数答案:B解析:暂无解析分数:5二、简答题9.(1)若***A=0,求K的值(2)当行列式A=0时,将**α3表示为α1,α2的线性组合解析:(1)答案:7(2)答案:α3=4α1-α210.求由**-y=arctan x与直线y=x,x=2所**平面区域的面积答案:11.甲乙两人进行***,各射击3次,击中次数多者获胜。
假设他们每次击中的***均为1/2。
且每次射击是相互独立的。
(1)求乙在3次***恰好击中1次的概率(2)已知甲在3次射击中恰好击中次,求甲获胜的**(题干不完整)解析:(1)答案:3/8(2)答案:1/212.学生能够获得进一步学习以及****所必须的“四基"和“四能”是普通高中数学课程的**之一,回答“四基和“四能”分别是什么。
2014下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案(教师版)
![2014下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案(教师版)](https://img.taocdn.com/s3/m/9a811e65168884868762d6b0.png)
【解析】【参考答案】(1)教师1的教法是传统的教学方法,比较死板,没有认识到学生的认知水平,没有考虑到学生之间的个 体差异。优点是在一个例题结束后,教师布置一道练习题进行巩固练习。教师2的教学完全符合新课标下的教学方式,将课堂
交给学生,以学生为主体,老师为主导,引导学生诱发思考,循环渐进的启发学生,充分考虑到学生的个体差异,帮助学生打 开思路。在课堂中,采用师生互动合作的学习方式,并将学生解答方法展现在黑板上,最后让学生补充其他的解题方法,充分 尊重每一个学生的想法。但是这位老师的不足是在教学设计时没有考虑到用函数的方法解决此不等式,课前没有考虑到解不等 式的函数思想方法。
②由“数学化”过程可以看出发现问题是直观的,容易引起学生想象的数学问题,进而提出问题。而这些数学问题中的数学背景
是学生熟悉的事物和具体情景,而且与学生已经了解或学习过的数学知识相关联,特别是要与学生生活中积累的常识性知识和 那些学生已经具有的知识相关联。 ③通过一个充满探索的过程去学习数学,让已经存在于学生头脑中的那些非正规的数学知识和数学体验上升发展为科学的结 论,从中感受数学发现的乐趣,增进学好数学的信心,形成应用意识、创新意识。从而达到素质教育的目的,对于培养学生抽 象概括能力有很大帮助。
【答案】
【解析】【参考答案】(1)不相同,知识与技能目标中行为主体是学生,而过程与方法和情感态度与价值观目标中的行为主体
是教师。问题是教学目标中行为主体不一致。设计教学目标时在表述对象上应该统一,而不是其中的一条目标是以教师角度来
描述的——“使学生……”,另一条又是以学生角度来描述的——“经历……过程”。通常情况下,以学生为主体来表述比较恰
的评价关系,进而使评价者在评价过程中能有效地对被评价者的发展过程进行监控和指导,帮助被评价者认同评价结果,最终 促进其不断改进,获得发展。
2021教师资格证数学学科知识与教学能力(高中数学)
![2021教师资格证数学学科知识与教学能力(高中数学)](https://img.taocdn.com/s3/m/8d78dd30dc36a32d7375a417866fb84ae45cc389.png)
2021教师资格证数学学科知识与教学能力(高中数学)第一章课程知识1.高中数学课程的地位和作用:⑴高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内内容是培养公民素质的基础课程。
⑵高中数学对于认识数学与自然界、数学与人类社会的关系,提高提出问题、分析和解决解决问题的能力、形成理性思维、发展智力和创新意识起着基础性作用。
⑶ 高中数学课程帮助学生理解数学的应用价值,增强应用意识。
(4)高中数学是高中学习物理、化学等课程的基础。
2.高中数学课程的基本概念:⑴高中数学课程的定位:面向全体学生;不是培养数学专门人才的基础课。
⑵高中数学增加了选择性(整个高中课程的基本理念):为学生发展、培养自己的兴趣、专业知识提供空间。
⑶让学生成为学习的主人:倡导自主学习、合作学习;帮助学生养成良好的学习习惯。
⑷提高学生数学应用意识:是数学科学发展的要求;是培养创新能力的需要;是培养学习兴趣的需要;这是培养自信的需要;数学应用的普遍性要求学生具有应用意识。
(5)强调培养学生的创新意识:强调发现和提问;归纳与演绎并重;强调数学探索数学建模。
(6)注重“双基”(数学基础知识和基本能力)的培养:理解数学基本概念和结论的本质;强调概念、结论产生的背景;强调体会其中所蕴含的数学思想方法。
⑺强调数学的文化价值:数学是人类文化的重要组成部分;《新课标》强调了数学文化的重要角色。
⑻全面地认识评价:学习结果和学习过程;学习的水平和情感态度的变化;终结性评价和过程评估。
3.高中数学课程的目标:(1)总体目标:在九年义务教育数学课程的基础上,使学生进一步提高作为未来公民的能力数学素养,以满足个人发展与社会进步的需要。
(2)三维目标:知识和技能、过程和方法、情感态度和价值观⑶把“过程与方法”作为课程目标是本次课程改革最大的变化之一。
(4)五种基本能力:计算能力、逻辑推理能力、空间想象能力、抽象概括能力和数据处理能力力4.高中数学课程内容结构:⑴必修课程(每模块2学分,36学时):数学1(集合、函数)、数学2(几何)、数学3(算数学4(三角函数,向量),数学5(解三角形,序列,不等式)⑵ 选修课(每个模块2学分,36学时;每个主题1学分,18学时):①选修系列1(文科系列,2模块):1-1(“或且非”、圆锥曲线、导数)、1-2(统计、推理和证明、复数、方框图)② 选修系列2(科学系列,3个模块):2-1(“或与非”、二次曲线、向量和立体几何)2-2(导数、推理与证明、复数)、2-3(技术原理、统计案例、概率)③选修系列3(6个专题)④选修系列4(10个专题)5.高中数学课程的主线:功能主线、操作主线、几何主线、算法主线、统计概率主线、应用主线。
中学教师资格证《数学学科知识与教学能力》统考 学科知识高中部分
![中学教师资格证《数学学科知识与教学能力》统考 学科知识高中部分](https://img.taocdn.com/s3/m/521e519fbed5b9f3f90f1ca6.png)
=
4,且
5
属于第四象限,求
tan
cos
2
.
名师答案:-5/3
第三节 三角函数
例4 若f sinx =3- cos2x, 则f cosx = A3- cos2x B3-sin2x C3+cos2x D3+sin2x
名师答案:C
第三节 三角函数
例5 在ΔABC中,三内角A,B,C 所对边分别为a,b,c, 已知sinA是sinB和sinC的等比中项,则下列等
A.f(x)f(-x)是奇函数
B.
是奇函数
C.f(x)-f(-x)是偶函数
D.f(x)+f(-x)是偶函数
名师答案:D
第一节 函数概念
例3
设
则下列正确的是
【2014年下真题】 A.D(x)不是偶函数 B.D(x)是周期函数 C.D(x)是单调函数 D.D(x)是连续函数 名师答案:B
第一节 函数概念
第一节 集合与逻辑
例6 已知命题p : 1 0, 命题q : x有意义,则 x
p是q的
(A)充分不必要条件 (B)必要不充分条件 (C)既不充分也不必要条件 (D) 充要条件 名师答案:B
第一节 集合与逻辑
例7 a,b R,"a b"是"a2 b2 "成立的
(A)充分条件但不是必要条件 (B)充分必要条件 (C)必要条件但不是充分条件 (D) 以上都不是 名师答案:D
第一节 集合与逻辑
例5 命题“若a b, 则a c b c”的逆否
命题 A 若a<b, 则a+c<b+c B 若a≤b, 则a+c ≤b+c C 若a+c<b+c, 则a<b D 若a+c ≤b+c, 则a≤b
2015下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案(教师版)
![2015下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案(教师版)](https://img.taocdn.com/s3/m/c081c31cbed5b9f3f90f1cb2.png)
8、《普通高中数学课程标准(实验)》提出了五种基本能力,其中不包括( )。 A、抽象概括 B、推理论证 C、观察操作 D、数据处理
【答案】C 【解析】《普通高中数学课程标准(实验)》提出了五项基本能力,包括:抽象概括、推理论证、数据处理、空间想象、计算能
试卷链接:/t/TWIA0V9.htm平台
二是学生的需要。确定知识点的教学内容也不是由教材一个要素决定的,还涉及学生认知发展阶段性的问题。因此也不可能是 教材有什么我们就教什么、学什么,我们只能选择教材内容与学生认知发展相一致的内容作为教学内容。 三是编者的意图。编者的意图主要是通过例题以及课后的练习题来体现的。数学例题以及课后练习题的重要性在数学课程中要 远远高于其他学科,因为数学例题以及练习题是数学课程内容建设一个不可或缺的组成部分。在其他课程中,练习题最多只是
云测库,互联网测评考试与人才管理平台
2015下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案
(教师版)
试卷题量:17题 试卷总分:150分 试卷限时:120分钟 测评/引用码:TWIA0V9
一、单项选择题
1、若多项式,f(χ)=χ4+χ3-3χ2-4χ-1和g(χ)=χ3+χ2-χ-1,则,f(χ)和g(χ)的公因式 为( )。 A、χ+1 B、χ+3 C、χ-1 D、χ-2
【答案】A 【解析】求多项式的公因式一般用辗转相除法。这里用赋值法,分别令x0=-1,-3,1,2,代入,同时得到f(x0)=0,g(x0)=0, 即知x-x0为二者公因式。
2、
A、球面 B、椭球面 C、抛物面 D、双曲面
【答案】B
【解析】
教师资格考试大纲《数学学科知识与教学能力》(高级中学)
![教师资格考试大纲《数学学科知识与教学能力》(高级中学)](https://img.taocdn.com/s3/m/c393ca5bf5335a8102d220fc.png)
教师资格考试大纲《数学学科知识与教学能力》(高级中学)一、考试目标1.数学学科知识的掌握和运用。
掌握大学本科数学专业基础课程的知识和高中数学知识。
具有在高中数学教学实践中综合而有效地运用这些知识的能力。
2.高中数学课程知识的掌握和运用。
理解高中数学课程的性质、基本理念和目标,熟悉《普通高中数学课程标准(实验)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。
理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
二、考试内容模块与要求1.学科知识数学学科知识包括大学本科数学专业基础课程和高中课程中的数学知识。
大学本科数学专业基础课程的知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学课程中与中学数学密切相关的内容,包括数列极限、函数极限、连续函数、一元函数微积分、向量及其运算、矩阵与变换等内容及概率与数理统计的基础知识。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。
高中数学知识是指《课标》中所规定的必修课全部内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)。
其内容要求是:理解高中数学中的重要概念,掌握高中数学中的重要公式、定理、法则等知识,掌握中学数学中常见的思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。
2.课程知识了解高中数学课程的性质、基本理念和目标。
熟悉《课标》所规定教学内容的知识体系,掌握《课标》对教学内容的要求。
了解《课标》各模块知识编排的特点。
能运用《课标》指导自己的数学教学实践。
3.教学知识了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。
掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。
教师资格证数学学科大纲
![教师资格证数学学科大纲](https://img.taocdn.com/s3/m/ce47e571a32d7375a41780a8.png)
教师资格证数学学科大纲(高中)《数学学科知识与教学能力》(高级中学)一、考试目标1.数学学科知识的掌握和运用。
掌握大学本科数学专业基础课程的知识和高中数学知识。
具有在高中数学教学实践中综合而有效地运用这些知识的能力。
2.高中数学课程知识的掌握和运用。
理解高中数学课程的性质、基本理念和目标,熟悉《普通高中数学课程标准(实验)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。
理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
二、考试内容模块与要求1.学科知识数学学科知识包括大学本科数学专业基础课程和高中课程中的数学知识。
大学本科数学专业基础课程的知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学课程中与中学数学密切相关的内容,包括数列极限、函数极限、连续函数、一元函数微积分、向量及其运算、矩阵与变换等内容及概率与数理统计的基础知识。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。
高中数学知识是指《课标》中所规定的必修课全部内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)。
其内容要求是:理解高中数学中的重要概念,掌握高中数学中的重要公式、定理、法则等知识,掌握中学数学中常见的思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。
2.课程知识了解高中数学课程的性质、基本理念和目标。
熟悉《课标》所规定教学内容的知识体系,掌握《课标》对教学内容的要求。
了解《课标》各模块知识编排的特点。
能运用《课标》指导自己的数学教学实践。
3.教学知识了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。
掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。
2017下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案
![2017下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案](https://img.taocdn.com/s3/m/b0387dd808a1284ac950430a.png)
D.矛盾关系
【答案】A
【解析】
交叉关系,概念a和概念b,如果有的a是b,有的a不是b,并且有的b是a,有的b不是a,那么a和b这两个概念之间就是交叉关系。题干中的“等差数列”和“等比数列”概念之间的关系是交叉关系,这是因为公比为1的等
比数列也是公差为0的等差数列,而只有这一种情形下两个概念有交叉。
③数学思维方式的渗透
在“导数”部分主要的数学思维方式有两种:观察法和归纳法。 导数及其应用部分主要培养学生的观察能力。人教版教材利用三个不同维度的观察使得学生在导数的概念、导数的运算、导数的应用之间关系的思考。
归纳法是从特殊到一般再到特殊的过程,在人教版教材中主要体现在当△x趋于0的计算。
(2)①有利于激发学生的学习兴趣
2017下半年教师资格证考试《数学学科知识与教学能力》(高级中学)
一、单项选择题
1.
A.0
B.1
C.2
D.3
【答案】D
【解析】
2.当x→时,与x-是等价无穷小的为()。A.
B.
C.
D.ln| x-|
【答案】A
【解析】
3.下列四个级数中条件收敛的是()。A.
B.
C.
D.
【答案】D
【解析】
4.下列关于椭圆的论述,正确的是()。
同一关系指两个概念间内涵不同、外延完全相同的关系。如“等边三角形”和“等角三角形”。
属种关系指一个概念的部分外延与另一个概念的全部外延重合的关系,其中,外延大的概念叫属概念,外延小的概念叫种概念。如“平行四边形”和
“矩形”。
矛盾关系是在同一个属概念下的两个种概念的外延互相排斥,其相加之和等于该属概念的外延。如对实数这个属概念而言,有理数和无理数这两个概念之间的关系就是矛盾关系。
2016下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题
![2016下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题](https://img.taocdn.com/s3/m/7b1c08c75727a5e9846a614d.png)
2016下半年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案一、单项选择题(本大题共8小题,每小题5分,共40分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案字母按要求涂黑。
错选、多选或未选均无分。
1A、0B、1C、eD、e22下列命题正确的是()。
A、若n阶行列式D=0,那么D中有两行元素相同B、若n阶行列式D=0,那么D中有两行元素对应成比例C、若n阶行列式D中有π2-n个元素为零,则D=0D、若n阶行列式D中有n2-n+1个元素为零,则D=03∏的位置关系是()。
A、平行B、直线在平面内C、垂直D、相交但不垂直4已知函数ƒ(x)在点x0连续,则下列说法正确的是()。
A、对任给的ε>0,存在δ>0,当|x-x0|<δ时,有|ƒ(x)-ƒ(x0)|<εB、存在ε>0,对任意的δ>0,当|x-x0|<δ时,有|ƒ(x)-ƒ(x0)|<εC、存在δ>0,对任意的ε>0,当|x-x0|<δ时,有|ƒ(x)-ƒ(x0)|<εD、存在A≠ƒ(x0),对任给的ε>0,存在δ>0,当|x-x0|<δ时,有|ƒ(x)-A|<ε5A、-2B、2C、D、6A、B、C、D、7数学发展史上曾经历过三次危机,触发第三次数学危机的事件是()。
A、无理数的发现B、微积分的创立C、罗素悖论D、数学命题的机器证明8在某次测试中,用所有参加测试学生某题的平均分除以该题分值,得到的结果是()。
A、区分度B、难度C、信度D、效度二、简答题(本大题共5小题,每小题7分,共35分)9在变换TX=AX+B下所得二次曲线L1的方程。
10(1)叙述线性方程组AX=B有解的充要条件;(2分)11王强是一位快递员,他负责由A地到B地的送货任务,送货方式为开汽车或骑电动车。
他分别记录了开汽车和骑电动车各100次所用的送货时间,经过数据分析得到如下结果:开汽车:平均用时24分钟,方差为36;骑电动车:平均用时34分钟,方差为4。
教师资格证数学学科知识与教学能力(高中数学)
![教师资格证数学学科知识与教学能力(高中数学)](https://img.taocdn.com/s3/m/2de6d12354270722192e453610661ed9ac515546.png)
教师资格证数学学科知识与教学能力(高中数学)Chapter 1: Course KnowledgeXXX system。
It is a fundamental course that includes the basic XXX.XXX and the natural world。
as well as its n to human society。
It XXX problems。
XXX。
XXX.The course also helps students XXX.The basic philosophy of high school mathematics is to cater to all students and not just those XXX。
The course offers a wide range of choices to students。
XXX.The course aims to make students independent learners。
promoting self-XXX learning。
It also emphasizes the development of the student's innovative awareness。
XXXThe course XXX basic skills of mathematics。
knowledge。
and ability。
It emphasizes the XXX。
their essence。
and the XXX.Mathematics is an essential part of human culture。
and the course highlights its cultural significance。
The course emphasizes the importance of evaluating student progress and learning es。
2023年上半年教师资格证考试《高中数学学科知识与教学能力》真题+参考答案解析
![2023年上半年教师资格证考试《高中数学学科知识与教学能力》真题+参考答案解析](https://img.taocdn.com/s3/m/5fdd5c74ce84b9d528ea81c758f5f61fb6362854.png)
2023年上半年教师资格证考试《高中数学学科知识与教学能力》真题一、单项选择题:本大题共8小题,每小题5分,共40分。
1.已知g(x)在[0,+∞)可导,且g(1)=1,若f(x)=(x a-1)g(x),a>1,则导数f'(1)的值是()。
A.0B.1C.aD.2a2.点x=0是函数y=e1x的()。
A连续点B.可去间断点C.跳跃间断点D.第二类间断点3.设α,β,是n阶向量,(α,β)是内积,α 是向量的模长,则()。
A.(α,β)<α βB.(α,β)≤α β C.(α,β)>α β D.(α,β)≥α β4.对于任意X=(x1,x2,x3⋯xn)∈Rn,若T=(x1,x2,0⋯0)∈Rn,则T是()。
A.投影变换B.对称变换C.旋转变换D.正交变换5.过点M1(3,-2,1),M2(-1,0,2)的直线方程是()。
A.4(x-3)-2(y+2)-(z-1)=0B.4(x+1)-2y-(z-2)=0C.x-34=y+2-2=z-1-1 D.x+1-4=y2=z+2-16.甲乙两人独立的对同一个目标进行射击,其命中率分别为0.4和0.5,则目标被命中的概率是()。
A.0.6B.0.7C.0.8D.0.97.普通高中数学课程标准突出的四条内容主线是()。
A函数、几何与代数、概率与统计、数学建模活动与数学探究活动B.函数、图形与几何、概率与统计、数学建模活动与数学探究活动C.代数、图形与几何、概率与统计、数学建模活动与数学探究活动D.代数、函数、图形与几何、概率与统计8.下面不适合作为指数函数模型教学的是()。
A.种群增长问题B.放射物衰减问题C.复利问题D.自由落体问题二、简答题:本大题共5小题,每小题7分,共35分。
9.(论述题)设h 为常数,讨论x 24-y 29=zz =h,在空间直角坐标系中所表示的空间类型。
10.(论述题)已知向量组a 1=(3,2,1)T ,a 2=(3,1,*)T ,a 3=(1,1,*)T ,a 4=(8,8,6)T 。
2017上半年教师资格证考试《数学学科知识与教学能力》(高级中学)附答案解析
![2017上半年教师资格证考试《数学学科知识与教学能力》(高级中学)附答案解析](https://img.taocdn.com/s3/m/c2cddf4a011ca300a7c39027.png)
A.公理定义
B. 属加种差定义
C.递归定义
D.外延定义
【答案】B
【解析】
A项公理定义是由数学公理而对被定义项进行定义,如概率的公理化定义;
B项属加种差定义是由被定义概念的邻近的属和种差所组成的定义,即“邻近的属+种差=被定义概念”,题干中“有一个角是直角的平行四边形是矩形”,
13.书面测验是考查学生课程目标达成状况的重要方式,以“数列”一章为例,说明设计数学书面测验试卷应关注的主要问题。
【答案】
【解析】
(1)对于学生基础知识和基本技能达成情况的评价,必须要准确把握课程内容中的要求。学生在学习数列这一章的时候应该掌握数列的概念,等差数列的概念、等差数列的通项公式及前n项和计算方法,等比数列的概念、等比数列的通项公式及前n项和计算方法。所以在设计题型的时候,涵盖的知识点应包括以上知识点,达到全面性要求.以便宏观了解学生对本章知识的掌握程度。
(1)求t的值;(3分)
(2)求出该向量组的一个极大线性无关组,并将其余向量用极大无关组线性表示。(4分)
【答案】
【解析】
11. 有甲、乙两种品牌的某种饮料,其颜色、气味及味道都极为相似,将饮料放在外观相同的6个杯子中,每种品牌各3杯,作为试验样品。
(1)从6杯样品饮料中随机选取3杯作为一次试验,若所选饮料全部为甲种
它邻近的属为平行四边形,种差为其一角为直角;C项递归定义也称归纳定义, 是指用递归的方法给一个概念下定义,它由初始条件和归纳条件构成;D项外
延定义是指通过揭示属概念所包括的种概念来明确该属概念之所指的定义,如有理数和无理数统称实数。
二、简答题
9.已知椭球面方程2x2+y2+3z2=6。
2018 年上半年教师资格考试 《数学学科知识与教学能力(高级中学)》真题试卷及答案
![2018 年上半年教师资格考试 《数学学科知识与教学能力(高级中学)》真题试卷及答案](https://img.taocdn.com/s3/m/b886ab99af45b307e97197a2.png)
B.1 个
C.2 个
D.3 个
3.设 f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。
A.f(x)在(a,b)上必有最大值
B.f(x)在(a,b)上必一致连续
C.f(x)在(a,b)上必有界
D.f(x)在(a,b)上必连续
= a b
abu
ax+by=u,
4.若矩阵 c d 与 c
8.下列内容属于高中数学必修课程内容的是( )。
A.风险与决策
B.平面向量
C.数列与差分
D.矩阵与变换
二、简答题(本大题共 5 小题,每小题 7 分,共 35 分)
a b
9.在什么条件下,矩阵 c d 存在逆矩阵,并求出其逆矩阵。
—2—
10.求二次曲面 x2-2y2+z2+xy+1=0 过点(1,2,2)的切平面的法向量。
乙 乙 先 证 满 射 。 对 任 意 g (x )=acosx+bsinx∈V , 有 g (x )dx= (acosx+bsinx )dx=asinx-bcosx+C , 所 以 存 在
f (x)=-bcosx+asinx∈V,使得 Df(x)=f ′(x)=g(x),即 D 是 V 到 V 上的满射。
再证单射。 对于 f1(x)=a1cosx+b1sinx∈V 和 f2(x)=a2cosx+b2sinx∈V,如果 f1(x)≠f2(x),则 f1(x)-f2(x)=(a1-a2)
cosx+(b1-b2)sinx= 姨(a1-a2)2+(b1-b2)2 sin(x+φ)≠0 对于任意 x∈R 都成立,所以 a1=a2 和 b1=b2 不同时成立。
教师资格证高级数学知识点教师资格证知识点总结
![教师资格证高级数学知识点教师资格证知识点总结](https://img.taocdn.com/s3/m/862ae72059fb770bf78a6529647d27284b733739.png)
教师资格证高级数学知识点教师资格证知识点总结教师资格证高级数学知识点:2015年高中《数学学科知识》教师资格证考试统考真题及答案2015年上半年高中《数学学科知识》教师资格证考试统考真题及答案7.发现勾股定理的希腊数学家是()A. 泰勒斯B.毕达哥拉斯C.欧几里得D.阿基米德8.《普通高中数学课程标准(实验)》提出五种基本能力,没有包含在其中的是()A.推理论证能力B.运算求解能力C.数据处理能力D.几何做图能力12.请列举数学课堂教学导入的两种方式,并举例说明。
解析:方式一:直接导入法举例:在学习函数单调性的证明时,直接提出函数单调性的定义,告诉学生直接从图像观察出来的单调性并不精确,只有通过定义证明才行,提出用定义证明法的步骤,进行证明。
这种方法直截了当,让学生容易理解。
方式二:复习导入法,例如,等比数列的概念及计算公式可以先复习等差数列的概念及计算公式再来导入。
13.学生数学学习评价主体应该是多元化,请列举四种评价的主体,并简述评价主体多元化的意义。
教师、家长、学生、社会;意义:(1)强调评价过程中主体间的双向选择,通过沟通和协商,能够关注评价结果的认同问题。
(2)通过加强自评、互评,能使评价成为教师、管理者、学生、家长共同积极参与的交互活动。
(3)增进双方的了解和理解,形成积极、友好、平等和民主的评价关系,进而使评价者在评价过程中能有效地对被评价者的发展过程进行监控和指导,帮助被评价者认同评价结果,最终促进其不断改进,获得发展。
三、解答题(本大题1小题,10分)14.设A是一个m*n矩阵,证明:矩阵A的行空间维数等于它的列空间维数。
四、论述题(本大题1小题,15分)15数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型等,就是一种数学化的过程。
2023下半年教师资格数学学科知识与能力真题(高级中学)
![2023下半年教师资格数学学科知识与能力真题(高级中学)](https://img.taocdn.com/s3/m/130b73640166f5335a8102d276a20029bc64634f.png)
2023下半年教师资格数学学科知识与能力真题(高级中学)一、单选题1、极限的值是______。
A、-1B、0C、1D、22、在平面直角坐标系中,圆x2+y2=1围成的面积可以用定积分表示为______。
A.B.C.D.A、AB、BC、CD、D3、平面x=2与单叶双曲面的交线是______。
A、两条直线B、椭圆C、抛物线D、双曲线4、已知向量a=(1,2,1),b=(t,3,0),c=(2,t,1)线性相关,则t的取值是______。
A、-3或-1B、-3或1C、-1或3D、1或35、矩阵是可逆矩阵,E是二阶单位矩阵,则下列叙述不正确的是______。
A.行列式|M|≠0B.a=c=0C.D.存在N,使得MN=EA、AB、BC、CD、D6、若同一样本空间中的随机事件A,B,满足P(A)+P(B)=1.2,则下列叙述一定正确的是______。
A.P(A)=P(B)=0.6B.A与B相互独立C.D.A与B互不相容A、AB、BC、CD、D7、贯穿普通高中数学课程内容的四条主线之一的是______。
A、三角函数B、几何与代数C、频率与概率D、应用统计8、南北朝数学家祖暅在实践基础上提出了体积计算原理:“幂势既同,则积不容异”。
这一原理也常常被称为祖氏原理,其中,“幂”和“势”的含义分别是______。
A、乘方、高B、乘方、宽C、面积、高D、面积、宽二、论述题9、有学生向数学老师反映:遇到您讲过的题我能做出来,但是没讲过的题我就不会做了。
你认为在教学中产生此问题的原因有哪些,并给出相应的解决对策。
(分数:1.00分)三、简答题已知实系数线性方程组有无穷多个解。
10、求k的值。
(分数:1.00分)11、求此方程组的通解。
(分数:1.00分)过点P(4,0,2)且与直线在空间直角坐标系中,直线l1垂直相交。
12、求两条直线的交点坐标。
13、求直线l的标准方程。
1某设备由甲、乙两名工人同时操作,两人的操作相互独立,每名工人出现操作失误的次数只能是0,1,2,且对应的概率分别是0.7,0.2,0.1,将两名工人操作失误的总次数记为X,若X≥2,则该设备不能正常工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学学科知识与教学能力》(高级中学)
一、考试目标
1.数学学科知识的掌握和运用。
掌握大学本科数学专业基础课程的知识和高中数学知识。
具有在高中数学教学实践中综合而有效地运用这些知识的能力。
2.高中数学课程知识的掌握和运用。
理解高中数学课程的性质、基本理念和目标,熟悉《普通高中数学课程标准(实验)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。
理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
二、考试内容模块与要求
1.学科知识
数学学科知识包括大学本科数学专业基础课程和高中课程中的数学知识。
大学本科数学专业基础课程的知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学课程中与中学数学密切相关的内容,包括数列极限、函数极限、连续函数、一元函数微积分、向量及其运算、矩阵与变换等内容及概率与数理统计的基础知识。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。
高中数学知识是指《课标》中所规定的必修课全部内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)。
其内容要求是:理解高中数学中的重要概念,掌握高中数学中的重要公式、定理、法则等知识,掌握中学数学中常见的思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。
2.课程知识
了解高中数学课程的性质、基本理念和目标。
熟悉《课标》所规定教学内容的知识体系,掌握《课标》对教学内容的要求。
了解《课标》各模块知识编排的特点。
能运用《课标》指导自己的数学教学实践。
3.教学知识
了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。
掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。
掌握概念教学、命题教学等数学教学知识的基本内容。
掌握合作学习、探究学习、自主学习等中学数学学习方式。
掌握数学教学评价的基本知识和方法。
4.教学技能
(1)教学设计
能够根据学生已有的知识水平和数学学习经验,准确把握所教内容与学生已学知识的联系。
能够根据《课标》的要求和学生的认知特征确定教学目标、教学重点和难点。
能正确把握数学教学内容,揭示数学概念、法则、结论的发展过程和本质,渗透数学思想方法,体现应用与创新意识。
能选择适当的教学方法和手段,合理安排教学过程和教学内容,在规定的时间内完成所选教学内容的教案设计。
(2)教学实施
能创设合理的数学教学情境,激发学生的数学学习兴趣,引导学生自主探索、猜想和合作交流。
能依据数学学科特点和学生的认知特征,恰当地运用教学方法和手段,有效地进行数学课堂教学。
能结合具体数学教学情境,正确处理数学教学中的各种问题。
(3)教学评价
能采用不同的方式和方法,对学生知识与技能、过程与方法和情感、态度与价值观等方面进行恰当地评价。
能对教师数学教学过程进行评价。
能够通过教学评价改进教学和促进学生的发展。
三、试卷结构
四、题型示例
1.单项选择题
(1)函数
在 上是 A.单调增函数 B.单调减函数 C.上凸函数 D.下凸函数
(2) 在高中数学教学中,课堂小结的方式多种多样。
有一种常见的小结方式是:结合板书内容梳理本课教学重点和难点的学习思路,同时提醒学生课下复习其中的要点。
这种小结方式的作用在于
A.升华情感,引起共鸣
B.点评议论,提高认识
C.巧设悬念,激发兴趣
D.总结回顾,强化记忆
(3)在高等代数中,有一种线性变换叫做正交变换,即不改变任意两点距离的变换。
下列变换中不是正交变换的是
A. 平移变换
B. 旋转变换
C. 反射变换
D. 相似变换
2.简答题
(1)根据下图编一道函数的应用问题
(2)一位教师讲了一堂公开课《函数》,多数听课教师认为他讲出了函数概念的本质,但课堂教学有效性不足,突出表现在课堂提问方面。
你认为应注意哪些问题才能提高课堂提问的有效性(请结合自己对《函数》的教学设想来谈)?
3.解答题
已知0 < π<<<321x x x ,试证: 4.论述题
在必修模块中,将平面解析几何内容放在函数与立体几何之后,对这种安排谈谈你的看法。
()ln f x x x =(0,)+∞2312
1223sin sin sin sin x x x x x x x x -->
--
5.案例分析题
阅读下列两个对于 不等式的教学活动设计,然后回答问题。
设计1:
活动(1)让学生分别取a,b 为具体数值,检验该不等式是否成立。
活动(2)讨论: , , 的几何意义。
讨论(1):三个图形的关系:
讨论(2):该不等式何时等号成立,何时不等号成立? 活动(3)不等式的严格证明 讨论(3):若有三个数:a>0,b>0,c>0,是否会有一个什么相应的不等式?
设计2:
活动:学生分组讨论不等式 的证明方法。
学生分组展示,讨论。
请回答如下问题:
(1)分析设计1的教学设计意图。
(2)结合本案例分析合情推理与演绎推理的关系,简述教学 过程中如何引导学生经历一个由合情推理到演绎推理的过程。
(3)对比分析两个教学设计的理念。
6.教学设计题
就高中数学“人教版教材”必修1第一单元中的函数概念第一课时的内容,设计一个教学方案(将提供教材内容)。
ab 221122
ab a b ≤+212a 212b 221122
ab a b ≤+。