《人教版八年级上册》数学最短路径问题课件
合集下载
人教版数学八年级上册最短路径问题精品课件PPT
A
B
人教版数学八年级上册 13.4最短路径问题课件
2:平面图形(建立“对称模型 ”)
• 要在街道旁边修建一个奶站,向居民区A,B提 供牛奶,奶站应建 在什么地
• 方,才能使从A,B到它的距离和最短?
B A
L
人教版数学八年级上册 13.4最短路径问题课件
人教版数学八年级上册 13.4最短路径问题课件
于点A,点Q是射线OM上的一个动点,若 PA=2,则PQ的最小值为_____________
人教版数学八年级上册 13.4最短路径问题课件
人教版数学八年级上册 13.4最短路径问题课件
• 2、立体图形(展开成平面图形)
• 例题2:如图,圆锥的底面半径为1,母线
长为6,一只蚂蚁要从底面圆周上一点B出
•
6、我就经历过许多大大小小的挫折。 大海因 为有了 狂风的 袭击, 才显示 出了它 顽强的 生命力 ,它把 狂风化 成了朵 朵浪花 ,给人 们带来 美丽;
感谢观看,欢迎指导!
(2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当MC+ MD的值最小时,求m的值.
y
AO C D
x B
人教版数学八年级上册 13.4最短路径问题课件
人教版数学八年级上册 13.4最短路径问题课件
学习任务三
小明带着牛在A处,打算带着牛先去吃草,然 后到河边喝水,再回家,请问这次小明带着牛 怎样走能使所走路径最短?
人教版数学八年级上册 13.4最短路径问题课件
任务拓展
变式五:如图,已知平面直角坐标系中,A、B 两点的坐标分别为A(2,—3)B(4, 1), 若点P(m,0)和点Q(m+1,0) 是x轴上的两个动点, 则当m= 时, AP+PQ+QB最小.
人教版数学初二最短路径问题ppt课件
思维火花
我们能否在不改变AM+MN+BN的前提 下把桥转化到一侧呢?什么图形变换能帮助 我们呢?
各抒己见
1、把A平移到岸边. 2、把B平移到岸边. 3、把桥平移到和A相连. 4、把桥平移到和B相连.
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
证明:如图,在直线l 上任取一点C′(与点C 不
重合),连接AC′,BC′,B′C′.
由轴对称的性质知,
BC =B′C,BC′=B′C′. ∴ AC +BC
= AC +B′C = AB′, AC′+BC′
= AC′+B′C′.
A
·
C′ C
B
·
l
B′
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
思维分析
A
1、如图假定任选位置造 桥MN,连接AM和BN,从 A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短 呢?
M
N B
2、利用线段公理解决问题我们遇到了什 么障碍呢?
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
探索新知
问题3 你能用所学的知识证明AC +BC最短吗?
人教版八年级数学上册《最短路径问题》课件(共15张PPT)
联想:
如果点A、B在直线l的异侧时
A
C
l
B
分析:
B
A
A
C
l
l
C
B
思考:
能把A、B两点从直线 l 的同侧转化为异侧吗?
作法及思路分析
1.作点B关于直线 l 的对称点B′ ,连接
CB′。
B
A C
l
B′
2.由上步可知AC+CB=AC +CB′,
思考:当C在直线 l 的什么位置时AC +CB′最短?
根据前面的分析,我们认为的
人民教育出版社义务教育教科书八年级数学(上册)
第十三章 轴对称
13.4 课题学习 最短路径问题
饮马问题
如图,牧马人从马棚A牵马到河边 l 饮水,然后再到帐蓬B.问:在河边 的什么地方饮水,可使所走的路径最 短?
B B
AA l
l
分析:
B
B
A
A
l
CC
l
转化为数学问题 当点C在直线 l 的什么位置时,AC+CB的和最小?
谢谢观赏
You made my day!
我们,还在路上……
A
B
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
人教版数学八年级上册13.4 课题学习 最短路径问题课件(共27张PPT)
A∙ 请小组讨论证明这个结论吧!
A′
M′ a M
b
N′
N
∙B
13.4 最短路径问题
证明
证明:在直线b上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′,
连接AM′,A′N′,N′B.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′. 即A′N+NB+MN<A′N′+BN′+M′N′. ∴AM+NB+MN<AM′+BN′+M′N′, 即AM+NB+MN的值最小.
13.4 最短路径问题
解:∵点B 和 点C 关于直线 AD 对称, ∴BF = CF . 求BF + EF 最小值,只需 CF + EF 最小. 连接EC,线段 CE 的长即为 BF + EF 的最 小值. ∵D、E 是等边△ABC 中 BC、AB 的中点, ∴CE = AD = 5. ∴BF+EF的最小值为5.
路程最短? C
A
D
A1
A C
C1 D1 E
E1 B B1
C1 B
解:如图,作 AA1⊥CD,且 AA1 = 河宽,作 BB1⊥CE,且 BB1 = 河宽, 连接 A1B1,与内河岸相交于 E1,D1. 过 E1,D1作河岸的垂线段 EE1 、 DD1,即为桥.
13.4 最短路径问题
13.4 最短路径问题
学习目标 1. 利用轴对称、平移等变化解决简单的最短路径问题. 重点
2. 体会图形的变化在解决最值问题中的作用,感受由实际问题转化为
数学问题的思想. 难点
13.4 课题学习 最短路径问题 课件(共15张PPT)人教版初中数学八年级上册
迁移应用
3.如图,点P是∠AOB内任意一点,点M和点N分别是射线OB和射线OA 上的动点,当△PMN的周长为最小时,画出点M,N的位置.
B P'
M P
O
N
A
P''
解:如图所示,点 M,N 即为所求
B
M
P
O
A N
课后延伸
1.课本P93,第15题 2.收集最短路径的其他模型
人教版八年级数学第十三章《轴对称》
课题学习—最短路径问题
情境引入
古从军行 唐·李颀
经验唤醒
如图所示,请规划从A地到B地最近的路线?为什么 这条路线最近?
A
B
AB即为最短路线,因为两点之间,线段最短
探究一
问题情境1
图形
将军从烽火台到河边饮马 在这个情境中我们 再回到营地,饮马点在什么位 分别把烽火台,营 置,可使将军所走的路径最短? 地,河流抽象成哪
种几何图形?
A. 点 B.线
A
l B
最短路径作法
直线异侧 “两定点”
连定点 得最短
A
l P
B
两点之间 线段最短
探究二
问题情境2
将军从烽火台到河边 饮马再回到营地,饮马点 在什么位置,可使将军所 走的路径最短?
图形
我们可以把情境 2抽象成怎样的几何 图形?
最短路径作法
直线同侧“两定点”
作对称 化折为直得最短
∴AM1+M1N1+BN1=AA1+A1N1+BN1 在△A1N1B中
因为A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN. ∴AM +MN+BN为最短路径.
人教版八年级数学上册1最短路径问题课件
思考: 你能将这个问题抽 象为数学问题吗?
分析:
可以把河岸看成两条平行线a
和b,N为直线b上一个动点,
A
MN垂直于直线b,交直线a于点
M,这样问题可以转化为:
当点N在直线的什么位置时, AM+MN+NB最小?
由于河宽固定,因此AM+NB 最小时,AM+MN+NB最小。这 样问题进一步转化为:
当点N在直线b的什么位置时, AM+NB最小?
问题2 归纳
抽象为数学问题
解决实 际问题
A
A'
M
a
b
N
B
用旧知解决新知
A
Ma Nb
B
联想旧知
A
C
l
B
新知2
利用平移确定最短路径选址
解决连接河两岸的两个点的最短路径问题时,可以 通过平移河岸的方法使河的宽度变为零,转化为求直线 异侧的两点到直线上一点所连线段的和最小的问题.
在解决最短路径问题时,我们通常利用轴对称、平 移等变换把不在一条直线上的两条线段转化到一条直线 上,从而作出最短路径的方法来解决问题.
运用轴对称及两点之间线段最短的性质,将所求线 段之和转化为一条线段的长,是解决距离之和最小问题 的基本思路,不论题目如何变化,运用时要抓住直线同 旁有两点,这两点到直线上某点的距离和最小这个核 心,所有作法都相同.
问题2
(造桥选址问题)如图,A和B两地在同一条 河的两岸,现要在河上造一座桥MN.桥造在何 处可使从A到B的路径AMNB最短?(假定河的两 岸是平行的直线,桥要与河垂直.)
你能证明吗?
证明:
另任意造桥M′N′, 连接AM′、BN′、A′N′. 由平移性质可知, AM=A′N,AM′=A′N′, AA′=MN=M′ N′.
分析:
可以把河岸看成两条平行线a
和b,N为直线b上一个动点,
A
MN垂直于直线b,交直线a于点
M,这样问题可以转化为:
当点N在直线的什么位置时, AM+MN+NB最小?
由于河宽固定,因此AM+NB 最小时,AM+MN+NB最小。这 样问题进一步转化为:
当点N在直线b的什么位置时, AM+NB最小?
问题2 归纳
抽象为数学问题
解决实 际问题
A
A'
M
a
b
N
B
用旧知解决新知
A
Ma Nb
B
联想旧知
A
C
l
B
新知2
利用平移确定最短路径选址
解决连接河两岸的两个点的最短路径问题时,可以 通过平移河岸的方法使河的宽度变为零,转化为求直线 异侧的两点到直线上一点所连线段的和最小的问题.
在解决最短路径问题时,我们通常利用轴对称、平 移等变换把不在一条直线上的两条线段转化到一条直线 上,从而作出最短路径的方法来解决问题.
运用轴对称及两点之间线段最短的性质,将所求线 段之和转化为一条线段的长,是解决距离之和最小问题 的基本思路,不论题目如何变化,运用时要抓住直线同 旁有两点,这两点到直线上某点的距离和最小这个核 心,所有作法都相同.
问题2
(造桥选址问题)如图,A和B两地在同一条 河的两岸,现要在河上造一座桥MN.桥造在何 处可使从A到B的路径AMNB最短?(假定河的两 岸是平行的直线,桥要与河垂直.)
你能证明吗?
证明:
另任意造桥M′N′, 连接AM′、BN′、A′N′. 由平移性质可知, AM=A′N,AM′=A′N′, AA′=MN=M′ N′.
人教版初中八年级数学上册13.4_最短路径问题ppt课件
·P
O
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””
O
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””
人教版八年级数学上册第十三章课题学习最短路径问题(共30张PPT)
此时从A到B点路径最短.
M N
P Q
G
H B1 B
同样,当A、B两点之间有4、5、 6,...n条河时,我们仍可以利用平 移转化桥长来解决问题.
例如: 沿垂直于河岸方向平移A点
依次至A1、A2、A3 ,..., An,平移距离分别等于各自河宽, AnB交第n条河近B点河岸于Nn,建桥 MnNn,连接MnAn-1交第(n-1)条河近 B点河岸与Nn-1,建桥Mn-1Nn-1,..., 连接M1A交第一条河近B点河岸于N1, 建桥M1N1,此时所走路径最短.
献 。 现 将 主 要工作 报告 一 、 关 心 爱 护学生 。经常 耐心细 致地做 学生的 思想教 育工作 ,有时可 以说达 到了废 寝 忘 食 的 地 步。特 别是在 抗击非 典期间 ,对学生 的生命 安全高 度负责 ,从协助校领导
制 定 各 项 预 防措施 到学生 病情的 监控和 学生的 诊治陪 护等都 凡事躬 亲。自 己带领 的 由 党 团 员 组成的 陪护小 组,不怕 死,不怕 累,出 色完成 了学校 交给的 陪护学 生的任 务 。 XX 年 7月 ,音 专 001班 黄德华 被骗到 合浦搞 传销,我 接到求 救电话 后,马上 与杨小 林 等 同 志 赶 赴合浦 解救学 生,回到 南宁后 ,又自己 掏钱为 学生购 好了返回龙州的车票
桥MN和PQ在中间,且方向不 能改变,仍无法直接利用“两 点之间,线段最短”解决问题, 只有利用平移变换转移到两侧 或同一侧先走桥长.
M N P Q
B
平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
思维方法一
1、沿垂直于第一条河岸的方向平移A点至 AA1使AA1=MN,此时问题转化为问题基本题 型两点(A1、B点)和一条河建桥(PQ)
初中八年级数学上册人教版课件:13.4最短路径问题 (共18张ppt)
b
课堂 练习 如图,四边形ABCD中,∠BAD=120°, ∠B=∠D=90°,在BC,CD上分别找一点M、N, 当△AMN周长最小时,∠AMN+∠ANM的度数为 多少?
A B M A′ C D A″
N
Thanks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
l
B′
探究 活动2
如图:牧马人某一天要从马厩牵出马,先到草地边某一处牧马, 再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路 线。
N
A
M
B
l
探究 活动 2
如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先 到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮 他确定这一天的最短路线。 F
H N
E
探究 活动 2
最短路线:A
P
Q
B
A/
P
A
N
QB/Biblioteka MBl探究 活动 3
(造桥选址问题)如图,A和B两地在一条河的 两岸,现要在河上造一座桥MN,桥造在何处可使 从A到B的路径AMNB最短?(假定河的两岸是平行 的直线,桥要与河垂直。)
a b
A
M
N
B
探究 活动 3 作法:
1.将点A沿垂直与河岸的 方向平移一个河宽到A‘ A 2. 连接 A ’ B 交河对岸与点 N, 则点N为建桥的位置, MN为所建的桥。
A′
a
b
M
N
B
探究 活动 3
证明:由平移的性质,得 AM∥A’N 且AM=A’N, MN=M'N', AM’∥A’N’, AM’=A’N’, a 所以A.B两地的距离: AM+MN+BN=A’N+MN+BN=A’B+MN M′ 若桥的位置建在M’N’处, A M 连接AC.CD.DB.CE, 则AB两地的距离为: N′ A′ AM’+M’N’+N’B=A’N’+M’N’+N’B =A’N’+N’B+MN N B 在△A’BN'中,∵A’N’+N’B>A’B ∴A’N’+N’B+MN>A’B+MN 即AM’+M’N’+N’B >AM+MN+BN 所以桥的位置建在MN处,AB两地的路程最短。
人教版八年级数学上册1课题学习最短路径问题课件
点的距离之和最小? B
A
l
C
B/
任务1:测量点C到A 、 B的距离,求和, 填入学案的空格上。
任务2:小组合作,由组 长安排分工(一人找点,一 人测量,一人计数,其余 监督)任意在直线L上取 点C ′(不与点C重合)探究 测量,填入空格。
A C
B
L
B/
证明:
在L上任取另一点C ‘,连接AC ' 、BC'、B'C'.
通过这节课的学习说说你的收获:
作业 课本P93复习题第15题。
从A点到B点的最短路径为A M+MN+NP+MN+NP+
N
P
Q
B2
B1
B
PQ+QB转化为
AB2+B2B1+B1B.
问题延伸二 A
如图,A和B两地之间 有三条河,现要在两 条河上各造一座桥MN、 PQ和GH.桥分别建在 何处才能使从A到B的 路径最短?(假定河 的两岸是平行的直线, 桥要与河岸垂直)
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
M1
N1
B
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1.
在△A1N1B中,由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
此时从A到B点路径最短.
M N
P Q
G
H B1 B
延伸小结
同样,当A、B两点之间有4、5、
6,...n条河时,我们仍可以利用
平移转化桥长来解决问题.
A
l
C
B/
任务1:测量点C到A 、 B的距离,求和, 填入学案的空格上。
任务2:小组合作,由组 长安排分工(一人找点,一 人测量,一人计数,其余 监督)任意在直线L上取 点C ′(不与点C重合)探究 测量,填入空格。
A C
B
L
B/
证明:
在L上任取另一点C ‘,连接AC ' 、BC'、B'C'.
通过这节课的学习说说你的收获:
作业 课本P93复习题第15题。
从A点到B点的最短路径为A M+MN+NP+MN+NP+
N
P
Q
B2
B1
B
PQ+QB转化为
AB2+B2B1+B1B.
问题延伸二 A
如图,A和B两地之间 有三条河,现要在两 条河上各造一座桥MN、 PQ和GH.桥分别建在 何处才能使从A到B的 路径最短?(假定河 的两岸是平行的直线, 桥要与河岸垂直)
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
M1
N1
B
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1.
在△A1N1B中,由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
此时从A到B点路径最短.
M N
P Q
G
H B1 B
延伸小结
同样,当A、B两点之间有4、5、
6,...n条河时,我们仍可以利用
平移转化桥长来解决问题.
人教版八年级上册1最短路径问题课件
人教版八年级上册第十三章第四节
13.4 最短路径问题
1
情景引入
相传,古希腊亚历山大城里有一位久负盛名的学者, 名叫海伦。有一天,一位将军专程拜访海伦,求教一个
百思不得其解的问题,将军问:从住所A 地出发,到一 条笔直的河边l 饮马,然后到营地B 。到河边的什么地
方饮马可使他所走的路径最短?
B地 A地
使AC+BC最短问题。如何确定点C的位置呢?
你学习过哪些最短连线的 知识?
怎么办?
问题难在哪里呢?
线段公理: 两点之间,线段最短
A
B
垂线段性质: 垂线段最短.
A
l
若A、B两点分别在直线l两侧, 你能找到符合条件的点吗?
A C
Dl
B
B
A
l
C
不管点C在直线上哪里,A、 B、C都不可能在同一直线
上,无法直接应用这两个知 识解决问题。
起源
在古罗马,亚历山大城有一位精通数学和物理的学者,名 叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百 思不得其解的问题:
将军骑马从城堡A出发到城堡B,途中马要到河边饮 水一次。将军问怎样走路程最短?
这就是"将军饮马"问题。
如图:一位将军骑马从城堡A到城堡B, 途中马要到河边饮水一次,
问:这位将军怎样走路程最短?
进
步
你的疑惑;
的
阶
梯
面对一个新的求线段最短问题时,
我们可以通过怎样的途径去研究它?
谢谢聆听,欢迎指正!
B
A
河
如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营, 问:将军怎么走能使得路程最短?
【问题简化】 如图,在直线上找一点P使得PA+PB 最小?
13.4 最短路径问题
1
情景引入
相传,古希腊亚历山大城里有一位久负盛名的学者, 名叫海伦。有一天,一位将军专程拜访海伦,求教一个
百思不得其解的问题,将军问:从住所A 地出发,到一 条笔直的河边l 饮马,然后到营地B 。到河边的什么地
方饮马可使他所走的路径最短?
B地 A地
使AC+BC最短问题。如何确定点C的位置呢?
你学习过哪些最短连线的 知识?
怎么办?
问题难在哪里呢?
线段公理: 两点之间,线段最短
A
B
垂线段性质: 垂线段最短.
A
l
若A、B两点分别在直线l两侧, 你能找到符合条件的点吗?
A C
Dl
B
B
A
l
C
不管点C在直线上哪里,A、 B、C都不可能在同一直线
上,无法直接应用这两个知 识解决问题。
起源
在古罗马,亚历山大城有一位精通数学和物理的学者,名 叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百 思不得其解的问题:
将军骑马从城堡A出发到城堡B,途中马要到河边饮 水一次。将军问怎样走路程最短?
这就是"将军饮马"问题。
如图:一位将军骑马从城堡A到城堡B, 途中马要到河边饮水一次,
问:这位将军怎样走路程最短?
进
步
你的疑惑;
的
阶
梯
面对一个新的求线段最短问题时,
我们可以通过怎样的途径去研究它?
谢谢聆听,欢迎指正!
B
A
河
如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营, 问:将军怎么走能使得路程最短?
【问题简化】 如图,在直线上找一点P使得PA+PB 最小?
人教版八年级数学上册13.4_最短路径问题ppt精品课件
·李庄B
. 提灌站C
g
2、如图,小河边有两个村庄A,B,要在河边建一自 来水厂向村庄A与村庄B供水。 (1)若要使厂部到A,B村庄的距离相等,则应选择在 哪建厂? (2)若要使厂部到A,B村的水管最省料,应建在什,在两条公路的 中间有一个油库,设为点P。如在两条公路上各设 置一个加油站,请设计一个方案,把两个加油站设 在何处,可使运油车从油库出发,经过一个加油站, 再到另一个加油站,最后回到油库所走的路程最短。
A·
则AB两地的距离为:
AC+CD+DB=AC+CD+CE=AC+CE+MN,
N
在△ACE中,∵AC+CE>AE,
∴AC+CE+MN>AE+MN,
即AC+CD+DB >AM+MN+BN
所以桥的位置建在CD处,AB两地的路程最短。
2. 如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌 溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建 在河边什么地方,•可使所修的渠道最短,试在图中确定该点。 作法:作点B关于直线 a 的对称点点C,连接AC交直线a于点D,则点D为 建抽水站的位置。
P
如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修 的什么地方,可使所用的输气管线最短?
所以泵站建在点P可使输气管线最短
应用
P
(Ⅱ) 两点在一条直线同侧
已知:如图,A、B在直线L的同一侧,在L上求一点,使得 PA+PB最小.
作法:① 作点B关于直线l的对称点B/.
② 连接AB/,交直线l于点P.
D
B
C
E
(Ⅲ)一点在两相交直线内部
. 提灌站C
g
2、如图,小河边有两个村庄A,B,要在河边建一自 来水厂向村庄A与村庄B供水。 (1)若要使厂部到A,B村庄的距离相等,则应选择在 哪建厂? (2)若要使厂部到A,B村的水管最省料,应建在什,在两条公路的 中间有一个油库,设为点P。如在两条公路上各设 置一个加油站,请设计一个方案,把两个加油站设 在何处,可使运油车从油库出发,经过一个加油站, 再到另一个加油站,最后回到油库所走的路程最短。
A·
则AB两地的距离为:
AC+CD+DB=AC+CD+CE=AC+CE+MN,
N
在△ACE中,∵AC+CE>AE,
∴AC+CE+MN>AE+MN,
即AC+CD+DB >AM+MN+BN
所以桥的位置建在CD处,AB两地的路程最短。
2. 如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌 溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建 在河边什么地方,•可使所修的渠道最短,试在图中确定该点。 作法:作点B关于直线 a 的对称点点C,连接AC交直线a于点D,则点D为 建抽水站的位置。
P
如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修 的什么地方,可使所用的输气管线最短?
所以泵站建在点P可使输气管线最短
应用
P
(Ⅱ) 两点在一条直线同侧
已知:如图,A、B在直线L的同一侧,在L上求一点,使得 PA+PB最小.
作法:① 作点B关于直线l的对称点B/.
② 连接AB/,交直线l于点P.
D
B
C
E
(Ⅲ)一点在两相交直线内部
人教版八年级数学上册1最短路径问题教学课件
最短路径问题
如图,在直线 上求作一点 ,使得 + 最短.
、 在直线 异侧
′
、 在直线 同侧
例:造桥选址问题
例
如图, 和 两地在一条河的两岸,现要在河上造一座桥
. 桥造在何处可使从 到 的路径 最短(假定
河的两岸是平行的直线,桥要与河垂直)?
作 ′ 关于直线 的对称点 ′′.
′
′
′
′′
连接 ′′,与直线 交于一点即
为所求点 .
问题
在直线 上求作两点 ,,使
得四边形 的周长最小.
练习 已知线段 ,点 、 在直线 的同侧,在直线 上求
作两点 ,(点 在点 的左侧)且 = ,使得
四边形 的周长最小.
思考
哪些点是定点?
哪些点是动点?
思考
问题是否可以简化?
问题转化为:
当点 在什么位置时, + + + 最小.
问题转化为:当点 在什么位置时, + 最小.
′
思考
通过哪种图形的变化(轴对称,平移等),
座桥 .桥造在何处可使从 到 的路径
最短(假定河的两岸是平行的直线,桥要与河垂直)?
当点 在直线 的什么位置时,
+ + 最小?
实际问题用数学语言表达.
如图,在直线 上求作一点 ,使得 + 最短.
、 在直线 异侧
′
、 在直线 同侧
例:造桥选址问题
例
如图, 和 两地在一条河的两岸,现要在河上造一座桥
. 桥造在何处可使从 到 的路径 最短(假定
河的两岸是平行的直线,桥要与河垂直)?
作 ′ 关于直线 的对称点 ′′.
′
′
′
′′
连接 ′′,与直线 交于一点即
为所求点 .
问题
在直线 上求作两点 ,,使
得四边形 的周长最小.
练习 已知线段 ,点 、 在直线 的同侧,在直线 上求
作两点 ,(点 在点 的左侧)且 = ,使得
四边形 的周长最小.
思考
哪些点是定点?
哪些点是动点?
思考
问题是否可以简化?
问题转化为:
当点 在什么位置时, + + + 最小.
问题转化为:当点 在什么位置时, + 最小.
′
思考
通过哪种图形的变化(轴对称,平移等),
座桥 .桥造在何处可使从 到 的路径
最短(假定河的两岸是平行的直线,桥要与河垂直)?
当点 在直线 的什么位置时,
+ + 最小?
实际问题用数学语言表达.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在△A1N1B中,由线段公理知A1N1+BN1>A1B.
因此AM1+M1N1+BN1> AM+MN+BN.
证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,所以A,B两地的距离:
AM+MN+BN=AM+MN+EM=AE+MN,
若桥的位置建在CD处,连接AC,CD,DB,CE,则AB两地的
接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥.
理由:由作图法可知,AF//DD′,AF=DD′,则四边形AFD′D
为平行四边形,于是AD=FD′,
A
同理,BE=GE′, 由两点之间线段最短可知,GF最小.
连接AB,与直线l相交于一点C.
根据是“两点之间,线段最短”, A
可知这个交点即为所求.
C l
B
问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决? B
A
l 想一想: 对于问题2,如何将点B“移” 到l 的另一侧B′处,满足直线l 上的任意 一点C,都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
1.把A平移到岸边. 2.把B平移到岸边. 3.把桥平移到和A相连. 4.把桥平移到和B相连.
A
M
N
B
1.把A平移到岸边.
A (M)
N
B AM+MN+BN长度改变了
2.把B平移到岸边. A
M
(N)B
AM+MN+BN长度改变了
怎样调整呢? 把A或B分别向下或上平移一个桥长 那么怎样确定桥的位置呢?
∴ AC +BC
B
= AC +B′C = AB′,
∴ AC′+BC′= AC′+B′C′.
A
在△AB′C′中, AB′<AC′+B′C′,
C C′
∴ AC +BC<AC′+BC′.
即 AC +BC 最短.
l B′
造桥选址问题
如图,A和B两地在一条河的两岸,现要在河上造一座桥MN。 桥造在何处可使从A到B的路径AMNB最短(假定河的两岸 是平行的直线,桥要与河垂直)?
距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,
在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN,
A· M C
即AC+CD+DB >AM+MN+BN,
ND
所以桥的位置建在MN处,AB两地的路程最短.
E
B
方法归纳
解决最短路径问题的方法
1.在解决最短路径问题时,我们通常利用轴对称、平移等变 化把已知问题转化为容易解决的问题,从而作出最短路径的 选择. 2.当涉及含有固定线段“桥”的方法是构造平行四边形, 从而将问题转化为平行四边形的问题解答.
A
B
问题解决
A
如图,平移A到A1,使AA1等于河A1 宽,连接A1B交河岸于N作桥MN, 此时路径AM+MN+BN最短.
M M1
N
N1
B
理由:另任作桥M1N1,连接AM1,BN1,A1N1. 由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转化为AA1+A1N1+BN1.
l A′
讲授新课
最短路径问题
“两点的所有连线中,线段最短”“连接直线外一点 与直线上各点的所有线段中,垂线段最短”等的问题,我 们称之为最短路径问题.现实生活中经常涉及到选择最短路 径问题,本节将利用数学知识探究数学史的著名的“牧马 人饮马问题”及“造桥选址问题”.
① ② A ③B
P
A BC
Dl
牧马人饮马问题
A
A
M
N
B
B
思维分析 A
1.如图假定任选位置造桥MN, 连接AM和BN,从A到B的路 径是AM+MN+BN,那么怎样 确定什么情况下最短呢?
M
N B
2.利用线段公理解决问题我们遇到了什么障碍呢?
思维火花
我们能否在不改变AM+MN+BN的前提下把桥转化 到一侧呢?什么图形变换能帮助我们呢?
各抒己见
当堂练习
1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建
一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中
实线表示铺设的管道,则所需要管道最短的是( D )
Q P
Q P
MA
l Q
P
M
l
C
B
M Q
l
P
M
l
D
2.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000米.
第十三章
八年级数学上(RJ) 教学课件
轴对称
13.4 课题学习 最短路径问题
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.能利用轴对称解决简单的最短路径问题.(难点) 2.体会图形的变化在解决最值问题中的作用,感悟转化思想. (重点)
导入新课
复习引入
1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
C
D 河
A
B
3.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处, 须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都 是东西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?
A
C
D
C′ D ′
E E′
B
解:作AF⊥CD,且AF=河宽,作BG ⊥CE,且BG=河宽,连
方法揭晓
作法: (1)作点B 关于直线l 的对称点B′; (2)连接AB′,与直线l 相交于点C.
则点C 即为所求.
A
C
B
l B′
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),连接
AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B 地,牧马人到河边的什么地方饮马,可使所走的路径最短?
B
B 抽象成
A
A
l
实际问题
C
l
数学问题
作图问题:在直线l上求作一点C,使AC+BC最短问题.
问题1 现在假设点A,B分别是直线l异侧的两个点,如何在l上找 到一个点,使得这个点到点A,点B的距离的和最短?
②最短,因为两点之间,线段最短
①
②
A ③B
2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有
线段中,哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实? 三角形三边关系:两边之和大于第三边; 斜边大于直角边.
4.如图,如何做点A关于直线l的对称点? A
因此AM1+M1N1+BN1> AM+MN+BN.
证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,所以A,B两地的距离:
AM+MN+BN=AM+MN+EM=AE+MN,
若桥的位置建在CD处,连接AC,CD,DB,CE,则AB两地的
接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥.
理由:由作图法可知,AF//DD′,AF=DD′,则四边形AFD′D
为平行四边形,于是AD=FD′,
A
同理,BE=GE′, 由两点之间线段最短可知,GF最小.
连接AB,与直线l相交于一点C.
根据是“两点之间,线段最短”, A
可知这个交点即为所求.
C l
B
问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决? B
A
l 想一想: 对于问题2,如何将点B“移” 到l 的另一侧B′处,满足直线l 上的任意 一点C,都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
1.把A平移到岸边. 2.把B平移到岸边. 3.把桥平移到和A相连. 4.把桥平移到和B相连.
A
M
N
B
1.把A平移到岸边.
A (M)
N
B AM+MN+BN长度改变了
2.把B平移到岸边. A
M
(N)B
AM+MN+BN长度改变了
怎样调整呢? 把A或B分别向下或上平移一个桥长 那么怎样确定桥的位置呢?
∴ AC +BC
B
= AC +B′C = AB′,
∴ AC′+BC′= AC′+B′C′.
A
在△AB′C′中, AB′<AC′+B′C′,
C C′
∴ AC +BC<AC′+BC′.
即 AC +BC 最短.
l B′
造桥选址问题
如图,A和B两地在一条河的两岸,现要在河上造一座桥MN。 桥造在何处可使从A到B的路径AMNB最短(假定河的两岸 是平行的直线,桥要与河垂直)?
距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,
在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN,
A· M C
即AC+CD+DB >AM+MN+BN,
ND
所以桥的位置建在MN处,AB两地的路程最短.
E
B
方法归纳
解决最短路径问题的方法
1.在解决最短路径问题时,我们通常利用轴对称、平移等变 化把已知问题转化为容易解决的问题,从而作出最短路径的 选择. 2.当涉及含有固定线段“桥”的方法是构造平行四边形, 从而将问题转化为平行四边形的问题解答.
A
B
问题解决
A
如图,平移A到A1,使AA1等于河A1 宽,连接A1B交河岸于N作桥MN, 此时路径AM+MN+BN最短.
M M1
N
N1
B
理由:另任作桥M1N1,连接AM1,BN1,A1N1. 由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转化为AA1+A1N1+BN1.
l A′
讲授新课
最短路径问题
“两点的所有连线中,线段最短”“连接直线外一点 与直线上各点的所有线段中,垂线段最短”等的问题,我 们称之为最短路径问题.现实生活中经常涉及到选择最短路 径问题,本节将利用数学知识探究数学史的著名的“牧马 人饮马问题”及“造桥选址问题”.
① ② A ③B
P
A BC
Dl
牧马人饮马问题
A
A
M
N
B
B
思维分析 A
1.如图假定任选位置造桥MN, 连接AM和BN,从A到B的路 径是AM+MN+BN,那么怎样 确定什么情况下最短呢?
M
N B
2.利用线段公理解决问题我们遇到了什么障碍呢?
思维火花
我们能否在不改变AM+MN+BN的前提下把桥转化 到一侧呢?什么图形变换能帮助我们呢?
各抒己见
当堂练习
1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建
一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中
实线表示铺设的管道,则所需要管道最短的是( D )
Q P
Q P
MA
l Q
P
M
l
C
B
M Q
l
P
M
l
D
2.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000米.
第十三章
八年级数学上(RJ) 教学课件
轴对称
13.4 课题学习 最短路径问题
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.能利用轴对称解决简单的最短路径问题.(难点) 2.体会图形的变化在解决最值问题中的作用,感悟转化思想. (重点)
导入新课
复习引入
1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
C
D 河
A
B
3.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处, 须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都 是东西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?
A
C
D
C′ D ′
E E′
B
解:作AF⊥CD,且AF=河宽,作BG ⊥CE,且BG=河宽,连
方法揭晓
作法: (1)作点B 关于直线l 的对称点B′; (2)连接AB′,与直线l 相交于点C.
则点C 即为所求.
A
C
B
l B′
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),连接
AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B 地,牧马人到河边的什么地方饮马,可使所走的路径最短?
B
B 抽象成
A
A
l
实际问题
C
l
数学问题
作图问题:在直线l上求作一点C,使AC+BC最短问题.
问题1 现在假设点A,B分别是直线l异侧的两个点,如何在l上找 到一个点,使得这个点到点A,点B的距离的和最短?
②最短,因为两点之间,线段最短
①
②
A ③B
2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有
线段中,哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实? 三角形三边关系:两边之和大于第三边; 斜边大于直角边.
4.如图,如何做点A关于直线l的对称点? A