三角函数常用公式
(完整版)三角函数公式大全
三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦函数:r y=αsin 余弦函数:r x =αcos 正切函数:x y =αtan余切函数:y x =αcot 正割函数:xr=αsec余割函数:yr=αcsc二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。
商数关系:x x x cos sin tan =,xxx sin cos cot =。
平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。
积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosαtan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin(απ-2)=cosα cos(απ-2)=sinα tan(απ-2)=cotα cot(απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin(απ+2)=cosα cos(απ+2)=-sinαtan(απ+2)=-cotα cot(απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系:sin(απ-23)=-cosα cos(απ-23)=-sinαtan(απ-23)=cotα cot(απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin(απ+23)=-cosα cos(απ+23)=sinαtan(απ+23)=-cotα cot(απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
三角函数公式表大全
三角函数公式表大全以下是常用的三角函数公式表:1. 正弦函数(Sine Function):- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数与正弦函数的关系:cosθ = 邻边/斜边- 正弦函数的倒数:cosecθ = 1/sinθ- 余弦函数的倒数:secθ = 1/cosθ- 正弦函数的平方:sin^2θ + cos^2θ = 1- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ- 正弦函数的倍角公式:sin2θ = 2sinθcosθ2. 余弦函数(Cosine Function):- 余弦函数的定义:cosθ = 邻边/斜边- 正弦函数与余弦函数的关系:sinθ = 对边/斜边- 余弦函数的倒数:secθ = 1/cosθ- 正弦函数的倒数:cosecθ = 1/sinθ- 余弦函数的平方:cos^2θ + sin^2θ = 1- 余弦函数的和差公式:cos(α ± β) = cosαcosβ ∓sinαsinβ- 余弦函数的倍角公式:cos2θ = cos^2θ - sin^2θ3. 正切函数(Tangent Function):- 正切函数的定义:tanθ = 对边/邻边= sinθ/cosθ- 正切函数的倒数:cotθ = 1/tanθ = cosθ/sinθ- 正切函数与正弦、余弦的关系:tanθ = sinθ/cosθ = (对边/斜边) / (邻边/斜边) = 对边/邻边- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓tanαtanβ)4. 反三角函数:- 反正弦函数(Arcsine Function):sin⁻¹(x) = θ,其中-π/2 ≤ θ ≤ π/2- 反余弦函数(Arccosine Function):cos⁻¹(x) = θ,其中0 ≤ θ ≤ π- 反正切函数(Arctangent Function):tan⁻¹(x) = θ,其中-π/2 < θ < π/2这些是常用的三角函数公式,可以根据具体的问题和需要,灵活运用这些公式进行计算和推导。
三角函数变换公式大全
三角函数变换公式大全
以下列举了常见的三角函数变换公式:
1. 正弦函数变换公式:
- 正弦函数的平移变换:y = a*sin(b(x-c)) + d,其中a为振幅,b为周期变化的倍数,c为水平平移量,d为垂直平移量。
2. 余弦函数变换公式:
- 余弦函数的平移变换:y = a*cos(b(x-c)) + d,其中a为振幅,b为周期变化的倍数,c为水平平移量,d为垂直平移量。
3. 正切函数变换公式:
- 正切函数的平移变换:y = a*tan(b(x-c)) + d,其中a为垂直
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。
4. 余切函数变换公式:
- 余切函数的平移变换:y = a*cot(b(x-c)) + d,其中a为垂直
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。
5. 正割函数变换公式:
- 正割函数的平移变换:y = a*sec(b(x-c)) + d,其中a为水平
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。
6. 余割函数变换公式:
- 余割函数的平移变换:y = a*csc(b(x-c)) + d,其中a为水平拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为垂直平移量。
以上是常见的三角函数变换公式,它们可以通过改变振幅、周期、水平平移量和垂直平移量来对原始的三角函数进行变换。
三角函数的公式大全
三角函数的公式大全1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan² A)Sin2A=2SinA•CosACos2A = Cos^2 A–Sin² A=2Cos² A—1=1—2sin^2 A3、三倍角公式sin3A = 3sinA-4(sinA)³;cos3A = 4(cosA)³ -3cosAtan3a = tan a • tan(π/3+a)• tan(π/3-a)4、半角公式sin(A/2) = √{(1–cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1–cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)} ?tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA) 5、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB6、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]7、诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA8、万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}9、其它公式a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a] a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]²;1-sin(a) = [sin(a/2)-cos(a/2)]²;10、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)11、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)12、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα13、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα14、公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα15、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα16、公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα17、公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα√表示根号,包括{……}中的内容18、三角函数记忆口诀三角函数是函数,象限符号坐标注。
常用的三角函数公式
三角函数公式一、三角函数的和差公式1、cos(A-B)=cosAcosB+sinAsinB2、cos(A+B)=cosAcosB-sinAsinB3、sin(A+B)=sinAcosB+cosAsinB4、sin (A-B)= sinAcosB-cosAsinB5、tan(A+B)=tan A+tanB 1tan AtanB- 6、tan(A-B)=tan A-tanB 1tan AtanB+ 二、倍角公式7、sin2A= 2sinAcosB8、cos2A=cos 2A-sin 2A (变形形式cos2A=1-2sin 2A ;cos2A=2cos 2A-1)9、tan2A=22tan A 1tan A- 三、积化和差公式10、sinAcosB=12[sin(A+B) +sin (A-B)] 证:右=12[sin(A+B) +sin (A-B)] =12[ (sinAcosB+cosAsinB) + (sinAcosB-cosAsinB)] = sinAcosB=左11、cosAsinB=12[sin(A+B) -sin (A-B)]证:右=12[sin(A+B) -sin (A-B)]=12[ (sinAcosB+cosAsinB) - (sinAcosB-cosAsinB)]= cosAsinB =左12、cosAcosB=12[cos(A+B)+cos (A-B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB-sinAsinB)+ (cosAcosB+sinAsinB)]= cosAcosB =左13、sinAsinB=12[cos(A-B)-cos (A+B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB+sinAsinB)+ (cosAcosB-sinAsinB)]= sinAsinB =左四、和差化积公式14、sinA+sinB=2sin A B2+cosA B2-加=加,减证:令X=A B2+,Y=A B2-,则A=X+Y,B=X-Y左= sinA+sinB= sin(X+Y)+sin(X-Y)=( sinXcosY+cosXsinY)+( sinXcosY-cosXsinY)=2 sinXcosY=2sin A B2+cosA B2-=右15、sinA-sinB=2sin A B 2-cos A B 2+ 减=减,加 证:左= sinA-sinB= sinA+sin(-B)= 2sin A+(B)2-cos A-(-B)2 =右 16、cosA+cosB=2cos A B 2+cos A B 2- 加=cos 证:令X=A B 2+,Y=A B 2-,则A=X+Y ,B=X-Y 左= cosA+cosB = cos(X+Y)+cos(X-Y)=( cosXcosY-sinXsinY)+( cosXcosY+sinXsinY) =2cosXcosY=2cos A B 2+cos A B 2-=右 17、cosA-cosB=-2sin A B 2+sin A B 2- 减=sin 证:令X=A B 2+,Y=A B 2-,则A=X+Y ,B=X-Y 左= cosA-cosB = cos(X+Y)-cos(X-Y)=( cosXcosY-sinXsinY)-( cosXcosY+sinXsinY) =-2sinXsinY=-2sin A B 2+sin A B 2-=右 补充:18、sin2A=22tan A 1tan A+ 证:左=22222sin A 22tan A 2sin A cos A sin 2A cos A sin 2A=sin A 1tan A sin A cos A 11cos A⋅====+++右19、cos2A=221tan A 1tan A-+ 证:左=2222222222sin A 11tan A sin A cos A cos 2A cos A cos 2A=sin A 1tan A sin A cos A 11cos A---====+++右 五、万能公式令t=tan A2,则 sinA=221tt +(公式18的变形); cosA=2211t t -+(公式19的变形); tanA=221tt -(公式9的变形)。
常用的三角函数公式大全
常用的三角函数公式大全三角函数是数学中的重要概念,它们在几何、物理和工程等领域中起到重要的作用。
本文将为你介绍一些常用的三角函数公式,这些公式包括正弦函数、余弦函数和正切函数的基本性质及其应用。
1. 正弦函数(Sine Function):正弦函数是指在直角三角形中,对于给定角度的正弦值定义的函数。
其公式为:sinθ = 对边 / 斜边其中,θ为角度,对边是指与角θ相对的那条边,斜边是指斜线,即斜边为直角三角形斜边的长度。
正弦函数的重要性质有:- 周期性:sin(θ + 2π) = sinθ- 奇偶性:sin(-θ) = -sinθ- 行为:-1 ≤ sinθ ≤ 12. 余弦函数(Cosine Function):余弦函数是指在直角三角形中,对于给定角度的余弦值定义的函数。
其公式为:cosθ = 邻边 / 斜边其中,θ为角度,邻边是指与角θ相邻的那条边。
余弦函数的重要性质有:- 周期性:cos(θ + 2π) = cosθ- 奇偶性:cos(-θ) = cosθ- 行为:-1 ≤ cosθ ≤ 13. 正切函数(Tangent Function):正切函数是指在直角三角形中,对于给定角度的正切值定义的函数。
其公式为:tanθ = 对边 / 邻边其中,θ为角度,邻边是指与角θ相邻的那条边。
正切函数的重要性质有:- 周期性:tan(θ + π) = tanθ- 奇偶性:tan(-θ) = -tanθ- 行为:正切函数在某些特殊角度处无定义,即在π/2、3π/2、5π/2等处无解。
4. 反三角函数(Inverse Trigonometric Functions):反三角函数是指通过三角函数的值计算对应角度的函数,常用的反三角函数有反正弦函数(arcsin)、反余弦函数(arccos)和反正切函数(arctan)。
他们的公式为:- 反正弦函数:θ = arcsin(x) ⇒ sin(θ) = x- 反余弦函数:θ = arccos(x) ⇒ cos(θ) = x- 反正切函数:θ = arctan(x) ⇒ tan(θ) = x这些反三角函数的应用十分广泛,可以帮助我们求解三角函数的角度。
所有三角函数的公式大全
所有三角函数的公式大全在学习三角函数的过程中,公式是很重要的基础之一。
掌握了三角函数的公式,我们就能够更好地理解三角函数的性质,从而更好地解题。
以下是所有三角函数的公式大全。
一、正弦函数(sin)1. 定义:在一个直角三角形中,正弦函数的值等于其对边的长度与斜边的长度的比值。
2. 周期性:sin(x + 2π) = sin(x),其中π为圆周率。
3. 奇偶性:sin(-x) = -sin(x),即sin函数是奇函数。
4. 余角公式:sin(π - x) = sin(x)sin(π + x) = -sin(x)sin(2π - x) = -sin(x)5. 和差公式:sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y)6. 二倍角公式:sin(2x) = 2sin(x) cos(x)sin²(x) = (1 - cos(2x)) / 27. 三倍角公式:sin(3x) = 3sin(x) - 4sin³(x)8. 多倍角公式:sin(nx) = 2^(n-1) sin(x) cos(x) cos(2x) ...cos((n-1)x)9. 单位圆上的正弦函数:sin(x) = y,其中x为角度,称为弧度制下的角度。
在单位圆上,角度为x对应的点的y坐标即为sin(x)的值。
二、余弦函数(cos)1. 定义:在一个直角三角形中,余弦函数的值等于其邻边的长度与斜边的长度的比值。
2. 周期性:cos(x + 2π) = cos(x),其中π为圆周率。
3. 奇偶性:cos(-x) = cos(x),即cos函数是偶函数。
4. 余角公式:cos(π - x) = -cos(x)cos(π + x) = -cos(x)cos(2π - x) = cos(x)5. 和差公式:cos(x ± y) = cos(x) cos(y) ∓ sin(x) sin(y)6. 二倍角公式:cos(2x) = cos²(x) - sin²(x) = 2cos²(x) - 1 = 1 - 2sin²(x)7. 三倍角公式:cos(3x) = 4cos³(x) - 3cos(x)8. 多倍角公式:cos(nx) = 2^(n-2) cos²(x) - 2^(n-4) cos⁴(x) ...(-1)^(n-1) cos((n-1)x)9. 单位圆上的余弦函数:cos(x) = x,其中x为角度,称为弧度制下的角度。
三角函数公式大全
Trigonometric 1.诱导公式sin-a = - sinacos-a = cosasinπ/2 - a = cosacosπ/2 - a = sinasinπ/2 + a = cosacosπ/2 + a = - sinasinπ - a = sinacosπ - a = - cosasinπ + a = - sinacosπ + a = - cosa2.两角和与差的三角函数sina + b = sinacosb + cosαsinbcosa + b = cosacosb - sinasinbsina - b = sinacosb - cosasinbcosa - b = cosacosb + sinasinbtana + b = tana + tanb / 1 - tanatanbtana - b = tana - tanb / 1 + tanatanb3.和差化积公式sina + sinb = 2sina + b/2cosa - b/2sina - sinb = 2sina - b/2cosa + b/2cosa + cosb = 2cosa + b/2cosa - b/2cosa - cosb = - 2sina + b/2sina - b/24.积化和差公式sinasinb = - 1/2cosa + b - cosa - bcosacosb = 1/2cosa + b + cosa -bsinacosb = 1/2sina + b + sina - b5.二倍角公式sin2a = 2sinacosacos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = 1 – cos 2a/ 2cos2a = 1 + cos 2a/ 2tan a = 1 – cos 2a /sin 2a = sin 2a / 1 + cos 2a7.万能公式sina = 2tana/2 / 1+tan2a/2cosa = 1-tan2a/2 / 1+tan2a/2tana = 2tana/2 / 1-tan2a/2三角函数公式求助编辑百科名片三角函数是数学中属于初等函数中的超越函数的一类函数..它们的本质是任何角的集合与一个比值的集合的变量之间的映射..通常的三角函数是在平面直角坐标系中定义的..其定义城为整个实数城..另一种定义是在直角三角形中;但并不完全..现代数学把它们描述成无穷敖列的极限和微分方程的解;将其定义扩展到复数系..目录公式分类同角三角函数的基本关系平常针对不同条件的常用的两个公式一个特殊公式坡度公式锐角三角函数公式二倍角公式三倍角公式三倍角公式半角公式万能公式其他四倍角公式五倍角公式六倍角公式七倍角公式八倍角公式九倍角公式十倍角公式N倍角公式半角公式两角和公式三角和公式和差化积积化和差双曲函数三角函数的诱导公式六公式万能公式其它公式内容规律公式分类同角三角函数的基本关系平常针对不同条件的常用的两个公式一个特殊公式坡度公式锐角三角函数公式二倍角公式三倍角公式三倍角公式半角公式万能公式其他四倍角公式五倍角公式六倍角公式七倍角公式八倍角公式九倍角公式十倍角公式N倍角公式半角公式两角和公式三角和公式和差化积积化和差双曲函数三角函数的诱导公式六公式万能公式其它公式内容规律展开编辑本段公式分类同角三角函数的基本关系倒数关系:tanα ·cotα=1sinα ·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscα平方关系:平常针对不同条件的常用的两个公式一个特殊公式sina+sinθsina-sinθ=sina+θsina-θ证明:sina+sinθsina-sinθ=2 sinθ+a/2 cosa-θ/2 2 cosθ+a/2 sina-θ/2=sina+θsina-θ坡度公式我们通常把坡面的铅直高度h与水平高度l的比叫做坡度也叫坡比; 用字母i表示;即i=h / l;坡度的一般形式写成l : m形式;如i=1:5.如果把坡面与水平面的夹角记作a叫做坡角;那么i=h/l=tan a.锐角三角函数公式正弦:sinα=∠α的对边/∠α 的斜边余弦:cosα=∠α的邻边/∠α的斜边正切:tanα=∠α的对边/∠α的邻边余切:cotα=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦正切tan2A=2tanA/1-tan^2A三倍角公式三倍角公式sin3α=4sinα·sinπ/3+αsinπ/3-αcos3α=4cosα·cosπ/3+αcosπ/3-αtan3a = tan a · tanπ/3+a· tanπ/3-a三倍角公式推导sin3a=sina+2a=sin2acosa+cos2asina=2sina1-sina+1-2sinasina=3sina-4sin^3acos3a=cos2a+a=cos2acosa-sin2asina=2cosa-1cosa-21-cos^acosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina3/4-sina=4sina√3/2-sina=4sinasin60°-sina=4sinasin60°+sinasin60°-sina=4sina2sin60+a/2cos60°-a/22sin60°-a/2cos60°-a/2=4sinasin60°+asin60°-acos3a=4cos^3a-3cosa=4cosacosa-3/4=4cosacosa-√3/2^2=4cosacosa-cos30°=4cosacosa+cos30°cosa-cos30°=4cosa2cosa+30°/2cosa-30°/2{-2sina+30°/2sina-30°/2}=-4cosasina+30°sina-30°=-4cosasin90°-60°-asin-90°+60°+a=-4cosacos60°-a-cos60°+a=4cosacos60°-acos60°+a上述两式相比可得tan3a=tanatan60°-atan60°+a现列出公式如下:sin2α=2sinαcosα tan2α=2tanα/1-tanα cos2α=cosα-sinα=2cosα-1=1-2sinα可别轻视这些字符;它们在数学学习中会起到重要作用;包括在一些图像问题和函数问题中三倍角公式sin3α=3sinα-4sinα=4sinα·sinπ/3+αsinπ/3-α cos3α=4cosα-3cosα=4cosα·cosπ/3+αcosπ/3-α tan3α=tanα-3+tanα^2/-1+3tanα^2=tan a · tanπ/3+a· tanπ/3-a半角公式sin^2α/2=1-cosα/2cos^2α/2=1+cosα/2tan^2α/2=1-cosα/1+cosαtanα/2=sinα/1+cosα=1-cosα/sinα万能公式sinα=2tanα/2/1+tanα/2cosα=1-tanα/2/1+tan^2α/2tanα=2tanα/2/1-tan&sα/2其他sinα+sinα+2π/n+sinα+2π2/n+sinα+2π3/n+……+sinα+2πn-1/n=0cosα+cosα+2π/n+cosα+2π2/n+cosα+2π3/n+……+cosα+2πn-1/n=0 以及sin^2α+sin^2α-2π/3+sin^2α+2π/3=3/2tanAtanBtanA+B+tanA+tanB-tanA+B=0四倍角公式sin4A=-4cosAsinA2sinA^2-1cos4A=1+-8cosA^2+8cosA^4tan4A=4tanA-4tanA^3/1-6tanA^2+tanA^4五倍角公式sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA5-10tanA^2+tanA^4/1-10tanA^2+5tanA^4六倍角公式sin6A=2cosAsinA2sinA+12sinA-1-3+4sinA^2cos6A=-1+2cosA16cosA^4-16cosA^2+1tan6A=-6tanA+20tanA^3-6tanA^5/-1+15tanA-15tanA^4+tanA^6七倍角公式sin7A=-sinA56sinA^2-112sinA^4-7+64sinA^6cos7A=cosA56cosA^2-112cosA^4+64cosA^6-7tan7A=tanA-7+35tanA^2-21tanA^4+tanA^6/-1+21tanA^2-35tanA^4+7tanA^6 八倍角公式sin8A=-8cosAsinA2sinA^2-1-8sinA^2+8sinA^4+1 cos8A=1+160cosA^4-256cosA^6+128cosA^8-32cosA^2tan8A=-8tanA-1+7tanA^2-7tanA^4+tanA^6/1-28tanA^2+70tanA^4-28tanA^6+tanA^ 8九倍角公式sin9A=sinA-3+4sinA^264sinA^6-96sinA^4+36sinA^2-3 cos9A=cosA-3+4cosA^264cosA^6-96cosA^4+36cosA^2-3tan9A=tanA9-84tanA^2+126tanA^4-36tanA^6+tanA^8/1-36tanA^2+126tanA^4-84ta nA^6+9tanA^8十倍角公式sin10A = 2cosAsinA4sinA^2+2sinA-14sinA^2-2sinA-1-20sinA^2+5+16sinA^4 cos10A = -1+2cosA^2256cosA^8-512cosA^6+304cosA^4-48cosA^2+1tan10A = -2tanA5-60tanA^2+126tanA^4-60tanA^6+5tanA^8/-1+45tanA^2-210tanA^4+210tan A^6-45tanA^8+tanA^10N倍角公式根据棣美弗定理;cosθ+ i sinθ^n = cosnθ+ i sinnθ为方便描述;令sinθ=s;cosθ=c考虑n为正整数的情形:cosnθ+ i sinnθ = c+ i s^n = Cn;0c^n + C n;2c^n-2i s^2 + Cn;4c^n- 4i s^4 + ... …+Cn;1c^n-1i s^1 + Cn;3c^n-3i s^3 + Cn;5c^n-5i s^5 + ... …=>比较两边的实部与虚部实部:cosnθ=Cn;0c^n + Cn;2c^n-2i s^2 + Cn;4c^n-4i s^4 + ... (i)虚部:isinnθ=Cn;1c^n-1i s^1 + Cn;3c^n-3i s^3 + Cn;5c^n-5i s^5 + ... …对所有的自然数n:1. cosnθ:公式中出现的s都是偶次方;而s^2=1-c^2平方关系;因此全部都可以改成以c 也就是cosθ表示..2. sinnθ:1当n是奇数时:公式中出现的c都是偶次方;而c^2=1-s^2平方关系;因此全部都可以改成以s也就是sinθ表示..2当n是偶数时:公式中出现的c都是奇次方;而c^2=1-s^2平方关系;因此即使再怎么换成s;都至少会剩c也就是cosθ的一次方无法消掉..例. c^3=cc^2=c1-s^2;c^5=cc^2^2=c1-s^2^2半角公式tanA/2=1-cosA/sinA=sinA/1+cosAsin^2a/2=1-cosa/2cos^2a/2=1+cosa/2tana/2=1-cosa/sina=sina/1+cosa半角公式两角和公式两角和公式cosα+β=cosαcosβ-sinαsinβcosα-β=cosαcosβ+sinαsinβsinα+β=sinαcosβ+cosαsinβsinα-β=sinαcosβ -cosαsinβtanα+β=tanα+tanβ/1-tanαtanβtanα-β=tanα-tanβ/1+tanαtanβcotA+B = cotAcotB-1/cotB+cotAcotA-B = cotAcotB+1/cotB-cotA三角和公式sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα 和差化积sinθ+sinφ =2sinθ+φ/2 cosθ-φ/2和差化积公式sinθ-sinφ=2cosθ+φ/2 sinθ-φ/2cosθ+cosφ=2cosθ+φ/2cosθ-φ/2cosθ-cosφ= -2sinθ+φ/2sinθ-φ/2tanA+tanB=sinA+B/cosAcosB=tanA+B1-tanAtanBtanA-tanB=sinA-B/cosAcosB=tanA-B1+tanAtanB积化和差sinαsinβ=-cosα+β-cosα-β /2cosαcosβ=cosα+β+cosα-β/2sinαcosβ=sinα+β+sinα-β/2cosαsinβ=sinα+β-sinα-β/2双曲函数sh a = e^a-e^-a/2ch a = e^a+e^-a/2th a = sin ha/cos ha公式一:设α为任意角;终边相同的角的同一三角函数的值相等:sin2kπ+α= sinαcos2kπ+α= cosαtan2kπ+α= tanαcot2kπ+α= cotα公式二:设α为任意角;π+α的三角函数值与α的三角函数值之间的关系:sinπ+α= -sinαcosπ+α= -cosαtanπ+α= tanαcotπ+α= cotα公式三:任意角α与-α的三角函数值之间的关系:sin-α= -sinαcos-α= cosαtan-α= -tanαcot-α= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sinπ-α= sinαcosπ-α= -cosαtanπ-α= -tanαcotπ-α= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin2π-α= -sinαcos2π-α= cosαtan2π-α= -tanαcot2π-α= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sinπ/2+α= cosαcosπ/2+α= -sinαtanπ/2+α= -cotαcotπ/2+α= -tanαsinπ/2-α= cosαcosπ/2-α= sinαtanπ/2-α= cotαcotπ/2-α= tanαsin3π/2+α= -cosαcos3π/2+α= sinαtan3π/2+α= -cotαcot3π/2+α= -tanαsin3π/2-α= -cosαcos3π/2-α= -sinαtan3π/2-α= cotαcot3π/2-α= tanα以上k∈ZA·sinωt+θ+ B·sinωt+φ =√{A+2ABcosθ-φ} · sin{ωt + arcsin A·sinθ+B·sinφ / √{A^2 +B^2 +2ABcosθ-φ} }√表示根号;包括{……}中的内容三角函数的诱导公式六公式公式一:sin-α = -sinαcos-α = cosαtan -α=-tanα公式二:sinπ/2-α = cosαcosπ/2-α = sinα公式三:sinπ/2+α = cosαcosπ/2+α = -s inα公式四:sinπ-α = sinαcosπ-α = -cosα公式五:sinπ+α = -sinαcosπ+α = -cosα公式六:tanA= sinA/cosAtanπ/2+α=-cotαtanπ/2-α=cotαtanπ-α=-tanαtanπ+α=tanα诱导公式记背诀窍:奇变偶不变;符号看象限万能公式万能公式sinα=2tanα/2/1+tanα/2cosα=1-tanα/2/1+tanα/2tanα=2tanα/2/1-tanα/2其它公式三角函数其它公式1 sinα^2+cosα^2=1平方和公式21+tanα^2=secα^231+cotα^2=cscα^2证明下面两式;只需将一式;左右同除sinα^2;第二个除cosα^2即可4对于任意非直角三角形;总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-CtanA+B=tanπ-CtanA+tanB/1-tanAtanB=tanπ-tanC/1+tanπtanC整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证;当x+y+z=nπn∈Z时;该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论5cotAcotB+cotAcotC+cotBcotC=16cotA/2+cotB/2+cotC/2=cotA/2cotB/2cotC/27cosA^2+cosB^2+cosC^2=1-2cosAcosBcosC8sinA^2+sinB^2+sinC^2=2+2cosAcosBcosC其他非重点三角函数csca = 1/sinaseca = 1/cosaseca^2+csca^2=seca^2csca^2幂级数展开式sin x = x-x^3/3+x^5/5-……+-1^k-1x^2k-1/2k-1+…… x∈Rcos x = 1-x^2/2+x^4/4-……+-1kx^2k/2k+…… x∈Rarcsin x = x + 1/2x^3/3 + 13/24x^5/5 + ……|x|<1arccos x = π - x + 1/2x^3/3 + 13/24x^5/5 + …… |x|<1arctan x = x - x^3/3 + x^5/5 -…… x≤1无限公式sinx=x1-x^2/π^21-x^2/4π^21-x^2/9π^2……cosx=1-4x^2/π^21-4x^2/9π^21-4x^2/25π^2……tanx=8x1/π^2-4x^2+1/9π^2-4x^2+1/25π^2-4x^2+……secx=4π1/π^2-4x^2-1/9π^2-4x^2+1/25π^2-4x^2-+……sinxx=cosx/2cosx/4cosx/8……1/4tanπ/4+1/8tanπ/8+1/16tanπ/16+……=1/πarctan x = x - x^3/3 + x^5/5 -…… x≤1和自变量数列求和有关的公式sinx+sin2x+sin3x+……+sinnx=sinnx/2sinn+1x/2/sinx/2cosx+cos2x+cos3x+……+cosnx=cosn+1x/2sinnx/2/sinx/2tann+1x/2=sinx+sin2x+sin3x+……+sinnx/cosx+cos2x+cos3x+……+cosnxsinx+sin3x+sin5x+……+sin2n-1x=sinnx^2/sinxcosx+cos3x+cos5x+……+cos2n-1x=sin2nx/2sinx编辑本段内容规律三角函数看似很多;很复杂;但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系..而掌握三角函数的内部规律及本质也是学好三角函数的关键所在..三角函数本质:根据三角函数定义推导公式根据右图;有sinθ=y/ r; cosθ=x/r; tanθ=y/x; cosθ=x/y深刻理解了这一点;下面所有的三角公式都可以从这里出发推导出来;比如以推导sinA+B = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C;D;在单位圆上有任意A;B点..角AOD为α;BOD 为β;旋转AOB使OB与OD重合;形成新A'OD..Acosα;sinα;Bcosβ;sinβ;A'cosα-β;sinα-βOA'=OA=OB=OD=1;D1;0∴cosα-β-1^2+sinα-β^2=cosα-cosβ^2+sinα-sinβ^2和差化积及积化和差用还原法结合上面公式可推出换a+b/2与a-b/2单位圆定义单位圆六个三角函数也可以依据半径为一中心为原点的单位圆来定义..单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形..但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义;而不只是对于在0 和π/2 弧度之间的角..它也提供了一个图象;把所有重要的三角函数都包含了..根据勾股定理;单位圆的等式是:图象中给出了用弧度度量的一些常见的角..逆时针方向的度量是正角;而顺时针的度量是负角..设一个过原点的线;同x轴正半部分得到一个角θ;并与单位圆相交..这个交点的x和y坐标分别等于cos θ和sin θ..图象中的三角形确保了这个公式;半径等于斜边且长度为1;所以有sin θ= y/1 和cos θ= x/1..单位圆可以被视为是通过改变邻边和对边的长度;但保持斜边等于1的一种查看无限个三角形的方式..。
常用的三角函数公式大全
常用的三角函数公式大全三角函数公式两角和公式:sin(A+B) = \sin A \cos B + \cos A \sin B$sin(A-B) = \sin A \cos B - \cos A \sin B$cos(A+B) = \cos A \cos B - \sin A \sin B$cos(A-B) = \cos A \cos B + \sin A \sin B$tan A + \tan B = \dfrac{\sin(A+B)}{\cos A \cos B}$ tan A - \tan B = \dfrac{\sin(A-B)}{\cos A \cos B}$ cot A \cot B - 1 = \dfrac{\cot A + \cot B}{\cot(A+B)}$cot A \cot B + 1 = \dfrac{\cot B - \cot A}{\cot(A-B)}$倍角公式:sin 2A = 2\sin A \cos A$cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$ tan 2A = \dfrac{2\tan A}{1-\tan^2 A}$三倍角公式:sin 3A = 3\sin A - 4\sin^3 A$cos 3A = 4\cos^3 A - 3\cos A$tan 3A = \dfrac{\tan A \tan(A+\frac{\pi}{3}) \tan(A-\frac{\pi}{3})}{1-\tan A \tan(A+\frac{\pi}{3}) - \tan A \tan(A-\frac{\pi}{3})}$半角公式:sin \dfrac{A}{2} = \pm \sqrt{\dfrac{1-\cos A}{2}}$cos \dfrac{A}{2} = \pm \sqrt{\dfrac{1+\cos A}{2}}$tan \dfrac{A}{2} = \pm \sqrt{\dfrac{1-\cos A}{1+\cos A}}$ 和差化积:cos(a+b) - \cos(a-b) = -2\sin a \sin b$cos a \cos b = \dfrac{1}{2}(\cos(a+b) + \cos(a-b))$sin a \cos b = \dfrac{1}{2}(\sin(a+b) + \sin(a-b))$cos a \sin b = \dfrac{1}{2}(\sin(a+b) - \sin(a-b))$sin a \sin b = \dfrac{1}{2}(\cos(a-b) - \cos(a+b))$万能公式:sin a = \dfrac{a}{\sqrt{a^2 + \tan^2 a}}$cos a = \dfrac{1}{\sqrt{1+\tan^2 a}}$tan a = \dfrac{\sin a}{\cos a} = \dfrac{a}{\sqrt{1-a^2}}$ 其它公式:b\sin a + a\cos b = (a^2+b^2)\sin(a+c)$,其中 $\tan c = \dfrac{b}{a}$。
常用的三角函数公式大全
常用的三角函数公式大全三角函数是数学中一个重要的概念,它描述了角度和直角三角形的关系。
在数学和物理领域,三角函数广泛应用于测量、几何学、电磁学、信号处理等各个领域。
下面是一些常用的三角函数公式,可以帮助我们解决各种相关问题。
1.正弦函数公式:正弦函数表示为:sin(x),其中x为角度或弧度。
正弦函数的周期为2π。
常用公式如下:sin(2x) = 2sin(x)cos(x)sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)sin(a) ± sin(b) = 2sin((a ± b)/2)cos((a ∓ b)/2)sin(A) = (a/2R)sin(π/2 - x) = cos(x)sin(π/2 + x) = cos(x)2.余弦函数公式:余弦函数表示为:cos(x),其中x为角度或弧度。
余弦函数的周期为2π。
常用公式如下:cos(2x) = cos²(x) - sin²(x) = 2cos²(x) - 1 = 1 - 2sin²(x) cos(a ± b) = cos(a)cos(b) ∓ sin(a)sin(b)cos(a) ± cos(b) = 2cos((a ± b)/2)cos((a ∓ b)/2)cos(A) = (b/2R)cos(π/2 - x) = sin(x)cos(π/2 + x) = -sin(x)3.正切函数公式:正切函数表示为:tan(x),其中x为角度或弧度。
常用公式如下:tan(x) = sin(x)/cos(x)tan(a ± b) = (tan(a) ± tan(b))/(1 ∓ tan(a)tan(b))4.余切函数公式:余切函数表示为:cot(x),其中x为角度或弧度。
常用公式如下:cot(x) = 1/tan(x)cot(a ± b) = (cot(a)cot(b) - 1)/(cot(b) ± cot(a))5.正割函数公式:正割函数表示为:sec(x),其中x为角度或弧度。
三角函数定理公式大全
三角函数定理1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ] 7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。
三角函数定理公式大全
三角函数定理1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ] 7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。
三角函数常用公式
三角函数常用公式:(^表示乘方,例如^2表示平方)正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ =1-cosθ余矢函数vercosθ =1-sinθ同角三角函数间的基本关系式:·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α)·积的关系: sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A 的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, 三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+co sα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]。
常用的三角函数有哪些公式
常用的三角函数公式总结三角函数是数学中重要的分支之一,常用的三角函数包括正弦函数、余弦函数和正切函数。
这些函数在解决几何问题、物理问题和工程问题等方面起着至关重要的作用。
在本文中,我们将总结常用的三角函数的公式,帮助读者更好地理解和运用它们。
正弦函数(Sine)正弦函数通常用符号sin表示,其定义如下:$$ \\sin(\\theta) = \\frac{{\\text{对边}}}{{\\text{斜边}}} $$正弦函数的一些常用公式如下:1.正弦函数的平方和余弦函数的平方等于1:$$ \\sin^2(\\theta) + \\cos^2(\\theta) = 1 $$2.正弦函数的双角公式:$$ \\sin(2\\theta) = 2\\sin(\\theta)\\cos(\\theta) $$3.正弦函数的和差公式:$$ \\sin(\\alpha \\pm \\beta) =\\sin(\\alpha)\\cos(\\beta) \\pm\\cos(\\alpha)\\sin(\\beta) $$余弦函数(Cosine)余弦函数通常用符号cos表示,其定义如下:$$ \\cos(\\theta) = \\frac{{\\text{邻边}}}{{\\text{斜边}}} $$余弦函数的一些常用公式如下:1.余弦函数的平方和正弦函数的平方等于1:$$ \\cos^2(\\theta) + \\sin^2(\\theta) = 1 $$2.余弦函数的双角公式:$$ \\cos(2\\theta) = \\cos^2(\\theta) - \\sin^2(\\theta) $$3.余弦函数的和差公式:$$ \\cos(\\alpha \\pm \\beta) =\\cos(\\alpha)\\cos(\\beta) \\mp\\sin(\\alpha)\\sin(\\beta) $$正切函数(Tangent)正切函数通常用符号tan表示,其定义如下:$$ \\tan(\\theta) = \\frac{{\\text{对边}}}{{\\text{邻边}}} $$正切函数的一些常用公式如下:1.正切函数与正弦、余弦的关系:$$ \\tan(\\theta) =\\frac{{\\sin(\\theta)}}{{\\cos(\\theta)}} $$2.正切函数的双角公式:$$ \\tan(2\\theta) = \\frac{{2\\tan(\\theta)}}{{1 -\\tan^2(\\theta)}} $$3.正切函数的和差公式:$$ \\tan(\\alpha \\pm \\beta) = \\frac{{\\tan(\\alpha) \\pm \\tan(\\beta)}}{{1 \\mp \\tan(\\alpha)\\tan(\\beta)}} $$通过本文的介绍,读者可以更加深入地了解常用的三角函数公式,为解决各种数学问题提供了重要的数学工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修4三角函数常用公式及结论
、三角函数与三角恒等变换
2 2 2
5、 升幕公式 1 ± Sin2 a = (sin a± COS a ) 1 + COS2 a =2 COS a 1- COS2 a = 2 sin a
6、 两角和差的三角函数公式
sin ( a±3 ) = sin a COS 3 土 COS a sin 3 COS (
a±3 ) = COS a COS 3 干 sin a sin 3
tan tan tan
1 tan tan
7、两角和差正切公式的变形: tan a± tan 3 = tan ( a±3 ) (1 干 tan a tan 3 )
2、同角三角函数公式 sin
2 2 . g
a + COS a = 1 tan
Sin cos
3、二倍角的三角函数公式
sin2 a = 2sin a cos a cos2 2 2
a =2cos a -1 = 1-2 Sin a :
2 2
=COS a - Sin a
tan 2
2ta n
1 tan 2
4、
2
CO S
1 cos
2 2
2
1 cos2
sin ------------------
2
1 tan =tan45 tan
= tan (
1 tan 1 tan 45 tan
--- a )
1 tan 1 tan
tan 45 tan 1 tan 45 tan =tan (
— - a )
4
在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式
.
3.三角形中三内角的三角函数关系
(ABC )
O sin A sin (B C ), cos A cos (B C ), ta nA tan (B C ).(注:二倍角的关系)
― A B C A O
sin cos( ),cos —
2 2 2
5.几个重要的结论
O A B si nA si nB,cosA cosB ;
O 三内角成等差数列
B 600, A
C 1200
si n ( n — a ) = sin a,
cos ( n — a )= —cos a, tan (
n — a )= —tan a;
si n ( n + a ) = — Sin a cos (
n + a ): = —cos a ta n ( n + a )= :tan a sin (2 n — a ) = — sin
a cos (2
n — a )= cos a tan (2 n — a )= —tan a
si n ( —a ) = — sin a cos ( — a )= cos a ta n (
— a )=
-tan a
si n (
—a )= cos a
cos (
— a )= sin a
2
2
si n ( _+ a ) = cos a
cos (
_+ a ) = —sin a
2
2
11.三角函数的周期公式
函数y
sin( x
) , x € R 及函数y
cos( x ),x € R(A, w ,
为常数, 且
2
A M 0,w> 0)的周期T
;函数
10、三角函数的诱导公式
“奇变偶不变,符号看象限。
y tan( x ) , x k
,k Z (A, w , 为常数,且 A M 0,3> 0)的周期T —.
2
解三角形知识小结和题型讲解
解三角形公式。
1. 正弦定理
a b c
si nA si nB si nC
2. 余弦定理
a 2
b 2
c 2
2bccosA b 2 a 2 c 2 2ac cos B c 2
a 2
b 2
2ab cosC
2R (R 是 ABC 的外接圆半径)
cos A b 2
2
c 2 a
2bc cosB 2 a 2 c b 2
2ac
cosC
2
a b 2 2 c
2ab
sin (B C),
2。