运筹学 存贮论(存储论,库存论

合集下载

运筹学-存储论

运筹学-存储论

案例分析:某汽车制造企业供应链协同实践
01
背景介绍
某汽车制造企业面临着激烈的市场竞争和快速变化的市场 需求,为了提高运营效率和市场响应速度,该企业实施了 供应链协同战略。
02 03
协同实践
该企业通过与供应商、经销商等合作伙伴建立紧密的协同 关系,实现了信息共享、协同计划和资源优化等目标。同 时,该企业还采用了实时库存管理、多级库存管理和协同 补货等策略,进一步优化了库存管理。
运筹学-存储论
目 录
• 存储论基本概念与原理 • 需求预测与库存控制方法 • 供应链协同与库存管理优化 • 现代信息技术在存储论中的应用 • 存储论挑战与未来发展趋势
01 存储论基本概念与原理
存储论定义及作用
存储论定义
存储论是研究物资存储策略的理论, 通过对存储系统的分析、建模、优化 和控制,实现物资存储成本最小化、 服务水平最大化等目标。
和状态,提高库存透明度。
自动化补货
02
物联网技术可以实现自动化补货,当库存低于安全库存时,系
统会自动触发补货流程,减少人工干预和误差。
货物追踪与定位
03
物联网技术可以追踪货物的运输过程,确保货物在运输过程中
的安全和准确送达。
大数据在存储论中的价值挖掘
需求预测
通过分析历史销售数据、市场趋势等大数据信息,企业可以更准 确地预测未来需求,从而制定合理的库存策略。
实施效果
经过优化后,企业原材料库存水平显著降低,资金利用率得到提高,过期、变质等风险得到有效控制。
02 需求预测与库存控制方法
需求预测技术及应用
1 2
时间序列分析
利用历史销售数据,通过时间序列模型(如 ARIMA、指数平滑等)进行需求预测。

第16章存储论-

第16章存储论-

(2) 补充通过内部生产来实现, 生产速度为常数p (p>r);
(3) 每周期的生产量相同, 每周期的装配费为c2, 单位生产成本为k2; (4) 存储费单价为k3; (5) 不允许缺货, 即缺货费单价为k4=+.
例 某厂每月需要某产品200件,生产速度为500件/月,单位生
产成本为200元/件,存储费为30元/月件,每月生产的装配费 5000元,不允许缺货, 求该厂的最优生产周期、每周期的最优 生产量、最优生产时间、最大存储量及全月的最小平均费用.
(27. )模型建立足需求且平均费用最小. 每周期内的总费用为 c2k2rT 01 2k3rp prT02
平均每单位时间的费用为 C(T0)T c2 0k2r1 2k3rp prT0
6
§16.2 确定型存储模型
运筹学
二、生产速度恒定的EOQ模型
1. 基本假设
(1) 需求是连续、均匀的, 需求速度为常数r;
(1) T循环策略; (2) (T, S)策略; (3) (s, S)策略.
2
§16.1 存储问题三要素及分类
一、 存储问题三要素: 需求、补. 需求——存储的输出 2. 补充——存储的输入
订货费
订购费 购置费
运筹学
3. 费用
生产费 存储费
装配费 生产成本费
缺货费
3
运筹学
§16.2 确定型存储模型
T 0 0 .1 ,Q 5 0 1.6 5 ,C 8 0 1 12.6 3 ,1 / 5 T 9 0 6 30 06 1
修正
C(1/6)1239 , C 4(15/70 )1239 .7335 Q10/17,0C1239 .7335
5
§16.2 确定型存储模型

运筹学第十三章存储论

运筹学第十三章存储论
2
Q0
2C 3 D C1
最佳批次
n0
最佳周期
t0
2C 3 C1D
另外:t0 要取整数。
13
模型2: 边生产边供应,不允许缺货的模型 假设
缺货费用无穷大; 不能得到立即补充,生产需一定时间; 需求是连续的、均匀的;
每次订货量不变,订购费用不变(每次生产量不变 ,装配费不变);
C3 -- 每次订购费用 P -- 生产速度
C2 -- 缺货费 R -- 需求速度


t1 0 t2 t3 t
天数
31
取 [ 0, t ] 为一个周期,设 t1时刻开始生产。 [ 0, t2 ] 时间内存储为零,B为最大缺货量。 [t1, t2 ] -满足需求及[ 0, t1 ] 内的缺货。 [t2, t3 ] -满足需求,存储量以P-R速度增加。 存储量 t3时刻达到最大。 [t3, t ] -存储量以需求速度R减少。 S
,当 C 2 时 ,
1
最佳周期 t0是模型1的最佳周期 t 的
C 1
C2 C2
倍,
又由于
(C1 C2 ) C2
1
,所以两次订货时间延长了。
Rt 0 2 RC C1
3
不允许缺货量,订货量为 最大缺货量为:
Q0 S0 2 RC C1
3
C 1
C2 C2
C 1 C 2
C ( t0 ) C 3
C1R 2C 3

1 2
C1R

2 C 1C 3 R
10
Annual cost (dollars)
Total cost = HC + OC C(t)

运筹学11-存储论

运筹学11-存储论

第11章存储论存储论也称库存论(Inventory theory),是研究物资最优存储策略及存储控制的理论。

物资的存储是工业生产和经济运转的必然现象。

任何工商企业,如果物资存储过多,不但积压流动资金,而且还占用仓储空间,增加保管费用。

如果存储的物资是过时的或陈旧的,会给企业带来巨大经济损失;反之,若物资存储过少企业就会失去销售机会而减少利润,或由于缺少原材料而被迫停产,或由于缺货需要临时增加人力和费用。

寻求合理的存储量、订货量和订货时间是存储论研究的重要内容。

§1 确定型经济订货批量模型本节假定在单位时间内(或称计划期)的需求量为已知常数,货物供应速率、订货费、存储费和缺货费已知,其订货策略是将单位时间分成n等分的时间区间t,在每个区间开始订购或生产相同的货物量,形成t循环储存策略。

在建立储存模型时定义了下列参数及其含义。

D:需求速率,单位时间内的需求量(Demand per unit time)。

P:生产速率或再补给速率(Production or replenishment rate)。

A:生产准备费用(Fixed ordering or setup cost)。

C:单位货物获得成本(Unit acquisition cost)。

H:单位时间内单位货物持有(储存)成本(Holding cost per unit per unit time)。

B:单位时间内单位货物的缺货费用(Shortage cost per unit short per unit time)。

π:单位货物的缺货费用,与时间无关(Shortage cost per unit short, independent of time)。

t:订货区间(Order interval),周期性订货的时间间隔期,也称为订货周期。

L:提前期(order lead time),从提出订货到所订货物且进入存储系统之间的时间间隔,也称为订货提前时间或拖后时间。

《运筹学》第八章存贮论

《运筹学》第八章存贮论
存储费 平均存储量 : Rt/2 单位时间存储费: C1 平均存储费: C1Rt/2 t时间内平均总费用: C3 1 C (t ) KR C1 Rt t 2
– 求极小值
C3 1 dC (t ) 2 C1 R 0 dt t 2 C3 1 dC (t ) 2 C1 R 0 dt t 2 2C3 * – 最佳订货间隔 t C1 R
*
Q * Rt *
2C3 RP C1 ( P R)
R * t3 t P
*
R( P R) * A R(t t ) t P
* * * 3
平均总费用
C * 2C3 t *
模型Ⅳ:允许缺货,补充时间极短 最优存贮周期 经济生产批量
t
*
2C3 (C1 C2 ) C1C2 R
1
存贮量 R
[t1, t2 ] -以速度R满足需求及 以(P-R)速度补充[ 0, t1 ] 内 的缺货。t2时缺货补足。
P-R
S
[t2, t3 ] -以速度R满足需求, 存贮量以P-R速度增加。 t3时 刻达到最大存贮量A,并停止 生产。
t1
0
[t3, t ] -以存贮满足需求,存 贮以需求速度R减少。 t2
二、确定型存贮模型
模型Ⅰ:不允许缺货,补充时间极短
假设:
需求是连续均匀的,即单位时间的需求量R为常数 补充可以瞬时实现,即补充时间近似为零 单位存贮费C1,单位缺货费C2=∞,订购费用C3;
货物单价K
经济 订购 批量
经济订购批量
接收 订货 存贮消耗 (需求率为R)
Q
平均 存贮量
Q — 2
模型Ⅵ:需求是离散随机变量
设报童每天准备Q份报纸。 采用损失期望值最小准则确定Q

存贮论(存储论,库存论)

存贮论(存储论,库存论)

1 2
(RT
Q1)2 R
C3)
Y 有两个变量T , Q ,利用多元函数求机制的方法求最小值。
C Q1
1 T
( C1Q1 R
RT Q1 R
C2 )
0
C T
1 T2
( Q12C1 2R
1 2
(RT
Q1)2 R
C2
C3 )
1 T
(C2 (RT
Q1))
0
得到:
T
2C3(C1 C2 ) C1C2 R
库存物资占用仓库面积而引起的一系列费 用,如货物的搬运费,仓库本身的固定资 产折旧,仓库维修费用,仓库及其设备的 租金,仓库的取暖、冷藏、照明等费用, 仓库管理人员等的工资、福利费用,仓库 的业务核算费用等。
库存管理中费用分类
2 订货费
它包括二项:一项是订货费用(固定费用 )如采购人员的各种工资、旅差费、订购 合同、邮电费用等 ,它与订购次数有关, 与订购数量无关。
2.过高的存贮量占用了流动资金使资金周转困 难,降低了资金利用率;
3.过量存贮降低了材料或产品的质量,甚至于 产品过时,变质损坏.
存贮量不足会有什么后果:
1.由于原料不足可能会造成停工,停产等重大 经济损失; 2.因缺货失去销售机会,失去顾客;
3.用频繁订货的方法以补充短缺的物资,这将 增加订购费用.
的最大缺货量,并设单位时间缺货费用为 C3 ,则T1 为存储量为正的时间
周期, T2 为存储量为负的时间周期(缺货周期)。所以在一个周期内的
订货量仍为 Q1 RT1
与 模 型 (2.1) 的 推 导 类 似 , 在 一 个 周 期 内 0 ~ T1 的 平 均 存 量 为
Q1 2

运筹学第七章 运筹学 存贮论(存储论,库存论

运筹学第七章 运筹学 存贮论(存储论,库存论

为了统一供,需和存贮诸方面的矛盾,就要对 存贮系统进行分析.从获得最佳经济效益的 目的出发,求出最佳订购批量,最佳订购周期, 从而得到最佳存贮量,使整个存贮系统所支 付的费用最少. 用数学语言来说就是建立一个目标函数,这 个目标函数是由总费用与定货批量或定货周 期构成的,并求使得目标函数达到最小值的 定货批量或定货周期.
Q S T TC 2 4900 50(100 200) 85(台), 100 200 2 50100 4900 28(台) 200(100 200) 2 50(100 200) 0.0174(年) 6.35(天), 4900100 200 2 4900 50100 200 5715 (元). 100 200
1 1 2 T 1 1 T 2 ( Q Dt ) dt ( Qt | Dt | ) ( QT DT ) 0 0 0 T 2 T 2 1 1 1 Q DT Q Q Q. 2 2 2
T
量为Dt,此时的库存量为Q-Dt,则平均库存量为
1 T
D 1 TC TOC TCC CD CP Q, 求TC的最小值, Q 2 dTC CD D 1 2CD D 2 CP 0, Q , Q 称为EOQ dQ Q 2 CP 公式.此时TC 2CDCP D .
存储问题的基本概念
存贮问题的基本要素 (1)需求率:指单位时间内对某种物品的需求量, 以D表示. (2)定货批量:定货采用以一定数量物品为一批 的方式进行,一次定货包含某种物品的数量称 为批量,用Q表示. (3)定货间隔期:指两次定货之间的时间间隔,用 t表示.
(4)定货提前期:从提出定货到收到货物的时间 间隔,用L表示. (5)存贮(定货)策略:指什么时间提出定货(对存 储进行补充)以及定货(补充)的数量. 几种常见的存储策略: ⅰt-循环策略:不论实际的存储状态如何,总是每 隔一个固定的时间t,补充一个固定的存储量Q. ⅱ(t,S)策略:每隔一个固定时间t补充一次,补充 数量以补足一个固定的最大存储量S为准.因此 每次补充的数量是不固定的,当存储余额为I时, 补充数量是Q=S-I.

运筹学 第7章 库存理论

运筹学 第7章 库存理论

第七章存储论存储理论是运筹学最早成功应用的领域之一,是运筹学的重要分支。

本章将通过分析生产经营活动中常见的存储现象,展现管理科学中处理存储问题的优化理论与方法,介绍几种常见的确定型存储问题和随机存储问题的建模和求解方法。

第一节有关存储论的基本概念一、存储的与存储问题存储就是将一些物资(如原材料、外购零件、部件、在制品等等)存储起来以备将来的使用和消费。

存储的作用就是缓解供应与需求之间出现供不应求或供大于求等不协调情况的必要和有效的方法和措施。

存储现象是普遍存在的。

商店为了满足顾客的需要,必须有一定数量的库存货物来支持经营活动,若缺货就会造成营业额的损失;银行为了进行正常的交易需要储存一定数量的现金。

工厂为了生产的正常进行,必须储备一定的原材料等等。

但存储量是否越大越好呢?首先,有存储就会有费用(占用资金、维护等费用——存储费),且存储越多费用越大。

存储费是企业流动资金中的主要部分。

其次,若存储过少,就会造成供不应求,从而造成巨大的损失(失去销售机会、失去占领市场的机会、违约等)。

因此,如何最合理、最经济的制定存储策略是企业经营管理中的一个大问题。

这也是本章要研究的内容。

二、存储模型中的几个要素1.存储策略存储策略就是解决存储问题的方法,即决定多少时间补充一次以及补充多少数量的策略。

常见的有以下几种类型:(1)t0循环策略即每隔t0时间补充库存,补充量为Q。

这种策略是在需求比较确定的情况下采用。

(2)(s,S)策略即当存储量为s时,立即订货,订货量为Q=S-s,即将库存量补充到S。

(3)(t,s,S)策略即每隔t时间检查库存,当库存量小等于s时,立即补充库存量到S;当库存量大于s时,可暂时不补充。

2.费用(1)订货费订货费即企业向外采购物资的费用,包括订购费和货物成本费。

订购费主要指订货过程中手续费、电信往来费用、交通费等。

与订货次数有关;货物成本费是指与所订货物数量有关的费用,如成本费、运输费等。

运筹学课程08-存储论(胡运权 清华大学)

运筹学课程08-存储论(胡运权 清华大学)
NEUQ
存贮论 Inventory Theory
需求与供给是一对矛盾
1
本章主要内容
一、问题的提出 二、发展概况
三、存贮论的基本概念
NEUQ
四、 确定性存贮模型
五、 随机性存贮模型
2
NEUQ
一、问题的提出


商店存货问题 水库蓄水问题 生产用料问题

? ?
…………
3
NEUQ
例如,为了保证正常生产,工厂不可避免地要存 储一些原材料和半成品。当销售不畅时,工厂也会形 成一定的产成品存储(积压);商品流通企业为了其 经营活动,必须购进商品存储起来;但对企业来说, 如果物资存储过多,不但占用流动资金,而且还占用 仓储空间,增加保管成本,甚至还会因库存时间延长 而使存货出现变质和失效带来损失。反之,若物资存 储过少,企业就会由于缺少原材料而被迫停产,或失 去销售机会而减少利润,或由于缺货需要临时增加人 力和成本。
5
NEUQ

存贮论所要解决的问题有两个:
(1)存贮多少数量最为经济 (2)间隔多长时间需要补充一次,以及补充多少

寻求合理的存贮量、补充量和补充周期是存贮论 研究的重要内容,由它们构成的方案叫存贮策略
6
NEUQ
三、存贮论的基本概念

存贮系统 是一个由补充、存贮、需求三个环 节紧密构成的运行系统。
25
NEUQ
存贮费 平均存贮量 : Rt/2 单位时间存储费: C1 平均存储费: RtC1/2 t时间内平均总费用:
C3 1 C (t ) KR C1 Rt t 2
平均订货费
26
NEUQ
求极小值
C3 1 dC ( t ) 2 C1 R 0 dt t 2

第8章库存论存贮论200908

第8章库存论存贮论200908
单位产品的缺货损失费为 p
3
三、供给分析
1.供给率(单位时间可供量)R (R>D) (1)瞬时供给:R=+∞ (2)有时间性:R是一个常数或随机变量 2.订货提前期(交货延迟期)L
4
四、成本分析
1.一次定购费 K 2.单位产品在单位时间的存贮费 h 3.单位产品在单位时间的缺货损失费 p (若不充许缺货,则 p = +∞ ) 4.单位产品的采购成本价 c (这是一项可转
29
将上面关系代入到单位时间平均费用TC中:
TCt2 , t3
K
R R
D t2
D
2
h t3
t
2 2
pt
2 3
令: TC 0 TC 0
t 2
t 3
可得:
2K p R D
2K h R D
t2 h D h p R t3 p D h p R
30
将t应t代入相关式,求解的最后结论为:
12
计算工具:
WinQSB—inventory theory and system程序包: Deterministic Demand Economic Order Quantity (EOQ) Problem
灵敏度分析:
Results /Parametric Analysis 例如订货费K=620元/次,可以在[520,720] 之间变动,设该区间分为10份,则不同情况 下的Q和T,以及相关数据都可以显示出来。
管理运筹学
汪贤裕 2009.08
1
第8章 库存论(存贮论)
§8.1基本概念 §8.2确定型库存 §8.3.随机库存
2
§8.1基本概念
例8.1:(见教材) 一、需求分析

运筹学 课件 第八章库存论

运筹学 课件 第八章库存论
11:09 8
五、库存策略(库存量何时补充,补充多少的策略) (1)T-循环策略:每经时间间隔T(常数)就补充一定的库存量; (2)(L,S)策略:当库存量降到L单位以下时,就补充库存 量到S; (3)(T,L,S)策略:每经时间间隔T就检查库存量,若已 已低于L就补充到S,否则不予补充。
11:09
第八章 存贮论
什么是存储论? 物资常需要储存起来以备将来使用 存储需要成本。存储多少,多少时间补充一次是 合理的? 应满足两个要求: 存储量应保证不产生供不应求或供过于求的现象 存储计划应使成本最小 ——研究上述问题,并给出有关解答的理论和方法叫做
存储论
11:09 1
第一节 基本概念 第二节 确定型库存模型 模型一:不允许缺货,补充时间很短 模型二:不允许缺货,补充需一定时间 模型三:允许缺货,补充时间很短 模型四:允许缺货,补充需要一定时间 模型五:价格有折扣的存储问题 第三节 随机库存模型 模型六:单周期离散随机库存模型
(3000 − 2400) = 2×0.1×150× 2400× + 3×2400 3000 = 7320 元/ 月 ( )
* * 因 :C(t2 ) < C(t1 ) 为
结论:该企业应选择自行生产 11:09
缺货时间和缺货量有关。一般给出单位时间单位货物的缺货费,
记成 C2
11:09
7
3、订货费/生产费用 1)订货费 订货补充。包括两项费用 订购费:它与订货次数 有关,与订货量无关。订一次货所 订购费: 有关,与订货量无关。 支付的费用C 支付的费用 3 表示 订货本身的成本: 订货本身的成本:KQ,与产品数量有关。 K:单价 ,与产品数量有关。 : 2)生产费用 自行生产补充。包括两项费用 生产准备费用:它与组织生产的次数 有关,与产品数量无 关 (对应于订购费用)。组织一次生产所需要的调整、装 配费 用C3 表示。 生产本身的成本:KQ (对应于订货成本),它与产品数量 有关。K:单位生产成本

第九章 存储论.

第九章 存储论.
通过本章的学习,应当了解存储论的基本概念,掌握确定型存 储模型,了解单周期随机存储模型与其他类型的存储模型,学 会运用WinQSB求解确定型存储模型和单周期随机型存储模型。
3
第一节 存储论的基本概念
一、问题描述
在生产和生活中,人们经常进行着各种各样的存储 活动,这是为了解决供应(或生产)与需求(或消费) 之间不协调和矛盾的一种手段。
中,具有以下特点:在一个周期内订货只进行一次,若未到期
末已售完也不再补充订货;若发生滞销,未售出的货应在期末
降价处理。无论是供大于求还是供不应求都会造成损失,研究
的目的是确定该时期的订货量,使预期的总损失最少或总赢利
最大。
22
一、模型一:需求是离散型随机变量
23
一、模型一:需求是离散型随机变量
24
一、库容有限制的存储问题
27
一、库容有限制的存储问题
28
二、易腐物品的存储问题
易腐物品的存储问题按存货的寿命,可分为固 定寿命和随机寿命两大类。
由于易腐物品库存模型(特别是随机寿命类型)的 复杂性,寻找最优策略是十分困难的。现有的 研究主要集中在各种限定条件下的近似最优策 略上。例如,当库存量小于某个规定的临界值 才订货,否则不订货;在周期盘点下保持库存 量为常数;当库存物品由于需求或过期而减少 一个时就订货,且只订一个;应用不耐烦顾客 排队系统理论研究该类模型等。这些问题都有 很鲜明的实际背景。
7
二、基本概念
(五)存储模型
从存储模型的总体上看,可以分 为两类:
(1) 确定型模型,即模型中的 数据都为确定性的数值;
(2) 随机型模型,即模型中含 有随机变量,用以反应订购、 库存和需求的不确定性。
8

运筹学 第7章 库存理论

运筹学 第7章 库存理论

第七章存储论存储理论是运筹学最早成功应用的领域之一,是运筹学的重要分支。

本章将通过分析生产经营活动中常见的存储现象,展现管理科学中处理存储问题的优化理论与方法,介绍几种常见的确定型存储问题和随机存储问题的建模和求解方法。

第一节有关存储论的基本概念一、存储的与存储问题存储就是将一些物资(如原材料、外购零件、部件、在制品等等)存储起来以备将来的使用和消费。

存储的作用就是缓解供应与需求之间出现供不应求或供大于求等不协调情况的必要和有效的方法和措施。

存储现象是普遍存在的。

商店为了满足顾客的需要,必须有一定数量的库存货物来支持经营活动,若缺货就会造成营业额的损失;银行为了进行正常的交易需要储存一定数量的现金。

工厂为了生产的正常进行,必须储备一定的原材料等等。

但存储量是否越大越好呢?首先,有存储就会有费用(占用资金、维护等费用——存储费),且存储越多费用越大。

存储费是企业流动资金中的主要部分。

其次,若存储过少,就会造成供不应求,从而造成巨大的损失(失去销售机会、失去占领市场的机会、违约等)。

因此,如何最合理、最经济的制定存储策略是企业经营管理中的一个大问题。

这也是本章要研究的内容。

二、存储模型中的几个要素1.存储策略存储策略就是解决存储问题的方法,即决定多少时间补充一次以及补充多少数量的策略。

常见的有以下几种类型:(1)t0循环策略即每隔t0时间补充库存,补充量为Q。

这种策略是在需求比较确定的情况下采用。

(2)(s,S)策略即当存储量为s时,立即订货,订货量为Q=S-s,即将库存量补充到S。

(3)(t,s,S)策略即每隔t时间检查库存,当库存量小等于s时,立即补充库存量到S;当库存量大于s时,可暂时不补充。

2.费用(1)订货费订货费即企业向外采购物资的费用,包括订购费和货物成本费。

订购费主要指订货过程中手续费、电信往来费用、交通费等。

与订货次数有关;货物成本费是指与所订货物数量有关的费用,如成本费、运输费等。

运筹学-第九章 存储论

运筹学-第九章  存储论

库存管理中费用分类
3 缺货损失费(CS)
当某种物资存储量不足,不能 满足需求时所造成的损失,如 工厂停工待料,失去销售机会 以及不能履行合同而缴纳的罚 款等。
9.2 经济订货批量的存贮模型
9.2.1 基本的EOQ模型
Q
t
T
• 这种物品的需求率D(件/年)且连续 的、均匀的 • 当存贮降至零时,可以立即得到补充 (提前期为零并不允许短缺) • 每次订货量Q不变,订购费CD不变 (每次生产量不变,装配费不变); • 单位存贮费CP不变。
2C D D CP
S
* 1
2C D CS D(1 D / P ) C P (C P C S ) 2C D C P D(1 D / P ) CS (C P CS ) 2D C P CSC D (1 D / P ) C P CS CS * C P CS P-D P
TC*
例:某商店订购一批货物,每次订 购费为40元,在一个月内由缺货造 成的损失为0.5元/个。若货物需求 均匀连续,且需求率为100个/月, 月单位库存存储费用为1元,求该 厂的最优定货量、最优订货周期以 及年总费用。
Q*
2C D D(C P CS ) C P CS
2 * 40 *100(1 0.5) 155 1* 0.5

TC 0 t 2 TC 0 t 3
t3 t2
2C D C P (1 D / P ) C S D(C P C S ) 2C D CS (1 D / P ) CP D
Q*
2C D D(C P CS ) C P CS (1 D / P) C P CS CS P PD
Q*
2C D D C P (1 D / P)

运筹学课件 第十一章 存 贮 论

运筹学课件  第十一章 存 贮 论

C(t)=(C3+kRt)/t+C1Rt/2 当t=t*时,得到费用最小c*
C(t)
C3 t
kR
1 2
C1Rt
C*
d (C(t)) dt
C3 t2
1 2
C1R
0
t* 2C3 C1R
0
Q* Rt* 2C3R C1
C* 2C1C3R KR
运筹学教程
C(t)
c1Rt/2
(c3+kRt)/t
t*
T
P
c1R
c2
PR
t2*
( c1
c1 c2
)t
*
此时费用c(t*,t2 *)是c(t, t2 )的最小值
最优库存周期t* 2c3 . c1 c2 .
P
c1R
c2
PR
经济生产批量Q* Rt* 2c3R . c1 c2 .
P
c1
c2
PR
运筹学教程
缺货补足时间t2 *
(
c1
c1 c2
)t
*
开始生产时间t1*
[0, t ]平均总费用
1[1 t2
C1 (P
R)(t3
t2 )(t
t2 )
1 2
C2 ( R)t1t2
C3 ]
c(t, t2 )
(P
R)R
2P
[C1t
2C1t2
(C1
C2 )
t22 t
] c3
t
c(t, t2 )
t c(t ,
t
2
)
0 0
t 2
t* 2c3 . c1 c2 .
运筹学教程
不允许缺货模型
R :单位时间需求量(消耗速度) Q

第9章:存储论《运筹学》

第9章:存储论《运筹学》

2VT
2TV
T
利用极值的必要条件:
f T
0
f T3
0
解之,得最优解:
T *
2Va(b R )
bRD(V D)
T *
2VRa
3
bD(bR)(V D)
Q* DT *
2 aVD(b R ) bR(V D)
f*
Dp 2abRD(V D) V (bR)
则最大存储量及最大缺货量的计算:
Q1 T3D(V D) /T
解得:
RDT Q1 b R
对(11.6)式对 T 求偏导,由极值必要条件,得:
f T
bQ12 2DT 2
RD 2
RQ12 2DT 2
a T2
0
RD 2
(b R)Q12 2DT 2
a T2
0
将 Q1 代入得:
RD 2
(b
R) RDT bR
2DT 2
2
a T2
Q1 T1 (V D)
T1V T3 D Q DT
在一个周期T内:
平均储存量: Q1T3
2T
平均缺货量: S (T T3 )
2T
采用以前的符号得模型:
min
f
Q1T3b S(T T3 )R a
2T
2T
T
Dp
将(11.11)代入得:
min f Dp bD(V D)T32 RD(V D)(T T3 )2 a
解:此为连续加工不允许缺货的模型,以一个月为计划期。已知V=500, D=100,P=10,a=5,b=0.5。
Q*
50(件) 25100500
0.5(500100)
T*
25500 0.5100(500100)

存贮论

存贮论

二,费用分析
订货费或生产前准备 生产前准备费 1, 订货费或生产前准备费 订购费用(固定费用) 用于采购员外出费用, 订购费用 ( 固定费用 ) , 用于采购员外出费用 , 手续费 通讯费用,物资到货和验收入库发生的费用等等. ,通讯费用,物资到货和验收入库发生的费用等等. 订购费用与订货数量无关,与订购次数成正比. 订购费用与订货数量无关,与订购次数成正比. 订购费用C 费用/ 订购费用Co(费用/次). 如果是自己组织生产, 需支出生产前准备费( 如果是自己组织生产 , 需支出生产前准备费 ( 固定费 如更换模具,改装或添置某些专用设备等. 用),如更换模具,改装或添置某些专用设备等.生产前准 备费C 费用/ 备费Cp(费用/次) .
存贮费: 2, 存贮费: 用于物资的保管,货物变质的损失, 用于物资的保管,货物变质的损失,货物占用资金应付的 利息以及保管费等. 利息以及保管费等. 库存物资越多,存贮时间越长,存贮费就越大, 库存物资越多,存贮时间越长,存贮费就越大,故用每件 物资越多 物品存放单位时间所需费用作为计算单位, 存贮费率C 物品存放单位时间所需费用作为计算单位,即存贮费率Ch 表示. (元/件.时)表示. 3,缺货费 当库存物资消耗完,发生供不应求时的损失费用, 当库存物资消耗完,发生供不应求时的损失费用,如失 去销售机会的损失,停工特料的损失, 去销售机会的损失,停工特料的损失,以及不能履行合同而 缴纳的罚款等. 缴纳的罚款等. 缺货费用缺货费率表示, 单位时间内缺货一件的损失 缺货费用缺货费率表示,即单位时间内缺货一件的损失 费用,记为Cs 费用/ Cs( 费用,记为Cs(费用/件.时). 在不允许缺货的情况下,缺货费作无穷大处理. 在不允许缺货的情况下,缺货费作无穷大处理. 无穷大处理
根据物资的来源,存贮系统的输入有以下两类不同的方式: 根据物资的来源,存贮系统的输入有以下两类不同的方式: 输入有以下两类不同的方式 如图6-2(a),(b)所示. 所示. 如图 , 所示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
T 0
(Q
Dt)dt
1 T
(Qt
|T0
1 2
Dt 2
|T0
)
1 T
(QT
1 2
DT
2
)
Q 1 DT Q 1 Q 1 Q.
2
22
C
TOC
TCC
C2
D Q
1 2
C1Q, 求TC的最小值,
dC dQ
C2 D Q2
1 2
C1
0, Q
公式.此时C 2DC1C2 .
2DC2 , Q称为EOQ C1
第七章 存贮论(存储论,库存论) (Inventory theory)
引言 经济订货批量的存贮模型 具有约束条件的存贮模型 具有价格折扣优惠的存贮模型 单时期的随机存贮模型
教学目的与要求:在掌握EOQ公式的基础上,学会几 种存储模型的求解方法及存储策略,并会用 WinQSB求解存储问题.
重点与难点:EOQ公式及几个简单模型,难点是公式 太多,难于记忆.
教学方法:以分析问题为主,公式推导为辅,结合 WinQSB讲解.
思考题,讨论题,作业:本章习题.
参考资料:见前言.
学时分配:6学时.
第一节 引言
在生产和生活中,人们经常进行着各种个样的存 贮活动,这是为了解决供应(或生产)与需求(或消 费)之间不协调或矛盾的一种手段.例如,一场战 斗在很短时间内可能消毫几十万发炮弹,而兵工 厂不可能在这么短的时间内生产那么多炮弹,这 就是供需矛盾,为了解决这一矛盾,只能将军火 工厂每天生产的炮弹储存到军火库内,以备战争 发生时的需要.
最佳定货周期为T Q D
2C2 DC1
,
n
D Q
.
例1 某商店有甲商品出售,每单位甲商品成本 为500元,其存储费用每年为成本的20%,该商 品每次的定购费为20元,顾客对甲商品的年需 求量为365个,如不允许缺货,定货提前期为零, 求最佳定购批量最小费用及最佳定货周期.
解:
C2 20元/次,C1 500 20% 100元/年, D 365个 / 年,
存储问题的基本概念
存贮问题的基本要素 (1)需求率:指单位时间内对某种物品的需求量, 以D表示. (2)定货批量:定货采用以一定数量物品为一批 的方式进行,一次定货包含某种物品的数量称 为批量,用Q表示. (3)定货间隔期:指两次定货之间的时间间隔,用 t表示.
(4)定货提前期:从提出定货到收到货物的时间 间隔,用L表示. (5)存贮(定货)策略:指什么时间提出定货(对存 储进行补充)以及定货(补充)的数量. 几种常见的存储策略: ⅰt-循环策略:不论实际的存储状态如何,总是每 隔一个固定的时间t,补充一个固定的存储量Q. ⅱ(t,S)策略:每隔一个固定时间t补充一次,补充 数量以补足一个固定的最大存储量S为准.因此 每次补充的数量是不固定的,当存储余额为I时, 补充数量是Q=S-I.
与存贮问题有关的基本费用项目
(1)一次费用或准备费用:每组织一次生产,定 货或采购某种物品所必须的费用(如差旅费, 手续费,检验费等).通常认为它与定购数量无 关.但是,分配到每件物品上的费用随购买量 的增加而减少,此费用用C2表示. (2)存储费:包括仓库保管费,占用流动资金的 利息,保险金,存贮物品的变质损失费等.以每
第二节 经济定货批量的存贮模型
1.基本的EOQ(Economic order quality 经济定 货批量,1915年,英国,Harris)模型 设一种物品的需求率D(件/年)是已知常数,并 以批量Q供应给需求方,瞬间供货,不允许缺 货, 货到后存在仓库中,并以速率D消耗掉.该类问 题只考虑两种费用:定货费C2(元/次),存贮费 C1(元/件·年),试确定每次的定货批量为多少时, 使全年的总费用为最少.
这种供需不协调的现象十分普遍,在农业,商 业和物资领域大量存在.人们在解决这些矛盾 时,很容易想到用存贮这个环节来协调供需之 间的矛盾.我们可以把存贮看作中心,把供应 与需求看作一个具有输入(供应)和输出(需求) 的控制系统.
输入(供应)
存贮
输出(需求)
为什么要研究存贮问题?
存贮量过大会有什么后果: 1.由于不必要的存贮,增加了库存保管费及保 管场地,而使产品价格增高;
2.过高的存贮量占用了流动资金使资金周转困 难,降低了资金利用率;
3.过量存贮降低了材料或产品的质量,甚至于 产品过时,变质损坏.
存贮量不足会有什么后果:
1.由于原料不足可能会造成停工,停产等重大 经济损失; 2.因缺货失去销售机会,失去顾客;
3.用频繁订货的方法以补充短缺的物资,这将 增加订购费用.
件存贮物在单位时间内所发生的费用,用C1表 示. (3)缺货损失费:这是一种由于未及时满足顾 客需要而产生的损失,包括两种情况,其一是 顾客不愿意等待而损失一笔交易,进而影响企 业的声誉.其二是顾客愿意等待稍后的供应而 发生的处理过期定货的损失,用C3表示.
在一个存贮问题中主要考虑两个量:供应(需求) 量的多少;何时供应(需求),即量和期的问题.按 这两个参数的确定性和随机性,可分为确定性 存贮模型和随机性存贮模型.
为了统一供,需和存贮诸方面的矛盾,就要对 存贮系统进行分析.从获得最佳经济效益的 目的出发,求出最佳订购批量,最佳订购周期, 从而得到最佳存贮量,使整个存贮系统所支 付的费用最少. 用数学语言来说就是建立一个目标函数,这 个目标函数是由总费用与定货批量或定货周 期构成的,并求使得目标函数达到最小值的 定货批量或定货周期.
ⅲ(s,S)策略:设s为定货点(或保险存储量,安全 存储量,警戒点等).当存储余额为I,若I>s则不
对存储进行补充;若I s时,则对存储进行补
充,补充数量Q=S-I.补充后的数量达到最大存 储量S. ⅳ(t,s,S)策略:在很多情况下,实际存储量需要 通过盘点才能得知,若每隔一个固定时间t盘 点一次,得知存储量为I,再根据I是否超过定货 点s决定是否定货.
解:先用图形表示这一过程
数量
Q
Ot
T
时间
C表示全年发生的总费用,TOC表示全年内的 定货费,TCC表示全年内的的存储费,n表示全
年的平均定货次数,nຫໍສະໝຸດ D. QTOCC2
n
C2
D Q
,TCC
1 2
C1Q.
平量均为D存t储,此量时为的12库Q存. 这量是为因Q-为Dt在,则时平间均t内库的存需量求为
1
相关文档
最新文档